

Advanced algebraic number theory

B. Allombert and A. Page

IMB/INRIA/Université de Bordeaux

4/12/2025

COGENT has received funding from the European Union's Horizon Europe Programme under the Marie Skłodowska-Curie actions HORIZON-MSCA-2023-DN-01 call (Grant agreement ID: 101169527), and from UK Research and Innovation.

Plan

Galois theory

Ramification theory

Class field theory

Galois theory

Reminder: Galois extensions

Let K/F be a finite¹ extension. We say that K/F is **Galois** (or **normal**) if $F = K^{\text{Aut}_F(K)}$ (we always have \subset).

When K/F is Galois, we define its **Galois group** to be

$$\text{Gal}(K/F) = \text{Aut}_F(K).$$

In this case, there is an inclusion-reversing bijection between

- ▶ intermediate fields $F \subset L \subset K$, and
- ▶ subgroups H of G ,

given by

- ▶ $L \mapsto \text{Aut}_L(K)$, and
- ▶ $H \mapsto K^H$.

¹separable

Reminder: Galois closure

Let $f \in F[X]$ be irreducible, so that it defines a finite extension $K = F[X]/(f)$.

There is a unique smallest extension \tilde{K}/K such that \tilde{K}/F is Galois: the **Galois closure** of F . It is also the **splitting field** of f : the smallest field over which f splits into linear factors.

The "Galois group" of $f \in F[X]$ (or K) is $\text{Gal}(\tilde{K}/F)$. It is usually seen as a permutation group acting on the roots of f .

polgalois

We can compute the Galois group of the Galois closure of a number field, as a transitive permutation group. Restricted to degree ≤ 7 , or degree ≤ 11 with the `galdata` optional package.

```
P1 = x^4-5;  
polgalois(P1)  
%2 = [8, -1, 1, "D(4)"]
```

Interpretation: the Galois group has order 8, is not contained in the alternating group ("signature -1 "), and is isomorphic to D_4 .

polgalois

```
P2 = x^4-x^3-7*x^2+2*x+9;
```

```
polgalois(P2)
```

```
%4 = [12, 1, 1, "A4"]
```

The Galois group has order 12 and signature 1, and is isomorphic to A_4 .

```
P3 = x^4-x^3-3*x^2+x-1;
```

```
polgalois(P3)
```

```
%6 = [24, -1, 1, "S4"]
```

The Galois group has order 24 and signature -1 , and is isomorphic to S_4 .

nfsplitting

We can compute a polynomial defining the splitting field of the input polynomial, that is, the smallest field over which the input polynomial is a product of linear factors.

```
Q1 = nfsplitting(P1)
%7 = x^8 + 70*x^4 + 15625
Q2 = nfsplitting(P2)
%8 = x^12 - 59*x^10 + 1269*x^8 - 12231*x^6
      + 51997*x^4 - 79707*x^2 + 26569
```

This is the same as a defining polynomial for the Galois closure of the number field generated by one root of the input polynomial.

nfsplitting

The polynomial output by nfsplitting can be large.

```
Q3 = nfsplitting(P3)
```

```
%9 = x^24+12*x^23-66*x^22-1232*x^21+735*x^20
      +54012*x^19+51764*x^18-1348092*x^17-2201841*x^16
      +21708244*x^15+41344014*x^14-241723272*x^13
      -454688929*x^12+1972336584*x^11+3130578366*x^10
      -12348327032*x^9-13356023346*x^8+59757161004*x^7
      +32173517686*x^6-204540935496*x^5-11176476888*x^4
      +433089193668*x^3-155456858376*x^2-422808875280*x
      +320938557273
```

polredbest

We can use `polredbest` to compute a simpler polynomial defining the same number field.

```
Q3 = polredbest(Q3)
```

```
%10 = x^24-6*x^23+18*x^22-38*x^21+60*x^20-54*x^19
      -13*x^18+126*x^17-228*x^16+220*x^15+24*x^14
      -396*x^13+521*x^12-216*x^11-48*x^10-32*x^9-66*x^8
      +666*x^7-1013*x^6+348*x^5+510*x^4-654*x^3+234*x^2
      +36*x+9
```

galoisinit

We can use `galoisinit` to compute the automorphism group of a number field that is Galois over \mathbb{Q} , under certain condition on the group (“weakly super-solvable”).

```
gal = galoisinit(Q3);
```

The `gen` component is a list of generators of the automorphism group, expressed as permutations of the roots.

```
gal.gen
```

```
%12 = [Vecsmall([19,11,17,14,13,12,10,9,8,7,2,6,5,  
4,23,22,3,21,1,24,18,16,15,20]), Vecsmall([14,10,5,  
19,3,24,11,16,22,2,7,20,17,1,21,8,13,23,4,12,15,9,  
18,6]), Vecsmall([5,15,6,13,20,19,23,7,11,18,21,4,  
12,17,16,2,24,22,3,1,9,10,8,14]), Vecsmall([2,1,9,  
10,16,21,14,17,3,4,19,18,22,7,20,5,8,12,11,15,6,  
13,24,23])]
```

galoisinit

The `orders` components contains orders of composition factors of the group, and their product is the order of the group.

```
ord = gal.orders
%13 = Vecsmall([2, 2, 3, 2])
prod(i=1,#ord,ord[i])
%14 = 24
```

With the function `galoisidentify`, we can obtain the GAP4 index of the group.

```
galoisidentify(gal)
%15 = [24, 12]
```

Effective Galois theory

`galoissubgroups` computes the list of all subgroups of a group.

```
L = galoissubgroups(gal);  
#L  
%17 = 30
```

Then we can compute fixed fields of various subgroups of the Galois group with `galoisfixedfield`.

```
R1 = galoisfixedfield(gal,L[25])[1];  
polgalois(R1)  
%19 = [24, 1, 1, "S_4(6d) = [2^2]S(3)"]  
R2 = galoisfixedfield(gal,L[28])[1];  
polgalois(R2)  
%21 = [24, -1, 1, "S_4(6c) = 1/2[2^3]S(3)"]
```

Ramification theory

Reminder: ramification groups

Let K/F be a Galois extension of number fields with group G .

Let \mathfrak{P} be a prime ideal of K . The **decomposition group** is

$$G_{\mathfrak{P}} = G_{\mathfrak{P},-1} = \{\sigma \in G \mid \mathfrak{P}^\sigma = \mathfrak{P}\}.$$

It acts on the residue rings $\mathbb{Z}_K/\mathfrak{P}^i$.

For $i \geq 0$, the **i -th ramification group** is

$$G_{\mathfrak{P},i} = \{\sigma \in G_{\mathfrak{P}} \mid \sigma(\lambda) = \lambda \bmod \mathfrak{P}^{i+1} \text{ for all } \lambda \in \mathbb{Z}_K\}.$$

$G_{\mathfrak{P},0}$ is the **inertia group** and $G_{\mathfrak{P},1}$ the **wild inertia group**.

Reminder: Frobenius elements

Let K/F be a Galois extension of number fields with group G .

Let \mathfrak{p} be a prime ideal of F and \mathfrak{P} a prime ideal of K dividing $\mathfrak{p}\mathbb{Z}_K$. Assume that \mathfrak{p} is unramified (the exponent of \mathfrak{P} is 1).

There exist a **Frobenius element** $\text{Frob}_{\mathfrak{P}} \in G$ such that for all $\lambda \in \mathbb{Z}_K$ we have

$$\text{Frob}_{\mathfrak{P}}(\lambda) = \lambda^{N(\mathfrak{p})} \bmod \mathfrak{P}.$$

As $\mathfrak{P}' \mid \mathfrak{p}\mathbb{Z}_K$ varies, the $\text{Frob}_{\mathfrak{P}'}$ form a conjugacy class $\text{Frob}_{\mathfrak{p}}$.

Ramification groups

We can compute ramification groups. Let's first find the ramified primes.

```
nf = nfinit(Q3);  
factor(nf.disc)  
%23 =  
[ 3 28]  
[11 16]
```

The ramified primes are 3 and 11.

```
dec3 = idealprimedec(nf, 3);  
pr3 = dec3[1];  
[#dec3, pr3.f, pr3.e]  
%26 = [4, 1, 6]
```

There are 4 prime ideals above 3. They have residue degree 1 and ramification index 6.

Ramification groups

We compute the sequence of ramification groups with `idealramgroups`.

```
ram3 = idealramgroups(nf,gal,pr3);  
#ram3  
%28 = 3
```

There are three nontrivial ramification groups to consider.

```
galoisidentify(ram3[1])  
%29 = [6, 1]  
galoisisabelian(ram3[1])  
%30 = 0
```

The decomposition group has order 6, and is isomorphic to S_3 .

Ramification groups

```
galoisidentify(ram3[2])  
%31 = [6, 1]
```

The inertia group equals the decomposition group (we already knew that since the residue degree is 1).

```
galoisidentify(ram3[3])  
%32 = [3, 1]
```

The wild inertia group is the cyclic group C_3 , and all the higher ramification groups are trivial.

Ramification groups

```
dec11 = idealprimedec(nf,11);  
pr11 = dec11[1];  
[#dec11, pr11.f, pr11.e]  
%35 = [4, 2, 3]
```

There are 4 prime ideals above 11. They have residue degree 2 and ramification index 3.

```
ram11 = idealramgroups(nf,gal,pr11);  
#ram11  
%37 = 2
```

The wild ramification group is trivial (which we knew since 11 is coprime to the group order).

Ramification groups

```
galoisidentify(ram11[1])
%38 = [6, 1]
galoisidentify(ram11[2])
%39 = [3, 1]
```

The decomposition group is isomorphic to S_3 (we already knew it had index 4 in the Galois group), and the inertia group is C_3 (we already knew it had index 2 in the decomposition group).

Frobenius elements

At an unramified prime, we can compute the Frobenius element with `idealfrobenius`.

```
dec2 = idealprimedec(nf,2);
pr2 = dec2[1];
[#dec2, pr2.f, pr2.e]
%42 = [6, 4, 1]
frob2 = idealfrobenius(nf,gal,pr2);
permorder(frob2)
%44 = 4
```

We check that the Frobenius element has order equal to the residue degree.

Class field theory

Reminder: ray class groups

A modulus \mathfrak{m} of a number field K is a pair $(\mathfrak{m}_f, \mathfrak{m}_\infty)$ of a nonzero ideal \mathfrak{m}_f and a set \mathfrak{m}_∞ of real embeddings of K .

Define $U_K(\mathfrak{m}) \subset K^\times$: we have $\beta \in U_K(\mathfrak{m})$ iff

- ▶ $v_{\mathfrak{p}}(\beta - 1) \geq v_{\mathfrak{p}}(\mathfrak{m}_f)$ for all $\mathfrak{p} \mid \mathfrak{m}_f$, and
- ▶ $\sigma(\beta) > 0$ for all $\sigma \in \mathfrak{m}_\infty$.

The ray class group

$$\text{Cl}_{\mathfrak{m}}(K) = \frac{(\text{nonzero ideals of } K \text{ coprime to } \mathfrak{m}_f)}{(\text{principal ideals } \beta \mathbb{Z}_K \text{ with } \beta \in U_K(\mathfrak{m}))}.$$

is a finite abelian group.

Reminder: ray class fields

For every modulus \mathfrak{m} , there exists a unique Abelian extension of K , the ray class field $K(\mathfrak{m})$, such that

- ▶ $\text{Gal}(K(\mathfrak{m})/K) \cong \text{Cl}_{\mathfrak{m}}(K)$, and
- ▶ a prime ideal \mathfrak{p} coprime to \mathfrak{m}_f splits in $K(\mathfrak{m})$ if and only if the class of \mathfrak{p} in $\text{Cl}_{\mathfrak{m}}(K)$ is trivial.

The special case $K(1)$ is called the Hilbert class field.

Every Abelian extension of K is contained in some $K(\mathfrak{m})$, and can therefore be described by a pair (\mathfrak{m}, H) where $H \subset \text{Cl}_{\mathfrak{m}}(K)$.

Example: $\mathbb{Q}(m\infty) = \mathbb{Q}(\zeta_m)$.

Explicit Kronecker–Weber theorem

We can construct abelian extensions of \mathbb{Q} with `polsubcyclo`.

```
N = 7*13*19;
```

```
L1 = polsubcyclo(N, 3);
```

We now have the list of degree 3 subfields of $\mathbb{Q}(\zeta_N)$,
where $N = 7 \cdot 13 \cdot 19$.

```
L2 = [P | P <- L1, #factor(nfinit(P).disc) [,1]==3]
%47 = [x^3+x^2-576*x+5123, x^3+x^2-576*x-64,
       x^3+x^2-576*x-5251, x^3+x^2-576*x+1665]
```

We select the ones that are ramified at the three primes 7, 13 and 19.

Explicit Kronecker–Weber theorem

We compute the structure and generators of $(\mathbb{Z}/N\mathbb{Z})^\times$ with `znstar`.

```
G = znstar(N)
%48 = [1296, [36, 6, 6], [Mod(743, 1729),
Mod(248, 1729), Mod(407, 1729)]]
```

We construct the matrix of a specific subgroup of index 3:

```
H = mathnfmodid([1,0;-1,1;0,-1],3);
```

Explicit Kronecker–Weber theorem

We construct the corresponding abelian field.

```
pol = galoissubcyclo(G, H)
%50 = x^3 + x^2 - 576*x - 64
factor(nfinit(pol).disc)
%51 =
[ 7 2]
[13 2]
[19 2]
```

We check the ramification of the corresponding number field.

Hilbert class field

To compute a Hilbert class field, we first need to compute the class group.

```
bnf = bnfinit(a^2-a+50);  
bnf.cyc  
%53 = [9]
```

The class group is isomorphic to $\mathbb{Z}/3\mathbb{Z}$. We compute a relative defining polynomial for the Hilbert class field with the function `bnrclassfield`.

```
R = bnrclassfield(bnf) [1]  
%54 = x^9 - 24*x^7 + (2*a - 1)*x^6 + 495*x^5  
+ (-12*a + 6)*x^4 - 30*x^3 + (18*a - 9)*x^2  
+ 18*x + (-2*a + 1)
```

Hilbert class field

Conversely, from an abelian extension, we can recover its corresponding class group `rnfconductor`.

```
[cond, bnr, subg] = rnfconductor(bnf, R);  
cond  
%56 = [[1, 0; 0, 1], []]  
subg  
%57 = [9]
```

Here the conductor is trivial, and its norm group is trivial in the class group.

Hilbert class field

We can also ask for an absolute defining polynomial for the Hilbert class field with the optional flag=2.

```
R2 = bnrclassfield(bnf,,2)
%58 = x^18 - 48*x^16 + 1566*x^14 - 23621*x^12
      + 244113*x^10 - 19818*x^8 - 3170*x^6
      + 17427*x^4 - 3258*x^2 + 199
```

Ray class fields

We can also consider class fields with nontrivial conductor.

```
bnr = bnrint(bnf,12);  
bnr.cyc  
%60 = [72,2]
```

We can compute in advance the absolute degree, signature and discriminant of the corresponding class field with `bnrdisc`.

```
[deg,r1,D] = bnrdisc(bnr);  
[deg,r1]  
%62 = [288,0]  
D  
%63 = 92477896[...538 digits...]84942237696
```

This field is huge!

Ray class fields

For efficiency, we compute the class field as a compositum of several smaller fields.

```
bnrclassfield(bnr)
%64 = [x^2 - 3, x^8 + (-27*a+24)*x^6
      + (-294*a-3273)*x^4 + (-3*a-3852)*x^2 - 3,
      x^9 - 24*x^7 + (2*a-1)*x^6 + 495*x^5
      + (-12*a+6)*x^4 - 30*x^3 + (18*a-9)*x^2
      + 18*x + (-2*a+1)]
```

We can force the computation of a single polynomial with `flag=1`.

```
bnrclassfield(bnr,,1)
%65 = [... huge polynomial ...]
```

Ray class fields

We can also compute a subfield of the ray class field by specifying a subgroup.

```
bnr = bnrinit(bnf, 7)
bnr.cyc
%67 = [54, 3]
bnrclassfield(bnr, 3) \\elementary 3-subextension
%68 = [x^3 + 3*x + (14*a - 7),
x^3 + (-1008*a - 651)*x + (-1103067*a - 8072813)]
```

Without the explicit field

Computing a defining polynomial with `bnrclassfield` can be time-consuming, so it is better to compute the relevant information without constructing the field, if possible.

We already saw the use of `bnrdisc`; we can also compute splitting information without the explicit field.

```
pr41 = idealprimedec(bnf, 41) [1];
bnrisprincipal(bnr, pr41, 0)
%70 = [0, 0]~
```

The Frobenius at p_{41} is trivial: this prime splits completely in the degree 162 extension (which we did not compute).

Ray class fields

Let's do a full example with an HNF ideal and a subgroup given by a matrix.

```
bnr = bnrinit(bnf, [102709, 43512; 0, 1]);  
bnr.cyc  
%72 = [17010, 27]  
bnrclassfield(bnr, [9, 3; 0, 1]) \\subgroup of index 9  
%73 = [x^9 + (-297*a - 4470)*x^7 + ... ]
```

Modulus with infinite places

If the base field has real places, we can specify the modulus at infinity by providing a list of 0 or 1 of length the number of real embeddings.

```
bnf=bnfinit(a^2-217);  
bnf.cyc  
%75 = []  
bnrinit(bnf,1).cyc  
%76 = []  
bnrinit(bnf,[1,[1,1]]).cyc  
%77 = [2]
```

The field $\mathbb{Q}(\sqrt{217})$ has narrow class number 2.

Galois action on the class group

We can compute the Galois action on ray class groups with `bnrgaloismatrix`, i.e. the Galois action on the relative Galois group, without the explicit abelian extension.

```
bnf = bnfinit(x^2+2*3*5*7*11);  
bnf.cyc  
%81 = [4, 2, 2, 2]  
bnr = bnrint(bnf,1,1);  
gal = galoisinit(bnf);  
m = bnrgaloismatrix(bnr,gal) [1]  
%84 =  
[3 0 0 0]  
[0 1 0 0]  
[0 0 1 0]  
[0 0 0 1]
```

Questions ?

Have fun with GP !