The splitting problem in central simple algebras

Mickaël Montessinos (Vilnius University)¹

Atelier PARI/GP 2024 Tuesday 9th January, 2024

¹Joint implementation work with Abdelrahman Zighem $\square \rightarrow \square \square \rightarrow \square \square \rightarrow \square$

The matter at hand

Structure constants

Let k be a field, $V = k^n$ with canonical basis (e_1, \ldots, e_n) . A k-algebra structure on V is given by a family $c \in V^3 \simeq (V^{\wedge})^{\otimes 2} \otimes V$ giving the multiplication law

$$e_i e_j = \sum_{k=1}^n c_{ijk} e_k$$

The c_{ijk} are called the *structure constants* of A.

Explicit Isomorphism Problem

Let A be a k-algebra, that is assumed to be isomorphic to $M_n(k)$. Find an explicit isomorphism

$$\varphi: A \simeq M_n(k).$$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

From zero divisor to hero divisor

Reduction

The explicit isomorphism problem reduces to finding a rank one element.

Example

Consider the quaternion algebra
$$A = \mathbb{Q} + \mathbb{Q}i + \mathbb{Q}j + \mathbb{Q}ij$$
 given by $i^2 = j^2 = 1$ and $ij = -ji$.
We know a zero divisor $z = i - 1$ (indeed $(i - 1)(i + 1) - i^2 - 1^2$)

We know a zero divisor z = i - 1 (indeed, $(i - 1)(i + 1) = i^2 - 1^2 = 0$). We get an isomorphism φ and compute the image of *ij*:

- z = i 1 is a zero-divisor. The space V = Az is generated by the family (i 1, 1 i, -j ij, -j ij).
- $e_1 := i 1 \text{ and } e_2 := j + ij \text{ form a basis of } V.$
- **3** We compute: $ije_1 = -j ij = -e_2$ and $ije_2 = i 1 = e_1$.

• We obtain:
$$\varphi(ij) = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$
.

- 3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Pilnikova's algorithm for algebras of degree 4

Input A \mathbb{Q} -algebra $A \simeq M_4(\mathbb{Q})$.

Output A rank one zero divisor in A.

- Find a quadratic element $a \in A$.
- The centralizer C of a in A is a split quaternion algebra over Q(a). Find a quaternionic basis.
- If ind a zero divisor z ∈ C (Either solve a square root/norm equation or use Kutas' algorithm).
- If rank z = 1, return z.
- Let e be a right unit of the left ideal Az.
- **(**) If rank e = 3, return 1 e.
- Selse, find a zero divisor in quaternion Q-algebra *eAe*.

4 1 1 4 1 1 1

Ivanyos et al's general degree algorithm

Input A Q-algebra $A \simeq M_n(\mathbb{Q})$.

Output A rank one zero divisor in A.

- Compute a maximal order \mathcal{O} in A.
- **2** Compute an embedding ϵ of A into $M_n(\mathbb{R})$.
- **③** Compute embedding ϵ with the appropriate precision.
- $\epsilon(\mathcal{O})$ is a lattice in $M_n(\mathbb{R})$. Compute an LLL-reduced basis \mathcal{B} of $\epsilon(\mathcal{O})$
- If n > 43 and some b ∈ B is a zero divisor, either return b if rank b = 1 or use b to compute an idempotent e and recursively apply the algorithm to algebra eAe of degree equal to rank e.
- Look for a rank one element in $\bigoplus_{b \in \mathcal{B}} [0 \dots c_{n^2} \sqrt{n}] b$, where $c_m = \gamma_m^{\frac{m}{2}} \left(\frac{3}{2}\right)^m 2^{\frac{m(m-1)}{2}}$, and γ_m is Hermite's constant.

医静脉 医黄疸 医黄疸 医黄疸