# Mordel-Weil rank effective computation by 2-descent 

Thibaut Misme

PARI/GP Workshop<br>January, 2024

## Motivation

Let $C$ be a nice algebraic curve.

## Motivation

Let $C$ be a nice algebraic curve.

## What is $C(\mathbb{Q})$ ?

## Motivation

Let $C$ be a nice algebraic curve.

## What is $C(\mathbb{Q})$ ?

Classic process is to apply Chabauty-Coleman method when $\mathrm{rk}_{\mathbb{Q}}(\operatorname{Jac}(C))<g(C)$

## Motivation

## Theorem (Mordell-Weil)

Let $K$ be a number field, $J$ be an abelian variety over $K$.
There exists $r=\operatorname{rank}_{K}(J) \in \mathbb{N}$, such that

$$
J(K) \simeq \underbrace{J_{\text {torsion }}(K)}_{\text {finite }} \times \mathbb{Z}^{r}
$$

Being given $C$ (its equation), how to compute $r=\operatorname{rank}_{\mathbb{Q}}(\operatorname{Jac}(C))$ in order to check Chabauty-Coleman condition for $K=\mathbb{Q}$ ?

## 2-descent: Introduction

2-descent algorithm is inspired by the Mordell-Weill theorem's proof, which ends up checking $J(\mathbb{Q}) / 2 J(\mathbb{Q})$ finiteness.

In fact:

$$
J(\mathbb{Q}) / 2 J(\mathbb{Q}) \simeq J[2](\mathbb{Q}) \times(\mathbb{Z} / 2 \mathbb{Z})^{r}
$$

$\rightsquigarrow$ If we can compute $J[2](\mathbb{Q})$, it is enough to find $|J(\mathbb{Q}) / 2 J(\mathbb{Q})|$ to get $r$

## 2-descent: p-adic's help

Problem
It's difficult to generate points from $C(\mathbb{Q})$ and for $J(\mathbb{Q})$ as well

## 2-descent: p-adic's help

## Problem

It's difficult to generate points from $C(\mathbb{Q})$ and for $J(\mathbb{Q})$ as well

Idea: Consider p-adic numbers

## $C\left(\mathbb{F}_{p}\right)$ computable $\rightsquigarrow$ points in $C\left(\mathbb{Q}_{p}\right)$ (Hensel) $\rightsquigarrow$ points in $J\left(\mathbb{Q}_{p}\right)$ (Abel-Jacobi)

## 2-descent: p-adic's help

## Problem

It's difficult to generate points from $C(\mathbb{Q})$ and for $J(\mathbb{Q})$ as well

## Idea: Consider p-adic numbers

$$
\begin{gathered}
C\left(\mathbb{F}_{p}\right) \text { computable } \rightsquigarrow \text { points in } C\left(\mathbb{Q}_{p}\right) \text { (Hensel) } \\
\rightsquigarrow \text { points in } J\left(\mathbb{Q}_{p}\right) \text { (Abel-Jacobi) }
\end{gathered}
$$

Bonus: p-adic structure
$\left|J\left(\mathbb{Q}_{p}\right) / 2 J\left(\mathbb{Q}_{p}\right)\right|=\left|J[2]\left(\mathbb{Q}_{p}\right)\right|$
$(p \neq 2)$
$\rightsquigarrow J\left(\mathbb{Q}_{p}\right) / 2 J\left(\mathbb{Q}_{p}\right)$ computable

## 2-descent: Selmer group

## Problem <br> $J(\mathbb{Q}) / 2 J(\mathbb{Q}) \rightarrow J\left(\mathbb{Q}_{p}\right) / 2 J\left(\mathbb{Q}_{p}\right)$ is not injective

## 2-descent: Selmer group

## Problem <br> $J(\mathbb{Q}) / 2 J(\mathbb{Q}) \rightarrow J\left(\mathbb{Q}_{p}\right) / 2 J\left(\mathbb{Q}_{p}\right)$ is not injective

$\rightsquigarrow$ We consider all primes

## 2-descent: Selmer group

> Problem
> $J(\mathbb{Q}) / 2 J(\mathbb{Q}) \rightarrow J\left(\mathbb{Q}_{P}\right) / 2 J\left(\mathbb{Q}_{p}\right)$ is not injective
$\rightsquigarrow$ We consider all primes

Idea: Hasse's principle
Cohomology yields a finite group $\mathrm{Sel}=\operatorname{Sel}^{(2)}(\mathbb{Q})$ s.t. $J(\mathbb{Q}) / 2 J(\mathbb{Q}) \subset$ Sel with better computational properties.

## 2-descent: Selmer group

## Selmer group construction

## 2-descent: Selmer group

## Selmer group construction

$$
0 \rightarrow J[2] \rightarrow J(\overline{\mathbb{Q}}) \xrightarrow{2} J(\overline{\mathbb{Q}}) \rightarrow 0
$$

## 2-descent: Selmer group

## Selmer group construction

$$
0 \rightarrow J[2] \rightarrow J(\overline{\mathbb{Q}}) \xrightarrow{2} J(\overline{\mathbb{Q}}) \rightarrow 0
$$

$$
\begin{array}{cccccc}
J(\mathbb{Q}) / 2 J(\mathbb{Q}) & \hookrightarrow & H^{1}(\mathbb{Q}, J[2]) & \rightarrow & H^{1}(\mathbb{Q}, J) \\
\downarrow & & \downarrow r e s_{p} & & \downarrow \\
J\left(\mathbb{Q}_{p}\right) / 2 J\left(\mathbb{Q}_{p}\right) & \longrightarrow & H^{1}\left(\mathbb{Q}_{p}, J[2]\right) & \rightarrow & H^{1}\left(\mathbb{Q}_{p}, J\right)
\end{array}
$$

## 2-descent: Selmer group

## Selmer group construction

$$
0 \rightarrow J[2] \rightarrow J(\overline{\mathbb{Q}}) \xrightarrow{2} J(\overline{\mathbb{Q}}) \rightarrow 0
$$

$$
\begin{array}{cccccc}
J(\mathbb{Q}) / 2 J(\mathbb{Q}) & \hookrightarrow & H^{1}(\mathbb{Q}, J[2]) & \rightarrow & H^{1}(\mathbb{Q}, J) \\
\downarrow & & \downarrow r e s_{p} & & \downarrow \\
J\left(\mathbb{Q}_{p}\right) / 2 J\left(\mathbb{Q}_{p}\right) & \longrightarrow & H^{1}\left(\mathbb{Q}_{p}, J[2]\right) & \rightarrow & H^{1}\left(\mathbb{Q}_{p}, J\right)
\end{array}
$$

definition: Selmer group
Sel $:=\left\{\phi \in H^{1}(\mathbb{Q}, J[2]) \mid \forall p, \operatorname{res}_{p}(\phi) \in J\left(\mathbb{Q}_{p}\right) / 2 J\left(\mathbb{Q}_{p}\right)\right\}$ $:=\bigcap_{p} \operatorname{res}_{p}^{-1}\left(J\left(\mathbb{Q}_{p}\right) / 2 J\left(\mathbb{Q}_{p}\right)\right)$

## Selmer group

$J(\mathbb{Q}) / 2 J(\mathbb{Q}) \subset S e l \subset H^{1}(\mathbb{Q}, J[2])$ is a finite,
but abstract group, equipped with a morphism, deduced from the Weil Pairing:

$$
\text { Sel } \xrightarrow{H^{1}(w)} L^{*} /\left(L^{*}\right)^{2}
$$

## Selmer group

$J(\mathbb{Q}) / 2 J(\mathbb{Q}) \subset S e l \subset H^{1}(\mathbb{Q}, J[2])$ is a finite,
but abstract group, equipped with a morphism, deduced from the Weil Pairing:

$$
\text { Sel } \xrightarrow{H^{1}(w)} L^{*} /\left(L^{*}\right)^{2}
$$

- $L^{*} /\left(L^{*}\right)^{2}$ is effective:
$L=\mathbb{Q}[y] / \chi(y)$ is an algebra defined by $J[2]$


## Selmer group

$J(\mathbb{Q}) / 2 J(\mathbb{Q}) \subset S e l \subset H^{1}(\mathbb{Q}, J[2])$ is a finite, but abstract group, equipped with a morphism, deduced from the Weil Pairing:

$$
\text { Sel } \xrightarrow{H^{1}(w)} L^{*} /\left(L^{*}\right)^{2}
$$

- $L^{*} /\left(L^{*}\right)^{2}$ is effective:
$L=\mathbb{Q}[y] / \chi(y)$ is an algebra defined by $J[2]$
- $H^{1}(w)$ is injective (in some determined cases) in opposite with $J(\mathbb{Q}) / 2 J(\mathbb{Q}) \rightarrow J\left(\mathbb{Q}_{p}\right) / 2 J\left(\mathbb{Q}_{p}\right)$


## 2-descent: Selmer group

Computation of Sel

## 2-descent: Selmer group

## Computation of Sel

$$
\text { Sel } \xrightarrow{H^{1}(w)} w S e l \subset \overbrace{L^{*} /\left(L^{*}\right)^{2}}^{\text {effective }}
$$

## Definition <br> $w S e l:=H^{1}(w)(S e l)$

## 2-descent: Selmer group

## Computation of Sel

$$
\text { Sel } \xrightarrow{H^{1}(w)} w S e l \subset \overbrace{L^{*} /\left(L^{*}\right)^{2}}^{\text {effective }}
$$

## Definition <br> $w S e l:=H^{1}(w)(S e l)$

## Problem

How can one recognize $w S e l$ in $L^{*} /\left(L^{*}\right)^{2}$ ?

## 2-descent: Selmer group

## Problem

How can one recognize wSel in $L^{*} /\left(L^{*}\right)^{2}$ ?

## 2-descent: Selmer group

## Problem

How can one recognize $w S e l$ in $L^{*} /\left(L^{*}\right)^{2}$ ?

$$
\begin{array}{ccc}
\begin{array}{ccc}
\text { Sel } \\
\downarrow \text { res } \\
\underbrace{}_{\text {computable }}
\end{array} & \xrightarrow{H^{1}(w)} & \text { wSel } \subset \overbrace{L^{*} /\left(L^{*}\right)^{2}}^{\text {effective }} \\
\downarrow \text { res }_{p} \\
J\left(\mathbb{Q}_{p}\right) / 2 J\left(\mathbb{Q}_{p}\right) & \xrightarrow{H^{1}(w)} & \underbrace{L_{p}^{*} /\left(L_{p}^{*}\right)^{2}}_{\text {effective }}
\end{array}
$$

Identification (from the def of Sel)
$w \operatorname{Sel}=\left\{x \in L^{*} /\left(L^{*}\right)^{2} \mid \forall p \operatorname{res}_{p}(x) \in H^{1}(w)\left(J\left(\mathbb{Q}_{p}\right) / 2 J\left(\mathbb{Q}_{p}\right)\right)\right\}$ $\cap \operatorname{ker}(\mathcal{N})$

## 2-descent: Selmer group

## Problem

How can one recognize $w S e l$ in $L^{*} /\left(L^{*}\right)^{2}$ ?

## Identification

$$
\begin{aligned}
w \operatorname{Sel}= & \left\{x \in L^{*} /\left(L^{*}\right)^{2} \mid \forall p \operatorname{res}_{p}(x) \in H^{1}(w)\left(J\left(\mathbb{Q}_{p}\right) / 2 J\left(\mathbb{Q}_{p}\right)\right)\right\} \\
& \cap \operatorname{ker}(\mathcal{N})
\end{aligned}
$$

## 2-descent: Selmer group

## Problem

How can one recognize $w S e l$ in $L^{*} /\left(L^{*}\right)^{2}$ ?

## Identification

$$
\begin{aligned}
w \operatorname{Sel}= & \left\{x \in L^{*} /\left(L^{*}\right)^{2} \mid \forall p \operatorname{res}_{p}(x) \in H^{1}(w)\left(J\left(\mathbb{Q}_{p}\right) / 2 J\left(\mathbb{Q}_{p}\right)\right)\right\} \\
& \cap \operatorname{ker}(\mathcal{N})
\end{aligned}
$$

## Problem

- $L^{*} /\left(L^{*}\right)^{2}$ is a vector space of infinite dimension


## 2-descent: Selmer group

## Problem

How can one recognize $w S e l$ in $L^{*} /\left(L^{*}\right)^{2}$ ?

## Identification

$$
\begin{aligned}
w \operatorname{Sel}= & \left\{x \in L^{*} /\left(L^{*}\right)^{2} \mid \forall p \operatorname{res}_{p}(x) \in H^{1}(w)\left(J\left(\mathbb{Q}_{p}\right) / 2 J\left(\mathbb{Q}_{p}\right)\right)\right\} \\
& \cap \operatorname{ker}(\mathcal{N})
\end{aligned}
$$

## Problem

- $L^{*} /\left(L^{*}\right)^{2}$ is a vector space of infinite dimension
- infinite amount of Selmer conditions (primes to check)


## 2-descent: Selmer group

## Problem

How can one recognize $w S e l$ in $L^{*} /\left(L^{*}\right)^{2}$ ?

## Identification

$$
\begin{aligned}
w \operatorname{Sel}= & \left\{x \in L^{*} /\left(L^{*}\right)^{2} \mid \forall p \operatorname{res}_{p}(x) \in H^{1}(w)\left(J\left(\mathbb{Q}_{p}\right) / 2 J\left(\mathbb{Q}_{p}\right)\right)\right\} \\
& \cap \operatorname{ker}(\mathcal{N})
\end{aligned}
$$

## Problem

- $L^{*} /\left(L^{*}\right)^{2}$ is a vector space of infinite dimension
- infinite amount of Selmer conditions (primes to check)


## Solution (Hyperelliptic case)

If p is a good reduction prime $(\neq 2)$ and $H^{1}(w)$ is injective, $\operatorname{res}_{p}(w S e l)=\operatorname{ker}\left(\operatorname{val}_{p}\right) \cap \operatorname{ker}(\mathcal{N})$

## 2-descent: Selmer group

## Problem

How can one recognize $w S e l$ in $L^{*} /\left(L^{*}\right)^{2}$ ?

## Solution (Hyperelliptic case)

If $p$ is a good reduction prime $(\neq 2)$ and $H^{1}(w)$ is injective, $\operatorname{res}_{p}(w S e l)=\operatorname{ker}\left(\operatorname{val}_{p}\right) \cap \operatorname{ker}(\mathcal{N})$

## 2-descent: Selmer group

## Problem

How can one recognize $w S e l$ in $L^{*} /\left(L^{*}\right)^{2}$ ?

## Solution (Hyperelliptic case)

If p is a good reduction prime $(\neq 2)$ and $H^{1}(w)$ is injective, $\operatorname{res}_{p}(w S e l)=\operatorname{ker}\left(v a l_{p}\right) \cap \operatorname{ker}(\mathcal{N})$
$\underset{\sim}{S}=\{$ primes of bad reduction $\} \cup\{2\}$
$\tilde{H}:=\left(\bigcap_{p \notin S} \operatorname{ker}\left(\operatorname{val}_{p}\right)\right) \cap \operatorname{ker}(\mathcal{N})$
finite dimension and computable
Selmer computation
$w S e l=\left\{x \in \tilde{H} \mid \forall p \in S \operatorname{res}_{p}(x) \in H^{1}(w)\left(J\left(\mathbb{Q}_{p}\right) / 2 J\left(\mathbb{Q}_{p}\right)\right)\right\}$
$\rightsquigarrow$ finite amount of calculation

## 2-descent: Selmer group

Sum-up: Selmer

## 2-descent: Selmer group

Sum-up: Selmer

It's difficult to compute $|J(\mathbb{Q}) / 2 J(\mathbb{Q})|$

## 2-descent: Selmer group

## Sum-up: Selmer

It's difficult to compute $|J(\mathbb{Q}) / 2 J(\mathbb{Q})|$
$\rightsquigarrow$ we compute the upper-bound $\left|S_{e l}\right|=\left|w S_{e l}\right|$ :
Recognizing $w S e l$ in the computable finite dimensional subspace $\tilde{H}$ by checking a finite amount of p-adic conditions.

## 2-descent: Selmer group

## Sum-up: Selmer

It's difficult to compute $|J(\mathbb{Q}) / 2 J(\mathbb{Q})|$
$\rightsquigarrow$ we compute the upper-bound $\left|S_{e l}\right|=\left|w S_{e l}\right|$ :
Recognizing $w S e l$ in the computable finite dimensional subspace $\tilde{H}$ by checking a finite amount of p-adic conditions.
(We obtain a finite amount of conditions because we know exactly the image of $w S e l$ by p -adic reduction with good primes)

## 2-descent: Selmer Group

How big is $J(\mathbb{Q}) / 2 J(\mathbb{Q})$ in $S e l$ ?

## 2-descent: Selmer Group

How big is $J(\mathbb{Q}) / 2 J(\mathbb{Q})$ in $S e l$ ?
Cohomology gives us a group $Ш[2](\mathbb{Q})$ s.t. :

$$
0 \rightarrow J(\mathbb{Q}) / 2 J(\mathbb{Q}) \rightarrow \text { Sel } \rightarrow \text { W[2]( } \mathbb{Q}) \rightarrow 0
$$

## 2-descent: Selmer Group

How big is $J(\mathbb{Q}) / 2 J(\mathbb{Q})$ in $S e l$ ?

Cohomology gives us a group $Ш[2](\mathbb{Q})$ s.t. :

$$
0 \rightarrow J(\mathbb{Q}) / 2 J(\mathbb{Q}) \rightarrow \text { Sel } \rightarrow \text { Ш[2]( } \mathbb{Q}) \rightarrow 0
$$

## Conjecture

$Ш[2](\mathbb{Q})$ is " reasonably often" trivial
$\rightsquigarrow$ it is not very restrictive to only compute Sel
$\rightsquigarrow$ when it is not, try 3-descent

## Algorithm

## Reminder

$S=\{$ primes of bad reduction $\}$


## Algorithm: $H^{1}(w)$ injective

When $H^{1}(w)$ is injective

## Algorithm: $H^{1}(w)$ injective

When $H^{1}(w)$ is injective

- Compute $J[2]$ and its $G a /(\overline{\mathbb{Q}} / \mathbb{Q})$ action


## Algorithm: $H^{1}(w)$ injective

When $H^{1}(w)$ is injective

- Compute $J[2]$ and its $G a l(\overline{\mathbb{Q}} / \mathbb{Q})$ action
- Find $S=\{$ primes of bad reduction $\} \cup\{2\}$ (compute the discriminant of the curve)


## Algorithm: $H^{1}(w)$ injective

When $H^{1}(w)$ is injective

- Compute $J[2]$ and its $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ action
- Find $S=\{$ primes of bad reduction $\} \cup\{2\}$ (compute the discriminant of the curve)
- Compute $\forall p \in S$

$$
H^{1}(w)\left(J\left(\mathbb{Q}_{p}\right) / 2 J\left(\mathbb{Q}_{p}\right)\right) \subset L_{p}^{*} /\left(L_{p}^{*}\right)^{2}
$$

## Algorithm: $H^{1}(w)$ injective

When $H^{1}(w)$ is injective

- Compute $J[2]$ and its $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ action
- Find $S=\{$ primes of bad reduction $\} \cup\{2\}$ (compute the discriminant of the curve)
- Compute $\forall p \in S$

$$
H^{1}(w)\left(J\left(\mathbb{Q}_{p}\right) / 2 J\left(\mathbb{Q}_{p}\right)\right) \subset L_{p}^{*} /\left(L_{p}^{*}\right)^{2}
$$

(compute random point on $J\left(\mathbb{Q}_{p}\right) / 2 J\left(\mathbb{Q}_{p}\right)$

+ their image by $H^{1}(w)$ until you find $\left|J[2]\left(\mathbb{Q}_{p}\right)\right|$ of them different)


## Algorithm: $H^{1}(w)$ injective

When $H^{1}(w)$ is injective

- Compute $J[2]$ and its $G a /(\overline{\mathbb{Q}} / \mathbb{Q})$ action
- Find $S=\{$ primes of bad reduction $\} \cup\{2\}$ (compute the discriminant of the curve)
- Compute $\forall p \in S$

$$
H^{1}(w)\left(J\left(\mathbb{Q}_{p}\right) / 2 J\left(\mathbb{Q}_{p}\right)\right) \subset L_{p}^{*} /\left(L_{p}^{*}\right)^{2}
$$

(compute random point on $J\left(\mathbb{Q}_{p}\right) / 2 J\left(\mathbb{Q}_{p}\right)$

+ their image by $H^{1}(w)$ until you find $\left|J[2]\left(\mathbb{Q}_{p}\right)\right|$ of them different)
- Find an explicit finite basis of $\tilde{H} \subset L^{*} /\left(L^{*}\right)^{2}$


## Algorithm: $H^{1}(w)$ injective

When $H^{1}(w)$ is injective

- Compute $J[2]$ and its $G a /(\overline{\mathbb{Q}} / \mathbb{Q})$ action
- Find $S=\{$ primes of bad reduction $\} \cup\{2\}$ (compute the discriminant of the curve)
- Compute $\forall p \in S$

$$
H^{1}(w)\left(J\left(\mathbb{Q}_{p}\right) / 2 J\left(\mathbb{Q}_{p}\right)\right) \subset L_{p}^{*} /\left(L_{p}^{*}\right)^{2}
$$

(compute random point on $J\left(\mathbb{Q}_{p}\right) / 2 J\left(\mathbb{Q}_{p}\right)$

+ their image by $H^{1}(w)$ until you find $\left|J[2]\left(\mathbb{Q}_{p}\right)\right|$ of them different)
- Find an explicit finite basis of $\tilde{H} \subset L^{*} /\left(L^{*}\right)^{2}$ (In practice: BNF on a field of degree $|J[2]|=2^{2 * g(C)}$ )


## Algorithm: $H^{1}(w)$ injective

- Compute

$$
w \operatorname{Sel}=\left\{x \in \tilde{H} \mid \forall p \in S \operatorname{res}_{p}(x) \in H^{1}(w)\left(J\left(\mathbb{Q}_{p}\right) / 2 J\left(\mathbb{Q}_{p}\right)\right)\right\}
$$

## Algorithm: $H^{1}(w)$ injective

- Compute
$w \operatorname{Sel}=\left\{x \in \tilde{H} \mid \forall p \in S \operatorname{res}_{p}(x) \in H^{1}(w)\left(J\left(\mathbb{Q}_{p}\right) / 2 J\left(\mathbb{Q}_{p}\right)\right)\right\}$
(check the Selmer conditions on every element of the basis of $\tilde{H}+$ linear algebra)


## Algorithm: $H^{1}(w)$ injective

- ...
- Compute
$w \operatorname{Sel}=\left\{x \in \tilde{H} \mid \forall p \in S \operatorname{res}_{p}(x) \in H^{1}(w)\left(J\left(\mathbb{Q}_{p}\right) / 2 J\left(\mathbb{Q}_{p}\right)\right)\right\}$
(check the Selmer conditions on every element of the basis of $\tilde{H}+$ linear algebra)
- $\operatorname{dim}_{\mathbb{F}_{2}}|J[2](\mathbb{Q})|+r a n k+\operatorname{dim}_{\mathbb{F}_{2}}|Ш[2](\mathbb{Q})|$
$=\operatorname{dim}_{\mathbb{F}_{2}}|\operatorname{Sel}|=\operatorname{dim}_{\mathbb{F}_{2}}|w \operatorname{Sel}|$


## 2-descent: requirements

Sum-up: Computable requirements for perfoming 2-descent

|  | Hyperelliptic | medium genus |
| :---: | :---: | :---: |
| $J[2](\overline{\mathbb{Q}})+$ Galois action | $\sqrt{ }$ | Mascot |
| $J\left(\mathbb{Q}_{p}\right) / 2 J\left(\mathbb{Q}_{p}\right)$ | $\sqrt{ }$ | $\sqrt{ }$ |
| $H^{1}(w)$ injective | $\sqrt{ }$ or Stoll | $?$ |

## Algorithm: $H^{1}(w)$ NOT injective

## Algorithm: $H^{1}(w)$ NOT injective

1. Compute $H^{1}\left(J\left(\mathbb{Q}_{p}\right) / 2 J\left(\mathbb{Q}_{p}\right)\right)$

## Algorithm: $H^{1}(w)$ NOT injective

1. Compute $H^{1}\left(J\left(\mathbb{Q}_{p}\right) / 2 J\left(\mathbb{Q}_{p}\right)\right)$

Problem 1
$\left|H^{1}\left(J\left(\mathbb{Q}_{p}\right) / 2 J\left(\mathbb{Q}_{p}\right)\right)\right|<\left|J[2]\left(\mathbb{Q}_{p}\right)\right|$
$\rightsquigarrow$ we need to control
$\left.K F_{p}:=\operatorname{ker}\left(J\left(\mathbb{Q}_{p}\right) / 2 J\left(\mathbb{Q}_{p}\right) \xrightarrow{H^{1}(w)} L_{p}^{*} /\left(L_{p}^{*}\right)^{2}\right)\right)$

## Algorithm: $H^{1}(w)$ NOT injective

1. Compute $H^{1}\left(J\left(\mathbb{Q}_{p}\right) / 2 J\left(\mathbb{Q}_{p}\right)\right)$

Problem 1
$\left|H^{1}\left(J\left(\mathbb{Q}_{p}\right) / 2 J\left(\mathbb{Q}_{p}\right)\right)\right|<\left|J[2]\left(\mathbb{Q}_{p}\right)\right|$
$\leadsto$ we need to control
$\left.K F_{p}:=\operatorname{ker}\left(J\left(\mathbb{Q}_{p}\right) / 2 J\left(\mathbb{Q}_{p}\right) \xrightarrow{\mu^{1}(w)} L_{p}^{*} /\left(L_{p}^{*}\right)^{2}\right)\right)$

## Solution 1

$K F_{p}$ could be controlled in practice if we can perform the division by 2

## Algorithm: $H^{1}(w)$ NOT injective

## 2. Compute wSel

## Algorithm: $H^{1}(w)$ NOT injective

## 2. Compute wSel

Problem 2
$\forall p \notin S, H^{1}(w)\left(J\left(\mathbb{Q}_{p}\right) / 2 J\left(\mathbb{Q}_{p}\right)\right)<\operatorname{ker}\left(v a l_{p}\right)$

## Algorithm: $H^{1}(w)$ NOT injective

## 2. Compute wSel

Problem 2
$\forall p \notin S, H^{1}(w)\left(J\left(\mathbb{Q}_{p}\right) / 2 J\left(\mathbb{Q}_{p}\right)\right)<\operatorname{ker}\left(\operatorname{val}_{p}\right)$

$$
w S e l:=\left\{x \in \tilde{H} \mid \forall p \operatorname{res}_{p}(x) \in H^{1}(w)\left(J\left(\mathbb{Q}_{p}\right) / 2 J\left(\mathbb{Q}_{p}\right)\right)\right\}
$$

## Algorithm: $H^{1}(w)$ NOT injective

2. Compute wSel

$$
w S e l:=\left\{x \in \tilde{H} \mid \forall p \operatorname{res}_{p}(x) \in H^{1}(w)\left(J\left(\mathbb{Q}_{p}\right) / 2 J\left(\mathbb{Q}_{p}\right)\right)\right\}
$$

Solution 2: compute wSel

- Compute the old way an upper-bound:

$$
w \text { Sel }_{\text {Fake }}=\left\{x \in \tilde{H} \mid \forall p \in S \operatorname{res}_{p}(x) \in H^{1}(w)\left(J\left(\mathbb{Q}_{p}\right) / 2 J\left(\mathbb{Q}_{p}\right)\right)\right\}
$$

## Algorithm: $H^{1}(w)$ NOT injective

2. Compute wSel

$$
w S e l:=\left\{x \in \tilde{H} \mid \forall p \operatorname{res}_{p}(x) \in H^{1}(w)\left(J\left(\mathbb{Q}_{p}\right) / 2 J\left(\mathbb{Q}_{p}\right)\right)\right\}
$$

## Solution 2: compute wSel

- Compute the old way an upper-bound:

$$
w^{S_{e l}^{\text {Fake }}}=\left\{x \in \tilde{H} \mid \forall p \in \operatorname{res}_{p}(x) \in H^{1}(w)\left(J\left(\mathbb{Q}_{p}\right) / 2 J\left(\mathbb{Q}_{p}\right)\right)\right\}
$$

- "effective Cebotarev theorem"
$\rightsquigarrow$ target specific primes to add to the Selmer conditions, hoping to upgrade $w$ Sel $_{\text {Fake }}$


## Algorithm: $H^{1}(w)$ NOT injective

2. Compute wSel

$$
w S e l:=\left\{x \in \tilde{H} \mid \forall p \operatorname{res}_{p}(x) \in H^{1}(w)\left(J\left(\mathbb{Q}_{p}\right) / 2 J\left(\mathbb{Q}_{p}\right)\right)\right\}
$$

## Solution 2: compute wSel

- Compute the old way an upper-bound:

$$
w^{\operatorname{Sel}}{ }_{\text {Fake }}=\left\{x \in \tilde{H} \mid \forall p \in S \operatorname{res}_{p}(x) \in H^{1}(w)\left(J\left(\mathbb{Q}_{p}\right) / 2 J\left(\mathbb{Q}_{p}\right)\right)\right\}
$$

- "effective Cebotarev theorem"
$\rightsquigarrow$ target specific primes to add to the Selmer conditions, hoping to upgrade $w$ Sel $_{\text {Fake }}$
- Remark: even if we reach wSel, we could probably not be able to detect it


## Algorithm: $H^{1}(w)$ NOT injective

3. $|w S e l| \neq\left|S_{e}\right|$

## Algorithm: $H^{1}(w)$ NOT injective

3. $|w S e l| \neq|S e l|$

Problem 3
$|J[2](\mathbb{Q})|+|J(\mathbb{Q}) / 2 J(\mathbb{Q})|+|Ш[2](\mathbb{Q})|=|S e l|=$
$|w S e l| \times|K F| \leq\left|w S^{\prime} l_{\text {Fake }}\right| \times|K F|$
$\left(K F:=\operatorname{ker}\left(S_{e l} \xrightarrow{H^{1}(w)} L^{*} /\left(L^{*}\right)^{2}\right)\right.$

## Algorithm: $H^{1}(w)$ NOT injective

3. $|w S e l| \neq|S e l|$

Problem 3
$|J[2](\mathbb{Q})|+|J(\mathbb{Q}) / 2 J(\mathbb{Q})|+|Ш[2](\mathbb{Q})|=|S e l|=$
$|w S e l| \times|K F| \leq\left|w S_{\text {Fake }}\right| \times|K F|$
$\left(K F:=\operatorname{ker}\left(S e l \xrightarrow{H^{1}(w)} L^{*} /\left(L^{*}\right)^{2}\right)\right.$

## Solution 3

$K F=\left(\cap_{p \in S} K F_{p}\right) \cap\left(\cap_{p \in A} K F_{p}\right)$
with: - $A \subset\{$ good primes $\}$ is known if "Effective Cebotarev"

- $K F_{p}$ should be effectively computable if $p$ is a good prime


## Conclusion

Change of paradigm:
We probably couldn't be able to certify $\mid$ Sel $\mid$ in the general case.

## Conclusion

## Change of paradigm:

We probably couldn't be able to certify $|S e l|$ in the general case.
But we would try to be able to set several process aiming to narrow the bound of $|S e l|$, hoping for reaching a point low enough for our purposes (for instance lower than the genus in the Chabauty-Coleman frame)

