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Goal

Let C/Q be a “nice” curve of genus g .
Let J be its Jacobian, and fix a prime ℓ ∈ N.
Gal(Q/Q) acts on J(Q)[ℓ] ⇝ Galois representation

ρC ,ℓ : Gal(Q/Q) −→ GSp2g (Fℓ).

Motivation(s):

Point counting:

ρ(Frobp) ⇝ #X (Fp) mod ℓ
⇝
CRT

Get #X (Fp) in (log p)O(1).

Modular curves ⇝ Galois representations attached to
modular forms ⇝ Get ap(f ) in (log p)O(1).

Interesting number-theoretic objects, e.g. polynomials
with Galois group ⊆ GSp2g (Fℓ) and with controlled
ramification.
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Division polynomials

Suppose α ∈ Q(J) is defined and injective on J[ℓ].
⇝ “Division polynomial”

RC ,ℓ(x) =
∏
t∈J[ℓ]

(
x − α(t)

)
∈ Q[x ].

Splitting field = Q(t|t ∈ J[ℓ]).
Galois group = Im ρC ,ℓ ⩽ GSp2g (Fℓ).

Theorem (Néron-Ogg-Shafarevic)

Unramified away from ℓ and primes of bad reduction of C .
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p-adic algorithm to compute ρC ,ℓ
Fix a small-ish prime p ̸= ℓ of good reduction of C .

1 Determine Lp(x) = det
(
x − Frobp |J

)
∈ Z[x ].

2 Find q = pa such that J(Fp)[ℓ] ⊆ J(Fq).

3 Compute N = #J(Fq) = Res(Lp(x), x
a − 1).

Write N = ℓvN ′, ℓ ∤ N ′.

4 Take random x ∈ J(Fq)
⇝ N ′x ∈ J(Fq)[ℓ

∞]
⇝ ℓwxN ′x ∈ J(Fq)[ℓ] for some wx ⩽ v .
Repeat until we get an Fℓ-basis of J(Fq)[ℓ].

5 Lift these points from J(Fq)[ℓ] to J(Zq/p
e)[ℓ], e ≫ 1.

6 Form all linear combinations to get all the points
of J(Zq/p

e)[ℓ].

7 Identify RC ,ℓ(x) =
∏

t∈J[ℓ]
(
x − α(t)

)
in Q[x ].
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Example: 2-torsion of a plane quartic

Take C : x3y + y 3 + y 2 − x2 − x = 0, investigate J[2].

R=CrvGalRep(x^3*y+y^3+y^2-x^2-x,2,10,30)

polisirreducible(R[1])

factor(nfdisc(R[1]))

We get full image GSp6(F2), and ramification at 2, 71, 367.
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Representations from higher étale cohomology

So we can compute with J[ℓ] ≈ H1
ét(Curve,Z/ℓZ).

Next natural step: H2
ét(Surface,Z/ℓZ).

Solution: dévissage by Leray’s spectral sequence

“Hp(Hq) ⇒ Hp+q ”.

Theorem (M., 2019)

Let S/Q be a regular surface. For every ρ ⊂ H2
ét(S ,Z/ℓZ),

one can construct a curve C/Q such that ρ ⊂ Jac(C )[ℓ].

S

B
π

C
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ét(Curve,Z/ℓZ).

Next natural step: H2
ét(Surface,Z/ℓZ).

Solution: dévissage by Leray’s spectral sequence
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Theorem (M., 2019)

Let S/Q be a regular surface. For every ρ ⊂ H2
ét(S ,Z/ℓZ),
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Strategy

We have sketched a p-adic algorithm
Curve C/Q ⇝ ℓ-division polynomial RC ,ℓ(x) ∈ Q[x ].

This can be generalised to
Curve C/Q(t) ⇝ ℓ-division polynomial RC ,ℓ(x , t) ∈ Q(t)[x ],
by lifting ℓ-torsion points (p, t)-adically.

Now suppose we want to compute ρ ⊂ H2
ét(S ,Z/ℓZ).

1 Pick π : S −→ B , where B = P1
Q with coordinate t

⇝ view S as a curve S over Q(t).

2 Compute ℓ-division polynomial RS,ℓ(x , t) ∈ Q(t)[x ].
⇝ C : RS,ℓ(x , t) = 0 contains ρ in its Jacobian.

3 Isolate ρ in T ⊂ Jac(C )[ℓ] by characterising T by the
action of Frobp for a well-chosen p.
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Plane algebraic curves

All this requires handling singular plane models f (x , y) = 0 of
curves over Q or Q(t).

Personal PARI/GP implementation, relies on Puiseux
expansions (≈ factorisation in Q((x))[y ]) to resolve
singularities.

C=CrvInit(y^12-x^4*(x-1)^9);

CrvPrint(C)

CrvHyperell(C)

CanProj(C)
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Families of Galois representations

The division polynomial RS,ℓ(x , t) ∈ Q(t)[x ] defines a family
of Galois representations parametrised by t ∈ P1

Q.
For good fibres t0 ∈ P1

Q, RS,ℓ(x , t = t0) describes Jac(St0)[ℓ]

S

B

Gal(Q/Q) ⟳

???

⇝ Galois group ⩽ GSp2g (Fℓ), and ramification restricted to ℓ
and primes of bad reduction of Ct0 by Néron-Ogg-Shafarevich.

But what happens at bad fibres?
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Understanding / computing degeneracy

We would like to predict geometrically the ramification of the
degenerate Galois representation, but cannot invoke usual
Néron-Ogg-Shafarevic, because we are now working over a
2-dimensional base (1 geometric + 1 arithmetic).

Degenerate representation: cannot simply set t = t0 in
RS,ℓ(x , t); instead, resolve singularity by factoring over
Q((t − t0)) .

Similarly, to understand the bad fibre, we do not simply take
π−1(t0); instead we consider the minimal regular model of
S/B .
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Two families of curves

H : y 2 = x6 − x4 + (t − 1)(x2 + x), ℓ = 3.

t Place decomposition Ramification

1 Q(
√
3)1 ·Q(

√
−1)3 ·

(
Q(ζ9)

+(
√
−1)

)9 · (Q(ζ36)
+
)3

2, 3

−1 Q(
√
−21)1 · K 1

6 · K 1
18 · K ′

18
3 2, 3, 7, 11

283
256

Q(
√
−14)1 · K ′′

18
3 · K 1

24 2, 3, 7, 11

∞ Q2 ·Q6 ·Q(
√
3)4 ·Q( 4

√
12)4 ·Q( 4

√
12)12 2, 3

Q : x4+(2−t)y 4+2x3+x(x+y)+(t−1)(y+x2+x) = 0, ℓ = 2.

t Place decomposition Ramification

1 Q1 ·Q1 ·Q1 · K 1
8 · K 1

8 · K ′
8
2 · K ′′

8
2 · K 1

12 2, 229

2 Q1 ·Q2 ·Q4 ·Q8 ·Q8 ·Q(
√
2)4 ·Q(

√
2,
√
15)8 2, 3, 5

∞ Q1 ·Q2 ·Q4 · K 2
3 · K 4

3 · K 1
6 · K ′′′

8
4 2, 23
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√
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Special fibre at t = −1 of minimal regular model of H
in characteristic ̸∈ {2, 7, 11}:

g=1
N=24·11

Nicolas Mascot Degeneracy of Galois representations



Two families of curves

H : y 2 = x6 − x4 + (t − 1)(x2 + x), ℓ = 3.

t Place decomposition Ramification

1 Q(
√
3)1 ·Q(

√
−1)3 ·

(
Q(ζ9)

+(
√
−1)

)9 · (Q(ζ36)
+
)3

2, 3

−1 Q(
√
−21)1 · K 1

6 · K 1
18 · K ′

18
3 2, 3, 7, 11

283
256

Q(
√
−14)1 · K ′′

18
3 · K 1

24 2, 3, 7, 11

∞ Q2 ·Q6 ·Q(
√
3)4 ·Q( 4

√
12)4 ·Q( 4

√
12)12 2, 3

Special fibre at t = −1 of minimal regular model of H
in characteristic 11:
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Special fibre at t = −1 of minimal regular model of H
in characteristic 7:
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Two families of curves

Q : x4+(2−t)y 4+2x3+x(x+y)+(t−1)(y+x2+x) = 0, ℓ = 2.

t Place decomposition Ramification

1 Q1 ·Q1 ·Q1 · K 1
8 · K 1

8 · K ′
8
2 · K ′′

8
2 · K 1

12 2, 229

2 Q1 ·Q2 ·Q4 ·Q8 ·Q8 ·Q(
√
2)4 ·Q(

√
2,
√
15)8 2, 3, 5

∞ Q1 ·Q2 ·Q4 · K 2
3 · K 4

3 · K 1
6 · K ′′′

8
4 2, 23

Special fibre at t = 2 of minimal regular model of Q
in characteristic ̸∈ {3, 5}:

Nicolas Mascot Degeneracy of Galois representations



Two families of curves

Q : x4+(2−t)y 4+2x3+x(x+y)+(t−1)(y+x2+x) = 0, ℓ = 2.

t Place decomposition Ramification
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∞ Q1 ·Q2 ·Q4 · K 2
3 · K 4

3 · K 1
6 · K ′′′

8
4 2, 23

Special fibre at t = 2 of minimal regular model of Q
in characteristic 5:
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Two families of curves

H : y 2 = x6 − x4 + (t − 1)(x2 + x), ℓ = 3.

t Place decomposition Ramification

1 Q(
√
3)1 ·Q(
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√
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√
3)4 ·Q( 4

√
12)4 ·Q( 4

√
12)12 2, 3

Special fibre at t = ∞ of (minimal regular model of) H
in any characteristic:

Nicolas Mascot Degeneracy of Galois representations



Two families of curves

H : y 2 = x6 − x4 + (t − 1)(x2 + x), ℓ = 3.
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√
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Special fibre at t = ∞ of minimal regular model of
base change of H to Q(t1/2) in characteristic ̸= 2:

This model is no longer regular in characteristic 2.
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Any questions?

Thank you!
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