Étale cohomology of surfaces, degeneracy of Galois representations, and a conjectural geometric explanation for ramification

Nicolas Mascot

Trinity College Dublin
Atelier PARI/GP 2024
10 January 2024

Goal

Let C / \mathbb{Q} be a "nice" curve of genus g.
Let J be its Jacobian, and fix a prime $\ell \in \mathbb{N}$.
$\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ acts on $J(\overline{\mathbb{Q}})[\ell] \rightsquigarrow$ Galois representation

$$
\rho_{C, \ell}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \longrightarrow \operatorname{GSp}_{2 g}\left(\mathbb{F}_{\ell}\right) .
$$

Goal

Let C / \mathbb{Q} be a "nice" curve of genus g.
Let J be its Jacobian, and fix a prime $\ell \in \mathbb{N}$.
$\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ acts on $J(\overline{\mathbb{Q}})[\ell] \rightsquigarrow$ Galois representation

$$
\rho_{C, \ell}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \longrightarrow \operatorname{GSp}_{2 g}\left(\mathbb{F}_{\ell}\right) .
$$

Motivation(s):

- Point counting:

$$
\begin{aligned}
\rho\left(\text { Frob }_{p}\right) & \rightsquigarrow \\
& \# X\left(\mathbb{F}_{p}\right) \bmod \ell \\
& \rightsquigarrow \operatorname{CRT}
\end{aligned}
$$

- Modular curves \rightsquigarrow Galois representations attached to modular forms \rightsquigarrow Get $a_{p}(f)$ in $(\log p)^{O(1)}$.
- Interesting number-theoretic objects, e.g. polynomials with Galois group $\subseteq G \mathrm{gp}_{2 g}\left(\mathbb{F}_{\ell}\right)$ and with controlled ramification.

Division polynomials

Suppose $\alpha \in \mathbb{Q}(J)$ is defined and injective on $J[\ell]$.
\rightsquigarrow "Division polynomial"

$$
R_{C, \ell}(x)=\prod_{t \in J[\ell]}(x-\alpha(t)) \in \mathbb{Q}[x] .
$$

Splitting field $=\mathbb{Q}(t \mid t \in J[\ell])$.
Galois group $=\operatorname{Im} \rho_{C, \ell} \leqslant \operatorname{GSp}_{2 g}\left(\mathbb{F}_{\ell}\right)$.

Theorem (Néron-Ogg-Shafarevic)

Unramified away from ℓ and primes of bad reduction of C.

p-adic algorithm to compute $\rho_{C, \ell}$

Fix a small-ish prime $p \neq \ell$ of good reduction of C.
(1) Determine $L_{p}(x)=\operatorname{det}\left(x-\operatorname{Frob}_{p} \mid J\right) \in \mathbb{Z}[x]$.
(2) Find $q=p^{a}$ such that $J\left(\overline{\mathbb{F}_{p}}\right)[\ell] \subseteq J\left(\mathbb{F}_{q}\right)$.
(3) Compute $N=\# J\left(\mathbb{F}_{q}\right)=\operatorname{Res}\left(L_{p}(x), x^{a}-1\right)$. Write $N=\ell^{v} N^{\prime}, \ell \nmid N^{\prime}$.
(4) Take random $x \in J\left(\mathbb{F}_{q}\right)$ $\rightsquigarrow N^{\prime} x \in J\left(\mathbb{F}_{q}\right)\left[\ell^{\infty}\right]$
$\rightsquigarrow \ell^{w_{x}} N^{\prime} x \in J\left(\mathbb{F}_{q}\right)[\ell]$ for some $w_{x} \leqslant v$.
Repeat until we get an \mathbb{F}_{ℓ}-basis of $J\left(\mathbb{F}_{q}\right)[\ell]$.
(5) Lift these points from $J\left(\mathbb{F}_{q}\right)[\ell]$ to $J\left(\mathbb{Z}_{q} / p^{e}\right)[\ell], e \gg 1$.
(0) Form all linear combinations to get all the points of $J\left(\mathbb{Z}_{q} / p^{e}\right)[\ell]$.
(ㅇ) Identify $R_{C, \ell}(x)=\prod_{t \in J[\ell]}(x-\alpha(t))$ in $\mathbb{Q}[x]$.

Example: 2-torsion of a plane quartic

Take $C: x^{3} y+y^{3}+y^{2}-x^{2}-x=0$, investigate $J[2]$.
$R=C r v G a l R e p\left(x^{\wedge} 3 * y+y^{\wedge} 3+y^{\wedge} 2-x^{\wedge} 2-x, 2,10,30\right)$ polisirreducible(R[1])
factor (nfdisc(R[1]))
We get full image $\mathrm{GSp}_{6}\left(\mathbb{F}_{2}\right)$, and ramification at $2,71,367$.

Representations from higher étale cohomology

So we can compute with $J[\ell] \approx H_{\text {ett }}^{1}($ Curve, $\mathbb{Z} / \ell \mathbb{Z})$.
Next natural step: $H_{e \text { et }}^{2}($ Surface, $\mathbb{Z} / \ell \mathbb{Z})$.

Representations from higher étale cohomology

So we can compute with $J[\ell] \approx H_{\text {ét }}^{1}($ Curve, $\mathbb{Z} / \ell \mathbb{Z})$.
Next natural step: $H_{e \text { et }}^{2}($ Surface, $\mathbb{Z} / \ell \mathbb{Z})$.
Solution: dévissage by Leray's spectral sequence

$$
" \mathrm{H}^{p}\left(\mathrm{H}^{q}\right) \Rightarrow \mathrm{H}^{p+q} " .
$$

Representations from higher étale cohomology

So we can compute with $J[\ell] \approx \mathrm{H}_{\text {ett }}^{1}($ Curve, $\mathbb{Z} / \ell \mathbb{Z})$.
Next natural step: $H_{\text {ett }}^{2}($ Surface, $\mathbb{Z} / \ell \mathbb{Z})$.
Solution: dévissage by Leray's spectral sequence

$$
" \mathrm{H}^{p}\left(\mathrm{H}^{q}\right) \Rightarrow \mathrm{H}^{p+q} " .
$$

Theorem (M., 2019)

Let S / \mathbb{Q} be a regular surface. For every $\rho \subset \mathrm{H}_{\text {et }}^{2}(S, \mathbb{Z} / \ell \mathbb{Z})$, one can construct a curve C / \mathbb{Q} such that $\rho \subset \operatorname{Jac}(C)[\ell]$ (up to twist by the cyclotomic character).

Representations from higher étale cohomology

Theorem (M., 2019)

Let S / \mathbb{Q} be a regular surface. For every $\rho \subset \mathrm{H}_{\text {ét }}^{2}(S, \mathbb{Z} / \ell \mathbb{Z})$, one can construct a curve C / \mathbb{Q} such that $\rho \subset \operatorname{Jac}(C)[\ell]$.

Representations from higher étale cohomology

Theorem (M., 2019)

Let S / \mathbb{Q} be a regular surface. For every $\rho \subset \mathrm{H}_{\text {ét }}^{2}(S, \mathbb{Z} / \ell \mathbb{Z})$, one can construct a curve C / \mathbb{Q} such that $\rho \subset \operatorname{Jac}(C)[\ell]$.

Representations from higher étale cohomology

Theorem (M., 2019)

Let S / \mathbb{Q} be a regular surface. For every $\rho \subset \mathrm{H}_{\text {ét }}^{2}(S, \mathbb{Z} / \ell \mathbb{Z})$, one can construct a curve C / \mathbb{Q} such that $\rho \subset \operatorname{Jac}(C)[\ell]$.

Representations from higher étale cohomology

Theorem (M., 2019)
Let S / \mathbb{Q} be a regular surface. For every $\rho \subset \mathrm{H}_{\text {ét }}^{2}(S, \mathbb{Z} / \ell \mathbb{Z})$, one can construct a curve C / \mathbb{Q} such that $\rho \subset \operatorname{Jac}(C)[\ell]$.

Representations from higher étale cohomology

Theorem (M., 2019)
Let S / \mathbb{Q} be a regular surface. For every $\rho \subset \mathrm{H}_{\text {ét }}^{2}(S, \mathbb{Z} / \ell \mathbb{Z})$, one can construct a curve C / \mathbb{Q} such that $\rho \subset \operatorname{Jac}(C)[\ell]$.

Representations from higher étale cohomology

Theorem (M., 2019)
Let S / \mathbb{Q} be a regular surface. For every $\rho \subset \mathrm{H}_{\text {ét }}^{2}(S, \mathbb{Z} / \ell \mathbb{Z})$, one can construct a curve C / \mathbb{Q} such that $\rho \subset \operatorname{Jac}(C)[\ell]$.

Representations from higher étale cohomology

Theorem (M., 2019)

Let S / \mathbb{Q} be a regular surface. For every $\rho \subset \mathrm{H}_{\text {ét }}^{2}(S, \mathbb{Z} / \ell \mathbb{Z})$, one can construct a curve C / \mathbb{Q} such that $\rho \subset \operatorname{Jac}(C)[\ell]$.

Strategy

We have sketched a p-adic algorithm
Curve $C / \mathbb{Q} \rightsquigarrow \ell$-division polynomial $R_{C, \ell}(x) \in \mathbb{Q}[x]$.
This can be generalised to
Curve $C / \mathbb{Q}(t) \rightsquigarrow \ell$-division polynomial $R_{C, \ell}(x, t) \in \mathbb{Q}(t)[x]$, by lifting ℓ-torsion points (p, t)-adically.

Now suppose we want to compute $\rho \subset \mathrm{H}_{\text {ett }}^{2}(S, \mathbb{Z} / \ell \mathbb{Z})$.
(1) Pick $\pi: S \longrightarrow B$, where $B=\mathbb{P}_{\mathbb{Q}}^{1}$ with coordinate t \rightsquigarrow view S as a curve \mathcal{S} over $\mathbb{Q}(t)$.
(2) Compute ℓ-division polynomial $R_{\mathcal{S}, \ell}(x, t) \in \mathbb{Q}(t)[x]$. $\rightsquigarrow C: R_{\mathcal{S}, \ell}(x, t)=0$ contains ρ in its Jacobian.
(3) Isolate ρ in $T \subset \operatorname{Jac}(C)[\ell]$ by characterising T by the action of Frob_{p} for a well-chosen p.

Plane algebraic curves

All this requires handling singular plane models $f(x, y)=0$ of curves over \mathbb{Q} or $\mathbb{Q}(t)$.

Personal PARI/GP implementation, relies on Puiseux expansions (\approx factorisation in $\mathbb{Q}((x))[y])$ to resolve singularities.

C=CrvInit($\left.\mathrm{y}^{\wedge} 12-\mathrm{x}^{\wedge} 4 *(\mathrm{x}-1)^{\wedge} 9\right)$;
CrvPrint(C)
CrvHyperell(C)
CanProj(C)

Families of Galois representations

The division polynomial $R_{\mathcal{S}, \ell}(x, t) \in \mathbb{Q}(t)[x]$ defines a family of Galois representations parametrised by $t \in \mathbb{P}_{\mathbb{Q}}^{1}$.
For good fibres $t_{0} \in \mathbb{P}_{\mathbb{Q}}^{1}, R_{\mathcal{S}, \ell}\left(x, t=t_{0}\right)$ describes $\operatorname{Jac}\left(S_{t_{0}}\right)[\ell]$

\rightsquigarrow Galois group $\leqslant \mathrm{GSp}_{2 g}\left(\mathbb{F}_{\ell}\right)$, and ramification restricted to ℓ and primes of bad reduction of $C_{t_{0}}$ by Néron-Ogg-Shafarevich.

Families of Galois representations

The division polynomial $R_{\mathcal{S}, \ell}(x, t) \in \mathbb{Q}(t)[x]$ defines a family of Galois representations parametrised by $t \in \mathbb{P}_{\mathbb{Q}}^{1}$.
For good fibres $t_{0} \in \mathbb{P}_{\mathbb{Q}}^{1}, R_{\mathcal{S}, \ell}\left(x, t=t_{0}\right)$ describes $\operatorname{Jac}\left(S_{t_{0}}\right)[\ell]$

But what happens at bad fibres?

Understanding / computing degeneracy

We would like to predict geometrically the ramification of the degenerate Galois representation, but cannot invoke usual Néron-Ogg-Shafarevic, because we are now working over a 2-dimensional base (1 geometric +1 arithmetic).

Understanding / computing degeneracy

We would like to predict geometrically the ramification of the degenerate Galois representation, but cannot invoke usual Néron-Ogg-Shafarevic, because we are now working over a 2-dimensional base (1 geometric +1 arithmetic).
Degenerate representation: cannot simply set $t=t_{0}$ in $R_{\mathcal{S}, \ell}(x, t)$; instead, resolve singularity by factoring over $\mathbb{Q}\left(\left(t-t_{0}\right)\right)$.

Understanding / computing degeneracy

We would like to predict geometrically the ramification of the degenerate Galois representation, but cannot invoke usual Néron-Ogg-Shafarevic, because we are now working over a 2-dimensional base (1 geometric +1 arithmetic).
Degenerate representation: cannot simply set $t=t_{0}$ in $R_{\mathcal{S}, \ell}(x, t)$; instead, resolve singularity by factoring over $\mathbb{Q}\left(\left(t-t_{0}\right)\right)$.

Similarly, to understand the bad fibre, we do not simply take $\pi^{-1}\left(t_{0}\right)$; instead we consider the minimal regular model of S / B.

Two families of curves

$$
\mathcal{H}: y^{2}=x^{6}-x^{4}+(t-1)\left(x^{2}+x\right), \quad \ell=3 .
$$

t	Place decomposition	Ramificatio
1	$\mathbb{Q}(\sqrt{3})^{1} \cdot \mathbb{Q}(\sqrt{-1})^{3} \cdot\left(\mathbb{Q}\left(\zeta_{9}\right)^{+}(\sqrt{-1})\right)^{9} \cdot\left(\mathbb{Q}\left(\zeta_{36}\right)^{+}\right)$	$)^{3} 2,3$
-1	$\mathbb{Q}(\sqrt{-21})^{1} \cdot K_{6}^{1} \cdot K_{18}^{1} \cdot K_{18}^{\prime}{ }^{3}$	2, 3, 7, 11
$\frac{283}{256}$	$\mathbb{Q}(\sqrt{-14})^{1} \cdot K_{18}^{\prime \prime}{ }^{3} \cdot K_{24}^{1}$	2, 3, 7, 11
∞	$\mathbb{Q}^{2} \cdot \mathbb{Q}^{6} \cdot \mathbb{Q}(\sqrt{3})^{4} \cdot \mathbb{Q}(\sqrt[4]{12})^{4} \cdot \mathbb{Q}(\sqrt[4]{12})^{12}$	2,3
$\mathcal{Q}: x^{4}+(2-t) y^{4}+2 x^{3}+x(x+y)+(t-1)\left(y+x^{2}+x\right)=0$,		
t	Place decomposition	Ramification
1	$\mathbb{Q}^{1} \cdot \mathbb{Q}^{1} \cdot \mathbb{Q}^{1} \cdot K_{8}^{1} \cdot K_{8}^{1} \cdot K_{8}^{\prime 2} \cdot K_{8}^{\prime \prime 2} \cdot K_{12}^{1}$	2, 229
2	$\mathbb{Q}^{1} \cdot \mathbb{Q}^{2} \cdot \mathbb{Q}^{4} \cdot \mathbb{Q}^{8} \cdot \mathbb{Q}^{8} \cdot \mathbb{Q}(\sqrt{2})^{4} \cdot \mathbb{Q}(\sqrt{2}, \sqrt{15})^{8}$	2, 3, 5
∞	$\mathbb{Q}^{1} \cdot \mathbb{Q}^{2} \cdot \mathbb{Q}^{4} \cdot K_{3}^{2} \cdot K_{3}^{4} \cdot K_{6}^{1} \cdot K_{8}^{\prime \prime \prime}{ }^{4}$	2, 23

Two families of curves

$$
\mathcal{H}: y^{2}=x^{6}-x^{4}+(t-1)\left(x^{2}+x\right), \quad \ell=3
$$

t	Place decomposition	Ramification
1	$\mathbb{Q}(\sqrt{3})^{1} \cdot \mathbb{Q}(\sqrt{-1})^{3} \cdot\left(\mathbb{Q}\left(\zeta_{9}\right)^{+}(\sqrt{-1})\right)^{9} \cdot\left(\mathbb{Q}\left(\zeta_{36}\right)^{+}\right)^{3}$	2,3
-1	$\mathbb{Q}(\sqrt{-21})^{1} \cdot K_{6}^{1} \cdot K_{18}^{1} \cdot K_{18}^{\prime} 3$	$2,3,7,11$
$\frac{283}{256}$	$\mathbb{Q}(\sqrt{-14})^{1} \cdot K_{18}^{\prime \prime 3} \cdot K_{24}^{1}$	$2,3,7,11$
∞	$\mathbb{Q}^{2} \cdot \mathbb{Q}^{6} \cdot \mathbb{Q}(\sqrt{3})^{4} \cdot \mathbb{Q}(\sqrt[4]{12})^{4} \cdot \mathbb{Q}(\sqrt[4]{12})^{12}$	2,3

Special fibre at $t=-1$ of minimal regular model of \mathcal{H} in characteristic $\notin\{2,7,11\}$:

Two families of curves

$$
\mathcal{H}: y^{2}=x^{6}-x^{4}+(t-1)\left(x^{2}+x\right), \quad \ell=3 .
$$

t	Place decomposition	Ramification
1	$\mathbb{Q}(\sqrt{3})^{1} \cdot \mathbb{Q}(\sqrt{-1})^{3} \cdot\left(\mathbb{Q}\left(\zeta_{9}\right)^{+}(\sqrt{-1})\right)^{9} \cdot\left(\mathbb{Q}\left(\zeta_{36}\right)^{+}\right)^{3}$	2,3
-1	$\mathbb{Q}(\sqrt{-21})^{1} \cdot K_{6}^{1} \cdot K_{18}^{1} \cdot K_{18}^{\prime 3}$	$2,3,7,11$
$\frac{283}{256}$	$\mathbb{Q}(\sqrt{-14})^{1} \cdot K_{18}^{\prime \prime 3} \cdot K_{24}^{1}$	$2,3,7,11$
∞	$\mathbb{Q}^{2} \cdot \mathbb{Q}^{6} \cdot \mathbb{Q}(\sqrt{3})^{4} \cdot \mathbb{Q}(\sqrt[4]{12})^{4} \cdot \mathbb{Q}(\sqrt[4]{12})^{12}$	2,3

Special fibre at $t=-1$ of minimal regular model of \mathcal{H} in characteristic 11:

Two families of curves

$$
\mathcal{H}: y^{2}=x^{6}-x^{4}+(t-1)\left(x^{2}+x\right), \quad \ell=3
$$

t	Place decomposition	Ramification
1	$\mathbb{Q}(\sqrt{3})^{1} \cdot \mathbb{Q}(\sqrt{-1})^{3} \cdot\left(\mathbb{Q}\left(\zeta_{9}\right)^{+}(\sqrt{-1})\right)^{9} \cdot\left(\mathbb{Q}\left(\zeta_{36}\right)^{+}\right)^{3}$	2,3
-1	$\mathbb{Q}(\sqrt{-21})^{1} \cdot K_{6}^{1} \cdot K_{18}^{1} \cdot K_{18}^{\prime}{ }^{3}$	$2,3,7,11$
$\frac{283}{256}$	$\mathbb{Q}(\sqrt{-14})^{1} \cdot K_{18}^{\prime \prime}{ }^{3} \cdot K_{24}^{1}$	$2,3,7,11$
∞	$\mathbb{Q}^{2} \cdot \mathbb{Q}^{6} \cdot \mathbb{Q}(\sqrt{3})^{4} \cdot \mathbb{Q}(\sqrt[4]{12})^{4} \cdot \mathbb{Q}(\sqrt[4]{12})^{12}$	2,3

Special fibre at $t=-1$ of minimal regular model of \mathcal{H} in characteristic 7:

Two families of curves

$\mathcal{Q}: x^{4}+(2-t) y^{4}+2 x^{3}+x(x+y)+(t-1)\left(y+x^{2}+x\right)=0, \quad \ell=2$.

t	Place decomposition	Ramification
1	$\mathbb{Q}^{1} \cdot \mathbb{Q}^{1} \cdot \mathbb{Q}^{1} \cdot K_{8}^{1} \cdot K_{8}^{1} \cdot K_{8}^{\prime 2} \cdot K_{8}^{\prime \prime 2} \cdot K_{12}^{1}$	2,229
2	$\mathbb{Q}^{1} \cdot \mathbb{Q}^{2} \cdot \mathbb{Q}^{4} \cdot \mathbb{Q}^{8} \cdot \mathbb{Q}^{8} \cdot \mathbb{Q}(\sqrt{2})^{4} \cdot \mathbb{Q}(\sqrt{2}, \sqrt{15})^{8}$	$2,3,5$
∞	$\mathbb{Q}^{1} \cdot \mathbb{Q}^{2} \cdot \mathbb{Q}^{4} \cdot K_{3}^{2} \cdot K_{3}^{4} \cdot K_{6}^{1} \cdot K_{8}^{\prime \prime \prime 4}$	2,23

Special fibre at $t=2$ of minimal regular model of \mathcal{Q} in characteristic $\notin\{3,5\}$:

Two families of curves

$\mathcal{Q}: x^{4}+(2-t) y^{4}+2 x^{3}+x(x+y)+(t-1)\left(y+x^{2}+x\right)=0, \quad \ell=2$.

t	Place decomposition	Ramification
1	$\mathbb{Q}^{1} \cdot \mathbb{Q}^{1} \cdot \mathbb{Q}^{1} \cdot K_{8}^{1} \cdot K_{8}^{1} \cdot K_{8}^{\prime 2} \cdot K_{8}^{\prime \prime 2} \cdot K_{12}^{1}$	2,229
2	$\mathbb{Q}^{1} \cdot \mathbb{Q}^{2} \cdot \mathbb{Q}^{4} \cdot \mathbb{Q}^{8} \cdot \mathbb{Q}^{8} \cdot \mathbb{Q}(\sqrt{2})^{4} \cdot \mathbb{Q}(\sqrt{2}, \sqrt{15})^{8}$	$2,3,5$
∞	$\mathbb{Q}^{1} \cdot \mathbb{Q}^{2} \cdot \mathbb{Q}^{4} \cdot K_{3}^{2} \cdot K_{3}^{4} \cdot K_{6}^{1} \cdot K_{8}^{\prime \prime \prime}$	2,23

Special fibre at $t=2$ of minimal regular model of \mathcal{Q} in characteristic 5 :

Two families of curves

$$
\mathcal{H}: y^{2}=x^{6}-x^{4}+(t-1)\left(x^{2}+x\right), \quad \ell=3
$$

t	Place decomposition	Ramification
1	$\mathbb{Q}(\sqrt{3})^{1} \cdot \mathbb{Q}(\sqrt{-1})^{3} \cdot\left(\mathbb{Q}\left(\zeta_{9}\right)^{+}(\sqrt{-1})\right)^{9} \cdot\left(\mathbb{Q}\left(\zeta_{36}\right)^{+}\right)^{3}$	2,3
-1	$\mathbb{Q}(\sqrt{-21})^{1} \cdot K_{6}^{1} \cdot K_{18}^{1} \cdot K_{18}^{\prime 3}$	$2,3,7,11$
$\frac{283}{256}$	$\mathbb{Q}(\sqrt{-14})^{1} \cdot K_{18}^{\prime \prime} \cdot K_{24}^{1}$	$2,3,7,11$
∞	$\mathbb{Q}^{2} \cdot \mathbb{Q}^{6} \cdot \mathbb{Q}(\sqrt{3})^{4} \cdot \mathbb{Q}(\sqrt[4]{12})^{4} \cdot \mathbb{Q}(\sqrt[4]{12})^{12}$	2,3

Special fibre at $t=\infty$ of (minimal regular model of) \mathcal{H} in any characteristic:

Two families of curves

$$
\mathcal{H}: y^{2}=x^{6}-x^{4}+(t-1)\left(x^{2}+x\right), \quad \ell=3
$$

t	Place decomposition	Ramification
1	$\mathbb{Q}(\sqrt{3})^{1} \cdot \mathbb{Q}(\sqrt{-1})^{3} \cdot\left(\mathbb{Q}\left(\zeta_{9}\right)^{+}(\sqrt{-1})\right)^{9} \cdot\left(\mathbb{Q}\left(\zeta_{36}\right)^{+}\right)^{3}$	2,3
-1	$\mathbb{Q}(\sqrt{-21})^{1} \cdot K_{6}^{1} \cdot K_{18}^{1} \cdot K_{18}^{\prime 3}$	$2,3,7,11$
$\frac{283}{256}$	$\mathbb{Q}(\sqrt{-14})^{1} \cdot K_{18}^{\prime \prime 3} \cdot K_{24}^{1}$	$2,3,7,11$
∞	$\mathbb{Q}^{2} \cdot \mathbb{Q}^{6} \cdot \mathbb{Q}(\sqrt{3})^{4} \cdot \mathbb{Q}(\sqrt[4]{12})^{4} \cdot \mathbb{Q}(\sqrt[4]{12})^{12}$	2,3

Special fibre at $t=\infty$ of minimal regular model of base change of \mathcal{H} to $\mathbb{Q}\left(t^{1 / 2}\right)$ in characteristic $\neq 2$:

This model is no longer regular in characteristic 2.

Any questions?

Thank you!

