Some new GP features

A tutorial

B. Allombert

IMB
CNRS/Université Bordeaux 1

07/01/2013
Some new GP features
Simultaneous assignments

The syntax \[a, b, c \] \(=\) \(V\) set \(a\) to \(V[1]\), \(b\) to \(V[2]\) and \(c\) to \(V[3]\). Now it is also possible to use it inside \texttt{my()} and \texttt{local()}.

Some examples of use:

\[
\text{mygcdext}(a,b)=
\{
\text{if (b==0, [1,0],}
\text{my([q,r] = divrem(a,b));}
\text{my([u,v] = mygcdext(b,r));}
\text{[v, u - q*v]);}
\}
\text{mygcdext(17,5)}
\]
Multi-vector operations

\[f(x, y) \mid x \leftarrow V; \ y \leftarrow W \] gives the vector
\[f(V[1], W[1]), f(V[1], W[2]), \ldots, f(V[#V], W[#W]). \]

\[f(x, y) \mid x \leftarrow V, P(x); y \leftarrow W, Q(x, y) \] only keep the components such that the predicates \(P(x) \) and \(Q(x, y) \) is true.

Beware of the semicolon!
Examples:

? [a^2+b^2 | a<-[1..5]; b<-[1..5], gcd(a,b)==1]
%1 = [2,5,10,17,26,5,13,29,10,13,25,34,17, 25,41,26,29,34,41]

? [a^2+b^2 | a<-[1..10], isprime(a); \ b<-[1..10], a!=b && isprime(b)]
%2 = [13,29,53,13,34,58,29,34,74,53,58,74]

? [[a,b,c] | a<-[1..5]; b<-[1..a]; c<-[1..b]]
%3 = [[1,1,1], [2,1,1], [2,2,1], [2,2,2], [3,1,1], [3,2,1], [3,2,2], [3,3,1], [3,3,2], [3,3,3], [4,1,1], [4,2,1], [4,2,2], [4,3,1], [4,3,2], [4,3,3], [4,4,1], [4,4,2], [4,4,3], [4,4,4], [5,1,1], [5,2,1], [5,2,2], [5,3,1], [5,3,2], [5,3,3], [5,4,1], [5,4,2], [5,4,3], [5,4,4], [5,5,1], [5,5,2], [5,5,3], [5,5,4], [5,5,5]]
Some new GP features

strictargs

Normally, the arguments of user-defined GP function are all optionnals. Using `default(strictargs,1)`, the arguments are mandatory unless an explicit default value is provided.
Some new GP features

strictargs

default(strictargs, 0);
defun(a, b=1)=[a, b];
fun(2)
fun()
default(strictargs, 1);
defun(a, b=1)=[a, b];
fun(2)
fun()

*** missing mandatory argument 'a' in user function.
default

The option `--default` allows to set defaults in the command line

```
gp --default prompt="GP>"
parisize = 8000000, primelimit = 500000
GP>
```
Some new GP features

forpart

forpart allows to loop over partitions:

forpart (X=5, print (X))
Vecsmall([5])
Vecsmall([1,4])
Vecsmall([2,3])
Vecsmall([1,1,3])
Vecsmall([1,2,2])
Vecsmall([1,1,1,2])
Vecsmall([1,1,1,1,1])
Some new GP features

\textbf{forpart}

It is possible to restrict the lengths and the summand and to fill with 0.

\begin{verbatim}
\\ at most 3 non-zero parts, all <= 4
forpart (v=5,print(Vec(v)),4,3)
[1, 4]
[2, 3]
[1, 1, 3]
[1, 2, 2]
\\ between 2 and 4 parts less than 5, fill with zero
forpart (v=5,print(Vec(v)],[0,5],[2,4])
[0, 0, 1, 4]
[0, 0, 2, 3]
[0, 1, 1, 3]
[0, 1, 2, 2]
[1, 1, 1, 2]
\end{verbatim}
Some new GP features

qfauto

GP includes a port of the program ISOM by Bernt Souvignier for computation of automorphisms and isomorphisms of lattices.

- **qfauto**: compute the automorphism group of a lattice.
- **qfisom**: compute an isomorphism between two lattices.
- **qfautoexport**: export the group to GAP or MAGMA format.
- **qfisominit**: precompute invariants for qfisom.
Some new GP features

qfauto(matid(3))
%1 = [48, [[-1, 0, 0; 0, -1, 0; 0, 0, -1],
[0, 0, 1; 0, 1, 0; 1, 0, 0] , [0, 0, 1; -1, 0, 0; 0, 1, 0]]]
K=nfinit(x^3-3*x+1); L=round(K.t2)
%2 = [3, 0, 0; 0, 6, -3; 0, -3, 6]
qfauto(L)
%3 = [24, [[-1, 0, 0; 0, -1, 0; 0, 0, -1],
[1, 0, 0; 0, 1, 0; 0, 1, 0] , [1, 0, 0; 0, 1, 0; 0, 1, -1]]]
T=qflllgram(L); M = T~*L*T; qfisomom(L,M)
%4 = [1, 0, 0; 0, 0, 1; 0, 1, 0]
Q=qfisominit(L); qfisom(Q,M)
%5 = [1, 0, 0; 0, 0, 1; 0, 1, 0]
Some new GP features

genus2red

GP includes a port of the program genus2reduction by Cohen and Liu to compute the reduction at odd primes of a genus 2 curve C/\mathbb{Q}, defined by the hyperelliptic equation $y^2 + Q(x)y = P(x)$.
Some new GP features

genus2red

```plaintext
\genus2red(0, x^6 + 3*x^3 + 63, 3)
%1 = [59049, Mat([[3, 10]]), x^6 + 3*x^3 + 63, [3, [1, []]], ["[III{9}] page 184", [3, 3]]]
[N, FaN, T, V] = \genus2red(x^3-x^2-1, x^2-x);
\\ X_1(13), global reduction
[N, FaN]
%3 = [169, Mat([[13, 2]])]
\\ in particular, good reduction at 2 !
T
%4 = x^6 + 58*x^5 + 1401*x^4 + 18038*x^3
   + 130546*x^2 + 503516*x + 808561
V
%5 = [[13, [5, [Mod(0, 13), Mod(0, 13)]]],
["[I{0}-II-0] page 159", []]]
```
Some new GP features

factorization matrices

Arithmetic functions now accept factorization matrices, any of \(f(N) \), \(f(\text{factor}(N)) \) or \(f([N, \text{factor}(N)]) \).

\[
M = \begin{bmatrix}
\text{randomprime}(10^{100}), 2; \\
\text{randomprime}(10^{100}), 1
\end{bmatrix}; \\
N = \text{factorback}(M); \\
\text{core}(M) \\
\text{divisors}(M) \\
\text{core}([N, M]) \\
\text{moebius}([N, M])
\]
Some new GP features

sumdivmult

The `sumdivmult` function allows to sum arithmetic multiplicative functions. Let's see some examples:

- `sumdiv(100, d, moebius(d) * d)`
 - `%1 = 4`

- `sumdivmult(100, d, moebius(d) * d)`
 - `%2 = 4`

- `sumdivmult(100!, d, moebius(d) * d)`
 - `%3 = -2773996904277378399530788061184000000`

- `? numdiv(100!)`
 - `%4 = 39001250856960000`
Some new GP features

matqr

matqr compute the QR decomposition of a real square matrix.

```matlab
M = mathilbert(4);
[Q, R] = matqr(M);
norml2(Q*R - M)
[H, R] = matqr(M, 1);
norml2(mathhouseholder(H, M) - R)
```
It is now possible to compute orders of number fields that are maximal at a set of primes.

\[
P = \text{polcompositum}(x^4 + 437x + 19, x^5 - 571x + 27) \; [1];
B = \text{nfbasis}(P, [2, 7]);
D = \text{nfdisc}(P, [2, 8; 7, 5]);
K = \text{nfinit}([P, 10^6]);
nfcertify(K);
\]
Some new GP features

Miscellaneous

sqrtnint(65, 3)
%1 = 4
lambertw(3)
%2 = 1.0499088949640399599886970705528979046
%*exp(%)
%3 = 3
readstr("CHANGES")[1]
%4 = "# Id"
seralgdep(sum(i=0, 5, y^2^i)*Mod(1, 2)+O(y^64), 2, 2)
%5 = x^2+x+y
gcdext == bezout