# ON THE COMPUTATION OF EMBEDDINGS AND SPLITTING FIELDS OF NUMBER FIELDS. 

B. ALLOMBERT


#### Abstract

We describe an algorithm for computing the embeddings and the splitting field of a number field which makes use of factorization of polynomials over number fields in a novel way.


## 1. Embedding of number fields

1.1. Introduction. Let $S, T \in \mathbb{Z}[X]$ be monic irreducible polynomials and assume that $\operatorname{deg} S<\operatorname{deg} T$. The object of this note is the computation of the embeddings between $K=\mathbb{Q}[X] /(S)$ and $L=\mathbb{Q}[X] /(T)$, if any. Such homomorphism can be specified by the image of $X(\bmod S)$ in $L$.

The classical algorithm to solve this problem relies on computing the roots of $S$ in $L$ which requires to perform algebraic numbers reconstructions in $L$. The algorithm presented is this note relies on the factorization of $T$ over $K$, which only requires to perform algebraic numbers reconstructions in the smaller field $K$.

In this section we compute the factorization of the étale algebra $A=$ $K \otimes_{\mathbb{Q}} L \cong \mathbb{Q}[X, Y] /(T(X), S(Y))$ as a product of fields in two different ways.

First note that $A$ is isomorphic both to $L[X] /(S(X))$ and $K[X] /(T(X))$.
Denote by $S(Y)=\prod_{i=1}^{n} S_{i}(Y)$ the factorization of $S$ as a product on monic irreducible polynomials over $L$. Note that $S$ being irreducible implies that the $S_{i}$ are distinct. By the Chinese remainder theorem,

$$
A \cong \prod_{i=1}^{n} L[Y] /\left(S_{i}(Y)\right) \cong \prod_{i=1}^{n} \mathbb{Q}[X, Y] /\left(T(X), S_{i}(X, Y)\right)
$$

where $\left.S_{i}(X, Y)\right)$ is the lift of $S_{i}(Y)$ in $(\mathbb{Q}[X] /(T(X)))[Y]$ to $\mathbb{Q}[X, Y]$. In the same way, if $T(Y)=\prod_{i=1}^{m} T_{i}(Y)$, then

$$
A \cong \prod_{i=1}^{m} K[Y] /\left(T_{i}(Y)\right) \cong \prod_{i=1}^{m} \mathbb{Q}[X, Y] /\left(S(X), T_{i}(X, Y)\right)
$$

where $\left.T_{i}(X, Y)\right)$ is the lift of $T_{i}(Y)$ in $(\mathbb{Q}[X] /(S(X)))[Y]$ to $\mathbb{Q}[X, Y]$.
Since $A$ is étale, the factorization as a product of fields is unique. In particular $n=m$. The codimension of the ideal $\left(T(X), S_{i}(X, Y)\right)$ is equal to $\operatorname{deg} T(X) \operatorname{deg} S_{i}(Y)$ and the codimension of the ideal $\left(S(X), T_{i}(X, Y)\right)$ is equal to $\operatorname{deg} S(X) \operatorname{deg} T_{i}(Y)$.

Date: on November 17, 2020.
1991 Mathematics Subject Classification. Primary 11Y40.
Key words and phrases. Number field, Algorithm.

In particular, the number of embeddings is equal to the number of $S_{i}$ such that $\operatorname{deg} S_{i}=1$, which is equal to the number of $T_{i}$ such that $\operatorname{deg} T_{i}=\frac{\operatorname{deg} T}{\operatorname{deg} S}$.
1.2. Elimination theory. Let $\left(S(X), T_{i}(X, Y)\right)$ an ideal of $\mathbb{Q}[X, Y]$ such that $S$ is irreducible over $\mathbb{Q}$ and $T_{i}(X, Y)(\bmod S)$ is irreducible over $\mathbb{Q}(X) /(S(X))$. Then by elimination theory, it exists two polynomials $T(Y)$ and $S_{i}(X, Y)$ such that $\left(T(X), S_{i}(X, Y)\right)=\left(S(Y), T_{i}(X, Y)\right)$. Then can be computed explicitly using resultants and the concept of Last non-constant polynomial in the Euclidean remainder sequence (LERS). Precisely:

$$
\begin{array}{r}
T(Y)=\operatorname{Res}_{X}\left(S(X), T_{i}(X, Y)\right) \\
S_{i}(X, Y)=\operatorname{LERS}_{X}\left(S(X), T_{i}(X, Y)\right) \tag{2}
\end{array}
$$

Both can be computed efficiently using multimodular quasi-linear algorithms. Note that when computed this way, $S_{i}$ is not monic in general, which can be advantageous, see below.
1.3. Computing the embeddings. Starting from a factor $T_{i}$ of degree $\frac{\operatorname{deg} T}{\operatorname{deg} S}$, the previous section leads to a polynomial $S_{i}$ such that $\operatorname{deg}_{X} S_{i}=1$, which can be written as $S_{i}(X, Y)=A(Y) X+B(Y)$ where $A$ and $B$ are polynomials in $\mathbb{Q}[Y]$ of degree strictly less than $\operatorname{deg} T$.

So the corresponding root of $S$ in $\mathbb{Q}[X] /(T(X))$ is $-B(X) / A(X)(\bmod T)(X)$. Using multimodular division algorithms, it is possible to find $R(X) \in \mathbb{Q}[X]$ such that $R(X) \equiv-B(X) / A(X)(\bmod T(X))$ which the embedding requested. However $R$ is in general much larger that $A$ and $B$ so for a number of applications it can be preferable to return $-B(X) / A(X)$ as a rational function.
1.4. The algorithm. This leads to the following algorithm:

Algorithme 1. Let $S$ and $T$ be monic irreducible polynomials over $\mathbb{Q}$, the following algorithm returns the embeddings from $\mathbb{Q}[X] /(S(X))$ to $\mathbb{Q}[X] /(T(X))$.
(1) Compute the factorization of $T$ over $\mathbb{Q}[Y] /(S(Y))$ as $T(X)=\prod_{i=1}^{n} T_{i}(X)$.
(2) For all factors $T_{i}$ of degree $\frac{\operatorname{deg} T}{\operatorname{deg} S}$, compute $S_{i}(X)=L E R S_{X}\left(S(X), T_{i}(X, Y)\right)$.
(3) For each $S_{i}$, return the quotient $-B(X) / A(X)(\bmod T(X))$.

## 2. Computing Splitting fields

Let $T$ be monic irreducible polynomial over $\mathbb{Q}$. The splitting field of $K=\mathbb{Q}[X] /(T(X))$ is the smallest field $L$ such that $L \otimes K \cong L^{\operatorname{deg} T}$.

The following algorithm balances the costs of factorization with the cost of algebraic numbers reconstructions by doing all the factorizations over $K$.

Algorithme 2. Set $K=\mathbb{Q}[Y] /(T(Y)), L_{0}=T$ and for $j=0,1,2, \ldots$ do
(1) factor $L_{j}(X)$ over $K$ as $L_{j}(X)=\prod_{i=1}^{n} F_{i}(X, Y)(\bmod T(Y))$.
(2) if $n=\operatorname{deg} T$, return $L_{j}$.
(3) otherwise let $S$ be one of the $T_{i}$ of maximal degree, find a small integer $k$ such that $R(X)=\operatorname{Res}_{Y}(S(X+k Y, Y), T(Y))$ is squarefree.
(4) $\operatorname{Set} L_{j+1}=R$.

Bill Allombert, imB, Université de Bordeaux, 351 cours de la Libération, 33405 Talence, France.

Email address: allomber@math.u-bordeaux.fr

