
Modular HNF

Löıc Grenié

26 Janvier 2012

1 HNF

Definition 1 Let H be an matrix with integer coefficients. The matrix H is said to be in
HNF form if

H =

z1 c1 a12 . . . a1k
z2 c2 . . . a2k
...

. . .
...

zk ck

where each ci is a column with positive bottom coefficient pi and on the right of each pi each
coefficient x of the matrix satisfy 0 6 x < pi and all zi are zero matrices (possibly of 0 width).

Theorem 2 Let M be an integer matrix. There exists an integer matrix H in HNF form
and an integer matrix U with determinant ±1 such that

H = MU .

Moreover H is uniquely determined by M while U is determined only up to the kernel of M .

2 The state of pari

We need the pari (H,U) of the theorem above for various reasons. We will speak of one of
them tomorrow.

There are at least two implementations of the HNF algorithm right now. The first one,
which we will call näıve, can be used under gp using HU=mathnf(M,1); The result is a two
component vector HU, where HU[1] is H and HU[2] is U . The second algorithm, which we will
call LLL, can be used with HU=mathnf(M,4); with the same output. The näıve algorithm is
rather fast for small input but the matrix U is much worse than the LLL one; moreover the
näıve algorithm does not always finish even with reasonably small input. The LLL algorithm
is slower but always (barring bugs) finish and gives a nearly optimal U .

For the applications, it is usually good to have a matrix U with as small an L2-norm as
possible. This means that LLL algorithm is usually the best one, but it is relatively slow. We
will discuss a different algorithm that outputs a good U but faster than the LLL algorithm.

1

3 The algorithm

Let M be an m× n integer matrix. For simplicity, we suppose rkM = m. That way k = m
in the definition above and each ci is the 1× 1 matrix (pi) and we identify them.

The algorithm to compute (H,U) has several steps, separated in two phases.

3.1 Computing HNF

The first phase is computing the HNF H and a matrix U such that

H = MU .

3.1.1 Wrong result

We first compute an integer matrix U1 such that H1 = MU1 is a matrix H1 = (Z | dIm) with
Z a null m× (n−m) matrix and d > 0. The matrix H1 is better than HNF however U1 does
(definitely) not have determinant ±1.

Precisely, we compute modulo a certain number of primes p matrices U1,p such that

MU1,p ≡ (Z | dpIm) (mod p)

where dp 6= 0 is the modulo p determinant of an m × m submatrix of M . We compute dp
and the submatrix using Gauss algorithm (modulo p) and we make sure that we extract the
same submatrix modulo all the primes p. Precisely, if one of the pivot we have found for a
previous prime is zero modulo some prime p we just discard prime p and if we find a new
pivot modulo p we discard the U1,` and d` we had computed so far.

We compute the matrix U1 and d by chinese remainder theorem and stop whenever the
matrix H1 = MU1 has the desired shape. At that point, the number d is the determinant of
the submatrix we extracted and the matrix U1 has determinant dn−1.

3.1.2 Look for primes

We factor the determinant d using the polynomial time factorization algorithm.

3.1.3 Correct U

We set U2 = U1 and H2 = H1. We will denote A[k] the k-th column of any matrix A.

For each prime p dividing d, we compute the kernel of the matrix U2 modulo p. If kernel
is trivial, skip to the next prime. Otherwise, pari provides us with a basis of the kernel made
of vectors of the form

a1
...

ak−1

1
0
0
...
0

2

This means that U2[k] +
∑k−1

i=1 aiU2[i] is divisible by p. We thus substitute

1

p

(
U2[k] +

k−1∑
i=1

aiU2[i]

)

for U2[k]. This has the effect of dividing the determinant of U2 by p. At the same time we
update H2[k] by the similar formula. The k-th column of H2 will have non-zero coefficients
only in the first k components because we use only lower numbered columns to modify H2.
This means that H2 remains in nearly-HNF form (the coefficients at the right of a pivot can
be larger than the pivot). We go on computing the kernel modulo p until it becomes trivial
(which will be happend when the determinant of U2 is not divisible by p).

3.1.4 Correct H

We set H = H2 and cleanup H so that the elements on the right of the pivots become smaller
than the pivot.

3.2 Optimize U

The four steps above do not give a very good result in terms of the L2-norm of U . If the
matrix M has a trivial kernel there is only one choice for U so that nothing can be done.
However if M has a non-trivial kernel, we can modify each column of U by any vector of the
kernel. We want to find the best choice to have the smallest possible vectors in U .

Let r be the dimension of the kernel of M and let K be the Z-module generated by the
r left-most columns of U . The r left-most columns of H are zero columns (and the n − r
right-most ones are not).

3.2.1 LLL kernel

We begin by computing an LLL-reduced basis (v1, ..., vr) of K and we substitute the r first
columns of U by this LLL-reduced basis.

3.2.2 Babai on the other columns

For k such that r < k 6 n, we use Babai algorithm to compute the element vk of K nearest
to U [k]. We then substract vk to U [k].

3.2.3 Gram-Schmidt

We can further optimize the vectors by using Gram-Schmidt technique. If 1 6 k 6 r and
1 6 i 6 n (with k 6= i) we can substract[

(U [k] | U [i])

(U [k] | U [k])

]
U [k]

to U [i]. The coefficient of U [k] is not garanteed to be 0 however it is most of the time and is
never very large. This optimization can be done (with i 6 r) before using Babai algorithm
as well as after (with i > r).

version 1.2, 2012/01/25 17:03:31

3

	HNF
	The state of pari
	The algorithm
	Computing HNF
	Wrong result
	Look for primes
	Correct U
	Correct H

	Optimize U
	LLL kernel
	Babai on the other columns
	Gram-Schmidt

