Computing class groups

Fabrice ETIENNE

University of Bordeaux, IMB

2024

イロト イヨト イヨト イヨト

E

590

Introduction

Classical norm relations

Definitions Properties

Generalized norm relations

Definitions Computing class groups with generalized norm relations

Algorithms

Looking for generalized norm relations Computing the class group Exemple

< ∃ >

- ∢ ⊒ ▶

Introduction

Definition : class group of a number field

Let *K* be a number field. Denote by I(K) the collection of all fractional ideals of *K*, and by P(K) the collection of all principal ideals of *K*. Then, P(K) is a subgroup of I(K), and the class group C(K) is the quotient $C(K) = \frac{I(K)}{P(K)}$

Introduction

Buchmann algorithm

Given a number field K of degree n over \mathbb{Q} and of discriminant D(K), there is an algorithm to compute its class group (under the Riemann Hypothesis), in time

$$\mathcal{O}(e^{a\sqrt{\ln|D(K)|\ln\ln|D(K)|}})$$

where a is small and the O constant depends on n.

Image: A marked bit and a marked bit

Introduction

If K/\mathbb{Q} is a Galois extension of Galois group G, and if G admits a norm relation with respect to some subgroups H_i , then we use Buchmann algorithm on the $L_i = K^{H_i}$, and we use the norm relation to find the class group of K.

Introduction

Classical norm relations Generalized norm relations Algorithms

Introduction

Definitions Properties

Introduction

Classical norm relations Definitions Properties

Generalized norm relations

Definitions Computing class groups with generalized norm relations

Algorithms

Looking for generalized norm relations Computing the class group Exemple

<ロト < 回 > < 回 > < 回 > < 回 >

Definitions Properties

Reference

Reference :

Jean-François Biasse, Claus Fieker, Tommy Hofmann and Aurel Page.

"Norm relations and computational problems in number fields".

In : Journal of the London Mathematical Society (2022).

- - E + - E +

ł

Image: A matrix

Definitions Properties

Definitions

Let G be a finite group.

Definition : norm element

If *H* is a subgroup of *G*, we call **norm element** of *H* the element $N_H = \sum_{h \in H} h \in \mathbb{Z}[G]$.

Definition : norm relation

Let \mathcal{H} be a set of subgroups of G, and R a commutative ring. A **norm relation** over R with respect to \mathcal{H} is a relation in R[G] of the form

$$1=\sum_{i=1}^{l}a_{i}N_{H_{i}}b_{i}$$

 $a_i, b_i \in R[G]$ $H_i \in \mathcal{H}, H_i \neq \{0\}$

Image: A marked bit and a marked bit

Definitions Properties

Introduction

Classical norm relations Definitions Properties

Generalized norm relations

Definitions Computing class groups with generalized norm relations

Algorithms

Looking for generalized norm relations Computing the class group Exemple

<ロト < 回 > < 回 > < 回 > < 回 >

Definitions Properties

Properties of norm relation

Let K/F be a Galois extension of number fields, of Galois group G. We will consider relations of the form

$$(*): d = \sum_{i=1}^{l} a_i N_{H_i} b_i$$

with $d \in \mathbb{N}^*, a_i, b_i \in \mathbb{Z}[G], H_i < G$.

Définition

The exponent of a \mathbb{Z} -module M is the smallest $e \in \mathbb{N}^*$ such that $\forall x \in M, e \cdot x = 0$

Definitions Properties

Properties of norm relation

Proposition

Let *M* be a $\mathbb{Z}[G]$ -module. If *G* has a relation of the form (*), then the exponent of the quotient $M/(\sum_{i=1}^{l} a_i M^{H_i})$ is finite and divides *d*.

Corollary

If G has a relation of the form (*), then the exponent of the quotient $\mathcal{O}_{K,S}^{\times}/(\mathcal{O}_{K^{H_{1}},S}^{\times})^{a_{1}}\cdots(\mathcal{O}_{K^{H_{\ell}},S}^{\times})^{a_{\ell}}$ is finite and divides d.

・ロト ・回ト ・ヨト ・ヨト

Definitions Computing class groups with generalized norm relations

<ロト < 回 > < 回 > < 回 > < 回 >

Introduction

Classical norm relations

Definitions Properties

Generalized norm relations

Definitions

Computing class groups with generalized norm relations

Algorithms

Looking for generalized norm relations Computing the class group Exemple

Definitions Computing class groups with generalized norm relations

Definitions

Definition : Generalized norm relation

Let G be a finite group, H a subgroup of G, \mathcal{J} a set a subgroups of G and R a commutative ring. A generalized norm relation over R with respect to H and \mathcal{J} is an equality in R[G] of the form

$$N_H = \sum_{i=1}^l a_i N_{J_i} b_i$$

where $a_i, b_i \in R[G]$, $H_i \in \mathcal{H}$, and $H_i \neq 1$.

Definitions Computing class groups with generalized norm relations

・ロト ・同ト ・ヨト ・ヨト

Definitions

Definition :

If K is a number field, and L_1, \dots, L_ℓ some other number fields. Let Ω a Galois extension of \mathbb{Q} containing K and all the L_i , and let \mathcal{G} its Galois group. We denote by \mathcal{H} the subgroup of \mathcal{G} fixing K, and by \mathcal{Y}_i the ones fixing the L_i respectively. Then we say there is a generalized norm relation between K and the L_i if \mathcal{G} admits a generalised norm relation over \mathbb{Q} with respect to \mathcal{H} and the \mathcal{Y}_i .

Definitions

Computing class groups with generalized norm relations

Properties of norm relations

Definitions Computing class groups with generalized norm relations

イロト イヨト イヨト イヨト

E

Introduction

Classical norm relations

Definitions Properties

Generalized norm relations

Definitions

Computing class groups with generalized norm relations

Algorithms

Looking for generalized norm relations Computing the class group Exemple

Definitions

Computing class groups with generalized norm relations

Computing class groups with generalized norm relations

Definitions Computing class groups with generalized norm relations

イロト イヨト イヨト イヨト

Computing class groups with generalized norm relations

Theorem :

Suppose there is a relation of the form $dN_H = \sum_i a_i N_{J_i} b_i$, with $d \in \mathbb{N}^*$ et $a_i, b_i \in \mathbb{Z}[G]$. Let M be a $\mathbb{Z}[G]$ -module. Then the exponent of the quotient $M^H/(N_H \cdot (\sum_i a_i M^{J_i}))$ is finite and divides $|H|^2 d$.

Corollary :

Denote $\alpha_i = N_H(a_i)$ for all *i*. Then the exponent of the quotient $\mathcal{O}_{K^H,S}^{\times}/((\mathcal{O}_{K^{J_1},S}^{\times})^{\alpha_1}\cdots(\mathcal{O}_{K^{J_\ell},S}^{\times})^{\alpha_l}).$

Looking for generalized norm relations Computing the class group Exemple

Introduction

Classical norm relations

Definitions Properties

Generalized norm relations

Definitions Computing class groups with generalized norm relations

Algorithms

Looking for generalized norm relations

Computing the class group Exemple

<ロト < 回 > < 回 > < 回 > < 回 >

E

Looking for generalized norm relations Computing the class group Exemple

Compositum

Let L, M be number fields

Definition : Compositum

A compositum of *L* and *M* is a triple (C, ι_L, ι_M) where *C* is a number field, $\iota_L : L \to C$ and $\iota_M : M \to C$ are morphisms of \mathbb{Q} -algebras, and *C* is generated by $\iota_L(L)$ and $\iota_M(M)$.

Theorem

There is an injective morphism $\Phi : \mathbb{Z}[\operatorname{Compos}(K, L)] \to \operatorname{Hom}_{R[G]}(R[\operatorname{Hom}(L, \mathbb{C})], R[\operatorname{Hom}(K, \mathbb{C})]).$

イロト イヨト イヨト イヨト

Looking for generalized norm relations Computing the class group Exemple

A characterization with compositums

Proposition

If L_1, \dots, L_ℓ are number fields, and $\beta_1, \dots, \beta_\ell$ such that $L_i = \mathbb{Q}(\beta_i)$, then $K = \mathbb{Q}(\alpha)$ admits a generalized norm relation with respect to L_1, \dots, L_ℓ , if and only if there is a relation of the form

$$\alpha = \sum_{i=1}^{\ell} \sum_{C \in \mathsf{Compos}(K, L_i)} \mathsf{a}_{i, C} C \cdot \beta_i$$

Looking for generalized norm relations Computing the class group Exemple

Looking for generalized norm relations

Algorithm

input : A number field $K = \tilde{K}^H$ and a family $L_i = \tilde{K}^{J_i}$ of number fields.

 $\underbrace{output}:$ True if and only if there is a generalized norm relation, and if so, the coefficients of the relation.

- For all *i*, list all compositums of K and L_i .
- ► For all *i*, and for all $\sigma \in \text{Hom}(L_i, \mathbb{C})$ and for all compositum *C*, compute $C \cdot \sigma \in \mathbb{Q}[\text{Hom}(K, \mathbb{C})]$.
- We are left with a linear algebra problem of polynomial dimension.

イロト イヨト イヨト イヨト

Looking for generalized norm relations Computing the class group Exemple

Introduction

Classical norm relations

Definitions Properties

Generalized norm relations

Definitions Computing class groups with generalized norm relations

Algorithms

Looking for generalized norm relations Computing the class group Exemple

<ロト < 回 > < 回 > < 回 > < 回 >

ł

Looking for generalized norm relations Computing the class group Exemple

Computing the class group

Step 1 :

Compute the class group of every subfield $K_j = \tilde{K}^{J_j}$, using **bnfinit** and **bnfunits**.

Step 2 :

 $\overline{\text{Compute}} \text{ all compositums of } K \text{ and } K_j \text{ for all } j.$

Looking for generalized norm relations Computing the class group Exemple

Computing the class group

Step 3 :

For each K_j , compute S_j a set of prime ideals that generates the coprime to *d*-part of the class group. Step 4 :

Compute the matrix of an application $\Phi : \sum K_j^{n_j} \to K$, that sends all the ideals above all the primes in S_j to their image by every compositum.

Step 5 :

Compute all the valuations of the S_j -units of all the K_j in every prime ideal in S_j . Then apply the matrix of the application Φ and take the Smith Normal Form.

イロト イヨト イヨト イヨト

Looking for generalized norm relations Computing the class group Exemple

Introduction

Classical norm relations

Definitions Properties

Generalized norm relations

Definitions Computing class groups with generalized norm relations

Algorithms

Looking for generalized norm relations Computing the class group Exemple

<ロト < 回 > < 回 > < 回 > < 回 >

ł

Looking for generalized norm relations Computing the class group Exemple

Exemple

Theorem

If p > 2 is a prime number, let $G = GL_2(\mathbb{F}_p)$, $H \simeq C_p < G$, then G admits a generalized norm relation over \mathbb{Q} with respect to H and a set of subgroups $\{J_1, \dots, J_\ell\}$ whose index in G are smaller or equal to $p^2 - 1$.

・ロト ・日ト ・ヨト ・ヨト

E

Looking for generalized norm relations Computing the class group Exemple

Thank you!

Fabrice ETIENNE Computing class groups

イロト イヨト イヨト イヨト

E