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Definition : class group of a number field

Let K be a number field. Denote by I (K ) the collection of all
fractional ideals of K , and by P(K ) the collection of all principal
ideals of K . Then, P(K ) is a subgroup of I (K ), and the class group
C (K ) is the quotient C (K ) = I (K)

P(K)
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Buchmann algorithm

Given a number field K of degree n over Q and of discriminant
D(K ), there is an algorithm to compute its class group (under the
Riemann Hypothesis), in time

O(ea
√

ln|D(K)|lnln|D(K)|)

where a is small and the O constant depends on n.
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If K/Q is a Galois extension of Galois group G , and if G admits a
norm relation with respect to some subgroups Hi , then we use
Buchmann algorithm on the Li = KHi , and we use the norm
relation to find the class group of K .

K

Q

Li = KHiG

Hi
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K̃

K = K̃H

Q

Li = K̃ Ji We use Buchmann
algorithm here

H
Ji

generalized
norm relation

G
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Let G be a finite group.

Definition : norm element
If H is a subgroup of G , we call norm element of H the element
NH =

∑
h∈H h ∈ Z[G ].

Definition : norm relation
Let H be a set of subgroups of G , and R a commutative ring. A
norm relation over R with respect to H is a relation in R[G ] of
the form

1 =
l∑

i=1

aiNHi
bi

ai , bi ∈ R[G ]
Hi ∈ H,Hi ̸= {0}
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Let K/F be a Galois extension of number fields, of Galois group G .
We will consider relations of the form

(∗) : d =
l∑

i=1

aiNHi
bi

with d ∈ N∗, ai , bi ∈ Z[G ],Hi < G .

Définition
The exponent of a Z-module M is the smallest e ∈ N∗ such that
∀x ∈ M, e · x = 0
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Proposition

Let M be a Z[G ]-module. If G has a relation of the form (∗), then
the exponent of the quotient M/(

∑l
i=1 aiM

Hi ) is finite and divides
d .

Corollary

If G has a relation of the form (∗), then the exponent of the
quotient
O×

K ,S/(O
×
KH1 ,S

)a1 · · · (O×
KHℓ ,S

)aℓ is finite and divides d .
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Definition : Generalized norm relation
Let G be a finite group, H a subgroup of G , J a set a subgroups of
G and R a commutative ring. A generalized norm relation over
R with respect to H and J is an equality in R[G ] of the form

NH =
l∑

i=1

aiNJibi

where ai , bi ∈ R[G ], Hi ∈ H, and Hi ̸= 1.
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Definition :
If K is a number field, and L1, · · · , Lℓ some other number fields.
Let Ω a Galois extension of Q containing K and all the Li , and let
G its Galois group. We denote by H the subgroup of G fixing K ,
and by Yi the ones fixing the Li respectively. Then we say there is a
generalized norm relation between K and the Li if G admits a
generalised norm relation over Q with respect to H and the Yi .
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Ω

K̃

K

Q

Li

N

H

G

Yi

H

G
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K̃

K = K̃H

Q

Li = K̃ Ji We use Buchmann
algorithm here

H
Ji

generalized
norm relation

G
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Theorem :
Suppose there is a relation of the form dNH =

∑
i aiNJibi , with

d ∈ N∗ et ai , bi ∈ Z[G ]. Let M be a Z[G ]-module. Then the
exponent of the quotient MH/(NH · (

∑
i aiM

Ji )) is finite and
divides |H|2d .

Corollary :

Denote αi = NH(ai ) for all i . Then the exponent of the quotient
O×

KH ,S
/((O×

K J1 ,S
)α1 · · · (O×

K Jℓ ,S
)αl ).
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Compositum

Let L,M be number fields

Definition : Compositum

A compositum of L and M is a triple (C , ιL, ιM) where C is a
number field, ιL : L → C and ιM : M → C are morphisms of
Q-algebras, and C is generated by ιL(L) and ιM(M).

Theorem
There is an injective morphism
Φ : Z[Compos(K , L)] → HomR[G ](R[Hom(L,C)],R[Hom(K ,C)]).
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A characterization with compositums

Proposition

If L1, · · · , Lℓ are number fields, and β1, · · · , βℓ such that
Li = Q(βi ), then K = Q(α) admits a generalized norm relation with
respect to L1, · · · , Lℓ, if and only if there is a relation of the form

α =
ℓ∑

i=1

∑
C∈Compos(K ,Li )

ai ,CC · βi
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Looking for generalized norm relations

Algorithm

input : A number field K = K̃H and a family Li = K̃ Ji of number
fields.
output : True if and only if there is a generalized norm relation, and
if so, the coefficients of the relation.
▶ For all i , list all compositums of K and Li .
▶ For all i , and for all σ ∈ Hom(Li ,C) and for all compositum

C ,compute C · σ ∈ Q[Hom(K ,C)].
▶ We are left with a linear algebra problem of polynomial

dimension.
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Computing the class group

Step 1 :
Compute the class group of every subfield Kj = K̃ Jj , using bnfinit
and bnfunits.
Step 2 :
Compute all compositums of K and Kj for all j .
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Computing the class group

Step 3 :
For each Kj , compute Sj a set of prime ideals that generates the
coprime to d-part of the class group.
Step 4 :
Compute the matrix of an application Φ :

∑
K

nj
j → K , that sends

all the ideals above all the primes in Sj to their image by every
compositum.
Step 5 :
Compute all the valuations of the Sj -units of all the Kj in every
prime ideal in Sj . Then apply the matrix of the application Φ and
take the Smith Normal Form.
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Exemple

Theorem
If p > 2 is a prime number, let G = GL2(Fp), H ≃ Cp < G , then G
admits a generalized norm relation over Q with respect to H and a
set of subgroups {J1, · · · , Jℓ} whose index in G are smaller or equal
to p2 − 1.
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Any questions ?

Thank you !
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