
Mordel-Weil rank effective computation

by 2-descent

Thibaut Misme

PARI/GP Workshop
January, 2024

Thibaut Misme Effective 2-descent

Motivation

Let C be a nice algebraic curve.

What is C (Q) ?

Classic process is to apply Chabauty-Coleman method when
rkQ(Jac(C)) < g(C)

Thibaut Misme Effective 2-descent

Motivation

Let C be a nice algebraic curve.

What is C (Q) ?

Classic process is to apply Chabauty-Coleman method when
rkQ(Jac(C)) < g(C)

Thibaut Misme Effective 2-descent

Motivation

Let C be a nice algebraic curve.

What is C (Q) ?

Classic process is to apply Chabauty-Coleman method when
rkQ(Jac(C)) < g(C)

Thibaut Misme Effective 2-descent

Motivation

Theorem (Mordell-Weil)

Let K be a number field, J be an abelian variety over K.
There exists r = rankK (J) ∈ N, such that

J(K) ≃ Jtorsion(K)︸ ︷︷ ︸
finite

×Zr

Being given C (its equation), how to compute
r = rankQ(Jac(C)) in order to check Chabauty-Coleman
condition for K = Q ?

Thibaut Misme Effective 2-descent

2-descent: Introduction

2-descent algorithm is inspired by the Mordell-Weill theorem’s
proof, which ends up checking J(Q)/2J(Q) finiteness.

In fact:
J(Q)/2J(Q) ≃ J[2](Q)× (Z/2Z)r

⇝ If we can compute J[2](Q), it is enough to find
|J(Q)/2J(Q)| to get r

Thibaut Misme Effective 2-descent

2-descent: p-adic’s help

Problem

It’s difficult to generate points from C (Q) and for J(Q) as well

Idea: Consider p-adic numbers

C (Fp) computable⇝ points in C (Qp) (Hensel)

⇝ points in J(Qp) (Abel-Jacobi)

Bonus: p-adic structure

|J(Qp)/2J(Qp)| = |J[2](Qp)| (p ̸= 2)
⇝ J(Qp)/2J(Qp) computable

Thibaut Misme Effective 2-descent

2-descent: p-adic’s help

Problem

It’s difficult to generate points from C (Q) and for J(Q) as well

Idea: Consider p-adic numbers

C (Fp) computable⇝ points in C (Qp) (Hensel)

⇝ points in J(Qp) (Abel-Jacobi)

Bonus: p-adic structure

|J(Qp)/2J(Qp)| = |J[2](Qp)| (p ̸= 2)
⇝ J(Qp)/2J(Qp) computable

Thibaut Misme Effective 2-descent

2-descent: p-adic’s help

Problem

It’s difficult to generate points from C (Q) and for J(Q) as well

Idea: Consider p-adic numbers

C (Fp) computable⇝ points in C (Qp) (Hensel)

⇝ points in J(Qp) (Abel-Jacobi)

Bonus: p-adic structure

|J(Qp)/2J(Qp)| = |J[2](Qp)| (p ̸= 2)
⇝ J(Qp)/2J(Qp) computable

Thibaut Misme Effective 2-descent

2-descent: Selmer group

Problem

J(Q)/2J(Q) → J(Qp)/2J(Qp) is not injective

⇝ We consider all primes

Idea: Hasse’s principle

Cohomology yields a finite group Sel = Sel (2)(Q) s.t.
J(Q)/2J(Q) ⊂ Sel with better computational properties.

Thibaut Misme Effective 2-descent

2-descent: Selmer group

Problem

J(Q)/2J(Q) → J(Qp)/2J(Qp) is not injective

⇝ We consider all primes

Idea: Hasse’s principle

Cohomology yields a finite group Sel = Sel (2)(Q) s.t.
J(Q)/2J(Q) ⊂ Sel with better computational properties.

Thibaut Misme Effective 2-descent

2-descent: Selmer group

Problem

J(Q)/2J(Q) → J(Qp)/2J(Qp) is not injective

⇝ We consider all primes

Idea: Hasse’s principle

Cohomology yields a finite group Sel = Sel (2)(Q) s.t.
J(Q)/2J(Q) ⊂ Sel with better computational properties.

Thibaut Misme Effective 2-descent

2-descent: Selmer group

Selmer group construction

0 → J[2] → J(Q)
2−→ J(Q) → 0

J(Q)/2J(Q) ↪→ H1(Q, J[2]) → H1(Q, J)
↓ ↓ resp ↓

J(Qp)/2J(Qp) ↪→ H1(Qp, J[2]) → H1(Qp, J)

definition: Selmer group

Sel := {ϕ ∈ H1(Q, J[2]) | ∀p, resp(ϕ) ∈ J(Qp)/2J(Qp)}
:=

⋂
p res

−1
p (J(Qp)/2J(Qp))

Thibaut Misme Effective 2-descent

2-descent: Selmer group

Selmer group construction

0 → J[2] → J(Q)
2−→ J(Q) → 0

J(Q)/2J(Q) ↪→ H1(Q, J[2]) → H1(Q, J)
↓ ↓ resp ↓

J(Qp)/2J(Qp) ↪→ H1(Qp, J[2]) → H1(Qp, J)

definition: Selmer group

Sel := {ϕ ∈ H1(Q, J[2]) | ∀p, resp(ϕ) ∈ J(Qp)/2J(Qp)}
:=

⋂
p res

−1
p (J(Qp)/2J(Qp))

Thibaut Misme Effective 2-descent

2-descent: Selmer group

Selmer group construction

0 → J[2] → J(Q)
2−→ J(Q) → 0

J(Q)/2J(Q) ↪→ H1(Q, J[2]) → H1(Q, J)
↓ ↓ resp ↓

J(Qp)/2J(Qp) ↪→ H1(Qp, J[2]) → H1(Qp, J)

definition: Selmer group

Sel := {ϕ ∈ H1(Q, J[2]) | ∀p, resp(ϕ) ∈ J(Qp)/2J(Qp)}
:=

⋂
p res

−1
p (J(Qp)/2J(Qp))

Thibaut Misme Effective 2-descent

2-descent: Selmer group

Selmer group construction

0 → J[2] → J(Q)
2−→ J(Q) → 0

J(Q)/2J(Q) ↪→ H1(Q, J[2]) → H1(Q, J)
↓ ↓ resp ↓

J(Qp)/2J(Qp) ↪→ H1(Qp, J[2]) → H1(Qp, J)

definition: Selmer group

Sel := {ϕ ∈ H1(Q, J[2]) | ∀p, resp(ϕ) ∈ J(Qp)/2J(Qp)}
:=

⋂
p res

−1
p (J(Qp)/2J(Qp))

Thibaut Misme Effective 2-descent

Selmer group

J(Q)/2J(Q) ⊂ Sel ⊂ H1(Q, J[2]) is a finite,
but abstract group,
equipped with a morphism, deduced from the Weil Pairing:

Sel
H1(w)−−−→ L∗/(L∗)2

L∗/(L∗)2 is effective:
L = Q[y]/χ(y) is an algebra defined by J[2]

H1(w) is injective (in some determined cases)
in opposite with J(Q)/2J(Q) → J(Qp)/2J(Qp)

Thibaut Misme Effective 2-descent

Selmer group

J(Q)/2J(Q) ⊂ Sel ⊂ H1(Q, J[2]) is a finite,
but abstract group,
equipped with a morphism, deduced from the Weil Pairing:

Sel
H1(w)−−−→ L∗/(L∗)2

L∗/(L∗)2 is effective:
L = Q[y]/χ(y) is an algebra defined by J[2]

H1(w) is injective (in some determined cases)
in opposite with J(Q)/2J(Q) → J(Qp)/2J(Qp)

Thibaut Misme Effective 2-descent

Selmer group

J(Q)/2J(Q) ⊂ Sel ⊂ H1(Q, J[2]) is a finite,
but abstract group,
equipped with a morphism, deduced from the Weil Pairing:

Sel
H1(w)−−−→ L∗/(L∗)2

L∗/(L∗)2 is effective:
L = Q[y]/χ(y) is an algebra defined by J[2]

H1(w) is injective (in some determined cases)
in opposite with J(Q)/2J(Q) → J(Qp)/2J(Qp)

Thibaut Misme Effective 2-descent

2-descent: Selmer group

Computation of Sel

Sel
H1(w)−−−→ wSel ⊂

effective︷ ︸︸ ︷
L∗/(L∗)2

Definition

wSel := H1(w)(Sel)

Problem

How can one recognize wSel in L∗/(L∗)2 ?

Thibaut Misme Effective 2-descent

2-descent: Selmer group

Computation of Sel

Sel
H1(w)−−−→ wSel ⊂

effective︷ ︸︸ ︷
L∗/(L∗)2

Definition

wSel := H1(w)(Sel)

Problem

How can one recognize wSel in L∗/(L∗)2 ?

Thibaut Misme Effective 2-descent

2-descent: Selmer group

Computation of Sel

Sel
H1(w)−−−→ wSel ⊂

effective︷ ︸︸ ︷
L∗/(L∗)2

Definition

wSel := H1(w)(Sel)

Problem

How can one recognize wSel in L∗/(L∗)2 ?

Thibaut Misme Effective 2-descent

2-descent: Selmer group

Problem

How can one recognize wSel in L∗/(L∗)2 ?

Sel
H1(w)−−−→ wSel ⊂

effective︷ ︸︸ ︷
L∗/(L∗)2

↓ resp ↓ resp

J(Qp)/2J(Qp)︸ ︷︷ ︸
computable

H1(w)−−−→ L∗p/(L
∗
p)

2︸ ︷︷ ︸
effective

Identification (from the def of Sel)

wSel = {x ∈ L∗/(L∗)2 | ∀p resp(x) ∈ H1(w)(J(Qp)/2J(Qp))}
∩ker(N)

Thibaut Misme Effective 2-descent

2-descent: Selmer group

Problem

How can one recognize wSel in L∗/(L∗)2 ?

Sel
H1(w)−−−→ wSel ⊂

effective︷ ︸︸ ︷
L∗/(L∗)2

↓ resp ↓ resp

J(Qp)/2J(Qp)︸ ︷︷ ︸
computable

H1(w)−−−→ L∗p/(L
∗
p)

2︸ ︷︷ ︸
effective

Identification (from the def of Sel)

wSel = {x ∈ L∗/(L∗)2 | ∀p resp(x) ∈ H1(w)(J(Qp)/2J(Qp))}
∩ker(N)

Thibaut Misme Effective 2-descent

2-descent: Selmer group

Problem

How can one recognize wSel in L∗/(L∗)2 ?

Identification

wSel = {x ∈ L∗/(L∗)2 | ∀p resp(x) ∈ H1(w)(J(Qp)/2J(Qp))}
∩ker(N)

Problem

L∗/(L∗)2 is a vector space of infinite dimension

infinite amount of Selmer conditions (primes to check)

Solution (Hyperelliptic case)

If p is a good reduction prime(̸= 2) and H1(w) is injective,
resp(wSel) = ker(valp) ∩ ker(N)

Thibaut Misme Effective 2-descent

2-descent: Selmer group

Problem

How can one recognize wSel in L∗/(L∗)2 ?

Identification

wSel = {x ∈ L∗/(L∗)2 | ∀p resp(x) ∈ H1(w)(J(Qp)/2J(Qp))}
∩ker(N)

Problem

L∗/(L∗)2 is a vector space of infinite dimension

infinite amount of Selmer conditions (primes to check)

Solution (Hyperelliptic case)

If p is a good reduction prime(̸= 2) and H1(w) is injective,
resp(wSel) = ker(valp) ∩ ker(N)

Thibaut Misme Effective 2-descent

2-descent: Selmer group

Problem

How can one recognize wSel in L∗/(L∗)2 ?

Identification

wSel = {x ∈ L∗/(L∗)2 | ∀p resp(x) ∈ H1(w)(J(Qp)/2J(Qp))}
∩ker(N)

Problem

L∗/(L∗)2 is a vector space of infinite dimension

infinite amount of Selmer conditions (primes to check)

Solution (Hyperelliptic case)

If p is a good reduction prime(̸= 2) and H1(w) is injective,
resp(wSel) = ker(valp) ∩ ker(N)

Thibaut Misme Effective 2-descent

2-descent: Selmer group

Problem

How can one recognize wSel in L∗/(L∗)2 ?

Identification

wSel = {x ∈ L∗/(L∗)2 | ∀p resp(x) ∈ H1(w)(J(Qp)/2J(Qp))}
∩ker(N)

Problem

L∗/(L∗)2 is a vector space of infinite dimension

infinite amount of Selmer conditions (primes to check)

Solution (Hyperelliptic case)

If p is a good reduction prime(̸= 2) and H1(w) is injective,
resp(wSel) = ker(valp) ∩ ker(N)

Thibaut Misme Effective 2-descent

2-descent: Selmer group

Problem

How can one recognize wSel in L∗/(L∗)2 ?

Solution (Hyperelliptic case)

If p is a good reduction prime(̸= 2) and H1(w) is injective,
resp(wSel) = ker(valp) ∩ ker(N)

S = {primes of bad reduction} ∪ {2} (finite)
H̃ := (

⋂
p/∈S ker(valp)) ∩ ker(N)

finite dimension and computable

Selmer computation

wSel = {x ∈ H̃ | ∀p ∈ S resp(x) ∈ H1(w)(J(Qp)/2J(Qp))}
⇝ finite amount of calculation

Thibaut Misme Effective 2-descent

2-descent: Selmer group

Problem

How can one recognize wSel in L∗/(L∗)2 ?

Solution (Hyperelliptic case)

If p is a good reduction prime(̸= 2) and H1(w) is injective,
resp(wSel) = ker(valp) ∩ ker(N)

S = {primes of bad reduction} ∪ {2} (finite)
H̃ := (

⋂
p/∈S ker(valp)) ∩ ker(N)

finite dimension and computable

Selmer computation

wSel = {x ∈ H̃ | ∀p ∈ S resp(x) ∈ H1(w)(J(Qp)/2J(Qp))}
⇝ finite amount of calculation

Thibaut Misme Effective 2-descent

2-descent: Selmer group

Sum-up: Selmer

It’s difficult to compute |J(Q)/2J(Q)|

⇝ we compute the upper-bound |Sel | = |wSel |:
Recognizing wSel in the computable finite dimensional
subspace H̃ by checking a finite amount of p-adic conditions.

(We obtain a finite amount of conditions because we know
exactly the image of wSel by p-adic reduction with good
primes)

Thibaut Misme Effective 2-descent

2-descent: Selmer group

Sum-up: Selmer

It’s difficult to compute |J(Q)/2J(Q)|

⇝ we compute the upper-bound |Sel | = |wSel |:
Recognizing wSel in the computable finite dimensional
subspace H̃ by checking a finite amount of p-adic conditions.

(We obtain a finite amount of conditions because we know
exactly the image of wSel by p-adic reduction with good
primes)

Thibaut Misme Effective 2-descent

2-descent: Selmer group

Sum-up: Selmer

It’s difficult to compute |J(Q)/2J(Q)|

⇝ we compute the upper-bound |Sel | = |wSel |:
Recognizing wSel in the computable finite dimensional
subspace H̃ by checking a finite amount of p-adic conditions.

(We obtain a finite amount of conditions because we know
exactly the image of wSel by p-adic reduction with good
primes)

Thibaut Misme Effective 2-descent

2-descent: Selmer group

Sum-up: Selmer

It’s difficult to compute |J(Q)/2J(Q)|

⇝ we compute the upper-bound |Sel | = |wSel |:
Recognizing wSel in the computable finite dimensional
subspace H̃ by checking a finite amount of p-adic conditions.

(We obtain a finite amount of conditions because we know
exactly the image of wSel by p-adic reduction with good
primes)

Thibaut Misme Effective 2-descent

2-descent: Selmer Group

How big is J(Q)/2J(Q) in Sel ?

Cohomology gives us a group X[2](Q) s.t. :

0 → J(Q)/2J(Q) → Sel → X[2](Q) → 0

Conjecture

X[2](Q) is ”reasonably often” trivial

⇝ it is not very restrictive to only compute Sel
⇝ when it is not, try 3-descent

Thibaut Misme Effective 2-descent

2-descent: Selmer Group

How big is J(Q)/2J(Q) in Sel ?

Cohomology gives us a group X[2](Q) s.t. :

0 → J(Q)/2J(Q) → Sel → X[2](Q) → 0

Conjecture

X[2](Q) is ”reasonably often” trivial

⇝ it is not very restrictive to only compute Sel
⇝ when it is not, try 3-descent

Thibaut Misme Effective 2-descent

2-descent: Selmer Group

How big is J(Q)/2J(Q) in Sel ?

Cohomology gives us a group X[2](Q) s.t. :

0 → J(Q)/2J(Q) → Sel → X[2](Q) → 0

Conjecture

X[2](Q) is ”reasonably often” trivial

⇝ it is not very restrictive to only compute Sel
⇝ when it is not, try 3-descent

Thibaut Misme Effective 2-descent

Algorithm

Reminder

S = {primes of bad reduction}

Sel
H1(w)−−−→ wSel ⊂

computable︷︸︸︷
H̃

↓ resp ↓ resp

J(Qp)/2J(Qp)︸ ︷︷ ︸
computable

H1(w)−−−→ L∗p/(L
∗
p)

2︸ ︷︷ ︸
effective

Thibaut Misme Effective 2-descent

Algorithm: H1(w) injective

When H1(w) is injective

Compute J[2] and its Gal(Q/Q) action

Find S = {primes of bad reduction} ∪ {2}
(compute the discriminant of the curve)

Compute ∀p ∈ S

H1(w)(J(Qp)/2J(Qp)) ⊂ L∗p/(L
∗
p)

2

(compute random point on J(Qp)/2J(Qp)
+ their image by H1(w) until you find |J[2](Qp)| of them
different)

Find an explicit finite basis of H̃ ⊂ L∗/(L∗)2

(In practice: BNF on a field of degree |J[2]| = 22∗g(C))

Thibaut Misme Effective 2-descent

Algorithm: H1(w) injective

When H1(w) is injective

Compute J[2] and its Gal(Q/Q) action

Find S = {primes of bad reduction} ∪ {2}
(compute the discriminant of the curve)

Compute ∀p ∈ S

H1(w)(J(Qp)/2J(Qp)) ⊂ L∗p/(L
∗
p)

2

(compute random point on J(Qp)/2J(Qp)
+ their image by H1(w) until you find |J[2](Qp)| of them
different)

Find an explicit finite basis of H̃ ⊂ L∗/(L∗)2

(In practice: BNF on a field of degree |J[2]| = 22∗g(C))

Thibaut Misme Effective 2-descent

Algorithm: H1(w) injective

When H1(w) is injective

Compute J[2] and its Gal(Q/Q) action

Find S = {primes of bad reduction} ∪ {2}
(compute the discriminant of the curve)

Compute ∀p ∈ S

H1(w)(J(Qp)/2J(Qp)) ⊂ L∗p/(L
∗
p)

2

(compute random point on J(Qp)/2J(Qp)
+ their image by H1(w) until you find |J[2](Qp)| of them
different)

Find an explicit finite basis of H̃ ⊂ L∗/(L∗)2

(In practice: BNF on a field of degree |J[2]| = 22∗g(C))

Thibaut Misme Effective 2-descent

Algorithm: H1(w) injective

When H1(w) is injective

Compute J[2] and its Gal(Q/Q) action

Find S = {primes of bad reduction} ∪ {2}
(compute the discriminant of the curve)

Compute ∀p ∈ S

H1(w)(J(Qp)/2J(Qp)) ⊂ L∗p/(L
∗
p)

2

(compute random point on J(Qp)/2J(Qp)
+ their image by H1(w) until you find |J[2](Qp)| of them
different)

Find an explicit finite basis of H̃ ⊂ L∗/(L∗)2

(In practice: BNF on a field of degree |J[2]| = 22∗g(C))

Thibaut Misme Effective 2-descent

Algorithm: H1(w) injective

When H1(w) is injective

Compute J[2] and its Gal(Q/Q) action

Find S = {primes of bad reduction} ∪ {2}
(compute the discriminant of the curve)

Compute ∀p ∈ S

H1(w)(J(Qp)/2J(Qp)) ⊂ L∗p/(L
∗
p)

2

(compute random point on J(Qp)/2J(Qp)
+ their image by H1(w) until you find |J[2](Qp)| of them
different)

Find an explicit finite basis of H̃ ⊂ L∗/(L∗)2

(In practice: BNF on a field of degree |J[2]| = 22∗g(C))

Thibaut Misme Effective 2-descent

Algorithm: H1(w) injective

When H1(w) is injective

Compute J[2] and its Gal(Q/Q) action

Find S = {primes of bad reduction} ∪ {2}
(compute the discriminant of the curve)

Compute ∀p ∈ S

H1(w)(J(Qp)/2J(Qp)) ⊂ L∗p/(L
∗
p)

2

(compute random point on J(Qp)/2J(Qp)
+ their image by H1(w) until you find |J[2](Qp)| of them
different)

Find an explicit finite basis of H̃ ⊂ L∗/(L∗)2

(In practice: BNF on a field of degree |J[2]| = 22∗g(C))

Thibaut Misme Effective 2-descent

Algorithm: H1(w) injective

When H1(w) is injective

Compute J[2] and its Gal(Q/Q) action

Find S = {primes of bad reduction} ∪ {2}
(compute the discriminant of the curve)

Compute ∀p ∈ S

H1(w)(J(Qp)/2J(Qp)) ⊂ L∗p/(L
∗
p)

2

(compute random point on J(Qp)/2J(Qp)
+ their image by H1(w) until you find |J[2](Qp)| of them
different)

Find an explicit finite basis of H̃ ⊂ L∗/(L∗)2

(In practice: BNF on a field of degree |J[2]| = 22∗g(C))

Thibaut Misme Effective 2-descent

Algorithm: H1(w) injective

. . .

Compute

wSel = {x ∈ H̃ | ∀p ∈ S resp(x) ∈ H1(w)(J(Qp)/2J(Qp))}

(check the Selmer conditions on every element of the
basis of H̃ + linear algebra)

dimF2|J[2](Q)|+ rank + dimF2|X[2](Q)|
= dimF2|Sel | = dimF2|wSel |

Thibaut Misme Effective 2-descent

Algorithm: H1(w) injective

. . .

Compute

wSel = {x ∈ H̃ | ∀p ∈ S resp(x) ∈ H1(w)(J(Qp)/2J(Qp))}

(check the Selmer conditions on every element of the
basis of H̃ + linear algebra)

dimF2|J[2](Q)|+ rank + dimF2|X[2](Q)|
= dimF2|Sel | = dimF2|wSel |

Thibaut Misme Effective 2-descent

Algorithm: H1(w) injective

. . .

Compute

wSel = {x ∈ H̃ | ∀p ∈ S resp(x) ∈ H1(w)(J(Qp)/2J(Qp))}

(check the Selmer conditions on every element of the
basis of H̃ + linear algebra)

dimF2|J[2](Q)|+ rank + dimF2|X[2](Q)|
= dimF2|Sel | = dimF2|wSel |

Thibaut Misme Effective 2-descent

2-descent: requirements

Sum-up: Computable requirements for perfoming
2-descent

Hyperelliptic medium genus

J[2](Q) + Galois action
√

Mascot
J(Qp)/2J(Qp)

√ √

H1(w) injective
√

or Stoll ?

Thibaut Misme Effective 2-descent

Algorithm: H1(w) NOT injective

1. Compute H1(J(Qp)/2J(Qp))

Problem 1

|H1(J(Qp)/2J(Qp))| < |J[2](Qp)|
⇝ we need to control

KFp := ker(J(Qp)/2J(Qp)
H1(w)−−−→ L∗p/(L

∗
p)

2))

Solution 1

KFp could be controlled in practice if we can perform the
division by 2

Thibaut Misme Effective 2-descent

Algorithm: H1(w) NOT injective

1. Compute H1(J(Qp)/2J(Qp))

Problem 1

|H1(J(Qp)/2J(Qp))| < |J[2](Qp)|
⇝ we need to control

KFp := ker(J(Qp)/2J(Qp)
H1(w)−−−→ L∗p/(L

∗
p)

2))

Solution 1

KFp could be controlled in practice if we can perform the
division by 2

Thibaut Misme Effective 2-descent

Algorithm: H1(w) NOT injective

1. Compute H1(J(Qp)/2J(Qp))

Problem 1

|H1(J(Qp)/2J(Qp))| < |J[2](Qp)|
⇝ we need to control

KFp := ker(J(Qp)/2J(Qp)
H1(w)−−−→ L∗p/(L

∗
p)

2))

Solution 1

KFp could be controlled in practice if we can perform the
division by 2

Thibaut Misme Effective 2-descent

Algorithm: H1(w) NOT injective

1. Compute H1(J(Qp)/2J(Qp))

Problem 1

|H1(J(Qp)/2J(Qp))| < |J[2](Qp)|
⇝ we need to control

KFp := ker(J(Qp)/2J(Qp)
H1(w)−−−→ L∗p/(L

∗
p)

2))

Solution 1

KFp could be controlled in practice if we can perform the
division by 2

Thibaut Misme Effective 2-descent

Algorithm: H1(w) NOT injective

2. Compute wSel

Problem 2

∀p /∈ S , H1(w)(J(Qp)/2J(Qp)) < ker(valp)

wSel := {x ∈ H̃ | ∀p resp(x) ∈ H1(w)(J(Qp)/2J(Qp))}

Thibaut Misme Effective 2-descent

Algorithm: H1(w) NOT injective

2. Compute wSel

Problem 2

∀p /∈ S , H1(w)(J(Qp)/2J(Qp)) < ker(valp)

wSel := {x ∈ H̃ | ∀p resp(x) ∈ H1(w)(J(Qp)/2J(Qp))}

Thibaut Misme Effective 2-descent

Algorithm: H1(w) NOT injective

2. Compute wSel

Problem 2

∀p /∈ S , H1(w)(J(Qp)/2J(Qp)) < ker(valp)

wSel := {x ∈ H̃ | ∀p resp(x) ∈ H1(w)(J(Qp)/2J(Qp))}

Thibaut Misme Effective 2-descent

Algorithm: H1(w) NOT injective

2. Compute wSel

wSel := {x ∈ H̃ | ∀p resp(x) ∈ H1(w)(J(Qp)/2J(Qp))}

Solution 2: compute wSel

Compute the old way an upper-bound:

wSelFake = {x ∈ H̃ | ∀p ∈ S resp(x) ∈ H1(w)(J(Qp)/2J(Qp))}

”effective Cebotarev theorem”
⇝ target specific primes to add to the Selmer conditions,
hoping to upgrade wSelFake

Remark: even if we reach wSel , we could probably not
be able to detect it

Thibaut Misme Effective 2-descent

Algorithm: H1(w) NOT injective

2. Compute wSel

wSel := {x ∈ H̃ | ∀p resp(x) ∈ H1(w)(J(Qp)/2J(Qp))}

Solution 2: compute wSel

Compute the old way an upper-bound:

wSelFake = {x ∈ H̃ | ∀p ∈ S resp(x) ∈ H1(w)(J(Qp)/2J(Qp))}

”effective Cebotarev theorem”
⇝ target specific primes to add to the Selmer conditions,
hoping to upgrade wSelFake

Remark: even if we reach wSel , we could probably not
be able to detect it

Thibaut Misme Effective 2-descent

Algorithm: H1(w) NOT injective

2. Compute wSel

wSel := {x ∈ H̃ | ∀p resp(x) ∈ H1(w)(J(Qp)/2J(Qp))}

Solution 2: compute wSel

Compute the old way an upper-bound:

wSelFake = {x ∈ H̃ | ∀p ∈ S resp(x) ∈ H1(w)(J(Qp)/2J(Qp))}

”effective Cebotarev theorem”
⇝ target specific primes to add to the Selmer conditions,
hoping to upgrade wSelFake

Remark: even if we reach wSel , we could probably not
be able to detect it

Thibaut Misme Effective 2-descent

Algorithm: H1(w) NOT injective

3. |wSel | ≠ |Sel |

Problem 3

|J[2](Q)|+ |J(Q)/2J(Q)|+ |X[2](Q)| = |Sel | =
|wSel | × |KF | ≤ |wSelFake | × |KF |
(KF := ker(Sel

H1(w)−−−→ L∗/(L∗)2)

Solution 3

KF = (∩p∈SKFp)
⋂
(∩p∈AKFp)

with: - A ⊂ {good primes} is known if ”Effective Cebotarev”
- KFp should be effectively computable if p is a good prime

Thibaut Misme Effective 2-descent

Algorithm: H1(w) NOT injective

3. |wSel | ≠ |Sel |

Problem 3

|J[2](Q)|+ |J(Q)/2J(Q)|+ |X[2](Q)| = |Sel | =
|wSel | × |KF | ≤ |wSelFake | × |KF |
(KF := ker(Sel

H1(w)−−−→ L∗/(L∗)2)

Solution 3

KF = (∩p∈SKFp)
⋂
(∩p∈AKFp)

with: - A ⊂ {good primes} is known if ”Effective Cebotarev”
- KFp should be effectively computable if p is a good prime

Thibaut Misme Effective 2-descent

Algorithm: H1(w) NOT injective

3. |wSel | ≠ |Sel |

Problem 3

|J[2](Q)|+ |J(Q)/2J(Q)|+ |X[2](Q)| = |Sel | =
|wSel | × |KF | ≤ |wSelFake | × |KF |
(KF := ker(Sel

H1(w)−−−→ L∗/(L∗)2)

Solution 3

KF = (∩p∈SKFp)
⋂
(∩p∈AKFp)

with: - A ⊂ {good primes} is known if ”Effective Cebotarev”
- KFp should be effectively computable if p is a good prime

Thibaut Misme Effective 2-descent

Conclusion

Change of paradigm:
We probably couldn’t be able to certify |Sel | in the general
case.

But we would try to be able to set several process aiming to
narrow the bound of |Sel |, hoping for reaching a point low
enough for our purposes (for instance lower than the genus in
the Chabauty-Coleman frame)

Thibaut Misme Effective 2-descent

Conclusion

Change of paradigm:
We probably couldn’t be able to certify |Sel | in the general
case.
But we would try to be able to set several process aiming to
narrow the bound of |Sel |, hoping for reaching a point low
enough for our purposes (for instance lower than the genus in
the Chabauty-Coleman frame)

Thibaut Misme Effective 2-descent

