Checking the Brumer-Stark conjecture using PARI/GP

Xavier-François Roblot

IGD, Université Claude Bernard – Lyon 1

September 16th, 2004
1. Statement of the conjecture
 - Definitions
 - The Brumer element
 - The Brumer-Stark Conjecture

2. Current status of the conjecture
 - Some reductions and special cases
 - Further results

3. Checking the conjecture on an example
 - The example
 - The strategy
 - The verification
- k is a number field of degree n
- K is a finite abelian extension over k
- $G := \text{Gal}(K/k)$
- w_K is the number of roots of unity in K
- Cl_K is the class group of K
- S is the set of the infinite primes of k and of the finite prime ideals in k that ramify in K
- For each $\sigma \in G$, the partial zeta-function is

$$\zeta_S(s, \sigma) := \sum_{(a, S) = 1, \sigma_a = \sigma} \frac{1}{N_a^s}$$
- k is a number field of degree n
- K is a finite abelian extension over k
- $G := \text{Gal}(K/k)$
- w_K is the number of roots of unity in K
- Cl_K is the class group of K
- S is the set of the infinite primes of k and of the finite prime ideals in k that ramify in K
- For each $\sigma \in G$, the partial zeta-function is

$$\zeta_S(s, \sigma) := \sum_{(a, S)=1, \sigma_a = \sigma} \frac{1}{N(a)^s}$$
- \(k \) is a number field of degree \(n \)
- \(K \) is a finite abelian extension over \(k \)
- \(G := \text{Gal}(K/k) \)
- \(w_K \) is the number of roots of unity in \(K \)
- \(\text{Cl}_K \) is the class group of \(K \)
- \(S \) is the set of the infinite primes of \(k \) and of the finite prime ideals in \(k \) that ramify in \(K \)
- For each \(\sigma \in G \), the partial zeta-function is

\[
\zeta_S(s, \sigma) := \sum_{\substack{(\alpha, S) = 1 \\ \sigma \alpha^s = \sigma}} \frac{1}{N\alpha^s}
\]
- k is a number field of degree n
- K is a finite abelian extension over k
- $G := \text{Gal}(K/k)$
- ν_K is the number of roots of unity in K
- Cl_K is the class group of K
- S is the set of the infinite primes of k and of the finite prime ideals in k that ramify in K
- For each $\sigma \in G$, the partial zeta-function is

$$\zeta_S(s, \sigma) := \sum_{\substack{(a, S) = 1 \\ \sigma_a = \sigma}} \frac{1}{N a^s}$$
• k is a number field of degree n
• K is a finite abelian extension over k
• $G := \text{Gal}(K/k)$
• ω_K is the number of roots of unity in K
• Cl_K is the class group of K
• S is the set of the infinite primes of k and of the finite prime ideals in k that ramify in K
• For each $\sigma \in G$, the partial zeta-function is

$$\zeta_S(s, \sigma) := \sum_{\substack{(\alpha, S) = 1 \\ \sigma\alpha = \sigma}} \frac{1}{N\alpha^s}$$
Theorem (Deligne and Ribet, Barsky, and Pi. Cassou-Noguès)

For every $\sigma \in G$

$$w_K \zeta_S(0, \sigma) \in \mathbb{Z}$$

The Brumer element is the element of the group ring $\mathbb{Z}[G]$ defined by

$$\gamma := w_K \sum_{\sigma \in G} \zeta_S(0, \sigma)\sigma^{-1}$$
Theorem (Deligne and Ribet, Barsky, and Pi. Cassou-Noguès)

For every $\sigma \in G$

$$w_K \zeta_S(0, \sigma) \in \mathbb{Z}$$

The Brumer element is the element of the group ring $\mathbb{Z}[G]$ defined by

$$\gamma := w_K \sum_{\sigma \in G} \zeta_S(0, \sigma) \sigma^{-1}$$
The Brumer-Stark Conjecture

Conjecture (The Brumer part)
The element γ kills $\mathcal{C}l_K$.
That is, for every fractional ideal \mathfrak{A} of K, the ideal \mathfrak{A}^γ is principal.

Let K° be the set of anti-units of K

$$K^\circ := \{x \in K : |x|_{\mathfrak{P}_\infty} = 1, \ \forall \mathfrak{P}_\infty | \infty \}$$

Conjecture (The Stark part)
For every fractional ideal \mathfrak{A} of K, there exists a generator α_{2l} of \mathfrak{A}^γ that is an anti-unit. Furthermore, define $\lambda_{2l} \in \bar{K}$ by $\lambda_{2l}^{\mathcal{W}_K} = \alpha_{2l}$, then $K(\lambda_{2l})/k$ is an abelian extension.
The Brumer-Stark Conjecture

Conjecture (The Brumer part)

The element γ kills Cl_K.
That is, for every fractional ideal \mathcal{A} of K, the ideal \mathcal{A}^γ is principal.

Let K° be the set of anti-units of K

$$K^\circ := \{x \in K : |x|_{\mathfrak{p}_\infty} = 1, \forall \mathfrak{p}_\infty | \infty\}$$

Conjecture (The Stark part)

For every fractional ideal \mathcal{A} of K, there exists a generator $\alpha_{\mathcal{A}}$ of \mathcal{A}^γ that is an anti-unit. Furthermore, define $\lambda_{\mathcal{A}} \in \overline{K}$ by $\lambda_{\mathcal{A}}^W_K = \alpha_{\mathcal{A}}$,
then $K(\lambda_{\mathcal{A}})/k$ is an abelian extension.
The Brumer-Stark Conjecture

Conjecture (The Brumer part)

The element \(\gamma \) kills \(\text{Cl}_K \).
That is, for every fractional ideal \(\mathcal{A} \) of \(K \), the ideal \(\mathcal{A} \gamma \) is principal.

Let \(K^\circ \) be the set of anti-units of \(K \)

\[
K^\circ := \{ x \in K : |x|_{\mathfrak{p}_\infty} = 1, \forall \mathfrak{p}_\infty \mid \infty \}
\]

Conjecture (The Stark part)

For every fractional ideal \(\mathcal{A} \) of \(K \), there exists a generator \(\alpha_{\mathcal{A}} \) of \(\mathcal{A} \gamma \) that is an anti-unit. Furthermore, define \(\lambda_{\mathcal{A}} \in \overline{K} \) by \(\lambda_{\mathcal{A}}^{\mathcal{W}_K} = \alpha_{\mathcal{A}} \), then \(K(\lambda_{\mathcal{A}})/k \) is an abelian extension.
The Brumer-Stark Conjecture

Conjecture (The Brumer part)
The element γ kills Cl_K.
That is, for every fractional ideal \mathfrak{A} of K, the ideal $\mathfrak{A}\gamma$ is principal.

Let K° be the set of anti-units of K

$$K^\circ := \{ x \in K : |x|_{P_\infty} = 1, \forall P_\infty | \infty \}$$

Conjecture (The Stark part)
For every fractional ideal \mathfrak{A} of K, there exists a generator $\alpha_{\mathfrak{A}}$ of $\mathfrak{A}\gamma$ that is an anti-unit. Furthermore, define $\lambda_{\mathfrak{A}} \in \overline{K}$ by $\lambda_{\mathfrak{A}}^{W_K} = \alpha_{\mathfrak{A}}$, then $K(\lambda_{\mathfrak{A}})/k$ is an abelian extension.
The conjecture is true if $k = \mathbb{Q}$ (Stickelberger’s Theorem).
The conjecture is true if k is not totally real or K is not totally complex.
The conjecture is satisfied for \mathfrak{A} if it is a principal ideal.
The conjecture is true if K is principal.
The set of ideals satisfying the conjecture forms a group, stable under the action of G.
The conjecture is true if $k = \mathbb{Q}$ (Stickelberger’s Theorem).

The conjecture is true if k is not totally real or K is not totally complex.

The conjecture is satisfied for \mathfrak{A} if it is a principal ideal.

The conjecture is true if K is principal.

The set of ideals satisfying the conjecture forms a group, stable under the action of G.
The conjecture is true if $k = \mathbb{Q}$ (Stickelberger’s Theorem).
The conjecture is true if k is not totally real or K is not totally complex.
The conjecture is satisfied for \mathfrak{A} if it is a principal ideal.
The conjecture is true if K is principal.
The set of ideals satisfying the conjecture forms a group, stable under the action of G.
The conjecture is true if $k = \mathbb{Q}$ (Stickelberger’s Theorem)

The conjecture is true if k is not totally real or K is not totally complex

The conjecture is satisfied for \mathfrak{A} if it is a principal ideal

The conjecture is true if K is principal

The set of ideals satisfying the conjecture forms a group, stable under the action of G
The conjecture is true if \(k = \mathbb{Q} \) (Stickelberger’s Theorem)

The conjecture is true if \(k \) is not totally real or \(K \) is not totally complex

The conjecture is satisfied for \(\mathfrak{A} \) if it is a principal ideal

The conjecture is true if \(K \) is principal

The set of ideals satisfying the conjecture forms a group, stable under the action of \(G \)
The conjecture is true in the following cases

- if K/k is quadratic [Tate]
- if $G \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ in general, and when G is of exponent 2 and has order > 4, assuming K/k is a tame extension [Sands]
- if $|G| = 4$ and K/k is a sub-extension of a non-abelian Galois extension K/k_0 of degree 8 [Tate]
- if K/k is a sub-extension of an abelian Galois extension K/k_0 for which the conjecture is true [Sands, Hayes]
- if $G \cong \mathbb{Z}/4\mathbb{Z}$ and k is real quadratic [Greither]
- if $[K : k] = 6$, and $[k : \mathbb{Q}] = 2$, or 3 and the discriminant of k is coprime with 6 (except for some very special cases) [Greither-Roblot-Tangedal]
The conjecture is true in the following cases:

- if K/k is quadratic [Tate]
- if $G \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ in general, and when G is of exponent 2 and has order > 4, assuming K/k is a tame extension [Sands]
- if $|G| = 4$ and K/k is a sub-extension of a non-abelian Galois extension K/k_0 of degree 8 [Tate]
- if K/k is a sub-extension of an abelian Galois extension K/k_0 for which the conjecture is true [Sands, Hayes]
- if $G \simeq \mathbb{Z}/4\mathbb{Z}$ and k is real quadratic [Greither]
- if $[K : k] = 6$, and $[k : \mathbb{Q}] = 2$, or 3 and the discriminant of k is coprime with 6 (except for some very special cases) [Greither-Roblot-Tangedal]
The conjecture is true in the following cases

- if K/k is quadratic [Tate]
- if $G \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ in general, and when G is of exponent 2 and has order > 4, assuming K/k is a tame extension [Sands]
- if $|G| = 4$ and K/k is a sub-extension of a non-abelian Galois extension K/k_0 of degree 8 [Tate]
- if K/k is a sub-extension of an abelian Galois extension K/k_0 for which the conjecture is true [Sands, Hayes]
- if $G \cong \mathbb{Z}/4\mathbb{Z}$ and k is real quadratic [Greither]
- if $[K : k] = 6$, and $[k : \mathbb{Q}] = 2$, or 3 and the discriminant of k is coprime with 6 (except for some very special cases) [Greither-Roblot-Tangedal]
The conjecture is true in the following cases

- if K/k is quadratic [Tate]
- if $G \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ in general, and when G is of exponent 2 and has order > 4, assuming K/k is a tame extension [Sands]
- if $|G| = 4$ and K/k is a sub-extension of a non-abelian Galois extension K/k_0 of degree 8 [Tate]
- if K/k is a sub-extension of an abelian Galois extension K/k_0 for which the conjecture is true [Sands, Hayes]
- if $G \cong \mathbb{Z}/4\mathbb{Z}$ and k is real quadratic [Greither]
- if $[K : k] = 6$, and $[k : \mathbb{Q}] = 2$, or 3 and the discriminant of k is coprime with 6 (except for some very special cases) [Greither-Roblot-Tangedal]
The conjecture is true in the following cases

- if K/k is quadratic [Tate]
- if $G \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ in general, and when G is of exponent 2 and has order > 4, assuming K/k is a tame extension [Sands]
- if $|G| = 4$ and K/k is a sub-extension of a non-abelian Galois extension K/k_0 of degree 8 [Tate]
- if K/k is a sub-extension of an abelian Galois extension K/k_0 for which the conjecture is true [Sands, Hayes]
- if $G \simeq \mathbb{Z}/4\mathbb{Z}$ and k is real quadratic [Greither]
- if $[K : k] = 6$, and $[k : \mathbb{Q}] = 2$, or 3 and the discriminant of k is coprime with 6 (except for some very special cases) [Greither-Roblot-Tangedal]
The conjecture is true in the following cases

- if K/k is quadratic [Tate]
- if $G \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ in general, and when G is of exponent 2 and has order > 4, assuming K/k is a tame extension [Sands]
- if $|G| = 4$ and K/k is a sub-extension of a non-abelian Galois extension K/k_0 of degree 8 [Tate]
- if K/k is a sub-extension of an abelian Galois extension K/k_0 for which the conjecture is true [Sands, Hayes]
- if $G \cong \mathbb{Z}/4\mathbb{Z}$ and k is real quadratic [Greither]
- if $[K : k] = 6$, and $[k : \mathbb{Q}] = 2$, or 3 and the discriminant of k is coprime with 6 (except for some very special cases) [Greither-Roblot-Tangedal]
Let \(k = \mathbb{Q}(\sqrt{69}) \), and \(K = K^+(j) \) where \(K^+ \) is the ray class field of \(k \) of conductor 3 and \(j \) is a primitive third root of unity. This example is one of the exceptions not covered by [GRT].
• Compute the Brumer element using L-functions
• Find a minimal set $\{A_1, \ldots, A_s\}$ of $\mathbb{Z}[G]$-generators of Cl_K
• For each A
 • Compute A^γ and check if it is principal
 • Call β a generator of A^γ, find a unit u such that $\alpha := u\beta$ is an anti-unit
 • Check if $K(\alpha^{1/w})$ is an abelian extension of k
• Compute the Brumer element using L-functions
• Find a minimal set $\{A_1, \ldots, A_s\}$ of $\mathbb{Z}[G]$-generators of Cl_K
• For each A
 • Compute A^γ and check if it is principal
 • Call β a generator of A^γ, find a unit u such that $\alpha := u\beta$ is an anti-unit
 • Check if $K(\alpha^{1/w})$ is an abelian extension of K
Compute the Brumer element using L-functions
Find a minimal set \{A_1, \ldots, A_s\} of $\mathbb{Z}[G]$-generators of Cl_K
For each A
- Compute A^γ and check if it is principal
- Call β a generator of A^γ, find a unit u such that $\alpha := u\beta$ is an anti-unit
- Check if $K(\alpha^{1/w_K})$ is an abelian extension of k
Compute the Brumer element using L-functions

Find a minimal set $\{A_1, \ldots, A_s\}$ of $\mathbb{Z}[G]$-generators of Cl_K

For each A

- Compute A^γ and check if it is principal
- Call β a generator of A^γ, find a unit u such that $\alpha := u\beta$ is an anti-unit
- Check if $K(\alpha^{1/w_K})$ is an abelian extension of k
Compute the Brumer element using L-functions

Find a minimal set $\{A_1, \ldots, A_s\}$ of $\mathbb{Z}[G]$-generators of Cl_K

For each A

- Compute A^γ and check if it is principal
- Call β a generator of A^γ, find a unit u such that $\alpha := u\beta$ is an anti-unit
- Check if $K(\alpha^{1/w_K})$ is an abelian extension of k
- Compute the Brumer element using L-functions
- Find a minimal set $\{A_1, \ldots, A_s\}$ of $\mathbb{Z}[G]$-generators of Cl_K
- For each A
 - Compute A^γ and check if it is principal
 - Call β a generator of A^γ, find a unit u such that $\alpha := u\beta$ is an anti-unit
 - Check if $K(\alpha^{1/w_K})$ is an abelian extension of k
Let’s start GP!
\[
\gamma = w_K \sum_{\chi \in \hat{G}} \overline{L_S(0, \chi)} e_\chi \quad \text{where} \quad e_\chi := \frac{1}{|G|} \sum_{\sigma \in G} \bar{\chi}(\sigma) \sigma^{-1}
\]
Let \(g \) be a generator of \(Cl_k(3\infty_1\infty_2) \).
Let \(\sigma := \sigma_g \). Thus \(G = \langle \sigma \rangle \).
Let \(\zeta_6 := \exp(2i\pi/6) \).

The character \(\chi_a \) represented by \([a]\) is the one defined by

\[
\chi_a(\sigma) := \zeta_6^a.
\]

An element \(a_0 + a_1\sigma + \cdots + a_5\sigma^5 \in \mathbb{Z}[G] \) is represented by the vector \([a_0, a_1, \ldots, a_5]\).
Let g be a generator of $\text{Cl}_k(3\infty_1\infty_2)$.
Let $\sigma := \sigma_g$. Thus $G = \langle \sigma \rangle$.
Let $\zeta_6 := \exp(2i\pi/6)$.

The character χ_a represented by $[a]$ is the one defined by

$$\chi_a(\sigma) := \zeta_6^a.$$

An element $a_0 + a_1\sigma + \cdots + a_5\sigma^5 \in \mathbb{Z}[G]$ is represented by the vector $[a_0, a_1, \ldots, a_5]$.

Xavier-François Roblot

Checking the Brumer-Stark conjecture using PARI/GP
Let g be a generator of $\text{Cl}_k(3\infty_1\infty_2)$.
Let $\sigma := \sigma_g$. Thus $G = \langle \sigma \rangle$.
Let $\zeta_6 := \exp(2i\pi/6)$.

The character χ_a represented by $[a]$ is the one defined by

$$\chi_a(\sigma) := \zeta_6^a.$$

An element $a_0 + a_1\sigma + \cdots + a_5\sigma^5 \in \mathbb{Z}[G]$ is represented by the vector $[a_0, a_1, \ldots, a_5]$.
Let \mathfrak{p} be a prime ideal of k, \mathfrak{P} a prime ideal of K such that \mathfrak{P} is above \mathfrak{p} is above \mathfrak{p}.

Let $\theta \in K$ such that $K = \mathbb{Q}(\theta)$ and assume that $\mathfrak{p} \nmid (\mathbb{Z}_K : \mathbb{Z}[\theta])$.

Then the Frobenius of \mathfrak{p} is the unique element $\sigma \in G$ such that $\sigma(\theta) \equiv \theta^{N_{\mathfrak{P}}^\mathfrak{p}} \pmod{\mathfrak{P}}$.
Let \mathfrak{p} be a prime ideal of k, \mathfrak{P} a prime ideal of K such that \mathfrak{P} is above \mathfrak{p} is above p.

Let $\theta \in K$ such that $K = \mathbb{Q}(\theta)$ and assume that $p \nmid (\mathbb{Z}_K : \mathbb{Z}[\theta])$.

Then the Frobenius of p is the unique element $\sigma \in G$ such that $\sigma(\theta) \equiv \theta^{N_p} \pmod{\mathfrak{P}}$.
Let p be a prime ideal of k, \mathfrak{P} a prime ideal of K such that \mathfrak{P} is above p is above p.

Let $\theta \in K$ such that $K = \mathbb{Q}(\theta)$ and assume that $p \nmid (\mathbb{Z}_K : \mathbb{Z}[\theta])$.

Then the Frobenius of p is the unique element $\sigma \in G$ such that $\sigma(\theta) \equiv \theta^N_p \pmod{\mathfrak{P}}$.
Recall that $w_K = 6$ so the torsion group of K is generated by ζ_6. Let $N \in \mathbb{Z}$ be such that

$$\sigma(\zeta_6) = \zeta_6^N.$$

Then an element $\alpha \in K$ is such that $K(\alpha^{1/6})/k$ is an abelian extension iff

$$\alpha^{N-\sigma} = \frac{\alpha^N}{\sigma(\alpha)}$$

is a 6-th power in K.
Recall that $w_K = 6$ so the torsion group of K is generated by ζ_6. Let $N \in \mathbb{Z}$ be such that

$$\sigma(\zeta_6) = \zeta_6^N.$$

Then an element $\alpha \in K$ is such that $K(\alpha^{1/6})/k$ is an abelian extension iff

$$\alpha^{N - \sigma} = \frac{\alpha^N}{\sigma(\alpha)}$$

is a 6-th power in K.