On the computation of automorphisms of a Nilpotent Galois extension of number field

B. Allombert

IMB
CNRS/Université Bordeaux 1

$$
18 / 12 / 2018
$$

Introduction

Let $T \in \mathbb{Z}[X]$ be a monic irreducible polynomial and assume that T is totally split over the splitting field $L=\mathbb{Q}[X] /(T)$. This is equivalent to say that L / \mathbb{Q} is a Galois extension.
The set S of roots of T over L are in bijection with the group $\operatorname{Gal}(L / \mathbb{Q}):$

$$
\begin{aligned}
& S \rightarrow(\mathbb{Q}[X] /(T) \rightarrow L) \\
& \alpha \rightarrow(P(X) \mapsto P(\alpha))
\end{aligned}
$$

The goal is to compute the set S and its group structure.

Factorization over number fields

Let p be prime number such that T is squarefree modulo p. Let P be the set of maximal ideals of \mathcal{O}_{K} above p so that $p \mathcal{O}_{L}=\prod_{\mathfrak{p} \in P} \mathfrak{p}, g=|P|$ and f the residual degree. Classical polynomial method (nfroots) : Pick an element \mathfrak{p} of P, find the solutions of

$$
T(S)=0 \quad(\bmod \mathfrak{p})
$$

lift them to $L_{\mathfrak{p}}$ and try to identify them as algebraic number using LLL (Lenstra).
Problem : Since we are using a single prime ideal, the precision is huge and LLL will is very costly.
Fundamental remark: When \mathfrak{p} is inert it is much easier, no LLL is needed it is only a matter of recognizing the rational coefficients.

Frobenius lift

For any $\mathfrak{p} \in P$, there exists an unique $\phi \in G$ such that

$$
\phi(x)=x^{p} \quad(\bmod \mathfrak{p})
$$

(the Frobenius element). G acts transitively on P, so $P=\{\tau(\mathfrak{p}) \mid \tau \in G\}$. For all $\tau \in G$ we have

$$
\tau \phi \tau^{-1}(x)=x^{p} \quad(\bmod \tau(\mathfrak{p}))
$$

In particular if ϕ is in the center of G, then

$$
\phi(x)=x^{p} \quad(\bmod \tau(\mathfrak{p}))
$$

for all τ and so by Chinese remainder theorem,

$$
\phi(x)=x^{p} \quad\left(\bmod p \mathbb{Z}_{L}\right) .
$$

Lifting algorithm

In my thesis I give a detailed algorithm for the following problem.
Let Φ the natural map from G to

$$
A=\operatorname{Aut}\left(\mathbb{Z}_{L} / p \mathbb{Z}_{L}\right) \cong \operatorname{Aut}\left(\mathbb{F}_{p}[X] / T\right)
$$

There exist an a polynomial-time algorithm that determines whether an element $a \in A$ is in the image of Φ and if so returns the corresponding element s of S. If some precomputation depending only on G and p are performed, the algorithm is very efficient.

$$
A \cong \operatorname{Aut}\left(\mathbb{F}_{p}[X] / T\right) \cong C_{f}\left\langle\mathfrak{S}_{g}\right.
$$

If p is inert, then Φ is an isomorphism, otherwise it is only one-to-one, A being of order $f^{g} g$! which is much larger than n. If p is totall split, then $A=\mathfrak{S}_{n}$. This allows to represent the elements of G by simple permutation, which makes composing them much faster.

The Abelian case

Acciaro-Klüners algorithm :
Apply the previous algorithm to the Frobenius

$$
\phi(x)=x^{p} \quad(\bmod p, T)
$$

for various primes p until either it fails (then we know the group is not abelian) or until we have a set of generators (then we know the group is abelian).
Polynomial-time under GRH.

The supersolvable case

In my thesis, I describe an algorithm (used by galoisinit) that works for supersolvable groups, but is not polynomial-time. In practice, the smallest groups where the algorithm is too slow to be useful are of order $125=5^{3}$ and are nilpotent.

A group G is supersolvable if

- G is trivial or
- G admits a non-trivial cyclic normal subgroup F such that G / F is supersolvable.
A group G is nilpotent if
- G is trivial or
- G admits a non-trivial cyclic central subgroup F such that G / F is nilpotent.
p-groups are always nilpotent.

Stucture

It follows that in both case there is a family of generators $\left(g_{i}\right)_{i=1}^{n}$, a tower of subgroups $G_{i}=\left\langle g_{1}, \ldots, g_{i}\right\rangle$ such that $G=G_{n}$ and g_{i} $\left(\bmod G_{i-1}\right)$ is normal (resp. central) in G / G_{i-1}. Furthermore

- for all $h \in G,\left[h, g_{i}\right] \in G_{i}\left(\right.$ resp. $\left.\left[h, g_{i}\right] \in G_{i-1}\right)$,
- the order of $g_{i}\left(\bmod G_{i}\right)$ is noted o_{i} and is called the relative order of g_{i},
- an element of G can be written uniquely as a product $g_{1}^{e_{1}} \ldots g_{n}^{e_{n}}$ with $0 \leq e_{j}<o_{j}$ for $1 \leq j \leq n$.

The nilpotent case

If G is nilpotent, then $Z(G)$ is non trivial, so we can try to find \mathfrak{p} non totally split such that the Frobenius ϕ is in $Z(G)$ in which case :

$$
\phi(x)=x^{p} \quad(\bmod \tau \mathfrak{p})
$$

for all τ of G and so

$$
\phi(x)=x^{p} \quad(\bmod p, T)
$$

which we can lift to a solution in L with the above algorithm. If the algorithm returns false, we try another prime p. Under the Čebotarev density theorem, the probability of success is $(|Z(G)|-1) /(|G|-1)$ if we reject totally split primes (which occurs with probability $1 /|G|)$.

Lifting

The problem is actually to get the other solutions. In my thesis, I explain how to compute the fixed field K of L by ϕ. $H=G /\langle\phi\rangle=\operatorname{Gal}(K / \mathbb{Q})$ is also nilpotent so we can apply the algorithm recursively. From this, we will recover the automorphisms of K, the generators of H as a nilpotent group, and for each generators a prime ideal of K such that the generator is the Frobenius of such prime.

Lifting

So let $\sigma \in H$ that is the Frobenius of some prime ideal \mathfrak{q} in K above some prime $p \in \mathbb{Z}$. We pick a prime ideal \mathfrak{p} above \mathfrak{q} in L and extend σ to L to the Frobenius of \mathfrak{p}. Since ϕ is central, we have for all k

$$
\sigma(x)=x^{p} \quad\left(\bmod \phi^{k}(\mathfrak{p})\right)
$$

so by Chinese remainder,

$$
\sigma(x)=x^{p} \quad\left(\bmod \mathfrak{q} \mathbb{Z}_{L}\right)
$$

and so for any τ

$$
\tau \sigma \tau^{-1}(x)=x^{p} \quad\left(\bmod \tau(\mathfrak{q}) \mathbb{Z}_{L}\right)
$$

Bracket formula

We obtain the important formula :

$$
[\tau, \sigma](x)^{p^{f-1}}=\sigma^{-1}(x) \quad\left(\bmod \tau(\mathfrak{q}) \mathbb{Z}_{L}\right)
$$

Now assuming we have already computed $[\tau, \sigma]$ for all τ, we obtain the quantity $\sigma^{-1}(x)$ modulo all the conjugates of \mathfrak{q}, and so we can apply our algorithm to recover σ.
So we should start with $F=\langle\phi\rangle$, find σ such that $[G, \sigma] \subseteq F$, lift it, add it to F and continue...
Howeve since we do not know yet the group G, we have no way to compute the bracket $[\tau, \sigma]$. To solve this problem with a polynomial number of guesses we use the presentations of nilpotent groups (Ph. Hall).

Polycyclic presentation

A nilpotent polycyclic presentation over the free generators g_{1}, \ldots, g_{n} is given by

- Relative orders $\left(o_{i}\right)_{i=1}^{n}$
- Powers $\left(u_{i}\right)_{i=1}^{n}\left(u_{i}\right.$ is a word in $\left.g_{1}, \ldots, g_{i-1}\right)$
- Brackets $\left(w_{j, i}\right)_{1 \leq i<j \leq n}\left(w_{j, i}\right.$ is a word in $\left.g_{1}, \ldots, g_{i-1}\right)$

$$
G=\left\langle g_{1}, \ldots, g_{n} \mid \forall 1 \leq i<j \leq n \quad g_{i}^{o_{i}}=u_{i},\left[g_{j}, g_{i}\right]=w_{j, i}\right\rangle
$$

$D_{8}:\left\langle g_{1}, g_{2}, g_{3} \mid g_{1}^{2}=g_{3}^{2}=1, g_{2}^{2}=g_{1},\left[g_{1}, g_{2}\right]=\left[g_{1}, g_{3}\right]=1,\left[g_{2}, g_{3}\right]=g_{1}\right\rangle$
$H_{8}:\left\langle g_{1}, g_{2}, g_{3} \mid g_{1}^{2}=1, g_{2}^{2}=g_{3}^{2}=g_{1},\left[g_{1}, g_{2}\right]=\left[g_{1}, g_{3}\right]=1,\left[g_{2}, g_{3}\right]=g_{1}\right\rangle$

A reduced word is a word of the form $g_{1}^{e_{1}} \ldots g_{n}^{e_{n}}$ with $0 \leq e_{j}<o_{j}$ for $1 \leq j \leq n$. Every elements of G can be represented uniquely as a reduced word.

- Reduction algorithm (Ph. Hall) : Use the bracket relation $g_{j} g_{i}=w_{i, j} g_{i} g j$ to reorder the terms. Whenever $g_{i}^{o_{i}}$ appears, replace by u_{i}. It terminate because all letters of $w_{i, j}$ and u_{i} come before i.
- Multiplication : we concatenate the words and reduce the result.
- Quotient : the presentation of $G /\left\langle g_{1}\right\rangle$ is obtained by removing the letter g_{1} from w and u.

We assume we have been able to find the words u and w modulo g_{1}. Since g_{1} is in the center the word u and w are just missing some power of g_{1} at the start.
We proceed in order. g_{k} modulo $\left\langle g_{1}\right\rangle$ is the Frobenius of some prime ideal $\mathfrak{q}_{k} \in K$ above some pime p_{k}, so we pick some prime ideal $\mathfrak{p}_{k} \in L$ above \mathfrak{q}_{k}, and we lift g_{k} to its Frobenius.

$$
\begin{gathered}
g_{k}(x)=x^{p_{k}} \quad\left(\bmod \mathfrak{p}_{k}\right) \\
{\left[h, g_{k}\right](x)=g_{k}^{-1}(x)^{p_{k}} \quad\left(\bmod h\left(\mathfrak{p}_{k}\right)\right)}
\end{gathered}
$$

w	g_{3}	g_{4}	g_{5}
g_{2}	$w_{3,2}$	$w_{4,2}$	$w_{5,2}$
g_{3}		$w_{4,3}$	$w_{5,3}$
g_{4}			$w_{5,4}$

Let us assume we already determined the group G_{k-1} and the relations $w_{i, j}$ for $1 \leq j \leq k-1$ and $i>j$. We want to find g_{k}. We will try all possible lifts of the $w_{i, k}$ for all $k<i \leq n$, where lifing means adding some power of g_{1} to the word.

Let R a set of representative of $H /\left\langle g_{k}\right\rangle$. We can take for R the set of reduced words that do not involve g_{1} and g_{k}.
For each $h \in R$ we need to compute $\left[h, g_{k}\right]$. We proceed as follow: we write $h=h_{l} h_{r}$ where h_{l} is the part with generators of index $i<k$, and h_{r} is the part with generators of index $i>k$.
Since g_{k} is in the center of G_{n} / G_{k-1}, it exists h_{l}^{\prime} and $h_{l}^{\prime \prime}$ in G_{k-1} such that $h g_{k}=h_{l}^{\prime} g_{k} h_{r} g_{k} h=h_{l}^{\prime \prime} g_{k} h_{r}$ and moreover the computation of the words h_{l}^{\prime} and $h_{l}^{\prime \prime}$ only requires the knowledge of the $w_{i, j}$ for $1 \leq j \leq k$ and $i>j$.

We obtain $\left[h, g_{k}\right]=h_{l}^{\prime}\left(h_{l}^{\prime \prime}\right)^{-1}$. This way we can write $\left[h, g_{k}\right]$ as a product of the elements g_{j} for $1 \leq j \leq k-1$ which we have already computed.
We compute $\left[h, g_{k}\right]$ for all $h \in H$, and we apply the Chinese remainder to the formulas for all $h \in H$

$$
\left[h, g_{k}\right](x)=g_{k}^{-1}(x)^{p_{k}} \quad\left(\bmod h \mathfrak{p}_{k}\right)
$$

and we use the lifting algorithm to recover g_{k}. At this point we can compute $g_{k}^{o_{k}}$ to lift u_{k}.

Complexity

We can reduce the problem to a group of order p^{n} where all the relatives orders are p. We see that the number of choice to try to find g_{2} is p^{n-2}, p^{n-3} for g_{3} etc. which leads to a total number of choice of $\left(p^{n-1}-p\right) /(p-1)$ which is less that the order of the group.
If the group is abelian, then this algorithm is slightly faster than Acciaro-Klüners algorithm.

The super-solvable case

Let assume $\langle\phi\rangle$ is normal instead of central. Then for all τ there exists k such that $\tau \phi \tau^{-1}=\phi^{k}$ and so

$$
\phi^{k}(x)=x^{p} \quad\left(\bmod \tau(\mathfrak{q}) \mathbb{Z}_{L}\right)
$$

which leads to

$$
\phi(x)=x^{p^{\prime}} \quad\left(\bmod \tau(\mathfrak{q}) \mathbb{Z}_{L}\right)
$$

for l such that $l k=1(\bmod f)$.
We recover ϕ by trying all the admissible functions from P to $(\mathbb{Z} / f \mathbb{Z})^{\times}$.
This is subexponential in the worse case of $C_{p} \rtimes C_{p-1}$, there is ($p-2$)! possible functions to test. However the lifting part is in exponential time (α^{n} with $\alpha \leq 5^{4 / 25} \sim 1.29370$), so ideally we would like to find a better way for lifting.

