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Introduction

The theory of euclidean lattices and its algorithmic approach are
well-known, but there are few studies of the algorithmic side for
hermitian lattices.

H. Lenstra A. Lenstra L. Lovasz

The inventors of the LLL algorithm
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Hermitian lattices over a quadratic euclidean number field

Let K = Q(iv/d) with d € {1,2,3,7,11} and Zk be its maximal order.

Definition

A subgroup A of C™ is called a Zk-lattice if there exists (e1,...,€en) a
C-basis of C™ such that A = Zke1 ® - - - ® Zkep.

A Zy-lattice in C™ may be described as a Z-lattice in R?>™.

Definition

The minimal norm of A is A1(A) = min,en oy [|x]I.

How to compute \;(A) and a minimal vector of A ?
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LLL-reduction for hermitian lattices

Let £ = (e1,...,en) be a C-basis of C™. We denote by e and p; ; its
Gram-Schmidt orthogonalization.

Let 0 < mk < 6 < 1, where my is the euclidean minima of K:

my = sup inf |x —y|?
xeC Y&Lk

Definition
The basis £ is said d-LLL-reduced if:

|Ml,j <m f0r1<j<1<m
lef[I? 2( —|uiicaP)el? for2<i<m.
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Usefulness for the SVP

Computing a LLL-reduced basis of a Zk-lattice allow to approximate its
minimal norm by giving a quasi-minimal vector.

Let £ be a §-LLL-reduced basis of a Zk-lattice A in C™. Then

el < (2 )ml A (A).

(5—mK
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Computing LLL-reduced basis

Idea [Napias, Gan/Ling/Mow]
The original LLL algorithm (over Z) can be generalised for Zk-lattices.

Therefore, one may compute a d-LLL-reduced basis of a Zgk-lattice A
from one of its basis £ = (e, ..., en) using

o (rtees ()

operations in C.

Thomas Camus Hermitian lattices reduction



Probabilistic analysis: average case

m—1
The bound ||e;]]? < (#) A1(A) has been proven using

6me

|pii—1/? = mi: this is the worst case, which is unrealistic.

Theorem

Let £ = (e1,...,em) be a basis of a Zk-lattice A in C™, to which the
0-LLL algorithm is applied. Assuming that the coefficients |,u,-7,-_1|2 of the
GSOP of & are identically distributed random variables of density p, we
get that:

E(log(||e1|12)) < log(A(A)) — (m — 1) / ™ log(6 — x)p(x)ehc

The density p has been approximated using experimental data.
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Experimental results

Simple implementation in GP (=~ 400 lines). Tested on 500 bases in
various dimension (50 to 150).

D 1 2 3 7 11

mg 0.5 0.75 0.3333333 0.5714286 0.8181818

fDmK log(d — x)p(x)dx | - 0.0765100 | - 0.09183234 | - 0.0708416 | - 0.0796641 | - 0.0927955

— MO-md | 18904972 | 3.8010754 | 1.4186946 | 2.2061385 | 6.3860367
exp(—j;] Iog(&—x)p(x)dx)

g — { e Exclmd
0 otherwise.
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Distribution and interpolation obtained in Q(/) for

9 = 0.99 (logarithmic scale)

fit ———
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Jmuj"2

Similar results for other fields.
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Introduction

Let K be a number field of degree d and Zk be its ring of integers.

Definition

A fractional ideal of K is a Zk-submodule a of K for which one may find
¢ € Zk such that (a C Zk. In this case, one may find a Q-basis of K
which is a Z-basis of a.

How to represent ideals in an algorithmic setting?

In PARI/GP:
e HNF representation (idealhnf) — easy to use.
e Two-element representation (idealtwoelt) — memory-friendly.
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Matrix representation

Let a be an integral ideal of K and w = (w1, ...,wq) be an integral basis
of K. We consider £ = (ey,...,e4) a Z-basis of a.

Matrix representation of a

The ideal a may be represented a by the coordinates matrix of £ with
respect to w.

It gives a representation of a as an element of My(Z) N GL4(Q).

Uniqueness of such a representation is achieved by choosing a specific
basis of a (i.e HNF).
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Two-element representation: naive algorithm

Let a be an integral ideal of K.

Classical result

Let x be a non-zero element of a. There exists y € a such that

a = (x,y). Moreover, an element y chosen uniformly at random in a/(x)
satisfies (x, y) = a with probability:

a1 (k) 1)

pivp(x)>vp pla

Problems:
e Maximise the shortness of such a representation.

e Success rate depends on a.
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Strong reduction, variable success rate

Lets add a size-reduction condition to the naive algorithm:

Algorithm 1

® Choose x € a short (w.r.t the T, norm), using the LLL-algorithm.
@® Find y € a such that (x,y) = a, using naive algorithm.
® Size-reduce y.

It produces a representation (x, y) = a such that:
max{||x, [y[I} € O (a)/9).
— Strong reduction, but no changes on the success rate.

Implemented in GP(2C) (= 100 lines in C).
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Weak reduction, bounded failure rate

Lets add a size-reduction to the algorithm used in the function
idealtwoelt of GP:

Algorithm 2 [Fieker/Sthelé]

@ Find b C a such that p|b implies M(p) > y, for y a well-chosen
constant.

® Find a small two-element representation of b, using the previous
algorithm.

©® Recover a two-element representation of a from the one of b.

It produces a representation (x, y) = a such that:
max{||x, [y[l} € OW(a)*9).

— Weaker size-reduction, increase of the overall complexity, but the
failure rate is bounded (depending on a "success parameter" t):

P[failure] < 0.8°

Implemented in GP(2C) (= 500 lines in C).



Heuristic remarks (WiP)

. time algorithm 1
Ratio time algorithm 2

degree 25:

over all integral ideals of norm < 5-10% in a field of

85 05 10 75
rapport des temps de calcul

Despite the bounded failure rate, algorithm 2 tends to be way slower
than algorithm 1. It seems that the control of the success rate does not
outweigh the complexity explosion.
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Heuristic remarks (WiP)

. result algorithm 2
Ratlo |0g result algorithm 1
field of degree 25:

over all integral ideals of norm < 5-10%in a

25

20+

15}

%

10

| o

2 0 2 4 6 8
log du rapport des résultats

As foreseen, algorithm 1 usually produces shorter representations than
algorithm 2.
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Heuristic remarks (WiP)

. theoretical bound
Ratlo |0g result algorithm
field of degree 25:

over all integral ideals of norm < 5-10%in a

0 22 24 26 28 30
log du rapport borne/résultat

The theoretical bounds on the size of the elements seem to be quite large
for both algorithms.
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Thanks for listening!
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