The splitting problem in central simple algebras

Mickaël Montessinos (Vilnius University) ${ }^{1}$

Atelier PARI/GP 2024
Tuesday $9^{\text {th }}$ January, 2024
${ }^{1}$ Joint implementation work with Abdelrahman Zighem

The matter at hand

Structure constants

Let k be a field, $V=k^{n}$ with canonical basis $\left(e_{1}, \ldots, e_{n}\right)$.
A k-algebra structure on V is given by a family $c \in V^{3} \simeq\left(V^{\wedge}\right)^{\otimes 2} \otimes V$ giving the multiplication law

$$
e_{i} e_{j}=\sum_{k=1}^{n} c_{i j k} e_{k}
$$

The $c_{i j k}$ are called the structure constants of A.

Explicit Isomorphism Problem

Let A be a k-algebra, that is assumed to be isomorphic to $M_{n}(k)$. Find an explicit isomorphism

$$
\varphi: A \simeq M_{n}(k)
$$

From zero divisor to hero divisor

Reduction

The explicit isomorphism problem reduces to finding a rank one element.

Example

Consider the quaternion algebra $A=\mathbb{Q}+\mathbb{Q} i+\mathbb{Q} j+\mathbb{Q} i j$ given by $i^{2}=j^{2}=1$ and $i j=-j i$.
We know a zero divisor $z=i-1$ (indeed, $\left.(i-1)(i+1)=i^{2}-1^{2}=0\right)$. We get an isomorphism φ and compute the image of $i j$:
(1) $z=i-1$ is a zero-divisor. The space $V=A z$ is generated by the family $(i-1,1-i,-j-i j,-j-i j)$.
(2) $e_{1}:=i-1$ and $e_{2}:=j+i j$ form a basis of V.
(3) We compute: $i j e_{1}=-j-i j=-e_{2}$ and $i j e_{2}=i-1=e_{1}$.
(9) We obtain: $\varphi(i j)=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$.

Pilnikova's algorithm for algebras of degree 4

Input $A \mathbb{Q}$-algebra $A \simeq M_{4}(\mathbb{Q})$.
Output A rank one zero divisor in A.
(1) Find a quadratic element $a \in A$.
(2) The centralizer C of a in A is a split quaternion algebra over $\mathbb{Q}(a)$. Find a quaternionic basis.
(3) Find a zero divisor $z \in C$ (Either solve a square root/norm equation or use Kutas' algorithm).
(9) If rank $z=1$, return z.
(5) Let e be a right unit of the left ideal $A z$.
(0) If ranke $=3$, return 1 -e .
(1) Else, find a zero divisor in quaternion \mathbb{Q}-algebra $e A e$.

Ivanyos et al's general degree algorithm

Input $\mathrm{A} \mathbb{Q}$-algebra $A \simeq M_{n}(\mathbb{Q})$.
Output A rank one zero divisor in A.
(1) Compute a maximal order \mathcal{O} in A.
(2) Compute an embedding ϵ of A into $M_{n}(\mathbb{R})$.
(3) Compute embedding ϵ with the appropriate precision.
(9) $\epsilon(\mathcal{O})$ is a lattice in $M_{n}(\mathbb{R})$. Compute an LLL-reduced basis \mathcal{B} of $\epsilon(\mathcal{O})$
(5) If $n>43$ and some $b \in \mathcal{B}$ is a zero divisor, either return b if rank $b=1$ or use b to compute an idempotent e and recursively apply the algorithm to algebra $e A e$ of degree equal to ranke.
(0) Look for a rank one element in $\bigoplus_{b \in \mathcal{B}}\left[0 \ldots c_{n^{2}} \sqrt{n}\right] b$, where $c_{m}=\gamma_{m}^{\frac{m}{2}}\left(\frac{3}{2}\right)^{m} 2^{\frac{m(m-1)}{2}}$, and γ_{m} is Hermite's constant.

