Hensel-lifting torsion points and Galois representations

Nicolas Mascot

American University of Beirut

Pari/GP workshop IMB, Bordeaux January 17th 2019

Goal

Let $\rho: \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \longrightarrow \operatorname{GL}_d(\mathbb{F}_\ell)$ be a Galois representation.

Goal

Let $\rho : \mathsf{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \longrightarrow \mathsf{GL}_d(\mathbb{F}_\ell)$ be a Galois representation.

Suppose we know a curve C/\mathbb{Q} such that ρ is afforded by an \mathbb{F}_{ℓ} -subspace $T \subset J[\ell]$, where $J = \operatorname{Jac}(C)$.

Goal

Let $\rho : \mathsf{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \longrightarrow \mathsf{GL}_d(\mathbb{F}_\ell)$ be a Galois representation.

Suppose we know a curve C/\mathbb{Q} such that ρ is afforded by an \mathbb{F}_{ℓ} -subspace $T \subset J[\ell]$, where $J = \operatorname{Jac}(C)$.

To isolate $T\subset J[\ell]$, we assume that for one good prime $p\neq \ell$, we know

$$\chi_{\rho}(x) = \det\left(x - \operatorname{Frob}_{p}|_{\mathcal{T}}\right) \in \mathbb{F}_{\ell}[x]$$

and

$$L(x) = \det (x - \operatorname{Frob}_p |_J) \in \mathbb{Z}[x],$$

and that

$$\gcd(\chi_{\rho}, L/\chi_{\rho}) = 1 \in \mathbb{F}_{\ell}[x].$$

Strategy

- Find $q = p^a$ such that $T \subset J(\mathbb{F}_q)[\ell]$,
- ② Generate \mathbb{F}_q -points of T until we get an \mathbb{F}_ℓ -basis,
- **3** Lift these points from $J(\mathbb{F}_q)$ to $J(\mathbb{Q}_q)$,
- lacktriangledown Form all linear combinations of these points in $J(\mathbb{Q}_q)[\ell]$,
- $F(x) = \prod_{t \in T} (x \alpha(t))$, where $\alpha : J \longrightarrow \mathbb{A}^1$,
- **o** Identify F(x) ∈ $\mathbb{Q}[x]$.

Strategy

- Find $q = p^a$ such that $T \subset J(\mathbb{F}_q)[\ell]$,
- ② Generate \mathbb{F}_q -points of T until we get an \mathbb{F}_ℓ -basis an \mathbb{F}_ℓ [Frob $_p$]-generating set,
- **3** Lift these points from $J(\mathbb{F}_q)$ to $J(\mathbb{Q}_q)$,
- **4** Form all combinations of these points in $J(\mathbb{Q}_q)[\ell]$ representing all Frob_p-orbits,
- $F(x) = \frac{\prod_{t \in T} (x \alpha(t))}{\prod_{t \in \mathsf{Frob}_p \setminus T} \mathsf{charpoly} (\alpha(t)), }$ where $\alpha : J \dashrightarrow \mathbb{A}^1$,
- **o** Identify F(x) ∈ $\mathbb{Q}[x]$.

Getting a basis of T

•
$$\#J(\mathbb{F}_q)=\operatorname{\mathsf{Res}} ig(L(x),x^a-1ig)=\ell^b M.$$
 $woheadrightarrow orall t\in J(\mathbb{F}_q),\ [M]t\in J(\mathbb{F}_q)[\ell^\infty].$

Getting a basis of T

•
$$\#J(\mathbb{F}_q)=\operatorname{Res}\left(L(x),x^a-1\right)=\ell^bM.$$

$$\rightsquigarrow \forall t\in J(\mathbb{F}_q),\ [M]t\in J(\mathbb{F}_q)[\ell^\infty].$$

•
$$L(x) = \chi_{\rho}(x)\psi(x) \in \mathbb{F}_{\ell}[x]$$

 $\leadsto \forall t \in J(\mathbb{F}_{q})[\ell], \ \psi(\mathsf{Frob}_{p}) \cdot t \in \mathcal{T}.$

Getting a basis of T

•
$$\#J(\mathbb{F}_q)=\operatorname{\mathsf{Res}} ig(L(x),x^a-1ig)=\ell^b M.$$
 $woheadrightarrow orall t\in J(\mathbb{F}_q),\ [M]t\in J(\mathbb{F}_q)[\ell^\infty].$

•
$$L(x) = \chi_{\rho}(x)\psi(x) \in \mathbb{F}_{\ell}[x]$$

 $\leadsto \forall t \in J(\mathbb{F}_q)[\ell], \ \psi(\mathsf{Frob}_p) \cdot t \in \mathcal{T}.$

Pairing

Use the Frey-Rück pairing

$$[\;\cdot\;,\;\cdot\;]_{\ell}\;:J(\mathbb{F}_q)[\ell]\times J(\mathbb{F}_q)/\ell J(\mathbb{F}_q)\longrightarrow \mathbb{F}_q^\times/\mathbb{F}_q^{\times\ell}$$

to detect linear dependency in $J(\mathbb{F}_q)[\ell]$, and obtain a generating set of T.

Makdisi's algorithms

• Fix $P_1, \dots, P_n \in C(\mathbb{Q}_q)$ (where $n \gg_g 1$), and a divisor $D_0 \gg_g 0$. Let $V = \mathcal{L}(2D_0)$.

Makdisi's algorithms

- Fix $P_1, \dots, P_n \in C(\mathbb{Q}_q)$ (where $n \gg_g 1$), and a divisor $D_0 \gg_g 0$. Let $V = \mathcal{L}(2D_0)$.
- A basis v_1, v_2, \cdots of V can be represented by the matrix

$$\begin{pmatrix} v_1(P_1) & v_2(P_1) & \cdots \\ \vdots & \vdots & \vdots \\ v_1(P_n) & v_2(P_n) & \cdots \end{pmatrix}.$$

Makdisi's algorithms

- Fix $P_1, \dots, P_n \in C(\mathbb{Q}_q)$ (where $n \gg_g 1$), and a divisor $D_0 \gg_g 0$. Let $V = \mathcal{L}(2D_0)$.
- A point $[D D_0] \in J$ is represented by the subspace

$$W = \mathcal{L}(2D_0 - D) \subset V$$
,

i.e. by the matrix

$$\begin{pmatrix} w_1(P_1) & w_2(P_1) & \cdots \\ \vdots & \vdots & & \\ w_1(P_n) & w_2(P_n) & \cdots \end{pmatrix},$$

where w_1, w_2, \cdots is a basis of W.

Membership test

Algorithm (Makdisi, 2004)

Let W be a matrix as above.

- $w \leftarrow 1^{\text{st}} \text{ column of } W$
- $oldsymbol{0}$ $n \leftarrow \dim W'$
- Return True if n = #W, False if n < #W.

Proof.

 $W' = \mathcal{L}(2D_0 - D')$, where $(w) = -2D_0 + D + D'$ and D is the largest divisor such that $W \subset \mathcal{L}(2D_0 - D)$.

Let $_rA_n$ have rank r.

Let
$${}_rA_n$$
 have rank r . Define $\widetilde{A} = \left(\frac{{}_rA_n}{{}_{n-r}S_n}\right)$,

where S = matsupplement(A) so that A is invertible

Let ${}_rA_n$ have rank r. Define $\widetilde{A} = \left(\frac{{}_rA_n}{{}_{n-r}S_n}\right)$, where S = matsupplement(A) so that \widetilde{A} is invertible, and split $\widetilde{A}^{-1} = ({}_nL_r \mid {}_nK_{n-r})$.

Let ${}_rA_n$ have rank r. Define $\widetilde{A} = \left(\frac{{}_rA_n}{{}_{n-r}S_n}\right)$,

where $S = \mathtt{matsupplement}(A)$ so that \widetilde{A} is invertible, and split $\widetilde{A}^{-1} = ({}_{n}L_{r} \mid {}_{n}K_{n-r})$. Then

$$I_{n} = \widetilde{A}\widetilde{A}^{-1} = \left(\frac{{}_{r}AL_{r}}{{}_{n-r}SL_{r}} \Big|_{n-r}SK_{n-r}\right)$$

so $K \stackrel{\text{def}}{=} \operatorname{Ker} A$.

Let ${}_rA_n$ have rank r. Define $\widetilde{A} = \left(\frac{{}_rA_n}{{}_{n-r}S_n}\right)$,

where $S = \mathtt{matsupplement}(A)$ so that \widetilde{A} is invertible, and split $\widetilde{A}^{-1} = ({}_{n}L_{r} \mid {}_{n}K_{n-r})$. Then

$$I_{n} = \widetilde{A}\widetilde{A}^{-1} = \left(\frac{{}_{r}AL_{r}}{{}_{n-r}SL_{r}} \left| {}_{n-r}SK_{n-r} \right| \right)$$

so $K \stackrel{\text{def}}{=} \operatorname{Ker} A$.

For
$$_{r}H_{n}$$
 small enough, $\widetilde{A+H}=\widetilde{A}+\left(\frac{H}{0}\right)$, so $\widetilde{A+H}^{-1}=\widetilde{A}^{-1}-\widetilde{A}^{-1}\left(\frac{H}{0}\right)\widetilde{A}^{-1}+O(H^{2})$

Let ${}_rA_n$ have rank r. Define $\widetilde{A} = \left(\frac{{}_rA_n}{{}_{n-r}S_n}\right)$,

where $S = \mathtt{matsupplement}(A)$ so that \widetilde{A} is invertible, and split $\widetilde{A}^{-1} = ({}_{n}L_{r} \mid {}_{n}K_{n-r})$. Then

$$I_{n} = \widetilde{A}\widetilde{A}^{-1} = \left(\frac{{}_{r}AL_{r}}{{}_{n-r}SL_{r}} \left| {}_{n-r}SK_{n-r} \right| \right)$$

so $K \stackrel{\text{def}}{=} \operatorname{Ker} A$.

For
$$_rH_n$$
 small enough, $\widetilde{A+H}=\widetilde{A}+\left(\frac{H}{0}\right)$, so
$$\widetilde{A+H}^{-1}=\widetilde{A}^{-1}-\widetilde{A}^{-1}\left(\frac{H}{0}\right)\widetilde{A}^{-1}+O(H^2)$$
 $\rightsquigarrow \operatorname{Ker}(A+H)=\operatorname{Ker}(A)-LH\operatorname{Ker}(A)+O(H^2).$

Application (1/3)

Let S be the minimal regular model of the surface / $\mathbb Q$

$$z^2 = xy(x^2 - 1)(y^2 - 1)(x^2 - 2xy - y^2).$$

Application (1/3)

Let S be the minimal regular model of the surface / $\mathbb Q$

$$z^2 = xy(x^2 - 1)(y^2 - 1)(x^2 - 2xy - y^2).$$

Van Geemen & Top observed that there exists an eigenform u of level 2^7 over SL(3) such that $\forall \ell \in \mathbb{N}$, a twist of

$$\widetilde{
ho}_{u,\ell}: \mathsf{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \longrightarrow \mathsf{GL}_3(\mathbb{Q}_\ell(\sqrt{-1}))$$

is contained in $H^2(S, \mathbb{Q}_{\ell})$.

For $p \notin \{2, \ell\}$, the characteristic polynomial of $\widetilde{\rho}_{u,\ell}$ is

$$x^3 - a_p x^2 + p \overline{a_p} x - p^3 \chi(p)$$

for some $\chi: (\mathbb{Z}/2^3\mathbb{Z})^{\times} \longrightarrow \mathbb{Q}(\sqrt{-1})^{\times}$, where $a_p \in \mathbb{Z}[\sqrt{-1}]$.

Application (2/3)

The fibres of

$$\pi : S \longrightarrow \mathbb{P}^1$$

$$(x, y, z) \longmapsto x/y$$

are elliptic curves.

Application (2/3)

The fibres of

$$\pi: S \longrightarrow \mathbb{P}^1$$
 $(x,y,z) \longmapsto x/y$

are elliptic curves.

 \leadsto for each $\ell,$ we can find a curve $\textit{C}_{\ell} \ / \ \mathbb{Q}$ whose Jacobian contains

$$\rho_{u,\ell}: \mathsf{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \longrightarrow \mathsf{GL}_3(\mathbb{F}_{\ell}(\sqrt{-1})).$$

Application (2/3)

 \leadsto for each ℓ , we can find a curve C_{ℓ} / \mathbb{Q} whose Jacobian contains

$$\rho_{u,\ell}: \mathsf{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \longrightarrow \mathsf{GL}_3(\mathbb{F}_{\ell}(\sqrt{-1})).$$

We find that the twist of

$$ho_{u,3}: \mathsf{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \longrightarrow \mathsf{GL}_3(\mathbb{F}_9)$$

by $\left(\frac{6}{\cdot}\right)$ cuts off the splitting field of

$$x^{28} - 12x^{27} + 60x^{26} - 132x^{25} - 30x^{24} + 624x^{23} + 420x^{22} - 7704x^{21} + 17118x^{20} - 9504x^{19} - 14424x^{18} \\ + 10824x^{17} + 36492x^{16} - 64992x^{15} + 19488x^{14} + 56064x^{13} - 89604x^{12} + 109296x^{11} - 88368x^{10} \\ - 11472x^9 + 58488x^8 - 130176x^7 + 34224x^6 - 58272x^5 - 39960x^4 + 32256x^3 + 24480x^2 - 352x - 1776$$

and has thus image $SU_3(\mathbb{F}_3)$.

Application (3/3)

р	$ \rho_{u,3}(Frob_p) $	$a_p(u) \mod 3\mathbb{Z}[i]$
$10^{1000} + 453$	$+\left(\begin{smallmatrix}1&0&0\\0&i-1&i-1\\0&i+1&-i-1\end{smallmatrix}\right)$	-1
$10^{1000} + 1357$	$-\left(egin{smallmatrix} 0 & 0 & i \ 0 & i & 0 \ 1 & 0 & 0 \end{smallmatrix} ight)$	-i
$10^{1000} + 2713$	$-\left(\begin{smallmatrix}0&0&-i\\0&-i&0\\1&0&0\end{smallmatrix}\right)$	i
$10^{1000} + 4351$	$-\left(\begin{smallmatrix}0&i+1&-i-1\\0&-i+1&-i+1\\1&0&0\end{smallmatrix}\right)$	i-1
$10^{1000} + 5733$	$+\left(\begin{smallmatrix}0&i+1&-i+1\\0&-i-1&-i+1\\1&0&0\end{smallmatrix}\right)$	-i-1

Any questions?

Thank you!