
PARI/GP, toward high performance computing for number theorists

PARI/GP, toward high performance computing
for number theorists

B. Allombert

IMB
CNRS/Université de Bordeaux

26/06/2023

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement N° 676541

PARI/GP, toward high performance computing for number theorists

Introduction to PARI/GP

Introduction
PARI/GP is a computer agebra system oriented toward number
theory.
I PARI is a C library, allowing fast computations.
I GP is an easy-to-use interactive shell giving access to the

PARI functions.
I GP is the name of gp’s scripting language.
I GP2C , the GP→ PARI compiler allows to convert GP

scripts to C.
I available as a javascript application and a native Android

app (PariDroid)
I part of Sagemath and jupyther
I Website: https://pari.math.u-bordeaux.fr
I Free software distributed under the GNU GPL 2 or superior

https://pari.math.u-bordeaux.fr

PARI/GP, toward high performance computing for number theorists

Introduction to PARI/GP

What PARI/GP can do ?

I Linear algebra (over various fields and rings)
I Polynomial and power series
I Transcendental functions
I Numerical summation and integration.
I p-adic functions
I Finite fields
I Number fields
I Lattices and quadratic forms

PARI/GP, toward high performance computing for number theorists

Introduction to PARI/GP

Advanced functionalities

I Interpolation methods and guessing methods
I Diophantine equations
I Galois theory
I Class field theory
I Simple central algebras
I Elliptic and hyperelliptic curves
I Modular forms
I L-functions
I Simplified parallel programming interface.

PARI/GP, toward high performance computing for number theorists

Introduction to PARI/GP

PARI/GP interface to parallelism

. PARI now supports two common multi-threading technologies:

I POSIX thread: run on a single machine, lightweight,
flexible, fragile.

I Message passing interface (MPI): run on as many machine
as you want, robust, rigid, heavyweight. Used by most
clusters.

I other technologies could be easily immplemented.
However the parallel GP interface does not depend on the
multithread interface: a properly written GP program will work
identically with both.

PARI/GP, toward high performance computing for number theorists

The C interface

Some basic on the PARI C interface

The PARI library has its own memory management system
which allows for fast creation and garbage collecting of objects
and prevent memory leak.
It uses a continous chunk of memory called the PARI stack.
This chunk is allocated as part of a larger segment of virtual
memory.
If the stack need to be enlarged, part of the virtual memory is
mapped to actual memory (using the mmap system call).

PARI/GP, toward high performance computing for number theorists

The C interface

The PARI stack

top

avma

bot

vbot

real memory

unused real memory

virtual memory

PARI/GP, toward high performance computing for number theorists

The C interface

Objects

New PARI objects are written on the stack starting at the
address avma. Each object starts by a codeword indicating its
type and size. Depending on the type, fields are either data or
pointers to other objects.
Garbage collection is done by recording the height of the stack
(avma) before the computation, and moving up the objects that
we want to keep starting this address. Thus, all temporaries are
automatically discarded.
This system has the good property that all objects are naturally
serialized without incurring higher level language penalty.

PARI/GP, toward high performance computing for number theorists

The C interface

The PARI stack
Before garbage collection

av

temporaries

results

avma

avma at start of function

PARI/GP, toward high performance computing for number theorists

The C interface

The PARI stack
After garbage collection

av

results

new avma

old avma

avma at start of function

recovered memory

PARI/GP, toward high performance computing for number theorists

The C interface

Types of objects

List of the PARI types:
t_INT long integers
t_REAL long real numbers
t_INTMOD integer mod n
t_FRAC rationals
t_FFELT finite field elements
t_COMPLEX complex numbers
t_PADIC p-adic numbers
t_QUAD quadratic numbers
t_POLMOD poly mod
t_POL polynomials
t_SER power series
t_RFRAC rational functions

PARI/GP, toward high performance computing for number theorists

The C interface

Types of objects

t_QFB binary quadratic form
t_VEC row vector
t_COL column vector
t_MAT matrix
t_LIST list
t_STR string
t_VECSMALL vector of small ints
t_CLOSURE functions and closures
t_ERROR error context
t_INFINITY ±∞

PARI/GP, toward high performance computing for number theorists

The C interface

t_CLOSURE

The type t_CLOSURE is generated by the GP bytecode
compiler from GP functions and closures.
It can also be used to generate GP wrappers around C
functions that handle conversion between GP calling
convention and C calling convention.

PARI/GP, toward high performance computing for number theorists

Parallelism

Toward parallelism

From the above, we can see how parallelism can be
implemented in a distributed or shared memory context:

1. We need separate PARI stack for each execution threads.
2. We use serialization to send data through the network.
3. We send code to execute to threads as t_CLOSURE

objects.
This is sufficient to implement basic parallelism without shared
state.

PARI/GP, toward high performance computing for number theorists

Parallelism

C interface to parallelism

I mt_queue_start send a t_CLOSURE to threads to be
evaluate and start parallel execution

I mt_queue_submit submit data to be evaluated to
threads

I mt_queue_get obtain results of computation by threads.
I mt_queue_end stop parallel execution.

PARI/GP, toward high performance computing for number theorists

Parallelism

PARI functions that support parallelism

I Algorithms based on the Chinese remainder theorem
(linear algebra and polynomial over the rationals).
I linear algebra over number fields
I resultants over number fields
I Modular polynomials and class polynomials

I Algorithms based on search of relations in a factor basis
(discrete logarithm, class groups)

I Primality testing
I Euler products of L-function
I Modular forms
I Table of number fields

PARI/GP, toward high performance computing for number theorists

Parallelism

Example of use

PARI/GP use generalized Kronecker interpolation to reduce
most elementary algebraic operations to multiplication of large
numbers that are then be computed in almost linear time. A
number of algebraic operations are implemented using the
Chinese remainder theorem strategy which has the advantage
to be easy to parallelize while being asymptotically fast, and
having good locality.

PARI/GP, toward high performance computing for number theorists

Parallelism

Mn(Fq)
lift−→ Mn(Fp[X])

Kronecker−→ Mn(Z)
red−→

∏
`

Mn(Z/`Z)

∏
`

Mn(Z/`Z)
squaring

99K
∏
`

Mn(Z/`Z)

∏
`

Mn(Z/`Z)
CRT−→ Mn(Z)

Kronecker−→ Mn(Fp[X])
red−→ Mn(Fq)

Figure: Square of a matrix over a finite field of large characteristic p

The operations are done in parallel coefficient-wise except the
squaring which is done in parallel over the small prime numbers
`.

PARI/GP, toward high performance computing for number theorists

Concept

Concept

The GP language provides functions that allow parallel
execution of GP code, subject to the following limitations: the
parallel code
I must be free of side effect,
I cannot access global variables
I instead access variables exported to the parallel world with

export.

PARI/GP, toward high performance computing for number theorists

Concept

Parallel algorithms
A number of PARI functions will use parallelism when available:

? default(timer,1);
? isprime(2^600+187)
cpu time = 1,244 ms, real time = 197 ms.
%2 = 1
? nbthreads = default(nbthreads);
? default(nbthreads,1)
? isprime(2^600+187)
time = 660 ms.
%5 = 1
? default(nbthreads,nbthreads);

Here the parallel version is three times faster. Under pthread,
the CPU time is the sum of the time used by all threads. The
realtime is smaller than the CPU time due to parallelism.

PARI/GP, toward high performance computing for number theorists

Concept

Simple examples
? ismersenne(x)=ispseudoprime(2^x-1);
? apply(ismersenne,primes(400))
cpu time = 1,248 ms, real time = 1,247 ms.
%7 = [1,1,1,1,0,1,1,1,0,0,1,0,0,0,0,0,0,1,0,...
? parapply(ismersenne,primes(400))
cpu time = 2,253 ms, real time = 298 ms.
%8 = [1,1,1,1,0,1,1,1,0,0,1,0,0,0,0,0,0,1,0,...
? select(ismersenne,primes(400))
cpu time = 1,192 ms, real time = 1,199 ms.
%9 = [2,3,5,7,13,17,19,31,61,89,107,127,521,607,1279,2203,2281]
? parselect(ismersenne,primes(400))
cpu time = 2,248 ms, real time = 299 ms.
%10 = [2,3,5,7,13,17,19,31,61,89,107,127,521,607,1279,2203,2281]

Compare the real time.

PARI/GP, toward high performance computing for number theorists

Concept

The parallel world

export is used to set values in the parallel world.

? ismersenne(x)=ispseudoprime(2^x-1);
? fun(V)=parvector(#V,i,ismersenne(V[i]));
? fun(primes(400))

*** parvector: mt: please use export(ismersenne)
> break
? export(ismersenne)
? fun(primes(400))

PARI/GP, toward high performance computing for number theorists

Concept

exportall

exportall exports all current global variables.

? V=primes(400);
? parvector(#V,i,ispseudoprime(2^V[i]-1))

*** parvector: mt: please use export(V).
> break
? exportall()
? parvector(#V,i,ispseudoprime(2^V[i]-1))

PARI/GP, toward high performance computing for number theorists

Using parfor

Using parfor

parfor is the parallel version of for which have both a
parallel section and a sequential section;

parfor(i=a,b,
/* parallel section, depend on i */
, R /* set to result of parallel section,
/* sequential sequention, depend on i and R */)

The parallel section is executed in parallel for all i , while the
sequential section is executed sequentially for all values of R
when they become available.

PARI/GP, toward high performance computing for number theorists

Using parfor/parforprime

Using parfor

? ismersenne(x)=ispseudoprime(2^x-1);
? export(ismersenne)
? parfor(p=1,999,ismersenne(p),c,if(c,print(p)))
? prodmersenne(N)=
{ my(R=1);
parforprime(p=1,N,
ismersenne(p),
c,
if(c, R*=p));

R;
}

? prodmersenne(1000)
cpu time = 108 ms, real time = 31 ms.
%13 = 637764906056784026430

PARI/GP, toward high performance computing for number theorists

Using parfor/parforprime

Using parforprime

? parforprime(p=1,999,ismersenne(p),c,\
if(c,print(p)))

? prodmersenne(N)=
{ my(R=1);
parforprime(p=1,N,
ismersenne(p),
c,
if(c, R*=p));

R;
}
? prodmersenne(1000)
%15 = 637764906056784026430

PARI/GP, toward high performance computing for number theorists

Using parfor/parforprime

return
? ismersenne(x)=ispseudoprime(2^x-1);
? export(ismersenne)
? findmersenne(a)=
{
parforprime(p=a,,ismersenne(p),c,
if(c,return(p)));

}
? findmersenne(4000)
cpu time = 2,600 ms, real time = 366 ms.
%17 = 4253
? findmersenne(8)
cpu time = 4 ms, real time = 1 ms.
%18 = 13
? findmersenne(8)
%19 = 13

PARI/GP, toward high performance computing for number theorists

Using parfor/parforprime

return

? parfirst(fun,V)=
parfor(i=1,#V,fun(V[i]),j,if(j,return([i,j])));

? parfirst(ismersenne,[4001..5000])
cpu time = 3,104 ms, real time = 442 ms.
%21 = [253,1]

	Introduction to PARI/GP
	The C interface
	Parallelism
	GP interface to parallelism
	Concept
	Using parfor
	Using parfor/parforprime

