The functions in this section depend on \([Q(f) : Q(\chi)]\) as above. Initialize symbol \(f\) attached to \(f\) evaluate symbol \(s\) on path \(p\) Peterson product of \(f\) and \(g\) period polynomial of \(f\) period polynomials for eigenbasis \(FS\) modulo \(C\)

\[\begin{align*}
\text{forms embedded into } C \\
\text{Given a modular form } f \text{ in } M_k(\Gamma_0(N), \chi) \text{ its field of definition } Q(f) \\
\text{has } n = [Q(f) : Q(\chi)] \text{ embeddings into the complex numbers. If } n = 1, \\
\text{the following functions return a single answer, attached to} \\
\text{the canonical embedding of } f \text{ in } C[\overline{\chi}]; \text{ else a vector of } n \text{ results,} \\
\text{corresponding to the } n \text{ conjugates of } f. \\
\text{complex embeddings of } Q(f) \text{ and } \text{evalf}(f, r) \\
\text{L-function attached to } f \\
\text{...eigenforms of new space } M \\
\text{Periods and symbols}
\end{align*}\]
Modular Symbols

Let $G = \Gamma_0(N)$, $V_k = \mathbb{Q}[X,Y][k^{-2}]$, $L_k = \mathbb{Z}[X,Y][k^{-2}]$. We let $\Delta = \text{Div}_{X_0(N),V_k}$; an element of Δ is a path between cusps of $X_0(N)$ via the identification $[b] - [a]$ to the path from a to b. A path is coded by the pair $[a,b]$, where a,b are rationals or ∞, denoting the point at infinity $(1:0)$.

Let $M_k(G) = \text{Hom}_\mathbb{Z}(\Delta, V_k) \cong H^1_{\text{cusp}}(X_0(N),V_k)$; an element of $M_k(G)$ is a V_k-valued modular symbol. There is a natural decomposition $M_k(G) = M_k(G)^+ \oplus M_k(G)^-$ under the action of the $*$ involution, induced by complex conjugation. The msinit function computes either M_k ($\epsilon = 0$) or its \pm-parts ($\epsilon = \pm 1$) and fixes a minimal set of $\mathbb{Z}[G]$-generators (g_i) of Δ.

- Initialize $M = M_k(\Gamma_0(N))^\epsilon$.
- The level M.
- The weight k.
- The sign ϵ.
- Farey symbol attached to G.

$\mathbb{Z}[G]$-generators (g_i) and relations for Δ.

Create a symbol

Eisenstein symbol attached to cusp c.

Cuspidal symbol attached to E/Q.

Symbol having given Hecke eigenvalues is a symbol?

Operations on symbols

- The list of all $s(g_i)$.
- Evaluate symbol s on path $p = [a,b]$.

Operators on subspaces

An operator is given by a matrix of a fixed \mathbb{Q}-basis. H, if given, is a stable \mathbb{Q}-subspace of $M_k(G)$: operator is restricted to H.

- Matrix of Hecke operator T_p or U_p.
- Matrix of Atkin-Lehner w_Q.
- Matrix of the $*$ involution.

Subspaces

A subspace is given by a structure allowing quick projection and restriction of linear operators. Its fist component is a matrix with integer coefficients whose columns for a \mathbb{Q}-basis. If H is a Hecke-stable subspace of $M_k(G)^+$ or $M_k(G)^-$, it can be split into a direct sum of Hecke-simple subspaces. To a simple subspace corresponds a single normalized newform $\sum_n a_n q^n$.

Eisenstein subspace $E_k(G)^\epsilon$.

New part of $S_k(G)^\epsilon$.

Split H into simple subspaces (of dim $\leq d$).

Dimension of a subspace.

For attached newform $\text{msdelta}(M, H, \{B\})$.

\mathbb{Z}-structure from $H^1(G, L_k)$ on subspace A.

Overconvergent symbols and p-adic L functions

Let M be a full modular symbol space given by msinit and p be a prime. To a classical modular symbol ϕ of level N ($v_p(N) \leq 1$), which is an eigenvector for T_p with non-zero eigenvalue a_p, we can attach a p-adic L-function L_p. The function L_p is defined on continuous characters of $\text{Gal}(\mathbb{Q}(\mu_{p^\infty})/\mathbb{Q})$; in GP we allow characters $(\chi_n)_{n \geq 1}$, where (s_1,s_2) are integers, r is the Teichmüller character and χ is the cyclotomic character.

The symbol ϕ can be lifted to an overconvergent symbol Φ, taking values in spaces of p-adic distributions (represented in GP by a list of moments modulo p^k).

mspadicinit precomputes data used to lift symbols. If flag, it speeds up the computation by assuming that $v_p(a_p) = 0$ if $\text{flag} = 0$ (fastest), and that $v_p(a_p) \geq \text{flag}$ otherwise (faster as flag increases).

mspadicmoments computes distributions μ attached to Φ allowing to compute L_p to high accuracy.

Based on an earlier version by Joseph H. Silverman

July 2018 v2.35. Copyright © 2018 K. Belabas

Permission is granted to make and distribute copies of this card provided the copyright and this permission notice are preserved on all copies.

Send comments and corrections to (Karim.Belabas@math.u-bordeaux.fr)