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refcard-nf.pdf: list of functions with a short description.

users.pdf Section 3.13: introduction and detailed
descriptions of the functions.

in gp, 210: list of functions.
in gp, ?functionname: short description of the function.
in gp, ??functionname: long description of the function.

To record the commands we will type during the tutorial:

? \1 TAN.log
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Reminder

A number field K is a finite extension of Q.

The ring of integers Zy of K is the set of elements of K whose
monic minimal polynomial has coefficients in Z.
It is free of rank [K : Q] over Z.

The discriminant Ay of K is the determinant of the
matrix (Tr(w;w;));; where wy, ..., wyis a Z-basis of Z.
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Irreducibility
In GP, we describe a number field K as

K = Q[x]/f(x)
where f € Z[x] is a monic irreducible polynomial.
? f=x"M - 2xx*3 + x"2 - 5;
? polisirreducible (f)
%2 =1

GP knows cyclotomic polynomials:

? g = polcyclo(30)
%3 = x"8 + x*7 - x5 - x4 - x*"3 + x + 1
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Algebraic numbers
To perform simple operations in K = Q[x]/f(x) = Q(a) where
f(o) = 0, we can use Mod:

? Mod(x,f)"5
%4 = Mod (3*x"3-2*x"2+5+%x+10, x"4-2xx"3+x"2-5)

Interpretation: o® = 3a® — 202 + 5+ 10.
We check that the roots of g are 30th roots of unity:

? lift (Mod(x,qg)"15)
5 = -1

We used 11ift to make the output more readable.
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polredbest

Sometimes we can find a simpler defining polynomial for the
same number field by using polredbest:

? {h = x*5 + 7xx"4 + 22550%xx"3 - 281686*x"2
— 85911%x + 3821551};
? polredbest (h)

$7 = x5 - x*"3 - 2xx™2 + 1

Interpretation: Q[x]/h(x) = Q[x]/(x® — x® — 2x% +1).
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nfinit
Most operations on number fields use a structure, which is
computed by the initialisation function nfinit.
? K = nfinit (f);
K contains the structure for the number field K = Q[x]/f(x).

? K.pol
%9 = x4 - 2xx"3 + x*2 - 5

K has signature (2, 1): it has two real embeddings and one pair
of conjugate complex embeddings.
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Computed information

? K.disc

%$11 = -1975

? K.zk

$12 = [1,1/2%xx72-1/2xx-1/2,%x,1/2+«x"3=-1/2+x"2-1/2*x]
? w = K.zk[2];

K has discriminant —1975, and its ring of integers is

2_ 41 3_ 2
Ty =2+2—2"  {Zayzt —2 — 2

5 > = 2+ 7ZwW+Za+Zwa.
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Elements of a number field

We saw that we could represent elements of a number field as
polynomials in a. We can also use linear combinations of the
integral basis. We can switch between the two representations
with nfalgtobasis and nfbasistoalg.

? nfalgtobasis (K, x"2)
%14 = [1, 2, 1, 01~

Interpretation: 0® =1-1+2-w+1-a+0-wa=1+2w+a.

? nfbasistoalg(K, [1,1,1,1]~)
%15 = Mod(1l/2*xx"3 + 1/2, x™4 - 2%xx"3 4+ x"2 — b)

Interpretation: 1 + w + a + wa = 25,
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Elements of a number field: operations

We perform operations on elements with the functions
nfeltxxxx, Which accept both representations as input.

? nfeltmul (K, [1,-1,0,0]~,x"2)
%16 = [-1, 3, 1, -11~

Interpretation: (1 — w)-a? = —1 + 3w + a — wa.

? nfeltnorm(K, x-2)

$17 = -1
? nfelttrace (X, [0,1,2,0]~)
%18 = 2

Interpretation: Ny (o —2) = —1, Trg/o(W + 2a) = 2.
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Reminder
In Zy, ideals factor uniquely into products of prime ideals:
a= H p.
i
In particular, prime numbers admit a decomposition:

PZly = lee' with ZK/]J,' = pr,-.
i

» ¢e; = ramification index of p;.
» f; = residue degree of p;.
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Decomposition of primes
We can decompose primes with idealprimedec:

? dec = idealprimedec (K, 5);
? #dec

%20 = 2

? [prl,pr2] = dec;

Interpretation: Zk has two prime ideals above 5, which we
call p; and p».

? prl.f
%22 =1
? prl.e
%23 = 2

p1 has residue degree 1 and ramification index 2.
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Decomposition of primes

? prl.gen
%24 =[5, [-1, O, 1, 0]~]

pqis generatedby5and -1 +0-w+a+0- wa, i.e. we
have p1 = 5Zk + (o — 1)Z.

? pr2.f
%25 =1
? pr2.e
%26 = 2

po also has residue degree 1 and ramification index 2.
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Ideals

An arbitrary ideal is represented by its Hermite normal form
(HNF) with respect to the integral basis. We can obtain this
form with idealhnf.

? idealhnf (K, prl)
7 =

o O W
O P O B
R O O W

%2
[5 ]
(0 ]
[0 ]
(0 ]

Interpretation: p{ can be described as

P =2-54+7Z-W+3)+Z - (a+4)+Z - (wa+3).
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Ideals
? a = idealhnf (XK, [23, 10, -5, 11~)
%28 =
[260 0 228 123]
[ 0 260 123 105]
[ 0 0 1 0]
[ O 0 0 1]

We obtain the HNF of the ideal a = (23 + 10w — 5 + wa).

? idealnorm (K, a)
%29 = 67600

We have N(a) = 67600.




Algebraic number theory with GP
L Ideals

|deals: operations

We perform operations on ideals with the functions
idealxxxx, Which accept HNF forms, prime ideal structures
(output of idealprimedec), and elements (interpreted as
principal ideals).

? idealpow (K, pr2, 3)

%$30 =

[25 15 21 7]

[ O 5 2 4]

[ O 0 1 0]

[ O 0 0 1]

? idealnorm (K, idealadd (K, a,pr2))
$31 =1

We have a + p» = Zg: the ideals a and p, are coprime.



Algebraic number theory with GP
L Ideals

|deals: factorisation

We factor an ideal into a product of prime ideals

with idealfactor. The result is a two-column matrix: the first
column contains the prime ideals, and the second one contains
the exponents.

? fa = idealfactor (K, a);
? matsize (fa)
%33 = [3,2]

The ideal a is divisible by three prime ideals.

all,1].p, fall,1].f, fafll,1l].e, fall,2]]

2 [f
%34 = (2, 2, 1, 2]

The first one is a prime ideal above 2, is unramified with
residue degree 2, and appears with exponent 2.
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|deals: factorisation

? [fal2,1].p, fal2,1]1.f, fal2,1].e, fal2,2]]
$35 = [5, 1, 2, 2]

? fal2,1]==prl

%36 =1

The second one is p¢, and it appears with exponent 2.

[3,1].p, fal3,1]1.£, fal3,1].e, fal3,2]]
(13, 2, 1, 1]

h
I o

2
%37

The third one is a prime ideal above 13, is unramified with
residue degree 2, and appears with exponent 2.
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Chinese remainders

We can use the Chinese remainder theorem with
idealchinese:

? b = idealchinese (K, [prl,2;pr2,11,[1,-11);

We are looking for an element b € Zk such that b = 1 mod p?
and b = —1 mod po».

? nfeltval (K,b-1,prl)

%$39 = 2
? nfeltval (K,b+1l,pr2)
%$40 = 1

We check the output by computing valuations: v, (b —1) =2
and vp,(b+1)=1.
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Chinese remainders with signs

We can compute the sign of real embeddings of b:

? nfeltsign (K, b)
$41 = [-1, 1]

We have o1(b) < 0 and o2(b) > 0, where o4, 02 are the two real
embeddings of K.

We can ask idealchinese to compute an element that, in
addition to the congruences, is totally positive:

? ¢ = idealchinese (X, [[prl,2;pr2,1],01,111,101,-11);
? nfeltsign (K, c)
$43 = [1, 1]

Indeed we have o¢(c) > 0 and o2(c) > 0.
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Reminder

The class group

(nonzero ideals of K)
(principal ideals Zk)"

CI(K) =

is a finite abelian group.

The unit group
7y 2 Z/WL x 2T

is a lattice under the logarithmic embedding, whose covolume
is called the regulator Regy.
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bnfinit
To obtain the class group and unit group of a number field, we
need a more expensive computation than nfinit. The
relevant information is contained in the structure computed
with bnfinit (b = Buchmann).

? K2 = bnfinit (K);
? K2.nf ==

%50 =1

? K2.no

%51 = 1

K has a trivial class group (no = class number).

? K2.reg
$52 = 1.7763300299706546701307646106399605586

We obtain an approximation of the regulator of K.
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bnfcertify

The output of bnfisprincipal is a priori only correct under
GRH (Generalised Riemann Hypothesis). We can
unconditionally certify it with bnfcertify.

? bnfcertify (K2)
%52 =1

The computation is now certified! If bnfcertify outputs 0, it
means we have found a counter-example to GRH (or more
likely a bug in PARI/GP)!
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bnfinit: units

? 1lift (K2.tu)

%54 = [2, —-1]

? K2.tu[l]l==nfrootsofl (K) [1]
%55 =1

K has two roots of unity (tu = torsion units), +1. We can also
compute them with nfrootsofl.

? lift (K2.fu)
$56 = [1/2xx"2-1/2%x-1/2, 1/2%xx"3-3/2%x"2+3/2xx~-1]

The free part of Z is generated by aZ*QCH and 03*3“2;30*2 (fu
= fundamental units).
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bnfinit: analytic class number formula

? 1lfun (K, 1+x+0 (x"2))

%57 = 0.502284726052801113866176365679645651xx"-1
+ O (x"0)

? res = polcoeff(lfun(K,l+x+0(x"2)),-1)

%58 = 0.50228472605280111386617636567964565169

We compute an approximation of the residue of (x(s) at s = 1.

? {27"K2.rl* (2%P1) "K2.r2+xK2.no*xK2.reg/
(K2.tul[l]*sgrt (abs (K2.disc)) xres) }
%59 = 0.99999999999999999999999999999999999999

We numerically check the analytic class number formula.
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Class group

? L = bnfinit (x"3 - x*2 — 54+x + 169);
? L.cyc
$6l1 = [2, 2]

Cl(L) = 7,/27 x 7./ 2.

5
562 = [[5,3,2;0,1,0;0,0,1], [5,4,3;0,1,0;0,0,17]

Generators of the class group, given as ideals in HNF form.
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Testing whether an ideal is principal

We test whether an ideal is principal with bnfisprincipal:

r = idealprimedec (L,13) [1]
dl,g] = bnfisprincipal (L, pr);
1

65 = [1, 0]~

P
(
d

o D D )

bnfisprincipal expresses the class of the ideal in terms of
the generators of the class group (discrete logarithm). Here,
the ideal pr is in the same class as the first generator. In
particular, the ideal is not principal, but its square is.
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Testing whether an ideal is principal

? g

%$66 = [0, 1/5, 2/5]~

? {idealhnf (L,pr) == idealmul (L, g,
idealfactorback (L, L.gen,dl)) }

$67 =1

The second component of the output of bnfisprincipal is
an element g € L that generates the remaining principal ideal.
(idealfactorback = inverse of idealfactor = [[; L.gen [1] 9 [*])
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Computing a generator of principal ideal

We know that pr is a 2-torsion element; let's compute a
generator of its square:

? [dl2,g2] = bnfisprincipal (L, idealpow (L, pr,2));
? dl2
%69 = [0, 0]~

The ideal is indeed principal (trivial in the class group).

? g2

%$70 = [1, -1, -1]1~

? idealhnf (L,g2) == idealpow(L,pr,2)
$71 =1

g2 is a generator of pr2.
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Application: bnfisintnorm
We can use these functionalities to find solutions in Zx of norm
equations with bnfisintnorm:

? bnfisintnorm(L,5)
72 = []

There is no element of norm 5in Z; .

? bnfisintnorm (L, 65)
$73 = [x"2 4+ 4+«x — 36, —-x"2 - 3xx + 39, —-x + 2]

There are three elements of Z; of norm 65, up to multiplication
by elements of Z,° with positive norm.
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Expressing a unit in terms of the generators

?u= [0,2,1]~;
? nfeltnorm (L, u)
$75 =1

We have found a unit u € Z;'.

? bnfisunit (L, u)

$76 = [1, 2, Mod(0, 2)1~

? 1lift (L. fu)

$77 = [x72 + 4%x — 34, x — 4]
? lift (L.tu)

%78 = [2, -1]

We express it in terms of the generators with bnfisunit:
u=(a?®+4a—34)-(a—4)%2-(-1)°.
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Large fundamental units

By default, bonfinit only computes fundamental units if they
are not too large.

? M = bnfinit (x°2-3019);
? M. fu
$80 =0

We can force the computation of fundamental units with
bnfinit(,1).

? M = bnfinit (x*2-3019,1);

? 1lift (M. fu)

%$82 = [213895188053752098546071055592725565706690
871236169789%x — 117525625416599410184425264152
37539460392094825860314330]
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Questions ?

Have fun with GP!
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