parisizemax = "4G" default(parisizemax,"32M") bnfinit(x^8+10001).no to 16000000. # setrand(1);quadclassunit(2^128+1); allocatemem(32*10^6);setrand(1);\ quadclassunit(2^128+1); printpi(n)=localprec(n);printf("%.*g",n,Pi) printpi(30) 3.14159265358979323846264338328 printpi(40) 3.141592653589793238462643383279502884197 q(x)=localprec(precision(x));exp(2*I*Pi*x) q1(x)=exp(2*I*Pi*x) q2(x)=localprec(precision(x));exp(2*I*Pi*x) q1(precision(1.,1000)/3)^3 q2(precision(1.,1000)/3)^3 fold((x,y)->x*y, [1,2,3,4]) fold((x,y)->[x,y], [1,2,3,4]) fold((x,y)->(x+y)/(1-x*y),[1..5]) bestappr(tan(sum(i=1,5,atan(i)))) apply(n->if(n==0,1,n*self()(n-1)),[1..5]) parapply(n->if(n==0,1,n*self()(n-1)),[1..5]) logint(1000, 2) logint(1000, 2, &z) z myprintsep(s,v[..])= { if(#v>0, print1(v[1]); for(i=2,#v, print1(s,v[i]))); print(); } myprintsep(":",1,2,3,4) 1:2:3:4 intnum(x = 1,+oo, 1/x^2) valuation(0,x) poldegree(0) E=ellinit([0,1]); elltors(e) ellisogeny(E,[2,3],1)\\Weierstrassmodel for E/

ellisogeny(E,[-1,0]) K=bnfinit(a^2+1); E=ellinit([1,a],K); elltors(E) pr=idealprimedec(K,17)[1]; ellcard(ellinit(E,pr)) hyperellcharpoly((x^5+13*x+7)*Mod(1,17)) qfsolve([1,0,0;0,3,0;0,0,-21]) M = qfparam([1,0,0;0,3,0;0,0,-21],[3,2,1]~) v = y^2 * M*[1,x/y,(x/y)^2]~ v[1]^2+3*v[2]^2-21*v[3]^2 nfsplitting(x^5-2) poldegree(nfsplitting(x^5+x+3)) poldegree(nfsplitting(x^6+24*x-20)) expm1(1.E-10) powers(x,3) fromdigits([1,2,3]) qfbredsl2(Qfb(1,7,19)) ellissupersingular(ellinit([1,0],19)) ellisdivisible(ellinit([1,1]),[72,611],3) ellxn(ellinit([1,1]),3)