

Algebraic number theory with GP

B. Allombert and A. Page

IMB/INRIA/Université de Bordeaux

04/12/2025

COGENT has received funding from the European Union's Horizon Europe Programme under the Marie Skłodowska-Curie actions HORIZON-MSCA-2023-DN-01 call (Grant agreement ID: 101169527), and from UK Research and Innovation.

Documentation

- ▶ refcard-nf.pdf: list of functions with a short description.
- ▶ users.pdf Section 3.13: introduction and detailed descriptions of the functions.
- ▶ in gp, ?10: list of functions.
- ▶ in gp, ?functionname: short description of the function.
- ▶ in gp, ??functionname: long description of the function.

To record the commands we will type during the tutorial:

```
? \l TAN.log
```

Plan

Number fields

Ideals

Class groups and units

Number Fields

Reminder

A **number field** K is a finite extension of \mathbb{Q} .

The **ring of integers** \mathbb{Z}_K of K is the set of elements of K whose monic minimal polynomial has coefficients in \mathbb{Z} .

It is free of rank $[K : \mathbb{Q}]$ over \mathbb{Z} .

The **discriminant** Δ_K of K is the determinant of the matrix $(\text{Tr}(w_i w_j))_{i,j}$ where w_1, \dots, w_n is a \mathbb{Z} -basis of \mathbb{Z}_K .

Irreducibility

In GP, we describe a number field K as

$$K = \mathbb{Q}[x]/f(x)$$

where $f \in \mathbb{Z}[x]$ is a monic irreducible polynomial.

```
? f = x^4 - 2*x^3 + x^2 - 5;  
? polisirreducible(f)  
%2 = 1
```

GP knows cyclotomic polynomials:

```
? g = polcyclo(30)  
%3 = x^8 + x^7 - x^5 - x^4 - x^3 + x + 1
```

Algebraic numbers

To perform simple operations in $K = \mathbb{Q}[x]/f(x) = \mathbb{Q}(\alpha)$ where $f(\alpha) = 0$, we can use `Mod`:

```
? Mod(x, f)^5
```

```
%4 = Mod(3*x^3-2*x^2+5*x+10, x^4-2*x^3+x^2-5)
```

Interpretation: $\alpha^5 = 3\alpha^3 - 2\alpha^2 + 5\alpha + 10$.

We check that the roots of g are 30th roots of unity:

```
? lift(Mod(x, g)^15)
```

```
%5 = -1
```

We used `lift` to make the output more readable.

polredbest

Sometimes we can find a simpler defining polynomial for the same number field by using `polredbest`:

```
? {h = x^5 + 7*x^4 + 22550*x^3 - 281686*x^2  
- 85911*x + 3821551};  
? polredbest(h)  
%7 = x^5 - x^3 - 2*x^2 + 1
```

Interpretation: $\mathbb{Q}[x]/h(x) \cong \mathbb{Q}[x]/(x^5 - x^3 - 2x^2 + 1)$.

nfinit

Most operations on number fields use a structure, which is computed by the initialisation function `nfinit`.

```
? K = nfinit(f);
```

`K` contains the structure for the number field $K = \mathbb{Q}[x]/f(x)$.

```
? K.pol
%9 = x^4 - 2*x^3 + x^2 - 5
? K.sign
%10 = [2, 1]
```

K has signature $(2, 1)$: it has two real embeddings and one pair of conjugate complex embeddings.

Computed information

```
? K.disc
```

```
%11 = -1975
```

```
? K.zk
```

```
%12 = [1, 1/2*x^2-1/2*x-1/2, x, 1/2*x^3-1/2*x^2-1/2*x]
```

```
? w = K.zk[2];
```

K has discriminant -1975 , and its ring of integers is

$$\mathbb{Z}_K = \mathbb{Z} + \mathbb{Z} \frac{\alpha^2 - \alpha - 1}{2} + \mathbb{Z}\alpha + \mathbb{Z} \frac{\alpha^3 - \alpha^2 - \alpha}{2} = \mathbb{Z} + \mathbb{Z}w + \mathbb{Z}\alpha + \mathbb{Z}w\alpha.$$

Elements of a number field

We saw that we could represent elements of a number field as polynomials in α . We can also use linear combinations of the integral basis. We can switch between the two representations with `nfalgtobasis` and `nfbasistoalg`.

```
? nfalgtobasis(K, x^2)
%14 = [1, 2, 1, 0]~
```

Interpretation: $\alpha^2 = 1 \cdot 1 + 2 \cdot w + 1 \cdot \alpha + 0 \cdot w\alpha = 1 + 2w + \alpha$.

```
? nfbasistoalg(K, [1, 1, 1, 1]~)
%15 = Mod(1/2*x^3 + 1/2, x^4 - 2*x^3 + x^2 - 5)
```

Interpretation: $1 + w + \alpha + w\alpha = \frac{\alpha^3 + 1}{2}$.

Elements of a number field: operations

We perform operations on elements with the functions `nfeltxxxx`, which accept both representations as input.

```
? nfeltmul(K, [1, -1, 0, 0]~, x^2)
%16 = [-1, 3, 1, -1]~
```

Interpretation: $(1 - w) \cdot \alpha^2 = -1 + 3w + \alpha - w\alpha$.

```
? nfeltnorm(K, x-2)
%17 = -1
? nfelttrace(K, [0, 1, 2, 0]~)
%18 = 2
```

Interpretation: $N_{K/\mathbb{Q}}(\alpha - 2) = -1$, $\text{Tr}_{K/\mathbb{Q}}(w + 2\alpha) = 2$.

Ideals

Reminder

In \mathbb{Z}_K , ideals factor uniquely into products of prime ideals:

$$\mathfrak{a} = \prod_i \mathfrak{p}_i^{a_i}.$$

In particular, prime numbers admit a decomposition:

$$p\mathbb{Z}_K = \prod_i \mathfrak{p}_i^{e_i} \text{ with } \mathbb{Z}_K/\mathfrak{p}_i \cong \mathbb{F}_{p^{f_i}}.$$

- ▶ e_i = ramification index of \mathfrak{p}_i .
- ▶ f_i = residue degree of \mathfrak{p}_i .

Decomposition of primes

We can decompose primes with `idealprimedec`:

```
? dec = idealprimedec(K, 5);  
? #dec  
%20 = 2  
? [pr1,pr2] = dec;
```

Interpretation: \mathbb{Z}_K has two prime ideals above 5, which we call \mathfrak{p}_1 and \mathfrak{p}_2 .

```
? pr1.f  
%22 = 1  
? pr1.e  
%23 = 2
```

\mathfrak{p}_1 has residue degree 1 and ramification index 2.

Decomposition of primes

```
? pr1.gen  
%24 = [5, [-1, 0, 1, 0]~]
```

\mathfrak{p}_1 is generated by 5 and $-1 + 0 \cdot w + \alpha + 0 \cdot w\alpha$, i.e. we have $\mathfrak{p}_1 = 5\mathbb{Z}_K + (\alpha - 1)\mathbb{Z}_K$.

```
? pr2.f  
%25 = 1  
? pr2.e  
%26 = 2
```

\mathfrak{p}_2 also has residue degree 1 and ramification index 2.

Ideals

An arbitrary ideal is represented by its Hermite normal form (HNF) with respect to the integral basis. We can obtain this form with `idealhnf`.

```
? idealhnf(K, pr1)
%27 =
[5 3 4 3]
[0 1 0 0]
[0 0 1 0]
[0 0 0 1]
```

Interpretation: \mathfrak{p}_1 can be described as

$$\mathfrak{p}_1 = \mathbb{Z} \cdot 5 + \mathbb{Z} \cdot (w + 3) + \mathbb{Z} \cdot (\alpha + 4) + \mathbb{Z} \cdot (w\alpha + 3).$$

Ideals

```
? a = idealhnf(K, [23, 10, -5, 1]~)
%28 =
[260 0 228 123]
[ 0 260 123 105]
[ 0 0 1 0]
[ 0 0 0 1]
```

We obtain the HNF of the ideal $\mathfrak{a} = (23 + 10w - 5\alpha + w\alpha)$.

```
? idealnorm(K, a)
%29 = 67600
```

We have $N(\mathfrak{a}) = 67600$.

Ideals: operations

We perform operations on ideals with the functions `idealxxxx`, which accept HNF forms, prime ideal structures (output of `idealprimedec`), and elements (interpreted as principal ideals).

```
? idealpow(K, pr2, 3)
%30 =
[25 15 21 7]
[ 0  5  2  4]
[ 0  0  1  0]
[ 0  0  0  1]
? idealnorm(K, idealadd(K, a, pr2))
%31 = 1
```

We have $\mathfrak{a} + \mathfrak{p}_2 = \mathbb{Z}_K$: the ideals \mathfrak{a} and \mathfrak{p}_2 are coprime.

Ideals: factorisation

We factor an ideal into a product of prime ideals with `idealfactor`. The result is a two-column matrix: the first column contains the prime ideals, and the second one contains the exponents.

```
? fa = idealfactor(K, a);  
? matsize(fa)  
%33 = [3,2]
```

The ideal \mathfrak{a} is divisible by three prime ideals.

```
? [fa[1,1].p, fa[1,1].f, fa[1,1].e, fa[1,2]]  
%34 = [2, 2, 1, 2]
```

The first one is a prime ideal above 2, is unramified with residue degree 2, and appears with exponent 2.

Ideals: factorisation

```
? [fa[2,1].p, fa[2,1].f, fa[2,1].e, fa[2,2]]  
%35 = [5, 1, 2, 2]  
? fa[2,1]==pr1  
%36 = 1
```

The second one is p_1 , and it appears with exponent 2.

```
? [fa[3,1].p, fa[3,1].f, fa[3,1].e, fa[3,2]]  
%37 = [13, 2, 1, 1]
```

The third one is a prime ideal above 13, is unramified with residue degree 2, and appears with exponent 2.

Chinese remainders

We can use the Chinese remainder theorem with `idealchinese`:

```
? b = idealchinese(K, [pr1,2;pr2,1], [1,-1]);
```

We are looking for an element $b \in \mathbb{Z}_K$ such that $b \equiv 1 \pmod{\mathfrak{p}_1^2}$ and $b \equiv -1 \pmod{\mathfrak{p}_2}$.

```
? nfeltval(K,b-1,pr1)
```

```
%39 = 2
```

```
? nfeltval(K,b+1,pr2)
```

```
%40 = 1
```

We check the output by computing valuations: $v_{\mathfrak{p}_1}(b - 1) = 2$ and $v_{\mathfrak{p}_2}(b + 1) = 1$.

Chinese remainders with signs

We can compute the sign of real embeddings of b :

```
? nfeltsign(K, b)
%41 = [-1, 1]
```

We have $\sigma_1(b) < 0$ and $\sigma_2(b) > 0$, where σ_1, σ_2 are the two real embeddings of K .

We can ask `idealchinese` to compute an element that, in addition to the congruences, is totally positive:

```
? c = idealchinese(K, [[pr1,2;pr2,1],[1,1]],[1,-1]);
? nfeltsign(K, c)
%43 = [1, 1]
```

Indeed we have $\sigma_1(c) > 0$ and $\sigma_2(c) > 0$.

Class groups and units

Reminder

The class group

$$\text{Cl}(K) = \frac{(\text{nonzero ideals of } K)}{(\text{principal ideals } \beta\mathbb{Z}_K)}.$$

is a finite abelian group.

The unit group

$$\mathbb{Z}_K^\times \cong \mathbb{Z}/w\mathbb{Z} \times \mathbb{Z}^{r_1+r_2-1}$$

is a lattice under the logarithmic embedding, whose covolume is called the regulator Reg_K .

bnfinit

To obtain the class group and unit group of a number field, we need a more expensive computation than `nfinit`. The relevant information is contained in the structure computed with `bnfinit` (`b` = Buchmann).

```
? K2 = bnfinit(K);  
? K2.nf == K  
%50 = 1  
? K2.no  
%51 = 1
```

K has a trivial class group (`no` = class number).

```
? K2.reg  
%52 = 1.7763300299706546701307646106399605586
```

We obtain an approximation of the regulator of K .

bnfcertify

The output of `bnfisprincipal` is a priori only correct under GRH (Generalised Riemann Hypothesis). We can unconditionally certify it with `bnfcertify`.

```
? bnfcertify(K2)  
%52 = 1
```

The computation is now certified! If `bnfcertify` outputs 0, it means we have found a counter-example to GRH (or more likely a bug in PARI/GP)!

bnfinit: units

```
? lift (K2.tu)
%54 = [2, -1]
? K2.tu[1]==nfrootsf1 (K) [1]
%55 = 1
```

K has two roots of unity (tu = torsion units), ± 1 . We can also compute them with `nfrootsf1`.

```
? lift (K2.fu)
%56 = [1/2*x^2-1/2*x-1/2, 1/2*x^3-3/2*x^2+3/2*x-1]
```

The free part of \mathbb{Z}_K^\times is generated by $\frac{\alpha^2-\alpha-1}{2}$ and $\frac{\alpha^3-3\alpha^2+3\alpha-2}{2}$ (fu = fundamental units).

bnfinit: analytic class number formula

```
? lfun(K,1+x+O(x^2))
%57 = 0.502284726052801113866176365679645651*x^-1
      + O(x^0)
? res = polcoeff(lfun(K,1+x+O(x^2)), -1)
%58 = 0.50228472605280111386617636567964565169
```

We compute an approximation of the residue of $\zeta_K(s)$ at $s = 1$.

We numerically check the analytic class number formula.

Class group

```
? L = bnfinit(x^3 - x^2 - 54*x + 169);  
? L.cyc  
%61 = [2, 2]
```

$$\text{Cl}(L) \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}.$$

```
? L.gen  
%62 = [[5, 3, 2; 0, 1, 0; 0, 0, 1], [5, 4, 3; 0, 1, 0; 0, 0, 1]]
```

Generators of the class group, given as ideals in HNF form.

Testing whether an ideal is principal

We test whether an ideal is principal with `bnfisprincipal`:

```
? pr = idealprimedec(L,13) [1]
? [dl,g] = bnfisprincipal(L,pr);
? dl
%65 = [1, 0]~
```

`bnfisprincipal` expresses the class of the ideal in terms of the generators of the class group (discrete logarithm). Here, the ideal `pr` is in the same class as the first generator. In particular, the ideal is not principal, but its square is.

Testing whether an ideal is principal

```
? g
%66 = [0, 1/5, 2/5]~
? {idealhnf(L,pr) == idealmul(L,g,
    idealfactorback(L,L.gen,d1)) }
%67 = 1
```

The second component of the output of `bnfisprincipal` is an element $g \in L$ that generates the remaining principal ideal. (`idealfactorback` = inverse of `idealfactor` = $\prod_i L.\text{gen}[i]^{d1[i]}$)

Computing a generator of principal ideal

We know that pr is a 2-torsion element; let's compute a generator of its square:

```
? [d12,g2] = bnfisprincipal(L,idealpow(L,pr,2));  
? d12  
%69 = [0, 0]~
```

The ideal is indeed principal (trivial in the class group).

```
? g2  
%70 = [1, -1, -1]~  
? idealhnf(L,g2) == idealpow(L,pr,2)  
%71 = 1
```

$g2$ is a generator of pr^2 .

Application: bnfisintnorm

We can use these functionalities to find solutions in \mathbb{Z}_K of norm equations with `bnfisintnorm`:

```
? bnfisintnorm(L, 5)
%72 = []
```

There is no element of norm 5 in \mathbb{Z}_L .

```
? bnfisintnorm(L, 65)
%73 = [x^2 + 4*x - 36, -x^2 - 3*x + 39, -x + 2]
```

There are three elements of \mathbb{Z}_L of norm 65, up to multiplication by elements of \mathbb{Z}_L^\times with positive norm.

Expressing a unit in terms of the generators

```
? u = [0, 2, 1]~;
? nfelttnorm(L, u)
%75 = 1
```

We have found a unit $u \in \mathbb{Z}_L^\times$.

```
? bnfisunit(L, u)
%76 = [1, 2, Mod(0, 2)]~
? lift(L.fu)
%77 = [x^2 + 4*x - 34, x - 4]
? lift(L.tu)
%78 = [2, -1]
```

We express it in terms of the generators with `bnfisunit`:
 $u = (\alpha^2 + 4\alpha - 34) \cdot (\alpha - 4)^2 \cdot (-1)^0$.

Large fundamental units

By default, `bnfinit` only computes fundamental units if they are not too large.

```
? M = bnfinit(x^2-3019);  
? M.fu  
%80 = 0
```

We can force the computation of fundamental units with `bnfinit(,1)`.

```
? M = bnfinit(x^2-3019,1);  
? lift(M.fu)  
%82 = [213895188053752098546071055592725565706690  
871236169789*x - 117525625416599410184425264152  
37539460392094825860314330]
```

Questions ?

Have fun with GP!