
Introduction

to

parallel GP

(version 2.6.2)

The PARI Group

Institut de Mathématiques de Bordeaux, UMR 5251 du CNRS.
Université Bordeaux 1, 351 Cours de la Libération

F-33405 TALENCE Cedex, FRANCE
e-mail: pari@math.u-bordeaux.fr

Home Page:
http://pari.math.u-bordeaux.fr/

Copyright c© 2000–2013 The PARI Group

Permission is granted to make and distribute verbatim copies of this manual provided the copyright
notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions, or translations, of this manual
under the conditions for verbatim copying, provided also that the entire resulting derived work is
distributed under the terms of a permission notice identical to this one.

PARI/GP is Copyright c© 2000–2013 The PARI Group

PARI/GP is free software; you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation. It is distributed in the hope
that it will be useful, but WITHOUT ANY WARRANTY WHATSOEVER.

Table of Contents

Chapter 1: Parallel GP interface . 5
1.1 Configuration . 5

1.1.1 POSIX threads . 5

1.1.2 Message Passing Interface . 5

1.2 Concept . 6
1.2.1 Resources . 6

1.2.2 GP functions . 6

1.2.3 PARI functions . 6

Chapter 2: Writing code suitable for parallel execution 7
2.1 Avoiding global variables . 7

2.1.1 Example 1: data . 7

2.1.2 Example 2: polynomial variable . 8

2.1.3 Example 3: function . 8

2.2 Input and output . 9
2.3 Using parfor and parforprime . 9
2.4 Sizing parallel tasks . 10
2.5 Load balancing . 10

Index . 11

4

Chapter 1:

Parallel GP interface

1.1 Configuration.

This draft documents the (experimental) parallel GP interface. Two multithread interfaces
are supported:

• POSIX threads

• Message passing interface (MPI)

As a rule, POSIX threads are well-suited for single systems, while MPI is used by most clusters.
However the parallel GP interface does not depend on the multithread interface: a properly written
GP program will work identically with both.

1.1.1 POSIX threads.

POSIX threads are selected by passing the flag --mt=pthread to Configure. The required
library and header files are installed by default on most Linux system. Unfortunately this option
implies --enable-tls which makes the dynamically linked gp-dyn binary about 25% slower. Since
gp-sta is only 5% slower, you will definitely want to use the latter binary.

It is sometimes useful to pass the flag --time=ftime to Configure so that gettime and the
GP timer report real time instead of cumulated CPU time.

You can test parallel GP support with

make test-parallel

1.1.2 Message Passing Interface.

Configuring MPI is somewhat more difficult, but your MPI installation should include a script
mpicc that takes care of the necessary configuration. If you have a choice between several MPI
implementation, choose OpenMPI.

To configure for MPI, use

env CC=mpicc ./Configure --mt=mpi

To run the program fun.gp on 10 nodes, you can then use

mpirun -np 10 gp fun.gp

(or mpiexec instead of mpirun if such is the name used in your MPI implementation).

PARI requires at least 3 MPI nodes to work properly.

Note that mpirun is not suited for interactive use because it does not provide tty emulation.

You can test parallel GP support (here using 3 nodes) with

make test-parallel RUNTEST="mpirun -np 3"

5

1.2 Concept.

GP provides functions that allows parallel execution of GP code, subject to the following
limitations: the parallel code

• must not access global variables or local variables declared with local(),

• must be free of side effect.

Due to the overhead of parallelism, we recommend to split the computation so that each parallel
computation requires at least a few seconds. On the other hand, it is generally more efficient to
split the computation in small chunks rather than large chunks.

1.2.1 Resources.

The number of secondary threads to use is controlled by default(nbthreads). The default
value of nbthreads is:

• POSIX threads: the number of CPU threads (i.e. the number of CPU cores multiplied by
the hyperthreading factor). The default can be freely modified.

• MPI: the number of available process slots minus 1 (one slot is used by the master thread), as
configured with mpirun (or mpiexec). E.g nbthreads is 9 after mpirun -np 10 gp. It is possible
to change the default to a lower value, but increasing it will not work (MPI does not allow to span
new threads at run time).

PARI requires at least 3 nodes to work properly.

The PARI stack size in secondary threads is controlled by default(threadsize), so the total
memory allocated is equal to parisize + nbthreads × threadsize. By default, threadsize =
parisize.

1.2.2 GP functions.

GP provides the following functions for parallel operations:

• parvector: parallel version of vector

• parapply: parallel version of apply

• parsum: parallel version of sum

• pareval: evaluate a vector of closures in parallel

• parfor: parallel version of for

• parforprime: parallel version of forprime

Please see the documentation of each function for details.

1.2.3 PARI functions. The low-level libpari interface for parallelism is documented in the
Developer’s guide to the PARI library .

6

Chapter 2:

Writing code suitable for parallel execution

2.1 Avoiding global variables.

When parallel execution encounters a global variable var, the following error is reported:

*** parapply: mt: global variable not supported: var.

From a user perspective, global variables fall in three categories: data, functions, and polyno-
mial variables. We give some examples.

2.1.1 Example 1: data.

? V=[2^256 + 1, 2^193 - 1];

? parvector(#V,i,factor(V[i]))

*** parvector: mt: global variable not supported: V.

fails because V is a global variable in the expression factor(V[i]); the variable V must first be
converted to a local variable. There are several ways to achieve this:

• use parapply instead of parvector:

? V=[2^256 + 1, 2^193 - 1];

? parapply(factor,V)

Here V is not part of the parallel section of the code.

• use a wrapper function, and pass data as function arguments:

? V=[2^256 + 1, 2^193 - 1];

? fun(z)=parvector(#z,i,factor(z[i]));

? fun(V)

• define V as a local variable:

? my(V=[2^256 + 1, 2^193 - 1]); parvector(#V,i,factor(V[i]))

• redefine V as a local variable:

? V=[2^256 + 1, 2^193 - 1];

? my(V=V); parvector(#V,i,factor(V[i]))

• use inline, that replaces later occurences of that variable name by the variable content
(inlining):

? inline(V);

? V=[2^256 + 1, 2^193 - 1];

? parvector(#V,i,factor(V[i]))

Here V is inlined inside the function i->factor(V[i]).

7

2.1.2 Example 2: polynomial variable.

? fun(n)=bnfinit(x^n-2).no;

? parapply(fun,[1..50])

*** parapply: mt: global variable not supported: x.

The function fun should use the polynomial indeterminate ’x instead the global variable x

(whose value is ’x on startup, but may or may no longer be ’x at this point):

? fun(n)=bnfinit(’x^n-2).no;

or alternatively

? fun(n)=my(x=’x);bnfinit(x^n-2).no;

which is more readable if the same polynomial variable is used several times.

2.1.3 Example 3: function.

f(a) = bnfinit(’x^8-a).no;

g(a,b) = parsum(i=a,b,f(i));

? g(37,48)

*** parsum: mt: global variable not supported: f.

fails because the function f is a global variable (whose value is a function). This is identical to the
first example, and all solutions given there apply here:

• use inline

inline(f);

f(a) = bnfinit(’x^8-a).no;

g(a,b) = parsum(i=a,b,f(i));

? g(37,48)

• make f a parameter of g:

f(a) = bnfinit(’x^8-a).no;

g(a,b,f) = parsum(i=a,b,f(i));

? g(37,48,f)

• define f as a local variable:

{

my(f(a) = bnfinit(’x^8-a).no);

g(a,b) = parsum(i=a,b,f(i));

}

? g(37,48)

• redefine f as a local variable:

? f(a) = bnfinit(’x^8-a).no;

? my(f=f); g(a,b) = parsum(i=a,b,f(i));

? g(37,48)

8

2.2 Input and output.

If your parallel code needs to write data to files, we recommend to split the output in as many
files as the number of parallel computations, to avoid concurrent writes to the same file.

For example a parallel version of

? f(a) = write("bnf",bnfinit(’x^8-a));

? apply(f,[37..48])

could be

? f(a) = write(Str("bnf/bnf-",a), bnfinit(’x^8-a).no); 0

? parapply(f,[37..48])

which creates the files bnf/bnf-37 to bnf/bnf-48.

2.3 Using parfor and parforprime.

parfor and parforprime are the most powerful of all parallel GP functions but since they
have a different interface than for and forprime, the code needs to be adapted. Consider the
example

for(i=a,b,

my(c = f(i));

g(i,c));

where f is a function without side-effects. This can be run in parallel as follows:

parfor(i=a, b,

f(i),

c, /* the value of f(i) is assigned to c */

g(i,c));

For each i, a ≤ i ≤ b, in random order, this construction assigns f(i) to (local, as per my) variable
c, then calls g(i, c).

The following function finds the index of the first component of a vector satisfying a predicate,
and 0 if none satisfies:

parfirst(pred,V)=

{

parfor(i=1, #V,

pred(V[i]),

cond,

if(cond, return(i));

0

}

The following function is similar to parsum:

myparsum(a,b,expr)=

{

my(s = 0);

parfor(i=a, b,

9

expr(i),

val,

s += val);

val

}

2.4 Sizing parallel tasks.

Dispatching tasks to parallel threads takes time. To limit overhead, we recommend to split
the computation in tasks so that each parallel task requires at least a few seconds. Consider the
following example:

thuemorse(n)= my(V=binary(n)); (-1)^n*sum(i=1,#V,V[i]);

sum(n=1,2*10^6, thuemorse(n)/n*1.)

It is natural to try

inline(thuemorse);

thuemorse(n)= my(V=binary(n)); (-1)^n*sum(i=1,#V,V[i]);

parsum(n=1,2*10^6, thuemorse(n)/n*1.)

However, due to the overhead, this will not be much faster than the sequential version. To limit
overhead, we group the summation by blocks:

parsum(N=1,20, sum(n=1+(N-1)*10^5, N*10^5, thuemorse(n)/n*1.))

Try to create at least as many groups as the number of available threads, to take full advantage of
parallelism.

2.5 Load balancing.

If the parallel tasks require varying time to complete, it is preferable to perform the slower
ones first, when there are more tasks than available parallel threads. Instead of

parvector(36,i,bnfinit(’x^i-2).no)

doing

parvector(36,i,bnfinit(’x^(37-i)-2).no)

will be faster if you have fewer than 36 threads.

Indeed, parvector schedules tasks by increasing i values, and the computation time increases
steeply with i. With 18 threads, say:

• in the first form, thread 1 handles both i = 1 and i = 19, while thread 18 will likely handle
i = 18 and i = 36. In fact, it is likely that the first batch of tasks i ≤ 18 runs relatively quickly, but
that none of the threads handling a value i > 18 (second task) will have time to complete before
i = 18. When that thread finishes i = 18, it will pick the remaining task i = 36.

• in the second form, thread 1 will likely handle only i = 36: tasks i = 36, 35, . . . 19 go to the
available 18 threads, and i = 36 is likely to finish last, when i = 18, . . . , 2 are already assigned to
the other 17 threads. Since the small values of i will finish almost instantly, i = 1 will have been
allocated before the initial thread handling i = 36 becomes ready again.

Load distribution is clearly more favourable in the second form.

10

Index

SomeWord refers to PARI-GP concepts.
SomeWord is a PARI-GP keyword.
SomeWord is a generic index entry.

P

parapply 6
pareval . 6
parfor . 6
parforprime 6
parsum . 6
parvector 6

11

	1 Parallel GP interface
	1.1 Configuration
	1.2 Concept

	2 Writing code suitable for parallel execution
	2.1 Avoiding global variables
	2.2 Input and output
	2.3 Using {�am 	tfam 	entt parfor} and {�am 	tfam 	entt parforprime}
	2.4 Sizing parallel tasks
	2.5 Load balancing
	Index

