User’s Guide

to

the PARI library

(version 2.11.0)

The PARI Group

Institut de Mathématiques de Bordeaux, UMR 5251 du CNRS.
Université de Bordeaux, 351 Cours de la Libération
F-33405 TALENCE Cedex, FRANCE
e-mail: pari@math.u-bordeaux.fr

Home Page:
http://pari.math.u-bordeaux.fr/
Table of Contents

Chapter 4: Programming PARI in Library Mode 13

4.1 Introduction: initializations, universal objects 13

4.2 Important technical notes ... 14
 4.2.1 Backward compatibility ... 14
 4.2.2 Types ... 14
 4.2.3 Type recursivity ... 15
 4.2.4 Variations on basic functions .. 15
 4.2.5 Portability: 32-bit / 64-bit architectures 16
 4.2.6 Using malloc / free .. 17

4.3 Garbage collection .. 17
 4.3.1 Why and how .. 17
 4.3.2 Variants ... 20
 4.3.3 Examples ... 20
 4.3.4 Comments ... 24

4.4 Creation of PARI objects, assignments, conversions 24
 4.4.1 Creation of PARI objects ... 24
 4.4.2 Sizes ... 26
 4.4.3 Assignments .. 26
 4.4.4 Copy ... 27
 4.4.5 Clones ... 27
 4.4.6 Conversions ... 28

4.5 Implementation of the PARI types .. 28
 4.5.1 Type t_INT (integer) .. 29
 4.5.2 Type t_REAL (real number) ... 30
 4.5.3 Type t_INTMOD ... 31
 4.5.4 Type t_FRAC (rational number) 31
 4.5.5 Type t_FFELT (finite field element) 31
 4.5.6 Type t_COMPLEX (complex number) 31
 4.5.7 Type t_PADIC (p-adic numbers) 31
 4.5.8 Type t_QUAD (quadratic number) 32
 4.5.9 Type t_POLMOD (polmod) ... 32
 4.5.10 Type t_POL (polynomial) .. 32
 4.5.11 Type t_SER (power series) ... 33
 4.5.12 Type t_RFRAC (rational function) 33
 4.5.13 Type t_QFR (indefinite binary quadratic form) 33
 4.5.14 Type t_QFI (definite binary quadratic form) 34
 4.5.15 Type t_VEC and t_COL (vector) 34
 4.5.16 Type t_MAT (matrix) .. 34
 4.5.17 Type t_VECSMALL (vector of small integers) 34
 4.5.18 Type t_STR (character string) 34
 4.5.19 Type t_ERROR (error context) 34
 4.5.20 Type t_CLOSURE (closure) ... 34
 4.5.21 Type t_INFINITY (infinity) .. 34
 4.5.22 Type t_LIST (list) .. 34

4.6 PARI variables ... 35
 4.6.1 Multivariate objects .. 35
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.6.2 Creating variables</td>
<td>35</td>
</tr>
<tr>
<td>4.6.3 Comparing variables</td>
<td>37</td>
</tr>
<tr>
<td>4.7 Input and output</td>
<td>37</td>
</tr>
<tr>
<td>4.7.1 Input</td>
<td>37</td>
</tr>
<tr>
<td>4.7.2 Output to screen or file, output to string</td>
<td>38</td>
</tr>
<tr>
<td>4.7.3 Errors</td>
<td>39</td>
</tr>
<tr>
<td>4.7.4 Warnings</td>
<td>40</td>
</tr>
<tr>
<td>4.7.5 Debugging output</td>
<td>40</td>
</tr>
<tr>
<td>4.7.6 Timers and timing output</td>
<td>41</td>
</tr>
<tr>
<td>4.8 Iterators, Numerical integration, Sums, Products</td>
<td>42</td>
</tr>
<tr>
<td>4.8.1 Iterators</td>
<td>42</td>
</tr>
<tr>
<td>4.8.2 Iterating over primes</td>
<td>43</td>
</tr>
<tr>
<td>4.8.3 Numerical analysis</td>
<td>44</td>
</tr>
<tr>
<td>4.9 Catching exceptions</td>
<td>45</td>
</tr>
<tr>
<td>4.9.1 Basic use</td>
<td>45</td>
</tr>
<tr>
<td>4.9.2 Advanced use</td>
<td>45</td>
</tr>
<tr>
<td>4.10 A complete program</td>
<td>46</td>
</tr>
<tr>
<td>Chapter 5: Technical Reference Guide: the basics</td>
<td>49</td>
</tr>
<tr>
<td>5.1 Initializing the library</td>
<td>49</td>
</tr>
<tr>
<td>5.1.1 General purpose</td>
<td>49</td>
</tr>
<tr>
<td>5.1.2 Technical functions</td>
<td>50</td>
</tr>
<tr>
<td>5.1.3 Notions specific to the GP interpreter</td>
<td>52</td>
</tr>
<tr>
<td>5.1.4 Public callbacks</td>
<td>53</td>
</tr>
<tr>
<td>5.1.5 Configuration variables</td>
<td>54</td>
</tr>
<tr>
<td>5.1.6 Utility functions</td>
<td>54</td>
</tr>
<tr>
<td>5.1.7 Saving and restoring the GP context</td>
<td>55</td>
</tr>
<tr>
<td>5.1.8 GP history</td>
<td>55</td>
</tr>
<tr>
<td>5.2 Handling GENs</td>
<td>55</td>
</tr>
<tr>
<td>5.2.1 Allocation</td>
<td>56</td>
</tr>
<tr>
<td>5.2.2 Length conversions</td>
<td>57</td>
</tr>
<tr>
<td>5.2.3 Read type-dependent information</td>
<td>58</td>
</tr>
<tr>
<td>5.2.4 Eval type-dependent information</td>
<td>59</td>
</tr>
<tr>
<td>5.2.5 Set type-dependent information</td>
<td>60</td>
</tr>
<tr>
<td>5.2.6 Type groups</td>
<td>61</td>
</tr>
<tr>
<td>5.2.7 Accessors and components</td>
<td>61</td>
</tr>
<tr>
<td>5.3 Global numerical constants</td>
<td>62</td>
</tr>
<tr>
<td>5.3.1 Constants related to word size</td>
<td>62</td>
</tr>
<tr>
<td>5.3.2 Masks used to implement the GEN type</td>
<td>62</td>
</tr>
<tr>
<td>5.3.3 \log_2, π</td>
<td>63</td>
</tr>
<tr>
<td>5.4 Iterating over small primes, low-level interface</td>
<td>63</td>
</tr>
<tr>
<td>5.5 Handling the PARI stack</td>
<td>64</td>
</tr>
<tr>
<td>5.5.1 Allocating memory on the stack</td>
<td>64</td>
</tr>
<tr>
<td>5.5.2 Stack-independent binary objects</td>
<td>65</td>
</tr>
<tr>
<td>5.5.3 Garbage collection</td>
<td>66</td>
</tr>
<tr>
<td>5.5.4 Garbage collection: advanced use</td>
<td>67</td>
</tr>
<tr>
<td>5.5.5 Debugging the PARI stack</td>
<td>68</td>
</tr>
<tr>
<td>5.5.6 Copies</td>
<td>68</td>
</tr>
<tr>
<td>5.5.7 Simplify</td>
<td>68</td>
</tr>
<tr>
<td>5.6 The PARI heap</td>
<td>69</td>
</tr>
</tbody>
</table>
7.3 Modular arithmetic .. 106
 7.3.1 FpC, FpV, FpM .. 106
 7.3.2 $F1c$, $F1v$, $F1m$... 110
 7.3.3 $F2c$, $F2v$, $F2m$... 112
 7.3.4 $F1xqV$, $F1xqC$, $F1xqM$ 114
 7.3.5 FpX .. 114
 7.3.6 $FpXQ$, Fq .. 118
 7.3.7 $FpXQ$... 120
 7.3.8 Fq ... 120
 7.3.9 $FpXn$.. 122
 7.3.10 $FpXC$, $FpXM$... 122
 7.3.11 $FpXX$, $FpXY$... 123
 7.3.12 $FpXQX$, FqX ... 123
 7.3.13 $FpXQXn$, $FqXn$... 126
 7.3.14 $FpXQXQ$, $FqXQ$... 126
 7.3.15 $F1x$.. 129
 7.3.16 $F1xV$... 133
 7.3.17 $F1xM$... 134
 7.3.18 $F1xT$.. 134
 7.3.19 $F1xq$.. 134
 7.3.20 $F1xX$.. 135
 7.3.21 $F1xqX$... 136
 7.3.22 $F1xqXQ$.. 138
 7.3.23 $F2x$.. 139
 7.3.24 $F2xq$.. 141
 7.3.25 $F2xqV$, $F2xqM$.. 142
 7.3.26 $F2xX$.. 142
 7.3.27 $F2xVXV$, $F2xVX$.. 143
 7.3.28 $F2xqX$... 143
 7.3.29 $F2xqXQ$.. 144
 7.3.30 Functions returning objects with \texttt{t_INTMOD} coefficients ... 144
 7.3.31 Slow Chinese remainder theorem over \mathbb{Z} ... 145
 7.3.32 Fast remainders ... 147
 7.3.33 Fast Chinese remainder theorem over \mathbb{Z} ... 148
 7.3.34 Rational reconstruction 149
 7.3.35 Zp .. 149
 7.3.36 ZpX .. 150
 7.3.37 $ZpXQ$.. 151
 7.3.38 Zq .. 151
 7.3.39 $ZpXQM$.. 151
 7.3.40 $ZpXQX$... 152
 7.3.41 ZqX ... 152
 7.3.42 Other p-adic functions 152
 7.3.43 Conversions involving single precision objects ... 154

7.4 Higher arithmetic over \mathbb{Z}: primes, factorization 157
 7.4.1 Pure powers ... 157
 7.4.2 Factorization ... 158
 7.4.3 Coprime factorization 160
 7.4.4 Checks attached to arithmetic functions 160
7.4.5 Incremental integer factorization .. 161
7.4.6 Integer core, squarefree factorization .. 162
7.4.7 Primes, primality and compositeness tests ... 162
7.4.8 Iterators over primes .. 164
7.5 Integral, rational and generic linear algebra .. 164
 7.5.1 ZC / ZV, ZM ... 164
 7.5.2 QM ... 168
 7.5.3 Qvproj .. 168
 7.5.4 ZV, zm ... 169
 7.5.5 ZMV / zmV (vectors of ZMzm) .. 169
 7.5.6 QC / QV, QM .. 170
 7.5.7 RgC / RgV, RgM .. 170
 7.5.8 ZG ... 174
 7.5.9 Blackbox linear algebra .. 175
 7.5.10 Obsolete functions .. 176
7.6 Integral, rational and generic polynomial arithmetic 176
 7.6.1 ZX .. 176
 7.6.2 Resultants ... 179
 7.6.3 ZXV .. 179
 7.6.4 ZXT .. 179
 7.6.5 ZXQ .. 180
 7.6.6 ZXn .. 180
 7.6.7 ZXQM .. 180
 7.6.8 ZXQX ... 180
 7.6.9 ZXX .. 180
 7.6.10 QX .. 181
 7.6.11 QXQ ... 181
 7.6.12 QXQM .. 182
 7.6.13 ZX .. 183
 7.6.14 RgX ... 183
 7.6.15 RgXn ... 188
 7.6.16 RgXnV ... 188
 7.6.17 RgXQ ... 189
 7.6.18 RgXQV, RgXQC ... 189
 7.6.19 RgXQM ... 190
 7.6.20 RgXQX .. 190
Chapter 8: Black box algebraic structures ... 191
 8.1 Black box groups .. 191
 8.1.1 Black box groups with pairing .. 193
 8.1.2 Functions returning black box groups .. 193
 8.2 Black box fields .. 194
 8.2.1 Functions returning black box fields ... 195
 8.3 Black box algebra .. 195
 8.3.1 Functions returning black box algebras .. 196
 8.4 Black box ring ... 196
 8.5 Black box free Zp-modules ... 197
Chapter 9: Operations on general PARI objects ... 199
 9.1 Assignment .. 199
 9.2 Conversions .. 199
13.1.4 Extracting info from a bnr structure .. 270
13.1.5 Extracting info from an rnf structure .. 271
13.1.6 Extracting info from a bid structure .. 271
13.1.7 Extracting info from a znstar structure 272
13.1.8 Inserting info in a number field structure 273
13.1.9 Increasing accuracy .. 274
13.1.10 Number field arithmetic .. 274
13.1.11 Elements in factored form ... 277
13.1.12 Ideal arithmetic ... 278
13.1.13 Maximal ideals ... 281
13.1.14 Decomposition group ... 282
13.1.15 Reducing modulo maximal ideals .. 282
13.1.16 Valuations ... 284
13.1.17 Signatures ... 284
13.1.18 Maximal order and discriminant, conversion to nf structure 285
13.1.19 Computing in the class group ... 287
13.1.20 Floating point embeddings, the \mathcal{T}_2 quadratic form 288
13.1.21 Ideal reduction, low level ... 289
13.1.22 Ideal reduction, high level ... 290
13.1.23 Class field theory .. 291
13.1.24 Grunwald–Wang theorem .. 292
13.1.25 Relative equations, Galois conjugates 292
13.1.26 Cyclotomics units ... 294
13.1.27 Obsolete routines ... 294
13.2 Galois extensions of \mathbb{Q} ... 295
13.2.1 Extracting info from a gal structure .. 295
13.2.2 Miscellaneous functions ... 295
13.3 Quadratic number fields and quadratic forms 296
13.3.1 Checks ... 296
13.3.2 Class number ... 296
13.3.3 \mathcal{T}_QFI, \mathcal{T}_QFR .. 296
13.3.4 Efficient real quadratic forms ... 298
13.4 Linear algebra over \mathbb{Z} .. 299
13.4.1 Hermite and Smith Normal Forms .. 299
13.4.2 The LLL algorithm .. 303
13.4.3 Linear dependencies .. 304
13.4.4 Reduction modulo matrices .. 305
13.5 Finite abelian groups and characters ... 306
13.5.1 Abstract groups ... 306
13.5.2 Dirichlet characters .. 307
13.6 Central simple algebras .. 308
13.6.1 Initialization ... 308
13.6.2 Type checks ... 308
13.6.3 Shallow accessors .. 309
13.6.4 Other low-level functions ... 309

Chapter 14: Elliptic curves and arithmetic geometry 311
14.1 Elliptic curves ... 311
14.1.1 Types of elliptic curves .. 311
14.1.2 Type checking ... 311
14.1.3 Extracting info from an ell structure .. 312
14.1.4 Points ... 316
14.1.5 Change of variables .. 316
14.1.6 Generic helper functions ... 316
14.1.7 Functions to handle elliptic curves over finite fields 317
14.2 Arithmetic on elliptic curve over a finite field in simple form 317
14.2.1 Helper functions .. 317
14.2.2 Elliptic curves over \(\mathbf{F}_p, p > 3 \) .. 318
14.2.3 \(\mathbf{F}_p \mathbf{E} \) ... 318
14.2.4 \(\mathbf{F}_p \mathbf{J} \) ... 320
14.2.5 \(\mathbf{F}_p \mathbf{J} \) ... 320
14.2.7 Elliptic curves over \(\mathbf{F}_{2^n} \) ... 321
14.2.8 \(\mathbf{F}_{2^n} \mathbf{E} \) ... 321
14.2.9 Elliptic curves over \(\mathbf{F}_q, \text{ small characteristic } p > 2 \) 322
14.2.10 \(\mathbf{F}_{2^n} \mathbf{E} \) ... 322
14.2.11 Elliptic curves over \(\mathbf{F}_q, \text{ large characteristic } \) 323
14.2.12 \(\mathbf{F}_{2^n} \mathbf{E} \) ... 323
14.3 Functions related to modular polynomials 324
14.3.1 Functions related to modular invariants 324
14.4 Other curves ... 325
Chapter 15: L-functions .. 327
15.1 Accessors .. 327
15.2 Conversions and constructors .. 328
15.3 Variants of GP functions .. 328
15.4 Inverse Mellin transforms of Gamma products 329
Chapter 16: Modular symbols .. 331
Chapter 17: Modular forms ... 331
17.1 Implementation of public data structures 331
17.1.1 Accessors for modular form spaces 331
17.1.2 Accessors for individual modular forms 332
17.1.3 Nebentypus ... 333
17.1.4 Miscellaneous functions ... 333
Chapter 18: Plots ... 335
18.0.5 Highlevel function .. 335
18.0.6 Function .. 335
18.0.7 Obsolete functions .. 336
18.0.8 Dump rectwindows to a PostScript or SVG file 336
18.0.9 Technical functions exported for convenience 336
Appendix A: A Sample program and Makefile 337
Appendix B: PARI and threads ... 339
Index .. 342
Chapter 4:
Programming PARI in Library Mode

The *User’s Guide to Pari/GP* gives in three chapters a general presentation of the system, of the gp calculator, and detailed explanation of high level PARI routines available through the calculator. The present manual assumes general familiarity with the contents of these chapters and the basics of ANSI C programming, and focuses on the usage of the PARI library. In this chapter, we introduce the general concepts of PARI programming and describe useful general purpose functions; the following chapters describes all public low or high-level functions, underlying or extending the GP functions seen in Chapter 3 of the User’s guide.

4.1 Introduction: initializations, universal objects.

To use PARI in library mode, you must write a C program and link it to the PARI library. See the installation guide or the Appendix to the *User’s Guide to Pari/GP* on how to create and install the library and include files. A sample Makefile is presented in Appendix A, and a more elaborate one in `examples/Makefile`. The best way to understand how programming is done is to work through a complete example. We will write such a program in Section 4.10. Before doing this, a few explanations are in order.

First, one must explain to the outside world what kind of objects and routines we are going to use. This is done* with the directive

```c
#include <pari/pari.h>
```

In particular, this defines the fundamental type for all PARI objects: the type `GEN`, which is simply a pointer to `long`.

Before any PARI routine is called, one must initialize the system, and in particular the PARI stack which is both a scratchboard and a repository for computed objects. This is done with a call to the function

```c
void pari_init(size_t size, ulong maxprime)
```

The first argument is the number of bytes given to PARI to work with, and the second is the upper limit on a precomputed prime number table; `size` should not reasonably be taken below 500000 but you may set `maxprime` = 0, although the system still needs to precompute all primes up to about 2^{16}. For lower-level variants allowing finer control, e.g. preventing PARI from installing its own error or signal handlers, see Section 5.1.2.

We have now at our disposal:

- a PARI *stack* containing nothing. This is a big connected chunk of `size` bytes of memory, where all computations take place. In large computations, intermediate results quickly clutter up memory so some kind of garbage collecting is needed. Most systems do garbage collecting when the memory is getting scarce, and this slows down the performance. PARI takes a different approach,

* This assumes that PARI headers are installed in a directory which belongs to your compiler’s search path for header files. You might need to add flags like `-I/usr/local/include` or modify `C_INCLUDE_PATH`.

13
admittedly more demanding on the programmer: you must do your own cleaning up when the intermediate results are not needed anymore. We will see later how (and when) this is done.

- the following universal objects (by definition, objects which do not belong to the stack): the integers 0, 1, −1, 2 and −2 (respectively called gen_0, gen_1, gen_m1, gen_2 and gen_m2), the fraction \(\frac{1}{2} (\text{ghalf}) \). All of these are of type GEN.

- a heap which is just a linked list of permanent universal objects. For now, it contains exactly the ones listed above. You will probably very rarely use the heap yourself; and if so, only as a collection of copies of objects taken from the stack (called clones in the sequel). Thus you need not bother with its internal structure, which may change as PARI evolves. Some complex PARI functions create clones for special garbage collecting purposes, usually destroying them when returning.

- a table of primes (in fact of differences between consecutive primes), called diffptr, of type byteptr (pointer to unsigned char). Its use is described in Section 5.4 later. Using it directly is deprecated, high-level iterators provide a cleaner and more flexible interface, see Section 4.8.2 (such iterators use the private prime table, but extend it dynamically).

- access to all the built-in functions of the PARI library. These are declared to the outside world when you include pari.h, but need the above things to function properly. So if you forget the call to pari_init, you will get a fatal error when running your program.

4.2 Important technical notes

4.2.1 Backward compatibility

The PARI function names evolved over time, and deprecated functions are eventually deleted. The file pariold.h contains macros implementing a weak form of backward compatibility. In particular, whenever the name of a documented function changes, a \#define is added to this file so that the old name expands to the new one (provided the prototype didn’t change also).

This file is included by pari.h, but a large section is commented out by default. Define PARI_OLD_NAMES before including pari.h to pollute your namespace with lots of obsolete names like un*: that might enable you to compile old programs without having to modify them. The preferred way to do that is to add -DPARI_OLD_NAMES to your compiler CFLAGS, so that you don’t need to modify the program files themselves.

Of course, it’s better to fix the program if you can!

4.2.2 Types

Although PARI objects all have the C type GEN, we will freely use the word type to refer to PARI dynamic subtypes: t_INT, t_REAL, etc. The declaration

```c
GEN x;
```

declares a C variable of type GEN, but its “value” will be said to have type t_INT, t_REAL, etc. The meaning should always be clear from the context.

* For (long)gen_1. Since 2004 and version 2.2.9, typecasts are completely unnecessary in PARI programs.
4.2.3 Type recursivity.

Conceptually, most PARI types are recursive. But the GEN type is a pointer to long, not to GEN. So special macros must be used to access GEN’s components. The simplest one is gel(V,i), where el stands for element, to access component number i of the GEN V. This is a valid lvalue (may be put on the left side of an assignment), and the following two constructions are exceedingly frequent

\[
gel(V, i) = x; \\
x = gel(V, i);
\]

where x and V are GENs. This macro accesses and modifies directly the components of V and do not create a copy of the coefficient, contrary to all the library functions.

More generally, to retrieve the values of elements of lists of … of lists of vectors we have the gmael macros (for multidimensional array element). The syntax is gmaeln(V,a1,…,an), where V is a GEN, the ai are indexes, and n is an integer between 1 and 5. This stands for \[x[a_1][a_2]…[a_n],\] and returns a GEN. The macros gel (resp. gmael) are synonyms for gmael1 (resp. gmael2).

Finally, the macro gcoeff(M,i,j) has exactly the meaning of M[i,j] in GP when M is a matrix. Note that due to the implementation of t_MATs as horizontal lists of vertical vectors, gcoeff(x,y) is actually equivalent to gmael(y,x). One should use gcoeff in matrix context, and gmael otherwise.

4.2.4 Variations on basic functions. In the library syntax descriptions in Chapter 3, we have only given the basic names of the functions. For example gadd(x,y) assumes that x and y are GENs, and creates the result x+y on the PARI stack. For most of the basic operators and functions, many other variants are available. We give some examples for gadd, but the same is true for all the basic operators, as well as for some simple common functions (a complete list is given in Chapter 6):

GEN gaddgs(GEN x, long y)
GEN gaddsg(long x, GEN y)

In the following one, z is a preexisting GEN and the result of the corresponding operation is put into z. The size of the PARI stack does not change:

void gaddz(GEN x, GEN y, GEN z)

(This last form is inefficient in general and deprecated outside of PARI kernel programming.) Low level kernel functions implement these operators for specialized arguments and are also available: Level 0 deals with operations at the word level (longs and ulongss), Level 1 with t_INT and t_REAL and Level 2 with the rest (modular arithmetic, polynomial arithmetic and linear algebra). Here are some examples of Level 1 functions:

GEN addii(GEN x, GEN y): here x and y are GENs of type t_INT (this is not checked).
GEN addrr(GEN x, GEN y): here x and y are GENs of type t_REAL (this is not checked).

There also exist functions addir, addri, mpadd (whose two arguments can be of type t_INT or t_REAL), addis (to add a t_INT and a long) and so on.

The Level 1 names are self-explanatory once you know that i stands for a t_INT, r for a t_REAL, mp for i or r, s for a signed C long integer, u for an unsigned C long integer; finally the suffix z means that the result is not created on the PARI stack but assigned to a preexisting GEN object passed as an extra argument. Chapter 6 gives a description of these low-level functions.
Level 2 names are more complicated, see Section 7.1 for all the gory details, and we content ourselves with a simple example used to implement \texttt{t_INTMOD} arithmetic:

\begin{verbatim}
GEN Fp_add(GEN x, GEN y, GEN m): returns the sum of \texttt{x} and \texttt{y} modulo \texttt{m}. Here \texttt{x, y, m} are \texttt{t_INTs} (this is not checked). The operation is more efficient if the inputs \texttt{x, y} are reduced modulo \texttt{m}, but this is not a necessary condition.
\end{verbatim}

Important Note. These specialized functions are of course more efficient than the generic ones, but note the hidden danger here: the types of the objects involved (which is not checked) must be severely controlled, e.g. using \texttt{addii} on a \texttt{t_FRAC} argument will cause disasters. Type mismatches may corrupt the PARI stack, though in most cases they will just immediately overflow the stack. Because of this, the PARI philosophy of giving a result which is as exact as possible, enforced for generic functions like \texttt{gadd} or \texttt{gmul}, is dropped in kernel routines of Level 1, where it is replaced by the much simpler rule: the result is a \texttt{t_INT} if and only if all arguments are integer types (\texttt{t_INT} but also \texttt{C long} and \texttt{ulong}) and a \texttt{t_REAL} otherwise. For instance, multiplying a \texttt{t_REAL} by a \texttt{t_INT} always yields a \texttt{t_REAL} if you use \texttt{mulir}, where \texttt{gmul} returns the \texttt{t_INT gen 0} if the integer is 0.

4.2.5 Portability: 32-bit / 64-bit architectures.

PARI supports both 32-bit and 64-bit based machines, but not simultaneously! The library is compiled assuming a given architecture, and some of the header files you include (through \texttt{pari.h}) will have been modified to match the library.

Portable macros are defined to bypass most machine dependencies. If you want your programs to run identically on 32-bit and 64-bit machines, you have to use these, and not the corresponding numeric values, whenever the precise size of your \texttt{long} integers might matter. Here are the most important ones:

<table>
<thead>
<tr>
<th>64-bit</th>
<th>32-bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>64</td>
<td>32</td>
</tr>
</tbody>
</table>

\begin{verbatim}
LONG_IS_64BIT defined undefined
DEFAULTPREC 3 4 \((\approx 19 \text{ decimal digits}, \text{see formula below})\)
MEDDEFAULTPREC 4 6 \((\approx 38 \text{ decimal digits})\)
BIGDEFAULTPREC 5 8 \((\approx 57 \text{ decimal digits})\)
\end{verbatim}

For instance, suppose you call a transcendental function, such as

\begin{verbatim}
GEN gexp(GEN x, long prec).
\end{verbatim}

The last argument \texttt{prec} is an integer \(\geq 3\), corresponding to the default floating point precision required. It is only used if \texttt{x} is an exact object, otherwise the relative precision is determined by the precision of \texttt{x}. Since the parameter \texttt{prec} sets the size of the inexact result counted in (\texttt{long}) words (including codewords), the same value of \texttt{prec} will yield different results on 32-bit and 64-bit machines. Real numbers have two codewords (see Section 4.5), so the formula for computing the bit accuracy is

\begin{verbatim}
\text{bit_accuracy(prec)} = (\text{prec} - 2) * \text{BITS_IN_LONG}
\end{verbatim}

(this is actually the definition of an inline function). The corresponding accuracy expressed in decimal digits would be

\begin{verbatim}
\text{bit_accuracy(prec)} * \log(2) / \log(10).
\end{verbatim}

For example if the value of \texttt{prec} is 5, the corresponding accuracy for 32-bit machines is \((5 - 2) * \log(2^{32}) / \log(10) \approx 28 \text{ decimal digits}\), while for 64-bit machines it is \((5 - 2) * \log(2^{64}) / \log(10) \approx 57 \text{ decimal digits}\).
Thus, you must take care to change the \texttt{prec} parameter you are supplying according to the bit size, either using the default precisions given by the various \texttt{DEFAULTPREC}s, or by using conditional constructs of the form:

\begin{verbatim}
#ifndef LONG_IS_64BIT
 prec = 4;
#else
 prec = 6;
#endif
\end{verbatim}

which is in this case equivalent to the statement \texttt{prec = MEDDEFAULTPREC};.

Note that for parity reasons, half the accuracies available on 32-bit architectures (the odd ones) have no precise equivalents on 64-bit machines.

\subsection*{4.2.6 Using malloc / free}

You should make use of the PARI stack as much as possible, and avoid allocating objects using the customary functions. If you do, you should use, or at least have a very close look at, the following wrappers:

\begin{verbatim}
void* pari_malloc(size_t size) calls malloc to allocate size bytes and returns a pointer to the allocated memory. If the request fails, an error is raised. The SIGINT signal is blocked until malloc returns, to avoid leaving the system stack in an inconsistent state.

void* pari_realloc(void* ptr, size_t size) as pari_malloc but calls realloc instead of malloc.

void* pari_calloc(size_t size) as pari_malloc, setting the memory to zero.

void pari_free(void* ptr) calls free to liberate the memory space pointed to by ptr, which must have been allocated by malloc (pari_malloc) or realloc (pari_realloc). The SIGINT signal is blocked until free returns.
\end{verbatim}

If you use the standard libc functions instead of our wrappers, then your functions will be subtly incompatible with the \texttt{gp} calculator: when the user tries to interrupt a computation, the calculator may crash (if a system call is interrupted at the wrong time).

\subsection*{4.3 Garbage collection}

\subsection*{4.3.1 Why and how}

As we have seen, \texttt{pari_init} allocates a big range of addresses, the \textit{stack}, that are going to be used throughout. Recall that all PARI objects are pointers. Except for a few universal objects, they all point at some part of the stack.

The stack starts at the address \texttt{bot} and ends just before \texttt{top}. This means that the quantity

\[
\frac{(\text{top} - \text{bot})}{\text{sizeof(long)}}
\]

is (roughly) equal to the \texttt{size} argument of \texttt{pari_init}. The PARI stack also has a “current stack pointer” called \texttt{avma}, which stands for \textit{available memory address}. These three variables are global (declared by \texttt{pari.h}). They are of type \texttt{pari_sp}, which means \textit{pari stack pointer}.

The stack is oriented upside-down: the more recent an object, the closer to \texttt{bot}. Accordingly, initially \texttt{avma = top}, and \texttt{avma} gets \textit{decremented} as new objects are created. As its name indicates,
avma always points just after the first free address on the stack, and (GEN)avma is always (a pointer to) the latest created object. When avma reaches bot, the stack overflows, aborting all computations, and an error message is issued. To avoid this you need to clean up the stack from time to time, when intermediate objects are not needed anymore. This is called “garbage collecting.”

We are now going to describe briefly how this is done. We will see many concrete examples in the next subsection.

• First, PARI routines do their own garbage collecting, which means that whenever a documented function from the library returns, only its result(s) have been added to the stack, possibly up to a very small overhead (non-documented ones may not do this). In particular, a PARI function that does not return a GEN does not clutter the stack. Thus, if your computation is small enough (e.g. you call few PARI routines, or most of them return long integers), then you do not need to do any garbage collecting. This is probably the case in many of your subroutines. Of course the objects that were on the stack before the function call are left alone. Except for the ones listed below, PARI functions only collect their own garbage.

• It may happen that all objects that were created after a certain point can be deleted — for instance, if the final result you need is not a GEN, or if some search proved futile. Then, it is enough to record the value of avma just before the first garbage is created, and restore it upon exit:

 pari_sp av = avma; /* record initial avma */
 garbage ...
 avma = av; /* restore it */

All objects created in the garbage zone will eventually be overwritten: they should no longer be accessed after avma has been restored.

• If you want to destroy (i.e. give back the memory occupied by) the latest PARI object on the stack (e.g. the latest one obtained from a function call), you can use the function

 void cgiv(GEN z)

where z is the object you want to give back. This is equivalent to the above where the initial av is computed from z.

• Unfortunately life is not so simple, and sometimes you will want to give back accumulated garbage during a computation without losing recent data. We shall start with the lowest level function to get a feel for the underlying mechanisms, we shall describe simpler variants later:

 GEN gerepile(pari_sp ltop, pari_sp lbot, GEN q). This function cleans up the stack between ltop and lbot, where lbot < ltop, and returns the updated object q. This means:

 1) we translate (copy) all the objects in the interval [avma, lbot], so that its right extremity abuts the address ltop. Graphically

 bot avma lbot ltop top
 End of stack |-----------------------------[++++++[+++++++]| Start
 free memory garbage

becomes:

 bot avma ltop top
 End of stack |-----------------------------[++++++[+++++++]| Start
 free memory

18
where ++ denote significant objects, -- the unused part of the stack, and ~/- the garbage we remove.

2) The function then inspects all the PARI objects between avma and lbot (i.e. the ones that we want to keep and that have been translated) and looks at every component of such an object which is not a codeword. Each such component is a pointer to an object whose address is either

— between avma and lbot, in which case it is suitably updated,
— larger than or equal to ltop, in which case it does not change, or
— between lbot and ltop in which case gerepile raises an error (“significant pointers lost in gerepile”).

3) avma is updated (we add ltop − lbot to the old value).

4) We return the (possibly updated) object q: if q initially pointed between avma and lbot, we return the updated address, as in 2). If not, the original address is still valid, and is returned!

As stated above, no component of the remaining objects (in particular q) should belong to the erased segment [lbot, ltop[, and this is checked within gerepile. But beware as well that the addresses of the objects in the translated zone change after a call to gerepile, so you must not access any pointer which previously pointed into the zone below ltop. If you need to recover more than one object, use the gerepileall function below.

Remark. As a consequence of the preceding explanation, if a PARI object is to be relocated by gerepile then, apart from universal objects, the chunks of memory used by its components should be in consecutive memory locations. All GENs created by documented PARI functions are guaranteed to satisfy this. This is because the gerepile function knows only about two connected zones: the garbage that is erased (between lbot and ltop) and the significant pointers that are copied and updated. If there is garbage interspersed with your objects, disaster occurs when we try to update them and consider the corresponding “pointers”. In most cases of course the said garbage is in fact a bunch of other GENs, in which case we simply waste time copying and updating them for nothing. But be wary when you allow objects to become disconnected.

In practice this is achieved by the following programming idiom:

```c
ltop = avma; garbage(); lbot = avma; q = anything();
return gerepile(ltop, lbot, q); /* returns the updated q */
```
or directly

```c
ltop = avma; garbage(); lbot = avma;
return gerepile(ltop, lbot, anything());
```

Beware that

```c
ltop = avma; garbage();
return gerepile(ltop, avma, anything())
```
might work, but should be frowned upon. We cannot predict whether avma is evaluated after or before the call to anything(): it depends on the compiler. If we are out of luck, it is after the call, so the result belongs to the garbage zone and the gerepile statement becomes equivalent to avma = ltop. Thus we return a pointer to random garbage.
4.3.2 Variants.

GEN gerepileupto(pari_sp ltop, GEN q). Cleans the stack between ltop and the connected object q and returns q updated. For this to work, q must have been created before all its components, otherwise they would belong to the garbage zone! Unless mentioned otherwise, documented PARI functions guarantee this.

GEN gerepilecopy(pari_sp ltop, GEN x). Functionally equivalent to, but more efficient than

gerepileupto(ltop, gcopy(x))

In this case, the GEN parameter x need not satisfy any property before the garbage collection: it may be disconnected, components created before the root, and so on. Of course, this is about twice slower than either gerepileupto or gerepile, because x has to be copied to a clean stack zone first. This function is a special case of gerepileall below, where n = 1.

void gerepileall(pari_sp ltop, int n, ...). To cope with complicated cases where many objects have to be preserved. The routine expects n further arguments, which are the addresses of the GENs you want to preserve:

 pari_sp ltop = avma;
 ...; y = ...; ... x = ...; ...;
 gerepileall(ltop, 2, &x, &y);

It cleans up the most recent part of the stack (between ltop and avma), updating all the GENs added to the argument list. A copy is done just before the cleaning to preserve them, so they do not need to be connected before the call. With gerepilecopy, this is the most robust of the gerepile functions (the less prone to user error), hence the slowest.

void gerepileallsp(pari_sp ltop, pari_sp lbot, int n, ...). More efficient, but trickier than gerepileall. Cleans the stack between lbot and ltop and updates the GENs pointed at by the elements of gptr without any further copying. This is subject to the same restrictions as gerepile, the only difference being that more than one address gets updated.

4.3.3 Examples.

4.3.3.1 gerepile.

Let x and y be two preexisting PARI objects and suppose that we want to compute $x^2 + y^2$. This is done using the following program:

 GEN x2 = gsqr(x);
 GEN y2 = gsqr(y), z = gadd(x2,y2);

The GEN z indeed points at the desired quantity. However, consider the stack: it contains as unnecessary garbage x2 and y2. More precisely it contains (in this order) z, y2, x2. (Recall that, since the stack grows downward from the top, the most recent object comes first.)

It is not possible to get rid of x2, y2 before z is computed, since they are used in the final operation. We cannot record avma before x2 is computed and restore it later, since this would destroy z as well. It is not possible either to use the function cgiv since x2 and y2 are not at the bottom of the stack and we do not want to give back z.

But using gerepile, we can give back the memory locations corresponding to x2, y2, and move the object z upwards so that no space is lost. Specifically:

 pari_sp ltop = avma; /* remember the current top of the stack */
GEN x2 = gsqr(x);
GEN y2 = gsqr(y);
pari_sp lbot = avma; /* the bottom of the garbage pile */
GEN z = gadd(x2, y2); /* z is now the last object on the stack */
z = gerepile(ltop, lbot, z);

Of course, the last two instructions could also have been written more simply:

\[z = \text{gerepile}(\text{ltop}, \text{lbot}, \text{gadd}(x^2, y^2)); \]

In fact \text{gerepileupto} is even simpler to use, because the result of \text{gadd} is the last object on the stack and \text{gadd} is guaranteed to return an object suitable for \text{gerepileupto}:

\[\text{ltop} = \text{avma}; \]
\[z = \text{gerepileupto}(\text{ltop}, \text{gadd}(\text{gsqr}(x), \text{gsqr}(y))); \]

Make sure you understand exactly what has happened before you go on!

\textbf{Remark on assignments and gerepile.} When the tree structure and the size of the PARI objects which will appear in a computation are under control, one may allocate sufficiently large objects at the beginning, use assignment statements, then simply restore \text{avma}. Coming back to the above example, note that if we know that \text{x} and \text{y} are of type real fitting into \text{DEFAULTPREC} words, we can program without using \text{gerepile} at all:

\[z = \text{cgetr}(); \text{ltop} = \text{avma}; \]
\[\text{gaffect}(\text{gadd}(\text{gsqr}(x), \text{gsqr}(y)), z); \]
\[\text{avma} = \text{ltop}; \]

This is often \textit{slower} than a craftily used \text{gerepile} though, and certainly more cumbersome to use. As a rule, assignment statements should generally be avoided.

\textbf{Variations on a theme.} It is often necessary to do several \text{gerepiles} during a computation. However, the fewer the better. The only condition for \text{gerepile} to work is that the garbage be connected. If the computation can be arranged so that there is a minimal number of connected pieces of garbage, then it should be done that way.

For example suppose we want to write a function of two \text{GEN} variables \text{x} and \text{y} which creates the vector \([x^2 + y, y^2 + x]\). Without garbage collecting, one would write:

\[\text{p1} = \text{gsqr}(x); \text{p2} = \text{gadd}(\text{p1}, y); \]
\[\text{p3} = \text{gsqr}(y); \text{p4} = \text{gadd}(\text{p3}, x); \]
\[z = \text{mkvec2}(\text{p2}, \text{p4}); /* not suitable for gerepileupto! */ \]

This leaves a dirty stack containing (in this order) \text{z}, \text{p4}, \text{p3}, \text{p2}, \text{p1}. The garbage here consists of \text{p1} and \text{p3}, which are separated by \text{p2}. But if we compute \text{p3} \text{before} \text{p2} then the garbage becomes connected, and we get the following program with garbage collecting:

\[\text{ltop} = \text{avma}; \text{p1} = \text{gsqr}(x); \text{p3} = \text{gsqr}(y); \]
\[\text{lbot} = \text{avma}; \text{z} = \text{cgetg}(3, \text{t_VEC}); \]
\[\text{gel}(\text{z}, 1) = \text{gadd}(\text{p1}, y); \]
\[\text{gel}(\text{z}, 2) = \text{gadd}(\text{p3}, x); \]
\[z = \text{gerepile}(\text{ltop}, \text{lbot}, \text{z}); \]

Finishing by \[z = \text{gerepileupto}(\text{ltop}, \text{z}) \] would be ok as well. Beware that

\[\text{ltop} = \text{avma}; \text{p1} = \text{gadd}(); \text{p3} = \text{gadd}(); \]
\[z = \text{cgetg}(3, \text{t_VEC}); \]
gel(z, 1) = p1;
gel(z, 2) = p3; z = gerepileupto(ltop,z); /* WRONG */

is a disaster since \(p_1\) and \(p_3\) are created before \(z\), so the call to \(gerepileupto\) overwrites them, leaving \(gel(z, 1)\) and \(gel(z, 2)\) pointing at random data! The following does work:

\[
\begin{align*}
ltop &= avma; p1 = gsqr(x); p3 = gsqr(y); \\
lbot &= avma; z = mkvec2(gadd(p1,y), gadd(p3,x)); \\
z &= gerepile(ltop,lbot,z);
\end{align*}
\]

but is very subtly wrong in the sense that \(z = gerepileupto(ltop, z)\) would not work. The reason being that \(mkvec2\) creates the root \(z\) of the vector after its arguments have been evaluated, creating the components of \(z\) too early; \(gerepile\) does not care, but the created \(z\) is a time bomb which will explode on any later \(gerepileupto\). On the other hand

\[
\begin{align*}
ltop &= avma; z = cgetg(3, t_VEC); \\
gel(z, 1) &= gadd(gsqr(x), y); \\
gel(z, 2) &= gadd(gsqr(y), x); z = gerepileupto(ltop,z); /* INEFFICIENT */
\end{align*}
\]

leaves the results of \(gsqr(x)\) and \(gsqr(y)\) on the stack (and lets \(gerepileupto\) update them for naught). Finally, the most elegant and efficient version (with respect to time and memory use) is as follows

\[
\begin{align*}
z &= cgetg(3, t_VEC); \\
ltop &= avma; gel(z, 1) = gerepileupto(ltop, gadd(gsqr(x), y)); \\
ltop &= avma; gel(z, 2) = gerepileupto(ltop, gadd(gsqr(y), x));
\end{align*}
\]

which avoids updating the container \(z\) and cleans up its components individually, as soon as they are computed.

One last example. Let us compute the product of two complex numbers \(x\) and \(y\), using the 3M method which requires 3 multiplications instead of the obvious 4. Let \(z = xy\), and set \(x = x_r + i x_i\) and similarly for \(y\) and \(z\). We compute \(p_1 = x_r \cdot y_r\), \(p_2 = x_i \cdot y_i\), \(p_3 = (x_r + x_i) \cdot (y_r + y_i)\), and then we have \(z_r = p_1 - p_2\), \(z_i = p_3 - (p_1 + p_2)\). The program is as follows:

\[
\begin{align*}
ltop &= avma; \\
p1 &= gmul(gel(x,1), gel(y,1)); \\
p2 &= gmul(gel(x,2), gel(y,2)); \\
p3 &= gmul(gadd(gel(x,1), gel(x,2)), gadd(gel(y,1), gel(y,2)));
\end{align*}
\]

\[
\begin{align*}
p4 &= gadd(p1,p2); \\
lbot &= avma; z = cgetg(3, t_COMPLEX); \\
gel(z, 1) &= gsub(p1,p2); \\
gel(z, 2) &= gsub(p3,p4); z = gerepile(ltop,lbot,z);
\end{align*}
\]
Exercise. Write a function which multiplies a matrix by a column vector. Hint: start with a \texttt{cgetg} of the result, and use \texttt{gerepile} whenever a coefficient of the result vector is computed. You can look at the answer in \texttt{src/basemath/RgV.c:RgM_RgC_mul()}

4.3.3.2 \texttt{gerepileall}.

Let us now see why we may need the \texttt{gerepileall} variants. Although it is not an infrequent occurrence, we do not give a specific example but a general one: suppose that we want to do a computation (usually inside a larger function) producing more than one PARI object as a result, say two for instance. Then even if we set up the work properly, before cleaning up we have a stack which has the desired results \(z_1, z_2\) (say), and then connected garbage from \texttt{lbot} to \texttt{ltop}. If we write

\[
z_1 = \texttt{gerepile}(\texttt{ltop}, \texttt{lbot}, z_1);
\]

then the stack is cleaned, the pointers fixed up, but we have lost the address of \(z_2\). This is where we need the \texttt{gerepileall} function:

\[
\texttt{gerepileall}(\texttt{ltop}, 2, \&z_1, \&z_2)
\]

copies \(z_1\) and \(z_2\) to new locations, cleans the stack from \texttt{ltop} to the old \texttt{avma}, and updates the pointers \(z_1\) and \(z_2\). Here we do not assume anything about the stack: the garbage can be disconnected and \(z_1, z_2\) need not be at the bottom of the stack. If all of these assumptions are in fact satisfied, then we can call \texttt{gerepilemany} instead, which is usually faster since we do not need the initial copy (on the other hand, it is less cache friendly).

A most important usage is “random” garbage collection during loops whose size requirements we cannot (or do not bother to) control in advance:

\[
\begin{align*}
\text{pari_sp } & \texttt{av} = \texttt{avma}; \\
\text{GEN } & x, y; \\
\text{while } (...) \\
\{ \\
\quad & \texttt{garbage(); } x = \texttt{anything();} \\
\quad & \texttt{garbage(); } y = \texttt{anything(); } \texttt{garbage();} \\
\quad & \text{if (gc_needed(av,1)) /* memory is running low (half spent since entry) */} \\
\quad & \quad \texttt{gerepileall(av, 2, &x, &y);} \\
\}
\end{align*}
\]

Here we assume that only \(x\) and \(y\) are needed from one iteration to the next. As it would be costly to call \texttt{gerepile} once for each iteration, we only do it when it seems to have become necessary.

More precisely, the macro \texttt{stack_lim(av, n)} denotes an address where \(2^{n-1}/(2^{n-1} + 1)\) of the remaining stack space since reference point \texttt{av} is exhausted (1/2 for \(n = 1\), 2/3 for \(n = 2\)). The test \texttt{gc_needed(av, n)} becomes true whenever \texttt{avma} drops below that address.
4.3.4 Comments.

First, gerepile has turned out to be a flexible and fast garbage collector for number-theoretic computations, which compares favorably with more sophisticated methods used in other systems. Our benchmarks indicate that the price paid for using gerepile and gerepile-related copies, when properly used, is usually less than 1% of the total running time, which is quite acceptable!

Second, it is of course harder on the programmer, and quite error-prone if you do not stick to a consistent PARI programming style. If all seems lost, just use gerepilecopy (or gerepileall) to fix up the stack for you. You can always optimize later when you have sorted out exactly which routines are crucial and what objects need to be preserved and their usual sizes.

If you followed us this far, congratulations, and rejoice: the rest is much easier.

4.4 Creation of PARI objects, assignments, conversions.

4.4.1 Creation of PARI objects. The basic function which creates a PARI object is

GEN cgetg(long l, long t)

l specifies the number of longwords to be allocated to the object, and t is the type of the object, in symbolic form (see Section 4.5 for the list of these). The precise effect of this function is as follows: it first creates on the PARI stack a chunk of memory of size l longwords, and saves the address of the chunk which it will in the end return. If the stack has been used up, a message to the effect that “the PARI stack overflows” is printed, and an error raised. Otherwise, it sets the type and length of the PARI object. In effect, it fills its first codeword ($z[0]$). Many PARI objects also have a second codeword (types t_{INT}, t_{REAL}, t_{PADIC}, t_{POL}, and t_{SER}). In case you want to produce one of those from scratch, which should be exceedingly rare, it is your responsibility to fill this second codeword, either explicitly (using the macros described in Section 4.5), or implicitly using an assignment statement (using gaffect).

Note that the length argument l is predetermined for a number of types: 3 for types t_{INTMOD}, t_{FRAC}, t_{COMPLEX}, t_{POLMOD}, t_{RFRAC}, 4 for type t_{QUAD} and t_{QFI}, and 5 for type t_{PADIC} and t_{QFR}. However for the sake of efficiency, cgetg does not check this: disasters will occur if you give an incorrect length for those types.

Notes. 1) The main use of this function is create efficiently a constant object, or to prepare for later assignments (see Section 4.4.3). Most of the time you will use GEN objects as they are created and returned by PARI functions. In this case you do not need to use cgetg to create space to hold them.

2) For the creation of leaves, i.e. t_{INT} or t_{REAL},

GEN cgeti(long length)

GEN cgetr(long length)

should be used instead of cgetg(length, t_{INT}) and cgetg(length, t_{REAL}) respectively. Finally

GEN cgetc(long prec)

creates a t_{COMPLEX} whose real and imaginary part are t_{REALs} allocated by cgetr(prec).
Examples. 1) Both \(z = \text{cgeti}(\text{DEFAULTPREC}) \) and \(\text{cgetg}(\text{DEFAULTPREC}, \text{t_INT}) \) create a \text{t_INT} whose "precision" is \text{bit_accuracy}(\text{DEFAULTPREC}) = 64. This means \(z \) can hold rational integers of absolute value less than \(2^{64} \). Note that in both cases, the second codeword is \textit{not} filled. Of course we could use numerical values, e.g. \(\text{cgeti}(4) \), but this would have different meanings on different machines as \text{bit_accuracy}(4) equals 64 on 32-bit machines, but 128 on 64-bit machines.

2) The following creates a \textit{complex number} whose real and imaginary parts can hold real numbers of precision \text{bit_accuracy}(\text{MEDDEFAULTPREC}) = 96 bits:

\[
z = \text{cgetg}(3, \text{t_COMPLEX}); \\
gel(z, 1) = \text{cgetr}(\text{MEDDEFAULTPREC}); \\
gel(z, 2) = \text{cgetr}(\text{MEDDEFAULTPREC});
\]

or simply \(z = \text{cgetc}(\text{MEDDEFAULTPREC}) \).

3) To create a matrix object for \(4 \times 3 \) matrices:

\[
z = \text{cgetg}(4, \text{t_MAT}); \\
\text{for }(i=1; i<4; i++) \ gel(z, i) = \text{cgetg}(5, \text{t_COL});
\]

or simply \(z = \text{zeromatcopy}(4, 3) \), which further initializes all entries to \text{gen_0}.

These last two examples illustrate the fact that since PARI types are recursive, all the branches of the tree must be created. The function \text{cgetg} creates only the "root", and other calls to \text{cgetg} must be made to produce the whole tree. For matrices, a common mistake is to think that \(z = \text{cgetg}(4, \text{t_MAT}) \) (for example) creates the root of the matrix: one needs also to create the column vectors of the matrix (obviously, since we specified only one dimension in the first \text{cgetg}!). This is because a matrix is really just a row vector of column vectors (hence a priori not a basic type), but it has been given a special type number so that operations with matrices become possible.

Finally, to facilitate input of constant objects when speed is not paramount, there are four \texttt{varargs} functions:

\texttt{GEN \text{mkintn}(long \ n, \ldots)} returns the non-negative \text{t_INT} whose development in base \(2^{32} \) is given by the following \(n \) 32bit-words (\texttt{unsigned int}).

\[
\text{mkintn}(3, a2, a1, a0);
\]

returns \(a2 \ 2^{64} + a1 \ 2^{32} + a0. \)

\texttt{GEN \text{mkpoln}(long \ n, \ldots)} Returns the \text{t_POL} whose \(n \) coefficients (\texttt{GEN}) follow, in order of decreasing degree.

\[
\text{mkpoln}(3, \text{gen_1}, \text{gen_2}, \text{gen_0});
\]

returns the polynomial \(X^2 + 2X \) (in variable 0, use \texttt{setvarn} if you want other variable numbers). Beware that \(n \) is the number of coefficients, hence \textit{one more} than the degree.

\texttt{GEN \text{mkvecn}(long \ n, \ldots)} returns the \text{t_VEC} whose \(n \) coefficients (\texttt{GEN}) follow.

\texttt{GEN \text{mkcoln}(long \ n, \ldots)} returns the \text{t_COL} whose \(n \) coefficients (\texttt{GEN}) follow.
Warning. Contrary to the policy of general PARI functions, the latter three functions do not copy their arguments, nor do they produce an object a priori suitable for `gerepileupto`. For instance

```c
/** gerepile-safe: components are universal objects */
z = mkvecn(3, gen_1, gen_0, gen_2);
/** not OK for gerepileupto: stoi(3) creates component before root */
z = mkvecn(3, stoi(3), gen_0, gen_2);
/** NO! First vector component x is destroyed */
x = gclone(gen_1);
z = mkvecn(3, x, gen_0, gen_2);
gunclone(x);
```

The following function is also available as a special case of `mkintn`:

```c
GEN uu32toi(ulong a, ulong b)
```

Returns the `GEN` equal to $2^{32}a + b$, assuming that $a, b < 2^{32}$. This does not depend on `sizeof(long)`: the behavior is as above on both 32 and 64-bit machines.

4.4.2 Sizes.

```c
long gsizeword(GEN x) returns the total number of BITS_IN_LONG-bit words occupied by the tree representing x.
```

```c
long gsizebyte(GEN x) returns the total number of bytes occupied by the tree representing x, i.e. `gsizeword(x)` multiplied by `sizeof(long)`. This is normally useless since PARI functions use a number of `words` as input for lengths and precisions.
```

4.4.3 Assignments.

Firstly, if x and y are both declared as `GEN` (i.e. pointers to something), the ordinary C assignment $y = x$ makes perfect sense: we are just moving a pointer around. However, physically modifying either x or y (for instance, $x[1] = 0$) also changes the other one, which is usually not desirable.

Very important note. Using the functions described in this paragraph is inefficient and often awkward: one of the `gerepile` functions (see Section 4.3) should be preferred. See the paragraph end for one exception to this rule.

The general PARI assignment function is the function `gffect` with the following syntax:

```c
void gffect(GEN x, GEN y)
```

Its effect is to assign the PARI object x into the preexisting object y. Both x and y must be `scalar` types. For convenience, vector or matrices of scalar types are also allowed.

This copies the whole structure of x into y so many conditions must be met for the assignment to be possible. For instance it is allowed to assign a `t_INT` into a `t_REAL`, but the converse is forbidden. For that, you must use the truncation or rounding function of your choice, e.g. `mpfloor`.

It can also happen that y is not large enough or does not have the proper tree structure to receive the object x. For instance, let y the zero integer with length equal to 2; then y is too small to accommodate any non-zero `t_INT`. In general common sense tells you what is possible, keeping in mind the PARI philosophy which says that if it makes sense it is valid. For instance, the assignment of an imprecise object into a precise one does not make sense. However, a change in precision of imprecise objects is allowed, even if it increases its accuracy: we complement the
“mantissa” with infinitely many 0 digits in this case. (Mantissa between quotes, because this is not restricted to \texttt{t_REAL}s, it also applies for \textit{p}-adics for instance.)

All functions ending in “\texttt{z}” such as \texttt{gaddz} (see Section 4.2.4) implicitly use this function. In fact what they exactly do is record \texttt{avma} (see Section 4.3), perform the required operation, \texttt{gaffect} the result to the last operand, then restore the initial \texttt{avma}.

You can assign ordinary C long integers into a PARI object (not necessarily of type \texttt{t_INT}) using

\begin{verbatim}
void gaffsg(long s, GEN y)
\end{verbatim}

\textbf{Note.} Due to the requirements mentioned above, it is usually a bad idea to use \texttt{gaffect} statements. There is one exception: for simple objects (e.g. leaves) whose size is controlled, they can be easier to use than \texttt{gerepile}, and about as efficient.

\textbf{Coercion.} It is often useful to coerce an inexact object to a given precision. For instance at the beginning of a routine where precision can be kept to a minimum; otherwise the precision of the input is used in all subsequent computations, which is inefficient if the latter is known to thousands of digits. One may use the \texttt{gaffect} function for this, but it is easier and more efficient to call

\begin{verbatim}
GEN gtofp(GEN x, long prec)\end{verbatim}

converts the complex number \(x\) (\texttt{t_INT}, \texttt{t_REAL}, \texttt{t_FRAC}, \texttt{t_QUAD} or \texttt{t_COMPLEX}) to either a \texttt{t_REAL} or \texttt{t_COMPLEX} whose components are \texttt{t_REAL} of length \(prec\).

\subsection{Copy}
It is also very useful to copy a PARI object, not just by moving around a pointer as in the \texttt{y = x} example, but by creating a copy of the whole tree structure, without pre-allocating a possibly complicated \(y\) to use with \texttt{gaffect}. The function which does this is called \texttt{gcopy}. Its syntax is:

\begin{verbatim}
GEN gcopy(GEN x)\end{verbatim}

and the effect is to create a new copy of \(x\) on the PARI stack.

Sometimes, on the contrary, a quick copy of the skeleton of \(x\) is enough, leaving pointers to the original data in \(x\) for the sake of speed instead of making a full recursive copy. Use \texttt{GEN shallowcopy(GEN x)} for this. Note that the result is not suitable for \texttt{gerepileupto}!

Make sure at this point that you understand the difference between \(y = x\), \(y = \text{gcopy}(x)\), \(y = \text{shallowcopy}(x)\) and \texttt{gaffect}(x,y).

\subsection{Clones}
Sometimes, it is more efficient to create a \textit{persistent} copy of a PARI object. This is not created on the stack but on the heap, hence unaffected by \texttt{gerepile} and friends. The function which does this is called \texttt{gclone}. Its syntax is:

\begin{verbatim}
GEN gclone(GEN x)\end{verbatim}

A clone can be removed from the heap (thus destroyed) using

\begin{verbatim}
void gunclone(GEN x)\end{verbatim}

No PARI object should keep references to a clone which has been destroyed!
4.4.6 Conversions. The following functions convert C objects to PARI objects (creating them on the stack as usual):

GEN stoi(long s): C long integer ("small") to t_INT.
GEN dbltor(double s): C double to t_REAL. The accuracy of the result is 19 decimal digits, i.e. a type t_REAL of length DEFAULTPREC, although on 32-bit machines only 16 of them are significant.

We also have the converse functions:
long itos(GEN x): x must be of type t_INT,
double rtodbl(GEN x): x must be of type t_REAL,
as well as the more general ones:
long gtolong(GEN x),
double gtodouble(GEN x).

4.5 Implementation of the PARI types.

We now go through each type and explain its implementation. Let z be a GEN, pointing at a PARI object. In the following paragraphs, we will constantly mix two points of view: on the one hand, z is treated as the C pointer it is, on the other, as PARI’s handle on some mathematical entity, so we will shamelessly write z ≠ 0 to indicate that the value thus represented is nonzero (in which case the pointer z is certainly non-NULL). We offer no apologies for this style. In fact, you had better feel comfortable juggling both views simultaneously in your mind if you want to write correct PARI programs.

Common to all the types is the first codeword z[0], which we do not have to worry about since this is taken care of by cgetg. Its precise structure depends on the machine you are using, but it always contains the following data: the internal type number attached to the symbolic type name, the length of the root in longwords, and a technical bit which indicates whether the object is a clone or not (see Section 4.4.5). This last one is used by gp for internal garbage collecting, you will not have to worry about it.

Some types have a second codeword, different for each type, which we will soon describe as we will shortly consider each of them in turn.

The first codeword is handled through the following macros:

long typ(GEN z) returns the type number of z.
void settyp(GEN z, long n) sets the type number of z to n (you should not have to use this function if you use cgetg).
long lg(GEN z) returns the length (in longwords) of the root of z.
long setlg(GEN z, long l) sets the length of z to l; you should not have to use this function if you use cgetg.
void lg_increase(GEN z) increase the length of z by 1; you should not have to use this function if you use cgetg.
long isclone(GEN z) is z a clone?
void setisclone(GEN z) sets the clone bit.
void unsetisclone(GEN z) clears the clone bit.
Important remark. For the sake of efficiency, none of the codeword-handling macros check the types of their arguments even when there are stringent restrictions on their use. It is trivial to create invalid objects, or corrupt one of the “universal constants” (e.g. setting the sign of \texttt{gen_0} to 1), and they usually provide negligible savings. Use higher level functions whenever possible.

Remark. The clone bit is there so that \texttt{gunclone} can check it is deleting an object which was allocated by \texttt{gclone}. Miscellaneous vector entries are often cloned by \texttt{gp} so that a GP statement like \texttt{v[1] = x} does not involve copying the whole of \texttt{v}: the component \texttt{v[1]} is deleted if its clone bit is set, and is replaced by a clone of \texttt{x}. Don’t set/unset yourself the clone bit unless you know what you are doing: in particular \textit{never} set the clone bit of a vector component when the said vector is scheduled to be uncloned. Hackish code may abuse the clone bit to tag objects for reasons unrelated to the above instead of using proper data structures. Don’t do that.

4.5.1 Type \texttt{t_INT (integer)}. this type has a second codeword \texttt{z[1]} which contains the following information:

- the sign of \texttt{z}: coded as 1, 0 or \(-1\) if \(z > 0\), \(z = 0\), \(z < 0\) respectively.
- the effective length of \texttt{z}, i.e. the total number of significant longwords. This means the following: apart from the integer 0, every integer is “normalized”, meaning that the most significant mantissa longword is non-zero. However, the integer may have been created with a longer length. Hence the “length” which is in \texttt{z[0]} can be larger than the “effective length” which is in \texttt{z[1]}.

This information is handled using the following macros:

- \texttt{long signe(GEN z)} returns the sign of \texttt{z}.
- \texttt{void setsigne(GEN z, long s)} sets the sign of \texttt{z} to \texttt{s}.
- \texttt{long lgefint(GEN z)} returns the effective length of \texttt{z}.
- \texttt{void setlgefint(GEN z, long l)} sets the effective length of \texttt{z} to \texttt{l}.

The integer 0 can be recognized either by its sign being 0, or by its effective length being equal to 2. Now assume that \(z \neq 0\), and let

\[
|z| = \sum_{i=0}^{n} z_i B^i, \quad \text{where } z_n \neq 0 \text{ and } B = 2^{\text{BITS_IN_LONG}}.
\]

With these notations, \(n\) is \texttt{lgefint(z)} - 3, and the mantissa of \texttt{z} may be manipulated via the following interface:

- \texttt{GEN int_MSW(GEN z)} returns a pointer to the most significant word of \texttt{z}, \(z_n\).
- \texttt{GEN int_LSW(GEN z)} returns a pointer to the least significant word of \texttt{z}, \(z_0\).
- \texttt{GEN int_W(GEN z, long i)} returns the \(i\)-th significant word of \texttt{z}, \(z_i\). Accessing the \(i\)-th significant word for \(i > n\) yields unpredictable results.
- \texttt{GEN int_W_lg(GEN z, long i, long lz)} returns the \(i\)-th significant word of \texttt{z}, \(z_i\), assuming \texttt{lgefint(z)} is \texttt{lz} (= \texttt{n + 3}). Accessing the \(i\)-th significant word for \(i > n\) yields unpredictable results.
- \texttt{GEN int_precW(GEN z)} returns the previous (less significant) word of \texttt{z}, \(z_{i-1}\) assuming \texttt{z} points to \(z_i\).
GEN int_nextW(GEN z) returns the next (more significant) word of z, \(z_{i+1} \) assuming z points to \(z_i \).

Unnormalized integers, such that \(z_n \) is possibly 0, are explicitly forbidden. To enforce this, one may write an arbitrary mantissa then call

```c
void int_normalize(GEN z, long known0)
```

normalizes in place a non-negative integer (such that \(z_n \) is possibly 0), assuming at least the first \(\text{known0} \) words are zero.

For instance a binary and could be implemented in the following way:

```c
GEN AND(GEN x, GEN y) {
    long i, lx, ly, lout;
    long *xp, *yp, *outp; /* mantissa pointers */
    GEN out;
    if (!signe(x) || !signe(y)) return gen_0;
    lx = lgefint(x); xp = int_LSW(x);
    ly = lgefint(y); yp = int_LSW(y); lout = min(lx,ly); /* > 2 */
    out = cgeti(lout); out[1] = evalsigne(1) | evallgefint(lout);
    outp = int_LSW(out);
    for (i=2; i < lout; i++)
    {
        *outp = (*xp) & (*yp);
        outp = int_nextW(outp);
        xp = int_nextW(xp);
        yp = int_nextW(yp);
    }
    if ( !*int_MSW(out) ) out = int_normalize(out, 1);
    return out;
}
```

This low-level interface is mandatory in order to write portable code since PARI can be compiled using various multiprecision kernels, for instance the native one or GNU MP, with incompatible internal structures (for one thing, the mantissa is oriented in different directions).

4.5.2 Type t_REAL (real number). This type has a second codeword \(z[1] \) which also encodes its sign, obtained or set using the same functions as for a t_INT, and a binary exponent. This exponent is handled using the following macros:

```c
long expo(GEN z) returns the exponent of z. This is defined even when z is equal to zero.
void setexpo(GEN z, long e) sets the exponent of z to e.
```

Note the functions:

```c
long gexpo(GEN z) which tries to return an exponent for z, even if z is not a real number.
long gsigne(GEN z) which returns a sign for z, even when z is neither real nor integer (a rational number for instance).
```

The real zero is characterized by having its sign equal to 0. If \(z \) is not equal to 0, then it is represented as \(2^e M \), where \(e \) is the exponent, and \(M \in [1,2] \) is the mantissa of \(z \), whose digits are stored in \(z[2],\ldots,z[\lfloor \log(z) \rfloor] \).
More precisely, let \(m \) be the integer \((z[2], \ldots, z[\lg(z) - 1])\) in base \(2^{\text{BITS_IN_LONG}}\); here, \(z[2] \) is the most significant longword and is normalized, i.e. its most significant bit is 1. Then we have \(M := m/2^\text{bit_accuracy(\lg(z)) - 1 - \exp(\lg(z))} \).

\[
\text{GEN mantissa_real(GEN z, long *e)} \text{ returns the mantissa } m \text{ of } z, \text{ and sets } *e \text{ to the exponent }
\text{bit_accuracy(\lg(z)) - 1 - \exp(\lg(z))}, \text{ so that } z = m/2^e.
\]

Thus, the real number 3.5 to accuracy \(\text{bit_accuracy(\lg(z))} \) is represented as \(z[0] \) (encoding type \(= \) \text{t_REAL}, \(\lg(z) \)), \(z[1] \) (encoding \(\text{sign} = 1 \), \(\exp = 1 \)), \(z[2] = 0x00000000 \), \(z[3] = \ldots = z[\lg(z) - 1] = 0x0 \).

4.5.3 Type \(\text{t_INTMOD} \). \(z[1] \) points to the modulus, and \(z[2] \) at the number representing the class \(z \). Both are separate GEN objects, and both must be \(\text{t_INTs} \), satisfying the inequality \(0 \leq z[2] < z[1] \).

4.5.4 Type \(\text{t_FRAC} \) (rational number). \(z[1] \) points to the numerator \(n \), and \(z[2] \) to the denominator \(d \). Both must be of type \(\text{t_INT} \) such that \(n \neq 0 \), \(d > 0 \) and \((n, d) = 1 \).

4.5.5 Type \(\text{t_FF_FpXQ} \) (finite field element). (Experimental)

Components of this type should normally not be accessed directly. Instead, finite field elements should be created using \text{ffgen}.

The second codeword \(z[1] \) determines the storage format of the element, among

- \(\text{t_FF_FpXQ} \): \(A = z[2] \) and \(T = z[3] \) are \(\text{FpX} \), \(p = z[4] \) is a \(\text{t_INT} \), where \(p \) is a prime number, \(T \) is irreducible modulo \(p \), and \(\deg A < \deg T \). This represents the element \(A \pmod{T} \) in \(\mathbb{F}_p[X]/T \).
- \(\text{t_FF_F1xQ} \): \(A = z[2] \) and \(T = z[3] \) are \(\text{F1x} \), \(1 = z[4] \) is a \(\text{t_INT} \), where \(l \) is a prime number, \(T \) is irreducible modulo \(l \), and \(\deg A < \deg T \). This represents the element \(A \pmod{T} \) in \(\mathbb{F}_l[X]/T \).
- \(\text{t_FF_F2xQ} \): \(A = z[2] \) and \(T = z[3] \) are \(\text{F2x} \), \(1 = z[4] \) is the \(\text{t_INT} 2 \), \(T \) is irreducible modulo \(2 \), and \(\deg A < \deg T \). This represents the element \(A \pmod{T} \) in \(\mathbb{F}_2[X]/T \).

4.5.6 Type \(\text{t_COMPLEX} \) (complex number). \(z[1] \) points to the real part, and \(z[2] \) to the imaginary part. The components \(z[1] \) and \(z[2] \) must be of type \(\text{t_INT} \), \(\text{t_REAL} \) or \(\text{t_FRAC} \). For historical reasons \(\text{t_INTMOD} \) and \(\text{t_PADIC} \) are also allowed (the latter for \(p = 2 \) or congruent to 3 mod 4 only), but one should rather use the more general \(\text{t_POLMOD} \) construction.

4.5.7 Type \(\text{t_PADIC} \) (\(p \)-adic numbers). this type has a second codeword \(z[1] \) which contains the following information: the \(p \)-adic precision (the exponent of \(p \) modulo which the \(p \)-adic unit corresponding to \(z \) is defined if \(z \) is not 0), i.e. one less than the number of significant \(p \)-adic digits, and the exponent of \(z \). This information can be handled using the following functions:

\[
\text{long \ \text{prec}(\text{GEN z}) \ \text{returns the p-\text{adic precision of z}. \ This is 0 if z = 0.}
\]

\[
\text{void \ \text{set_prec}(\text{GEN z, long 1}) \ \text{sets the p-\text{adic precision of z to 1.}}
\]

\[
\text{long \ \text{val}(\text{GEN z}) \ \text{returns the p-\text{adic valuation of z (i.e. the exponent). \ This is defined even if z is equal to 0.}}
\]

\[
\text{void \ \text{set_val}(\text{GEN z, long e}) \ \text{sets the p-\text{adic valuation of z to e.}}
\]

In addition to this codeword, \(z[2] \) points to the prime \(p \), \(z[3] \) points to \(p^{\text{prec}(z)} \), and \(z[4] \) points to \(\text{at_INT} \) representing the \(p \)-adic unit attached to \(z \) modulo \(z[3] \) (and to zero if \(z \) is zero).

To summarize, if \(z \neq 0 \), we have the equality:

\[
z = p^{\text{val}(z)} \cdot (z[4] + O(z[3])) \quad \text{where } z[3] = O(p^{\text{prec}(z)}).
\]
4.5.8 Type t_QUAD (quadratic number). $z[1]$ points to the canonical polynomial P defining the quadratic field (as output by quadpoly), $z[2]$ to the “real part” and $z[3]$ to the “imaginary part”. The latter are of type t_INT, t_FRAC, t_INTMOD, or t_PADIC and are to be taken as the coefficients of z with respect to the canonical basis $(1, X)$ of $\mathbb{Q}[X]/(P(X))$. Exact complex numbers may be implemented as quadratics, but t_COMPLEX is in general more versatile (t_REAL components are allowed) and more efficient.

Operations involving a t_QUAD and t_COMPLEX are implemented by converting the t_QUAD to a t_REAL (or t_COMPLEX with t_REAL components) to the accuracy of the t_COMPLEX. As a consequence, operations between t_QUAD and exact t_COMPLEXs are not allowed.

4.5.9 Type t_POLMOD (polmod). As for t_INTMODs, $z[1]$ points to the modulus, and $z[2]$ to a polynomial representing the class of z. Both must be of type t_POL in the same variable, satisfying the inequality $\deg z[2] < \deg z[1]$. However, $z[2]$ is allowed to be a simplification of such a polynomial, e.g. a scalar. This is tricky considering the hierarchical structure of the variables; in particular, a polynomial in variable of lesser priority (see Section 4.6) than the modulus variable is valid, since it is considered as the constant term of a polynomial of degree 0 in the correct variable. On the other hand a variable of greater priority is not acceptable.

4.5.10 Type t_POL (polynomial). This type has a second codeword. It contains a “sign”: 0 if the polynomial is equal to 0, and 1 if not (see however the important remark below) and a variable number (e.g. 0 for x, 1 for y, etc...).

These data can be handled with the following macros: signe and setsigne as for t_INT and t_REAL, long varn(GEN z) returns the variable number of the object z, void setvarn(GEN z, long v) sets the variable number of z to v.

The variable numbers encode the relative priorities of variables, we will give more details in Section 4.6. Note also the function long gvar(GEN z) which tries to return a variable number for z, even if z is not a polynomial or power series. The variable number of a scalar type is set by definition equal to NO_VARIABLE, which has lower priority than any other variable number.

The components $z[2], z[3], \ldots z[\lg(z)-1]$ point to the coefficients of the polynomial in ascending order, with $z[2]$ being the constant term and so on.

For a t_POL of non-zero sign, degpol, leading_coeff, constant_coeff, return its degree, and a pointer to the leading, resp. constant, coefficient with respect to the main variable. Note that no copy is made on the PARI stack so the returned value is not safe for a basic gerepile call. Applied to any other type than t_POL, the result is unspecified. Those three functions are still defined when the sign is 0, see Section 5.2.7 and Section 10.6.

long degree(GEN x) returns the degree of x with respect to its main variable even when x is not a polynomial (a rational function for instance). By convention, the degree of a zero polynomial is -1.

32
Important remark. The leading coefficient of a \texttt{t_POL} may be equal to zero:

- it is not allowed to be an exact rational 0, such as \texttt{gen_0};
- an exact non-rational 0, like \texttt{Mod(0,2)}, is possible for constant polynomials, i.e. of length 3 and no other coefficient: this carries information about the base ring for the polynomial;
- an inexact 0, like \texttt{0.E-38} or \texttt{O(3^5)}, is always possible. Inexact zeroes do not correspond to an actual 0, but to a very small coefficient according to some metric; we keep them to give information on how much cancellation occurred in previous computations.

A polynomial disobeying any of these rules is an invalid \textit{unnormalized} object. We advise \textit{not} to use low-level constructions to build a \texttt{t_POL} coefficient by coefficient, such as

\begin{verbatim}
GEN T = cgetg(4, t_POL);
T[1] = evalvarn(0);
gel(T, 2) = x;
gel(T, 3) = y;
\end{verbatim}

But if you do and it is not clear whether the result will be normalized, call

\texttt{GEN normalizepol(GEN x)} applied to an unnormalized \texttt{t_POL x} (with all coefficients correctly set except that \texttt{leading_term(x)} might be zero), normalizes \texttt{x} correctly in place and returns \texttt{x}. This functions sets \texttt{signe} (to 0 or 1) properly.

\textbf{Caveat.} A consequence of the remark above is that zero polynomials are characterized by the fact that their sign is 0. It is in general incorrect to check whether \texttt{lg(x)} is 2 or \texttt{degpol(x)} < 0, although both tests are valid when the coefficient types are under control: for instance, when they are guaranteed to be \texttt{t_INT}s or \texttt{t_FRAC}s. The same remark applies to \texttt{t_SER}s.

\subsection{4.5.11 Type \texttt{t_SER} (power series).} This type also has a second codeword, which encodes a “sign”, i.e. 0 if the power series is 0, and 1 if not, a \textit{variable number} as for polynomials, and an exponent. This information can be handled with the following functions: \texttt{signe, setsigne, varn, setvarn} as for polynomials, and \texttt{valp, setvalp} for the exponent as for \texttt{p}-adic numbers. Beware: do \textit{not} use \texttt{expo} and \texttt{setexpo} on power series.

The coefficients \texttt{z[2]}, \texttt{z[3]},...\texttt{z[lg(z)-1]} point to the coefficients of \texttt{z} in ascending order. As for polynomials (see remark there), the sign of a \texttt{t_SER} is 0 if and only all its coefficients are equal to 0. (The leading coefficient cannot be an integer 0.) A series whose coefficients are integers equal to zero is represented as \texttt{O(x^n)} (\texttt{zeroser(vx,n)}). A series whose coefficients are exact zeroes, but not all of them integers (e.g. an \texttt{t_INTMOD} such as \texttt{Mod(0,2)}) is represented as \texttt{z \ast x^{n-1} + O(x^n)}, where \texttt{z} is the 0 of the base ring, as per \texttt{Rg_get_0}.

Note that the exponent of a power series can be negative, i.e. we are then dealing with a Laurent series (with a finite number of negative terms).

\subsection{4.5.12 Type \texttt{t_RFRAC} (rational function).} \texttt{z[1]} points to the numerator \texttt{n}, and \texttt{z[2]} on the denominator \texttt{d}. The denominator must be of type \texttt{t_POL}, with variable of higher priority than the numerator. The numerator \texttt{n} is not an exact 0 and \((n,d) = 1\) (see \texttt{gred_rfac2}).

\subsection{4.5.13 Type \texttt{t_QFR} (indefinite binary quadratic form).} \texttt{z[1]}, \texttt{z[2]}, \texttt{z[3]} point to the three coefficients of the form and are of type \texttt{t_INT}. \texttt{z[4]} is Shanks’s distance function, and must be of type \texttt{t_REAL}.
4.5.14 Type \(t_{QFI} \) (definite binary quadratic form). \(z[1], z[2], z[3] \) point to the three coefficients of the form. All three are of type \(t_{\text{INT}} \).

4.5.15 Type \(t_{\text{VEC}} \) and \(t_{\text{COL}} \) (vector). \(z[1], z[2], \ldots z[1g(z)-1] \) point to the components of the vector.

4.5.16 Type \(t_{\text{MAT}} \) (matrix). \(z[1], z[2], \ldots z[1g(z)-1] \) point to the column vectors of \(z \), i.e. they must be of type \(t_{\text{COL}} \) and of the same length.

4.5.17 Type \(t_{\text{VECSMALL}} \) (vector of small integers). \(z[1], z[2], \ldots z[1g(z)-1] \) are ordinary signed long integers. This type is used instead of a \(t_{\text{VEC}} \) of \(t_{\text{INT}} \)s for efficiency reasons, for instance to implement efficiently permutations, polynomial arithmetic and linear algebra over small finite fields, etc.

4.5.18 Type \(t_{\text{STR}} \) (character string).

\[
\text{char * GSTR}(z) (= (z+1)) \text{ points to the first character of the (NULL-terminated) string.}
\]

4.5.19 Type \(t_{\text{ERROR}} \) (error context). This type holds error messages, as well as details about the error, as returned by the exception handling system. The second codeword \(z[1] \) contains the error type (an \texttt{int}, as passed to \texttt{pari_err}). The subsequent words \(z[2], \ldots z[1g(z)-1] \) are \texttt{GEN}s containing additional data, depending on the error type.

4.5.20 Type \(t_{\text{CLOSURE}} \) (closure). This type holds GP functions and closures, in compiled form. The internal detail of this type is subject to change each time the GP language evolves. Hence we do not describe it here and refer to the Developer’s Guide. However functions to create or to evaluate \(t_{\text{CLOSURE}} \)s are documented in Section 12.1.

\[
\text{long closure arity(GEN C) returns the arity of the } t_{\text{CLOSURE}}.
\]

\[
\text{long closure is variadic(GEN C) returns 1 if the closure C is variadic, 0 else.}
\]

4.5.21 Type \(t_{\text{INFINITY}} \) (infinity).

This type has a single \(t_{\text{INT}} \) component, which is either 1 or \(-1\), corresponding to \(+\infty\) and \(-\infty\) respectively.

\[
\text{GEN mkmoo() returns } -\infty
\]

\[
\text{GEN mkoo() returns } \infty
\]

\[
\text{long inf get sign(GEN x) returns 1 if } x \text{ is } +\infty, \text{ and } -1 \text{ if } x \text{ is } -\infty.
\]

4.5.22 Type \(t_{\text{LIST}} \) (list). this type was introduced for specific \textit{gp} use and is rather inefficient compared to a straightforward linked list implementation (it requires more memory, as well as many unnecessary copies). Hence we do not describe it here and refer to the Developer’s Guide.

Implementation note. For the types including an exponent (or a valuation), we actually store a biased non-negative exponent (bit-ORing the biased exponent to the codeword), obtained by adding a constant to the true exponent: either \texttt{HIGHEXPOBIT} (for \(t_{\text{REAL}} \) or \texttt{HIGHVALPBIT} (for \(t_{\text{PADIC}} \) and \(t_{\text{SER}} \)). Of course, this is encapsulated by the exponent/valuation-handling macros and needs not concern the library user.
4.6 PARI variables.

4.6.1 Multivariate objects.

We now consider variables and formal computations. As we have seen in Section 4.5, the codewords for types \texttt{t_POL} and \texttt{t_SER} encode a “variable number”. This is an integer, ranging from 0 to \texttt{MAXVARN}. Relative priorities may be ascertained using

\begin{verbatim}
int varncmp(long v, long w)
\end{verbatim}

which is \(> 0, = 0, < 0\) whenever \(v\) has lower, resp. same, resp. higher priority than \(w\).

The way an object is considered in formal computations depends entirely on its “principal variable number” which is given by the function

\begin{verbatim}
long gvar(GEN z)
\end{verbatim}

which returns a variable number for \(z\), even if \(z\) is not a polynomial or power series. The variable number of a scalar type is set by definition equal to \texttt{NO_VARIABLE} which has lower priority than any valid variable number. The variable number of a recursive type which is not a polynomial or power series is the variable number with highest priority among its components. But for polynomials and power series only the “outermost” number counts (we directly access \texttt{varn(x)} in the codewords): the representation is not symmetrical at all.

Under \texttt{gp}, one needs not worry too much since the interpreter defines the variables as it sees them* and do the right thing with the polynomials produced.

But in library mode, they are tricky objects if you intend to build polynomials yourself (and not just let PARI functions produce them, which is less efficient). For instance, it does not make sense to have a variable number occur in the components of a polynomial whose main variable has a lower priority, even though PARI cannot prevent you from doing it.

4.6.2 Creating variables. A basic difficulty is to “create” a variable. Some initializations are needed before you can use a given integer \(v\) as a variable number.

Initially, this is done for 0 and 1 (the variables \(x\) and \(y\) under \texttt{gp}), and 2, . . . , 9 (printed as \texttt{t2}, . . . \texttt{t9}), with decreasing priority.

4.6.2.1 User variables. When the program starts, \(x\) (number 0) and \(y\) (number 1) are the only available variables, numbers 2 to 9 (decreasing priority) are reserved for building polynomials with predictable priorities.

To define further ones, you may use

\begin{verbatim}
GEN varhigher(const char *s)
GEN varlower(const char *s)
\end{verbatim}

\(\text{to recover a monomial of degree 1 in a new variable, which is guaranteed to have higer (resp. lower) priority than all existing ones at the time of the function call. The variable is printed as } s, \text{ but is not part of GP’s interpreter: it is not a symbol bound to a value.}

* The first time a given identifier is read by the GP parser a new variable is created, and it is assigned a strictly lower priority than any variable in use at this point. On startup, before any user input has taken place, ‘\texttt{x}’ is defined in this way and has initially maximal priority (and variable number 0).
On the other hand

long fetch_user_var(char *s): inspects the user variable whose name is the string pointed to by s, creating it if needed, and returns its variable number.

 long v = fetch_user_var("y");
 GEN gy = pol_x(v);

The function raises an exception if the name is already in use for an installed or built-in function, or an alias. This function is mostly useless since it returns a variable with unpredictable priority. Don’t use it to create new variables.

Caveat. You can use gp_read_str (see Section 4.7.1) to execute a GP command and create GP variables on the fly as needed:

 GEN gy = gp_read_str("'y"); /* returns \texttt{pol}_x(v), for some \texttt{v} */
 long v = varn(gy);

But please note the quote ‘y in the above. Using \texttt{gp_read_str("y")} might work, but is dangerous, especially when programming functions to be used under \texttt{gp}. The latter reads the value of \texttt{y}, as currently known by the \texttt{gp} interpreter, possibly creating it in the process. But if \texttt{y} has been modified by previous \texttt{gp} commands (e.g. \texttt{y = 1}), then the value of \texttt{gy} is not what you expected it to be and corresponds instead to the current value of the \texttt{gp} variable (e.g. \texttt{gen1}).

GEN fetch_var_value(long v) returns a shallow copy of the current value of the variable numbered \texttt{v}. Returns NULL if that variable number is unknown to the interpreter, e.g. it is a user variable. Note that this may not be the same as \texttt{pol}_x(v) if assignments have been performed in the interpreter.

4.6.2.2 Temporary variables. You can create temporary variables using

long fetch_var() returns a new variable with lower priority than any variable currently in use.

long fetch_var_higher() returns a new variable with higher priority than any variable currently in use.

After the statement \texttt{v = fetch_var()}, you can use \texttt{pol1(v)} and \texttt{pol_x(v)}. The variables created in this way have no identifier assigned to them though, and are printed as \texttt{t}\texttt{number}. You can assign a name to a temporary variable, after creating it, by calling the function

void name_var(long n, char *s)

after which the output machinery will use the name \texttt{s} to represent the variable number \texttt{n}. The GP parser will not recognize it by that name, however, and calling this on a variable known to \texttt{gp} raises an error. Temporary variables are meant to be used as free variables to build polynomials and power series, and you should never assign values or functions to them as you would do with variables under \texttt{gp}. For that, you need a user variable.

All objects created by \texttt{fetch_var} are on the heap and not on the stack, thus they are not subject to standard garbage collecting (they are not destroyed by a \texttt{gerepile} or \texttt{avma = ltop} statement). When you do not need a variable number anymore, you can delete it using

long delete_var()

which deletes the latest temporary variable created and returns the variable number of the previous one (or simply returns 0 if none remain). Of course you should make sure that the deleted variable does not appear anywhere in the objects you use later on. Here is an example:
long first = fetch_var();
long n1 = fetch_var();
long n2 = fetch_var(); /* prepare three variables for internal use */

...
/* delete all variables before leaving */
do { num = delete_var(); } while (num && num <= first);

The (dangerous) statement
while (delete_var()) /* empty */;
removes all temporary variables in use.

4.6.3 Comparing variables.

Let us go back to varncmp. There is an interesting corner case, when one of the compared variables (from gvar, say) is NO_VARIABLE. In this case, varncmp declares it has lower priority than any other variable; of course, comparing NO_VARIABLE with itself yields 0 (same priority);

In addition to varncmp we have

long varnmax(long v, long w) given two variable numbers (possibly NO_VARIABLE), returns the variable with the highest priority. This function always returns a valid variable number unless it is comparing NO_VARIABLE to itself.

long varnmin(long x, long y) given two variable numbers (possibly NO_VARIABLE), returns the variable with the lowest priority. Note that when comparing a true variable with NO_VARIABLE, this function returns NO_VARIABLE, which is not a valid variable number.

4.7 Input and output.

Two important aspects have not yet been explained which are specific to library mode: input and output of PARI objects.

4.7.1 Input.

For input, PARI provides several powerful high level functions which enable you to input your objects as if you were under gp. In fact, it is essentially the GP syntactical parser.

There are two similar functions available to parse a string:

GEN gp_read_str(const char *s)
GEN gp_read_str_multiline(const char *s, char *last)

Both functions read the whole string s. The function gp_read_str ignores newlines: it assumes that the input is one expression and returns the result of this expression.

The function gp_read_str_multiline processes the text in the same way as the GP command read: newlines are significant and can be used to separate expressions. The return value is that of the last non-empty expression evaluated.

In gp_read_str_multiline, if last is non-NULL, then *last receives the last character from the filtered input: this can be used to check if the last character was a semi-colon (to hide the output in interactive usage). If (and only if) the input contains no statements, then *last is set to 0.

For both functions, gp's metacommands are recognized.
Note. The obsolete form

```c
GEN readseq(char *t)
```
still exists for backward compatibility (assumes filtered input, without spaces or comments). Don’t use it.

To read a GEN from a file, you can use the simpler interface

```c
GEN gp_read_stream(FILE *file)
```
which reads a character string of arbitrary length from the stream `file` (up to the first complete expression sequence), applies `gp_read_str` to it, and returns the resulting GEN. This way, you do not have to worry about allocating buffers to hold the string. To interactively input an expression, use `gp_read_stream(stdin)`.

Finally, you can read in a whole file, as in GP’s `read` statement

```c
GEN gp_read_file(char *name)
```
As usual, the return value is that of the last non-empty expression evaluated. There is one technical exception: if `name` is a binary file (from `writebin`) containing more than one object, a `t_VEC` containing them all is returned. This is because binary objects bypass the parser, hence reading them has no useful side effect.

4.7.2 Output to screen or file, output to string

General output functions return nothing but print a character string as a side effect. Low level routines are available to write on PARI output stream `pari_outfile` (stdout by default):

- `void pari_putchar(char c)`: write character `c` to the output stream.
- `void pari_puts(char *s)`: write `s` to the output stream.
- `void pari_flush()`: flush output stream; most streams are buffered by default, this command makes sure that all characters output so are actually written.
- `void pari_printf(const char *fmt, ...)`: the most versatile such function. `fmt` is a character string similar to the one `printf` uses. In there, `%` characters have a special meaning, and describe how to print the remaining operands. In addition to the standard format types (see the GP function `printf`), you can use the length modifier `P` (for PARI of course!) to specify that an argument is a GEN. For instance, the following are valid conversions for a GEN argument

```
%Ps convert to char* (will print an arbitrary GEN)
%P.10s convert to char*, truncated to 10 chars
%P.2f convert to floating point format with 2 decimals
%P4d convert to integer, field width at least 4
```

```
pari_printf("x[%d] = %Ps is not invertible!\n", i, gel(x,i));
```

Here `i` is an `int`, `x` a GEN which is not a leaf (presumably a vector, or a polynomial) and this would insert the value of its `i`-th GEN component: `gel(x,i)`.

Simple but useful variants to `pari_printf` are

```c
void output(GEN x) prints x in raw format, followed by a newline and a buffer flush. This is more or less equivalent to
```

```
pari_printf("%Ps\n", x);
```

void outmat(GEN x) as above except if x is a t_MAT, in which case a multi-line display is used to display the matrix. This is prettier for small dimensions, but quickly becomes unreadable and cannot be pasted and reused for input. If all entries of x are small integers, you may use the recursive features of \texttt{%Pd} and obtain the same (or better) effect with

\begin{verbatim}
pari_printf("%Pd\n", x);
pari_flush();
\end{verbatim}

A variant like "%5Pd" would improve alignment by imposing 5 chars for each coefficient. Similarly if all entries are to be converted to floats, a format like "%5.1Pf" could be useful.

These functions write on (PARI’s idea of) standard output, and must be used if you want your functions to interact nicely with \texttt{gp}. In most programs, this is not a concern and it is more flexible to write to an explicit FILE*, or to recover a character string:

\begin{verbatim}
void pari_fprintf(FILE *file, const char *fmt, ...)
\end{verbatim}
writes the remaining arguments to stream \texttt{file} according to the format specification \texttt{fmt}.

\begin{verbatim}
char* pari_sprintf(const char *fmt, ...)
\end{verbatim}
produces a string from the remaining arguments, according to the PARI format \texttt{fmt} (see \texttt{printf}). This is the \texttt{libpari} equivalent of \texttt{Strprintf}, and returns a malloc’ed string, which must be freed by the caller. Note that contrary to the analogous \texttt{sprintf} in the \texttt{libc} you do not provide a buffer (leading to all kinds of buffer overflow concerns); the function provided is actually closer to the GNU extension \texttt{asprintf}, although the latter has a different interface.

Simple variants of \texttt{pari_sprintf} convert a GEN to a malloc’ed ASCII string, which you must still \texttt{free} after use:

\begin{verbatim}
char* GENtostr(GEN x), using the current default output format (\texttt{prettymat} by default).
char* GENtoTeXstr(GEN x), suitable for inclusion in a \TeX file.
\end{verbatim}

Note that we have \texttt{va_list} analogs of the functions of \texttt{printf} type seen so far:

\begin{verbatim}
void pari_vprintf(const char *fmt, va_list ap)
void pari_vfprintf(FILE *file, const char *fmt, va_list ap)
char* pari_vsprintf(const char *fmt, va_list ap)
\end{verbatim}

4.7.3 Errors.

If you want your functions to issue error messages, you can use the general error handling routine \texttt{pari_err}. The basic syntax is

\begin{verbatim}
pari_err(e_MISC, "error message");
\end{verbatim}

This prints the corresponding error message and exit the program (in library mode; go back to the \texttt{gp} prompt otherwise). You can also use it in the more versatile guise

\begin{verbatim}
pari_err(e_MISC, format, ...);
\end{verbatim}

where \texttt{format} describes the format to use to write the remaining operands, as in the \texttt{pari_printf} function. For instance:

\begin{verbatim}
pari_err(e_MISC, "x[%d] = %Ps is not invertible!", i, gel(x,i));
\end{verbatim}
The simple syntax seen above is just a special case with a constant format and no remaining arguments. The general syntax is

```c
void pari_err(numerr, ...)
```

where `numerr` is a codeword which specifies the error class and what to do with the remaining arguments and what message to print. For instance, if `x` is a `GEN` with internal type `t_STR`, say, `pari_err(e_TYPE,"extgcd", x)` prints the message:

```plaintext
*** incorrect type in extgcd (t_STR),
```

See Section 11.4 for details. In the libpari code itself, the general-purpose `e_MISC` is used sparingly: it is so flexible that the corresponding error contexts (`t_ERROR`) become hard to use reliably. Other more rigid error types are generally more useful: for instance the error context attached to the `e_TYPE` exception above is precisely documented and contains "extgcd" and `x` (not only its type) as readily available components.

4.7.4 Warnings.

To issue a warning, use

```c
void pari_warn(warnerr, ...)
```

In that case, of course, we do not abort the computation, just print the requested message and go on. The basic example is

```c
pari_warn(warner, "Strategy 1 failed. Trying strategy 2")
```

which is the exact equivalent of `pari_err(e_MISC,...)` except that you certainly do not want to stop the program at this point, just inform the user that something important has occurred; in particular, this output would be suitably highlighted under `gp`, whereas a simple `printf` would not.

The valid `warning` keywords are `warner` (general), `warnprec` (increasing precision), `warnmem` (garbage collecting) and `warnfile` (error in file operation), used as follows:

```c
pari_warn(warnprec, "bnfinit", newprec);
pari_warn(warnmem, "bnfinit");
pari_warn(warnfile, "close", "afile"); /* error when closing "afile" */
```

4.7.5 Debugging output.

For debugging output, you can use the standard output functions, `output` and `pari_printf` mainly. Corresponding to the `gp` metacommand `\x`, you can also output the hexadecimal tree attached to an object:

```c
void dbgGEN(GEN x, long nb = -1), displays the recursive structure of x. If nb = -1, the full structure is printed, otherwise the leaves (non-recursive components) are truncated to `nb` words.
```

The function `output` is vital under debuggers, since none of them knows how to print PARI objects by default. Seasoned PARI developers add the following `gdb` macro to their `.gdbinit`:

```bash
define i
call output((GEN)$arg0)
end
```

Typing `i x` at a breakpoint in `gdb` then prints the value of the `GEN x` (provided the optimizer has not put it into a register, but it is rarely a good idea to debug optimized code).
The global variables `DEBUGLEVEL` and `DEBUGMEM` (corresponding to the default `debug` and `debugmem`) are used throughout the PARI code to govern the amount of diagnostic and debugging output, depending on their values. You can use them to debug your own functions, especially if you install the latter under `gp`.

`void dbg_pari_heap(void)` print debugging statements about the PARI stack, heap, and number of variables used. Corresponds to \s under gp.

4.7.6 Timers and timing output.

To handle timings in a reentrant way, PARI defines a dedicated data type, `pari_timer`, together with the following methods:

`void timer_start(pari_timer *T)` start (or reset) a timer.

`long timer_delay(pari_timer *T)` returns the number of milliseconds elapsed since the timer was last reset. Resets the timer as a side effect.

`long timer_get(pari_timer *T)` returns the number of milliseconds elapsed since the timer was last reset. Does not reset the timer.

`long timer_printf(pari_timer *T, char *format, ...)` This diagnostics function is equivalent to the following code

```c
err_printf("Time ")
... prints remaining arguments according to format ...
err_printf(": %ld", timer_delay(T));
```

Resets the timer as a side effect.

They are used as follows:

```c
pari_timer T;
timer_start(&T); /* initialize timer */
...
printf("Total time: %ldms\n", timer_delay(&T));
```

or

```c
pari_timer T;
timer_start(&T);
for (i = 1; i < 10; i++) {
...
timer_printf(&T, "for i = %ld (L[i] = %Ps)", i, gel(L,i));
}
```

The following functions provided the same functionality, in a non-reentrant way, and are now deprecated.

`long timer(void)`

`long timer2(void)`

`void msgtimer(const char *format, ...)`

The following function implements gp’s timer and should not be used in libpari programs:

`long gettime(void)` equivalent to `timer_delay(T)` attached to a private timer `T`.

41
4.8 Iterators, Numerical integration, Sums, Products.

4.8.1 Iterators. Since it is easier to program directly simple loops in library mode, some GP iterators are mainly useful for GP programming. Here are the others:

- `fordiv` is a trivial iteration over a list produced by `divisors`.

- `forell` and `forsubgroup` are currently not implemented as an iterator but as a procedure with callbacks.

  ```c
  void forell(void *E, long fun(void*, GEN), GEN a, GEN b)
  ```

 goes through the same curves as `forell(ell,a,b,)`, calling `fun(E, ell)` for each curve `ell`, stopping if `fun` returns a non-zero value.

  ```c
  void forsubgroup(void *E, long fun(void*, GEN), GEN G, GEN B)
  ```

 goes through the same subgroups as `forsubgroup(H = G, B,)`, calling `fun(E, H)` for each subgroup `H`, stopping if `fun` returns a non-zero value.

- `forprime`, for which we refer you to the next subsection.

- `forcomposite`, we provide an iterator over composite integers:

  ```c
  int forcomposite(forcomposite_t *T, GEN a, GEN b)
  ```

 initialize an iterator `T` over composite integers in `[a, b]`: over composites ≥ `a` if `b = NULL`. Return 0 if the range is known to be empty from the start (as if `b < a` or `b < 0`), and return 1 otherwise.

  ```c
  GEN forcomposite_next(forcomposite_t *T)
  ```

 returns the next composite in the range, assuming that `T` was initialized by `forcomposite_init`.

- `forvec`, for which we provide a convenient iterator. To initialize the analog of `forvec(X = v, ..., flag)`, call

  ```c
  int forvec_init(forvec_t *T, GEN v, long flag)
  ```

 initialize an iterator `T` over the vectors generated by `forvec(X = v, ..., flag)`. This returns 0 if this vector list is empty, and 1 otherwise.

  ```c
  GEN forvec_next(forvec_t *T)
  ```

 returns the next element in the `forvec` sequence, or `NULL` if we are done. The return value must be used immediately or copied since the next call to the iterator destroys it: the relevant vector is updated in place. The iterator works hard not to use up PARI stack, and is more efficient when all lower bounds in the initialization vector `v` are integers. In that case, the cost is linear in the number of tuples enumerated, and you can expect to run over more than 10^9 tuples per minute. If speed is critical and all integers involved would fit in `C longs`, write a simple direct backtracking algorithm yourself.

- `forpart` is a variant of `forvec` which iterates over partitions. See the documentation of the `forpart` GP function for details. This function is available as a loop with callbacks:

  ```c
  void forpart(void *data, long (*call)(void*, GEN), long k, GEN a, GEN n)
  ```

 It is also available as an iterator:

  ```c
  void forpart_init(forpart_t *T, long k, GEN a, GEN n)
  ```

 initializes an iterator over the partitions of `k`, with length restricted by `n`, and components restricted by `a`, either of which can be set to `NULL` to run without restriction.

  ```c
  GEN forpart_next(forpart_t *T)
  ```

 returns the next partition, or `NULL` when all partitions have been exhausted.
GEN forpart_prev(forpart_t *T) returns the previous partition, or NULL when all partitions have been exhausted.

In both cases, the partition must be used or copied before the next call since it is returned from a state array which will be modified in place. You may not mix calls to forpart_next and forpart_prev: the first one called determines the ordering used to iterate over the partitions; you can not go back since the forpart_t structure is used in incompatible ways.

- forperm to loop over permutations of k. See the documentation of the forperm GP function for details. This function is available as an iterator:
 void forperm_init(forperm_t *T, GEN k) initializes an iterator over the permutations of k (t_INT, t_VEC or t_VECSMALL).
 GEN forperm_next(forperm_t *T) returns the next permutation as a t_VECSMALL or NULL when all permutations have been exhausted. The permutation must be used or copied before the next call since it is returned from a state array which will be modified in place.

- forsubset to loop over subsets. See the documentation of the forsubset GP function for details. This function is available as two iterators:
 void forallsubset_init(forsubset_t *T, long n)
 void forksubset_init(forsubset_t *T, long n, long k)

It is also available in generic form:
 void forsubset_init(forsubset_t *T, GEN nk) where nk is either a t_INT n or a t_VEC with two integral components $[n, k]$.

In all three cases, GEN forsubset_next(forsubset_t *T) returns the next subset as a t_VECSMALL or NULL when all subsets have been exhausted.

4.8.2 Iterating over primes.

The library provides a high-level iterator, which stores its (private) data in a struct forprime_t and runs over arbitrary ranges of primes, without ever overflowing.

The iterator has two flavors, one providing the successive primes as ulong, the other as GEN. They are initialized as follows, where we expect to run over primes $\geq a$ and $\leq b$:
 int forprime_init(forprime_t *T, GEN a, GEN b) for the GEN variant, where $b = \text{NULL}$ means $+\infty$.
 int u_forprime_init(forprime_t *T, ulong a, ulong b) for the ulong variant, where $b = \text{ULONG}_\text{MAX}$ means we will run through all primes representable in a ulong type.

Both variant return 1 on success, and 0 if the iterator would run over an empty interval (if $a > b$, for instance). They allocate the forprime_t data structure on the PARI stack.

The successive primes are then obtained using
 GEN forprime_next(forprime_t *T), returns NULL if no more primes are available in the interval.
 ulong u_forprime_next(forprime_t *T), returns 0 if no more primes are available in the interval.

These two functions leave alone the PARI stack, and write their state information in the preallocated forprime_t struct. The typical usage is thus:
forprime_t T;
GEN p;
pari_sp av = avma, av2;
forprime_init(&T, gen_2, stoi(1000));
av2 = avma;
while ((p = forprime_next(&T)))
{
 ...
 if (prime_is_OK(p)) break;
 avma = av2; /* delete garbage accumulated in this iteration */
}
avma = av; /* delete all */

Of course, the final avma = av could be replaced by a gerepile call. Beware that swapping the av2 = avma and forprime_init call would be incorrect: the first avma = av2 would delete the forprime_t structure!

4.8.3 Numerical analysis.

Numerical routines code a function (to be integrated, summed, zeroed, etc.) with two parameters named

 void *E;
 GEN (*eval)(void*, GEN)

The second is meant to contain all auxiliary data needed by your function. The first is such that eval(x, E) returns your function evaluated at x. For instance, one may code the family of functions $f_t: x \mapsto (x + t)^2$ via

 GEN fun(void *t, GEN x) { return gsqr(gadd(x, (GEN)t)); }

One can then integrate f_1 between a and b with the call

 intnum((void*)stoi(1), &fun, a, b, NULL, prec);

Since you can set E to a pointer to any struct (typecast to void*) the above mechanism handles arbitrary functions. For simple functions without extra parameters, you may set E = NULL and ignore that argument in your function definition.
4.9 Catching exceptions.

4.9.1 Basic use.

PARI provides a mechanism to trap exceptions generated via pari_err using the pari_CATCH construction. The basic usage is as follows

```pari
catch (err_code) {
  recovery branch
} 
try { 
  main branch
}
endcatch
```

This fragment executes the main branch, then the recovery branch if exception err_code is thrown, e.g. e_TYPE. See Section 11.4 for the description of all error classes. The special error code CATCH_ALL is available to catch all errors.

One can replace the pari_TRY keyword by pari_RETRY, in which case once the recovery branch is run, we run the main branch again, still catching the same exceptions.

Restrictions.

- Such constructs can be nested without adverse effect, the innermost handler catching the exception.
- It is valid to leave either branch using pari_err.
- It is invalid to use C flow control instructions (break, continue, return) to directly leave either branch without seeing the pari_ENDCATCH keyword. This would leave an invalid structure in the exception handler stack, and the next exception would crash.
- In order to leave using break, continue or return, one must precede the keyword by a call to void pari_CATCH_reset() disable the current handler, allowing to leave without adverse effect.

4.9.2 Advanced use.

In the recovery branch, the exception context can be examined via the following helper routines:

GEN pari_err_last() returns the exception context, as a t_ERROR. The exception E returned by pari_err_last can be rethrown, using

```pari
pari_err(0, E);
```

long err_get_num(GEN E) returns the error symbolic name. E.g e_TYPE.

GEN err_get_compo(GEN E, long i) error i-th component, as documented in Section 11.4.

For instance

```pari
pari_CATCH(CATCH_ALL) { /* catch everything */
  GEN x, E = pari_err_last();
  long code = err_get_num(E);
  if (code != e_INV) pari_err(0, E); /* unexpected error, rethrow */
```

45
x = err_get_compo(E, 2);
/* e_INV has two components, 1: function name 2: non-invertible x */
if (typ(x) != t_INTMOD) pari_err(0, E); /* unexpected type, rethrow */
pari_CATCH_reset();
return x; /* leave ! */

4.10 A complete program.

Now that the preliminaries are out of the way, the best way to learn how to use the library mode is
to study a detailed example. We want to write a program which computes the gcd of two integers,
together with the Bezout coefficients. We shall use the standard quadratic algorithm which is not
optimal but is not too far from the one used in the PARI function bezout.

Let x, y two integers and initially \[
\begin{pmatrix}
s_x & s_y \\
t_x & t_y \\end{pmatrix}
= \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix},
\] so that
\[
\begin{pmatrix}
s_x & s_y \\
t_x & t_y \\end{pmatrix}
\begin{pmatrix} x \\ y \end{pmatrix}
= \begin{pmatrix} x \\ y \end{pmatrix}.
\]

To apply the ordinary Euclidean algorithm to the right hand side, multiply the system from the
left by \[
\begin{pmatrix} 0 & 1 \\ 1 & -q \end{pmatrix},
\] with $q = \text{floor}(x/y)$. Iterate until $y = 0$ in the right hand side, then the first
line of the system reads
\[
s_x x + s_y y = \gcd(x, y).
\]

In practice, there is no need to update s_y and t_y since $\gcd(x, y)$ and s_x are enough to recover s_y.
The following program is now straightforward. A couple of new functions appear in there, whose
description can be found in the technical reference manual in Chapter 5, but whose meaning should
be clear from their name and the context.

This program can be found in examples/extgcd.c together with a proper Makefile. You
may ignore the first comment

\[
/*
GP;install("extgcd", "GG\&\&", "gcdex", "./libextgcd.so");
*/
\]

which instruments the program so that gp2c-run extgcd.c can import the extgcd() routine into
an instance of the gp interpreter (under the name gcdex). See the gp2c manual for details.

46
#include <pari/pari.h>

/*
GP;install("extgcd", "GG&b", "gcdex", ".\libextgcd.so");
*/
/* return d = gcd(a,b), sets u, v such that au + bv = gcd(a,b) */
GEN extgcd(GEN A, GEN B, GEN *U, GEN *V)
{
 pari_sp av = avma;
 GEN ux = gen_1, vx = gen_0, a = A, b = B;
 if (typ(a) != t_INT) pari_err_TYPE("extgcd",a);
 if (typ(b) != t_INT) pari_err_TYPE("extgcd",b);
 if (signe(a) < 0) { a = negi(a); ux = negi(ux); }
 while (!gequal0(b))
 {
 GEN r, q = dvmdii(a, b, &r), v = vx;
 vx = subii(ux, mulii(q, vx));
 ux = v; a = b; b = r;
 }
 *U = ux;
 *V = diviiexact(subii(a, mulii(A,ux)), B);
gerepileall(av, 3, &a, U, V); return a;
}

int main()
{
 GEN x, y, d, u, v;
 pari_init(1000000,2);
 printf("x = "); x = gp_read_stream(stdin);
 printf("y = "); y = gp_read_stream(stdin);
 d = extgcd(x, y, &u, &v);
 pari_printf("gcd = %Ps\nu = %Ps\nv = %Ps\n", d, u, v);
 pari_close();
 return 0;
}

For simplicity, the inner loop does not include any garbage collection, hence memory use is quadratic in the size of the inputs instead of linear. Here is a better version of that loop:

pari_sp av = avma;
...
while (!gequal0(b))
{
 GEN r, q = dvmdii(a, b, &r), v = vx;
 vx = subii(ux, mulii(q, vx));
 ux = v; a = b; b = r;
 if (gc_needed(av,1))
 gerepileall(av, 4, &a, &b, &ux, &vx);
In the following chapters, we describe all public low-level functions of the PARI library. These include specialized functions for handling all the PARI types. Simple higher level functions, such as arithmetic or transcendental functions, are described in Chapter 3 of the GP user’s manual; we will eventually see more general or flexible versions in the chapters to come. A general introduction to the major concepts of PARI programming can be found in Chapter 4, which you should really read first.

We shall now study specialized functions, more efficient than the library wrappers, but sloppier on argument checking and damage control; besides speed, their main advantage is to give finer control about the inner workings of generic routines, offering more options to the programmer.

Important advice. Generic routines eventually call lower level functions. Optimize your algorithms first, not overhead and conversion costs between PARI routines. For generic operations, use generic routines first; do not waste time looking for the most specialized one available unless you identify a genuine bottleneck, or you need some special behavior the generic routine does not offer. The PARI source code is part of the documentation; look for inspiration there.

The type `long` denotes a `BITS_IN_LONG`-bit signed long integer (32 or 64 bits). The type `ulong` is defined as `unsigned long`. The word `stack` always refer to the PARI stack, allocated through an initial `pari_init` call. Refer to Chapters 1–2 and 4 for general background.

We shall often refer to the notion of shallow function, which means that some components of the result may point to components of the input, which is more efficient than a deep copy (full recursive copy of the object tree). Such outputs are not suitable for `gerepileupto` and particular care must be taken when garbage collecting objects which have been input to shallow functions: corresponding outputs also become invalid and should no longer be accessed.

A function is **not stack clean** if it leaves intermediate data on the stack besides its output, for efficiency reasons.

5.1 Initializing the library

The following functions enable you to start using the PARI functions in a program, and cleanup without exiting the whole program.

5.1.1 General purpose

`void pari_init(size_t size, ulong maxprime)` initialize the library, with a stack of `size` bytes and a prime table up to the maximum of `maxprime` and 2^{16}. Unless otherwise mentioned, no PARI function will function properly before such an initialization.

`void pari_close(void)` stop using the library (assuming it was initialized with `pari_init`) and frees all allocated objects.
5.1.2 Technical functions.

void pari_init_opts(size_t size, ulong maxprime, ulong opts) as pari_init, more flexible. opts is a mask of flags among the following:

- INIT_JMPm: install PARI error handler. When an exception is raised, the program is terminated with exit(1).
- INIT_SIGm: install PARI signal handler.
- INIT_DFTm: initialize the GP_DATA environment structure. This one must be enabled once. If you close pari, then restart it, you need not reinitialize GP_DATA; if you do not, then old values are restored.
- INIT_noPRIMEm: do not compute the prime table (ignore the maxprime argument). The user must call pari_init_primes later.
- INIT_noIMTm: (technical, see pari_mt_init in the Developer’s Guide for detail). Do not call pari_mt_init to initialize the multi-thread engine. If this flag is set, pari_mt_init() will need to be called manually. See examples/pari-mt.c for an example.
- INIT_noINTGMPm: do not install PARI-specific GMP memory functions. This option is ignored when the GMP library is not in use. You may install PARI-specific GMP memory functions later by calling

```
void pari_kernel_init(void)
```

and restore the previous values using

```
void pari_kernel_close(void)
```

This option should not be used without a thorough understanding of the problem you are trying to solve. The GMP memory functions are global variables used by the GMP library. If your program is linked with two libraries that require these variables to be set to different values, conflict ensues. To avoid a conflict, the proper solution is to record their values with mp_get_memory_functions and to call mp_set_memory_functions to restore the expected values each time the code switches from using one library to the other. Here is an example:

```c
void *(*pari_alloc_ptr) (size_t);
void *(*pari_realloc_ptr) (void *, size_t, size_t);
void *(*pari_free_ptr) (void *, size_t);
void *(*otherlib_alloc_ptr) (size_t);
void *(*otherlib_realloc_ptr) (void *, size_t, size_t);
void *(*otherlib_free_ptr) (void *, size_t);
void init(void)
{
    pari_init(8000000, 500000);
    mp_get_memory_functions(&pari_alloc_ptr,&pari_realloc_ptr,
                           &pari_free_ptr);
    otherlib_init();
    mp_get_memory_functions(&otherlib_alloc_ptr,&otherlib_realloc_ptr,
                            &otherlib_free_ptr);
}
void function_that_use_pari(void)
{
```
mp_set_memory_functions(pari_alloc_ptr, pari_realloc_ptr, pari_free_ptr);
/*use PARI functions*/
}
void function_that_use_otherlib(void)
{
 mp_set_memory_functions(otherlib_alloc_ptr, otherlib_realloc_ptr, otherlib_free_ptr);
 /*use OTHERLIB functions*/
}
void pari_close_opts(ulong init_opts) as pari_close, for a library initialized with a mask of options using pari_init_opts. opts is a mask of flags among

INIT_SIGm: restore SIG_DFL default action for signals tampered with by PARI signal handler.

INIT_DFTm: frees the GP_DATA environment structure.

INIT_noIMTm: (technical, see pari_mt_init in the Developer's Guide for detail). Do not call pari_mt_close to close the multi-thread engine. INIT_noINTGMPm: do not restore GMP memory functions.

void pari_sig_init(void (*f)(int)) install the signal handler f (see signal(2)): the signals SIGBUS, SIGFPE, SIGINT, SIGBREAK, SIGPIPE and SIGSEGV are concerned.

void pari_init_primes(ulong maxprime) Initialize the PARI primes. This function is called by pari_init(...),maxprime). It is provided for users calling pari_init_opts with the flag INIT_noPRIMEm.

void pari_sighandler(int signum) the actual signal handler that PARI uses. This can be used as argument to pari_sig_init or signal(2).

void pari_stackcheck_init(void *stackbase) controls the system stack exhaustion checking code in the GP interpreter. This should be used when the system stack base address change or when the address seen by pari_init is too far from the base address. If stackbase is NULL, disable the check, else set the base address to stackbase. It is normally used this way

 int thread_start (...)
 {
 long first_item_on_the_stack;
 ...
 pari_stackcheck_init(&first_item_on_the_stack);
 }

int pari_daemon(void) forks a PARI daemon, detaching from the main process group. The function returns 1 in the parent, and 0 in the forked son.

void paristack_setsize(size_t rsize, size_t vsize) sets the default parisize to rsize and the default parisizemax to vsize, and reallocate the stack to match these value, destroying its content. Generally used just after pari_init.

void paristack_resize(ulong newsize) changes the current stack size to newsize (double it if newsize is 0). The new size is clipped to be at least the current stack size and at most parisizemax. The stack content is not affected by this operation.
void parivstack_reset(void) resets the current stack to its default size parisize. This is used to recover memory after a computation that enlarged the stack. This function destroys the content of the enlarged stack (between the old and the new bottom of the stack). Before calling this function, you must ensure that avma lies within the new smaller stack.

void parivstack_newsize(ulong newsize) *(does not return)*. Library version of default(parisize, "newsize")

Set the default parisize to newsize, or double parisize if newsize is equal to 0, then call cb_pari_err_recover(-1).

void parivstack_resize(ulong newsize) *(does not return)*. Library version of default(parisizemax, "newsize")

Set the default parisizemax to newsize and call cb_pari_err_recover(-1).

5.1.3 Notions specific to the GP interpreter.

An entree is the generic object attached to an identifier (a name) in GP’s interpreter, be it a built-in or user function, or a variable. For a function, it has at least the following fields:

- char *name: the name under which the interpreter knows us.
- void *value: a pointer to the C function to call.
- long menu: a small integer ≥ 1 (to which group of function help do we belong, for the ?n help menu).
- char *code: the prototype code.
- char *help: the help text for the function.

A routine in GP is described to the analyzer by an entree structure. Built-in PARI routines are grouped in modules, which are arrays of entree structs, the last of which satisfy name = NULL (sentinel). There are currently four modules in PARI/GP:

- general functions (functions_basic, known to libpari),
- gp-specific functions (functions_gp),

and two modules of obsolete functions. The function pari_init initializes the interpreter and declares all symbols in functions_basic. You may declare further functions on a case by case basis or as a whole module using

void pari_add_function(entree *ep) adds a single routine to the table of symbols in the interpreter. It assumes pari_init has been called.

void pari_add_module(entree *mod) adds all the routines in module mod to the table of symbols in the interpreter. It assumes pari_init has been called.

For instance, gp implements a number of private routines, which it adds to the default set via the calls

 pari_add_module(functions_gp);

A GP default is likewise attached to a helper routine, that is run when the value is consulted, or changed by default0 or setdefault. Such routines are grouped in the module functions_default.
void pari_add_defaults_module(entreé *mod) adds all the defaults in module mod to the interpreter. It assumes that pari_init has been called. From this point on, all defaults in module mod are known to setdefault and friends.

5.1.4 Public callbacks.

The gp calculator associates elaborate functions (for instance the break loop handler) to the following callbacks, and so can you:

void (*cb_pari_ask_confirm)(const char *s) initialized to NULL. Called with argument s whenever PARI wants confirmation for action s, for instance in secure mode.

void (*cb_pari_init_histfile)(void) initialized to NULL. Called when the histfile default is changed. The intent is for that callback to read the file content, append it to history in memory, then dump the expanded history to the new histfile.

int (*cb_pari_is_interactive)(void): initialized to NULL.

void (*cb_pari_quit)(long) initialized to a no-op. Called when gp must evaluate the quit command.

void (*cb_pari_start_output)(void) initialized to NULL.

int (*cb_pari_handle_exception)(long) initialized to NULL. If not NULL, this routine is called with argument −1 on SIGINT, and argument err on error err. If it returns a non-zero value, the error or signal handler returns, in effect further ignoring the error or signal, otherwise it raises a fatal error. A possible simple-minded handler, used by the gp interpreter, is

int gp_handle_exception(long err) if the breakloop default is enabled (set to 1) and cb_pari_break_loop is not NULL, we call this routine with err argument and return the result.

int (*cb_pari_err_handle)(GEN) If not NULL, this routine is called with a t_ERROR argument from pari_err. If it returns a non-zero value, the error returns, in effect further ignoring the error, otherwise it raises a fatal error.

The default behavior is to print a descriptive error message (display the error), then return 0, thereby raising a fatal error. This differs from cb_pari_handle_exception in that the function is not called on SIGINT (which do not generate a t_ERROR), only from pari_err. Use cb_pari_sigint if you need to handle SIGINT as well.

The following function can be used by cb_pari_err_handle to display the error message.

const char* closure_func_err() return a statically allocated string holding the name of the function that triggered the error. Return NULL if the error was not caused by a function.

int (*cb_pari_break_loop)(int) initialized to NULL.

void (*cb_pari_sigint)(void). Function called when we receive SIGINT. By default, raises

pari_err(e_MISC, "user interrupt");

A possible simple-minded variant, used by the gp interpreter, is

void gp_sigint_fun(void)

void (*cb_pari_pre_recover)(long) initialized to NULL. If not NULL, this routine is called just before PARI cleans up from an error. It is not required to return. The error number is passed as argument, unless the PARI stack has been destroyed (allocatemem), in which case −1 is passed.
void (*cb_pari_err_recover)(long) initialized to pari_exit(). This callback must not return. It is called after PARI has cleaned-up from an error. The error number is passed as argument, unless the PARI stack has been destroyed, in which case it is called with argument −1.

int (*cb_pari_whatisnow)(PariOUT *out, const char *s, int flag) initialized to NULL. If not NULL, must check whether s existed in older versions of pari (the gp callback checks against pari-1.39.15). All output must be done via out methods.

• flag = 0: should print verbosely the answer, including help text if available.
• flag = 1: must return 0 if the function did not change, and a non-0 result otherwise. May print a help message.

5.1.5 Configuration variables.

pari_library_path: If set, It should be a path to the libpari library. It is used by the function gpinstall to locate the PARI library when searching for symbols. This should only be useful on Windows.

5.1.6 Utility functions.

void pari_ask_confirm(const char *s) raise an error if the callback cb_pari_ask_confirm is NULL. Otherwise calls
cb_pari_ask_confirm(s);

char* gp_filter(const char *s) pre-processor for the GP parser: filter out whitespace and GP comments from s.

GEN pari_compile_str(const char *s) low-level form of compile_str: assumes that s does not contain spaces or GP comments and returns the closure attached to the GP expression s. Note that GP metacommands are not recognized.

int gp_meta(const char *s, int ismain) low-level component of gp_read_str: assumes that s does not contain spaces or GP comments and try to interpret s as a GP metacommand (e.g. starting by \ or ?). If successful, execute the metacommand and return 1; otherwise return 0. The ismain parameter modifies the way \r commands are handled: if non-zero, act as if the file contents were entered via standard input (i.e. call switchin and divert pari_infile); otherwise, simply call gp_read_file.

void pari_hit_return(void) wait for the use to enter \n via standard input.

void gp_load_gprc(void) read and execute the user’s GPRC file.

void pari_center(const char *s) print s, centered.

void pari_print_version(void) print verbose version information.

long pari_community(void) return the index of the support section n the help.

const char* gp_format_time(long t) format a delay of t ms suitable for gp output, with timer set.

const char* gp_format_prompt(const char *p) format a prompt p suitable for gp prompting (includes colors and protecting ANSI escape sequences for readline).

void pari_alarm(long s) set an alarm after s seconds (raise an e_ALARM exception).
void gp_help(const char *s, long flag) print help for s, depending on the value of flag:
 • h_REGULAR, basic help (?);
 • h_LONG, extended help (??);
 • h_APROPOS, a propos help (??).

const char ** gphelp_keyword_list(void) return a NULL-terminated array a strings, containing keywords known to gp help besides GP functions (e.g. modulus or operator). Used by the online help system and the contextual completion engine.

void gp_echo_and_log(const char *p, const char *s) given a prompt p and attached input command s, update logfile and possibly print on standard output if echo is set and we are not in interactive mode. The callback cb_pari_is_interactive must be set to a sensible value.

void gp_alarm_handler(int sig) the SIGALRM handler set by the gp interpreter.

void print_fun_list(char **list, long n) print all elements of list in columns, pausing (hit return) every n lines. list is NULL terminated.

5.1.7 Saving and restoring the GP context.

void gp_context_save(struct gp_context* rec) save the current GP context.

void gp_context_restore(struct gp_context* rec) restore a GP context. The new context must be an ancestor of the current context.

5.1.8 GP history.

These functions allow to control the GP history (the % operator).

void pari_add_hist(GEN x, long t) adds x as the last history entry; t is the time we used to compute it.

GEN pari_get_hist(long p), if p > 0 returns entry of index p (i.e. %p), else returns entry of index n + p where n is the index of the last entry (used for %, %', %", etc.).

long pari_get_histtime(long p) as pari_get_hist, returning the time used to compute the history entry, instead of the entry itself.

ulong pari_nb_hist(void) return the index of the last entry.

5.2 Handling GENs.

Almost all these functions are either macros or inlined. Unless mentioned otherwise, they do not evaluate their arguments twice. Most of them are specific to a set of types, although no consistency checks are made: e.g. one may access the sign of a t_PADIC, but the result is meaningless.
5.2.1 Allocation.

GEN cgetg(long l, long t) allocates (the root of) a GEN of type t and length l. Sets z[0].

GEN cgeti(long l) allocates a t_INT of length l (including the 2 codewords). Sets z[0] only.

GEN cgetr(long l) allocates a t_REAL of length l (including the 2 codewords). Sets z[0] only.

GEN cgetc(long prec) allocates a t_COMPLEX whose real and imaginary parts are t_REALs of length prec.

GEN cgetg_copy(GEN x, long *lx) fast version of cgetg: allocate a GEN with the same type and length as x, setting *lx to lg(x) as a side-effect. (Only sets the first codeword.) This is a little faster than cgetg since we may reuse the bitmask in x[0] instead of recomputing it, and we do not need to check that the length does not overflow the possibilities of the implementation (since an object with that length already exists). Note that cgetg with arguments known at compile time, as in

\[\text{cgetg}(3, \text{t_INTMOD}) \]

will be even faster since the compiler will directly perform all computations and checks.

GEN vectrunc_init(long l) perform cgetg(1,t_VEC), then set the length to 1 and return the result. This is used to implement vectors whose final length is easily bounded at creation time, that we intend to fill gradually using:

void vectrunc_append(GEN x, GEN y) assuming x was allocated using vectrunc_init, appends y as the last element of x, which grows in the process. The function is shallow: we append y, not a copy; it is equivalent to

\[\text{long lx = lg(x); gel(x, lx) = y; setlg(x, lx+1);} \]

Beware that the maximal size of x (the l argument to vectrunc_init) is unknown, hence unchecked, and stack corruption will occur if we append more than \(l - 1 \) elements to x. Use the safer (but slower) shallowconcat when l is not easy to bound in advance.

An other possibility is simply to allocate using cgetg(1, t) then fill the components as they become available: this time the downside is that we do not obtain a correct GEN until the vector is complete. Almost no PARI function will be able to operate on it.

void vectrunc_append_batch(GEN x, GEN y) successively apply

\[\text{vectrunc_append(x, gel(y, i))} \]

for all elements of the vector y.

GEN coltrunc_init(long l) as vectrunc_init but perform cgetg(1,t_COL).

GEN vecsmalltrunc_init(long l) analog to the above for a t_VECSMALL container.
5.2.2 Length conversions.

These routines convert a non-negative length to different units. Their behavior is undefined at negative integers.

\begin{verbatim}
long ndec2nlong(long x) converts a number of decimal digits to a number of words. Returns 1 + floor(x \times BITS_IN_LONG log_{10} 2).

long ndec2prec(long x) converts a number of decimal digits to a number of codewords. This is equal to 2 + ndec2nlong(x).

long ndec2nbits(long x) converts a number of decimal digits to a number of bits.

long prec2ndec(long x) converts a number of codewords to a number of decimal digits.

long nbits2nlong(long x) converts a number of bits to a number of words. Returns the smallest word count containing x bits, i.e ceil(x/BITS_IN_LONG).

long nbits2ndec(long x) converts a number of bits to a number of decimal digits.

long nbits2lg(long x) converts a number of bits to a length in code words. Currently an alias for nbits2nlong.

long nbits2prec(long x) converts a number of bits to a number of codewords. This is equal to 2 + nbits2nlong(x).

long nbits2extraprec(long x) converts a number of bits to the mantissa length of a \texttt{t_REAL} in codewords. This is currently an alias to nbits2nlong(x).

long nchar2nlong(long x) converts a number of bytes to number of words. Returns the smallest word count containing x bytes, i.e ceil(x/sizeof(long)).

long precnbits(long x) converts a \texttt{t_REAL} length into a number of significant bits; returns (x - 2)BITS_IN_LONG.

double precnbits_mul(long x, double y) returns precnbits(x) \times y.

long bit_accuracy(long x) converts a length into a number of significant bits; currently an alias for precnbits.

double bit_accuracy_mul(long x, double y) returns bit_accuracy(x) \times y.

long realprec(GEN x) length of a \texttt{t_REAL} in words; currently an alias for lg.

long bit_prec(GEN x) length of a \texttt{t_REAL} in bits.

long precdbl(long prec) given a length in words corresponding to a \texttt{t_REAL} precision, return the length corresponding to doubling the precision. Due to the presence of 2 code words, this is 2(prec - 2) + 2.
\end{verbatim}
5.2.3 Read type-dependent information.

\texttt{long typ(\texttt{GEN} x)} returns the type number of \texttt{x}. The header files included through \texttt{pari.h} define symbolic constants for the \texttt{GEN} types: \texttt{t_INT} etc. Never use their actual numerical values. E.g to determine whether \texttt{x} is a \texttt{t_INT}, simply check

\begin{verbatim}
 if (typ(x) == t_INT) { }
\end{verbatim}

The types are internally ordered and this simplifies the implementation of commutative binary operations (e.g. addition, \texttt{gcd}). Avoid using the ordering directly, as it may change in the future; use type grouping functions instead (Section 5.2.6).

\texttt{const char* type_name(long t)} given a type number \texttt{t} this routine returns a string containing its symbolic name. E.g \texttt{type_name(t_INT)} returns "\texttt{t_INT}". The return value is read-only.

\texttt{long lg(\texttt{GEN} x)} returns the length of \texttt{x} in BITS_IN_LONG-bit words.

\texttt{long lgefint(\texttt{GEN} x)} returns the effective length of the \texttt{t_INT} \texttt{x} in BITS_IN_LONG-bit words.

\texttt{long signe(\texttt{GEN} x)} returns the sign (\(-1\), \(0\) or \(1\)) of \texttt{x}. Can be used for \texttt{t_INT}, \texttt{t_REAL}, \texttt{t_POL} and \texttt{t_SER} (for the last two types, only \(0\) or \(1\) are possible).

\texttt{long gsigne(\texttt{GEN} x)} returns the sign of a real number \texttt{x}, valid for \texttt{t_INT}, \texttt{t_REAL} as \texttt{signe}, but also for \texttt{t_FRAC} and \texttt{t_QUAD} of positive discriminants. Raise a type error if \texttt{typ(x)} is not among those.

\texttt{long expi(\texttt{GEN} x)} returns the binary exponent of the real number equal to the \texttt{t_INT} \texttt{x}. This is a special case of \texttt{gexpo}.

\texttt{long expo(\texttt{GEN} x)} returns the binary exponent of the \texttt{t_REAL} \texttt{x}.

\texttt{long mpexpo(\texttt{GEN} x)} returns the binary exponent of the \texttt{t_INT} or \texttt{t_REAL} \texttt{x}.

\texttt{long gexpo(\texttt{GEN} x)} same as \texttt{expo}, but also valid when \texttt{x} is not a \texttt{t_REAL} (returns the largest exponent found among the components of \texttt{x}). When \texttt{x} is an exact 0, this returns \texttt{-HIGHEXPOBIT}, which is lower than any valid exponent.

\texttt{long gexpo_safe(\texttt{GEN} x)} same as \texttt{gexpo}, but returns a value strictly less than \texttt{-HIGHEXPOBIT} when the exponent is not defined (e.g. for a \texttt{t_PADIC} or \texttt{t_INTMOD} component).

\texttt{long valp(\texttt{GEN} x)} returns the \(p\)-adic valuation (for a \texttt{t_PADIC}) or \(X\)-adic valuation (for a \texttt{t_SER}, taken with respect to the main variable) of \texttt{x}.

\texttt{long precp(\texttt{GEN} x)} returns the precision of the \texttt{t_PADIC} \texttt{x}.

\texttt{long varn(\texttt{GEN} x)} returns the variable number of the \texttt{t_POL} or \texttt{t_SER} \texttt{x} (between 0 and \texttt{MAXVARN}).

\texttt{long gvar(\texttt{GEN} x)} returns the main variable number when any variable at all occurs in the composite object \texttt{x} (the smallest variable number which occurs), and \texttt{NO_VARIABLE} otherwise.

\texttt{long gvar2(\texttt{GEN} x)} returns the variable number for the ring over which \texttt{x} is defined, e.g. if \texttt{x} \(\in \mathbb{Z}\lbrack a\rceil b\rceil\) return (the variable number for) \texttt{a}. Return \texttt{NO_VARIABLE} if \texttt{x} has no variable or is not defined over a polynomial ring.

\texttt{long degpol(\texttt{GEN} x)} is a simple macro returning \texttt{lg(x)} \(-3\). This is the degree of the \texttt{t_POL} \texttt{x} with respect to its main variable, if its leading coefficient is non-zero (a rational 0 is impossible, but an inexact 0 is allowed, as well as an exact modular 0, e.g. \texttt{Mod(0,2)}). If \texttt{x} has no coefficients (rational 0 polynomial), its length is 2 and we return the expected \(-1\).
long lgpol(GEN x) is equal to \(\text{degpol}(x) + 1 \). Used to loop over the coefficients of a \(\text{t_POL} \) in the following situation:

\[
\begin{align*}
\text{GEN } xd &= x + 2; \\
\text{long } i, l &= \text{lgpol}(x); \\
\text{for } (i = 0; i < l; i++) \text{foo}(xd[i]).
\end{align*}
\]

long precision(GEN x) If \(x \) is of type \(\text{t_REAL} \), returns the precision of \(x \), namely the length of \(x \) in \text{BITS_IN_LONG}-bit words if \(x \) is not zero, and a reasonable quantity obtained from the exponent of \(x \) if \(x \) is numerically equal to zero. If \(x \) is of type \(\text{t_COMPLEX} \), returns the minimum of the precisions of the real and imaginary part. Otherwise, returns 0 (which stands for infinite precision).

long lgcols(GEN x) is equal to \(\lg(\text{gel}(x,1)) \). This is the length of the columns of a \(\text{t_MAT} \) with at least one column.

long nbrows(GEN x) is equal to \(\lg(\text{gel}(x,1))-1 \). This is the number of rows of a \(\text{t_MAT} \) with at least one column.

long gprecision(GEN x) as \text{precision} for scalars. Returns the lowest precision encountered among the components otherwise.

long sizedigit(GEN x) returns 0 if \(x \) is exactly 0. Otherwise, returns \(\text{gexpo}(x) \) multiplied by \(\log_{10}(2) \). This gives a crude estimate for the maximal number of decimal digits of the components of \(x \).

5.2.4 Eval type-dependent information. These routines convert type-dependent information to bitmask to fill the codewords of \(\text{GEN} \) objects (see Section 4.5). E.g for a \(\text{t_REAL} \) \(z \):

\[
z[1] = \text{evalsigne}(-1) \mid \text{evalexpo}(2)
\]

Compatible components of a codeword for a given type can be OR-ed as above.

ulong evaltyp(long x) convert type \(x \) to bitmask (first codeword of all \(\text{GENs} \))

long evallg(long x) convert length \(x \) to bitmask (first codeword of all \(\text{GENs} \)). Raise overflow error if \(x \) is so large that the corresponding length cannot be represented

long _evallg(long x) as evallg \text{ without} the overflow check.

ulong evalvarn(long x) convert variable number \(x \) to bitmask (second codeword of \(\text{t_POL} \) and \(\text{t_SER} \))

long evalsigne(long x) convert sign \(x \) (in \(-1,0,1\)) to bitmask (second codeword of \(\text{t_INT} \), \(\text{t_REAL} \), \(\text{t_POL} \), \(\text{t_SER} \))

long evalprecp(long x) convert \(p \)-adic (\(X \)-adic) precision \(x \) to bitmask (second codeword of \(\text{t_PADIC} \), \(\text{t_SER} \)). Raise overflow error if \(x \) is so large that the corresponding precision cannot be represented.

long _evalprecp(long x) same as evalprecp \text{ without} the overflow check.

long evalvalp(long x) convert \(p \)-adic (\(X \)-adic) valuation \(x \) to bitmask (second codeword of \(\text{t_PADIC} \), \(\text{t_SER} \)). Raise overflow error if \(x \) is so large that the corresponding valuation cannot be represented.

long _evalvalp(long x) same as evalvalp \text{ without} the overflow check.
long evalexpo(long x) convert exponent x to bitmask (second codeword of t_REAL). Raise overflow error if x is so large that the corresponding exponent cannot be represented.

long _evalexpo(long x) same as evalexpo without the overflow check.

long evallgefint(long x) convert effective length x to bitmask (second codeword t_INT). This should be less or equal than the length of the t_INT, hence there is no overflow check for the effective length.

5.2.5 Set type-dependent information. Use these functions and macros with extreme care since usually the corresponding information is set otherwise, and the components and further codeword fields (which are left unchanged) may not be compatible with the new information.

void settyp(GEN x, long s) sets the type number of x to s.

void setlg(GEN x, long s) sets the length of x to s. This is an efficient way of truncating vectors, matrices or polynomials.

void setlgefint(GEN x, long s) sets the effective length of the t_INT x to s. The number s must be less than or equal to the length of x.

void setsigne(GEN x, long s) sets the sign of x to s. If x is a t_INT or t_REAL, s must be equal to −1, 0 or 1, and if x is a t_POL or t_SER, s must be equal to 0 or 1. No sanity check is made; in particular, setting the sign of a 0 t_INT to ±1 creates an invalid object.

void togglesign(GEN x) sets the sign s of x to −s, in place.

void togglesign_safe(GEN *x) sets the s sign of *x to −s, in place, unless *x is one of the integer universal constants in which case replace *x by its negation (e.g. replace gen_1 by gen_m1).

void setabssign(GEN x) sets the sign s of x to |s|, in place.

void affectsign(GEN x, GEN y) shortcut for setsigne(y, signe(x)). No sanity check is made; in particular, setting the sign of a 0 t_INT to ±1 creates an invalid object.

void affectsign_safe(GEN x, GEN *y) sets the sign of *y to that of x, in place, unless *y is one of the integer universal constants in which case replace *y by its negation if needed (e.g. replace gen_1 by gen_m1 if x is negative). No other sanity check is made; in particular, setting the sign of a 0 t_INT to ±1 creates an invalid object.

void normalize_frac(GEN z) assuming z is of the form mkfrac(a,b) with b ≠ 0, make sure that b > 0 by changing the sign of a in place if needed (use togglesign).

void setexpo(GEN x, long s) sets the binary exponent of the t_REAL x to s. The value s must be a 24-bit signed number.

void setvalp(GEN x, long s) sets the p-adic or X-adic valuation of x to s, if x is a t_PADIC or a t_SER, respectively.

void setprecp(GEN x, long s) sets the p-adic precision of the t_PADIC x to s.

void setvarn(GEN x, long s) sets the variable number of the t_POL or t_SER x to s (where 0 ≤ s ≤ MAXVARN).
5.2.6 Type groups. In the following functions, \(t \) denotes the type of a GEN. They used to be implemented as macros, which could evaluate their argument twice; *no longer*: it is not inefficient to write

\[
is_intreal_t(typ(x))
\]

\[
is_recursive_t(long t) \text{ true iff } t \text{ is a recursive type (the non-recursive types are } t_\text{INT, t_REAL, t_STR, t_VECSMALL). Somewhat contrary to intuition, t_LIST is also non-recursive, ; see the Developer's guide for details.}
\]

\[
is_intreal_t(long t) \text{ true iff } t \text{ is } t_\text{INT or } t_\text{REAL.}
\]

\[
is_rational_t(long t) \text{ true iff } t \text{ is } t_\text{INT or } t_\text{REAL or } t_\text{FRAC.}
\]

\[
is_vec_t(long t) \text{ true iff } t \text{ is } t_\text{VEC or } t_\text{COL.}
\]

\[
is_matvec_t(long t) \text{ true iff } t \text{ is } t_\text{MAT, t_VEC or } t_\text{COL.}
\]

\[
is_scalar_t(long t) \text{ true iff } t \text{ is a scalar, i.e a } t_\text{INT, a } t_\text{REAL, a } t_\text{INTMOD, a } t_\text{FRAC, a } t_\text{COMPLEX, a } t_\text{PADIC, a } t_\text{QUAD, or a } t_\text{POLMOD.}
\]

\[
is_extscalar_t(long t) \text{ true iff } t \text{ is a scalar (see is_scalar_t) or } t \text{ is } t_\text{POL.}
\]

\[
is_noncalc_t(long t) \text{ true if generic operations (gadd, gmul) do not make sense for } t \text{; corresponds to types } t_\text{LIST, t_STR, t_VECSMALL, t_CLOSE.}
\]

5.2.7 Accessors and components. The first two functions return GEN components as copies on the stack:

\[
\text{GEN compo(GEN x, long n) creates a copy of the n-th true component (i.e. not counting the codewords) of the object } x.
\]

\[
\text{GEN truecoeff(GEN x, long n) creates a copy of the coefficient of degree } n \text{ of } x \text{ if } x \text{ is a scalar, t_POL or t_SER, and otherwise of the n-th component of } x.
\]

On the contrary, the following routines return the address of a GEN component. No copy is made on the stack:

\[
\text{GEN constantCoeff(GEN x) returns the address of the constant coefficient of t_POL } x. \text{ By convention, a 0 polynomial (whose sign is 0) has } \text{gen}_0 \text{ constant term.}
\]

\[
\text{GEN leadingCoeff(GEN x) returns the address of the leading coefficient of t_POL } x, \text{ i.e. the coefficient of largest index stored in the array representing } x. \text{ This may be an inexact 0. By convention, return } \text{gen}_0 \text{ if the coefficient array is empty.}
\]

\[
\text{GEN gel(GEN x, long i) returns the address of the } x[i] \text{ entry of } x. (el \text{ stands for element.)}
\]

\[
\text{GEN gcoeff(GEN x, long i, long j) returns the address of the } x[i,j] \text{ entry of t_MAT } x, \text{ i.e. the coefficient at row } i \text{ and column } j.
\]

\[
\text{GEN gmael(GEN x, long i, long j) returns the address of the } x[i][j] \text{ entry of } x. (mael \text{ stands for multidimensional array element.)}
\]

\[
\text{GEN gmael2(GEN A, long x1, long x2) is an alias for gmael. Similar macros gmael3, gmael4, gmael5 are available.}
\]
5.3 Global numerical constants.

These are defined in the various public PARI headers.

5.3.1 Constants related to word size.

- `long BITS_IN_LONG = 2^TWOPOTBITS_IN_LONG`: number of bits in a `long` (32 or 64).
- `long BITS_IN_HALFULONG`: `BITS_IN_LONG` divided by 2.
- `long LONG_MAX`: the largest positive `long`.
- `ulong ULONG_MAX`: the largest `ulong`.
- `long DEFAULTPREC`: the length (lg) of a `t_REAL` with 64 bits of accuracy
- `long MEDDEFAULTPREC`: the length (lg) of a `t_REAL` with 128 bits of accuracy
- `long BIGDEFAULTPREC`: the length (lg) of a `t_REAL` with 192 bits of accuracy
- `ulong HIGHBIT`: the largest power of 2 fitting in an `ulong`.
- `ulong LOWMASK`: bitmask yielding the least significant bits.
- `ulong HIGHMASK`: bitmask yielding the most significant bits.

The last two are used to implement the following convenience macros, returning half the bits of their operand:

- `ulong LOWWORD(ulong a)` returns least significant bits.
- `ulong HIGHWORD(ulong a)` returns most significant bits.

Finally

- `long divsBIL(long n)` returns the Euclidean quotient of `n` by `BITS_IN_LONG` (with non-negative remainder).
- `long remsBIL(n)` returns the (non-negative) Euclidean remainder of `n` by `BITS_IN_LONG`
- `long dvmduBIL(long n, long *r)` sets `r` to `remsBIL(n)` and returns `divsBIL(n)`.

5.3.2 Masks used to implement the GEN type.

These constants are used by higher level macros, like `typ` or `lg`:

- `EXPOnumBITS, LGnumBITS, SIGNnumBITS, TYPnumBITS, VALPnumBITS, VARNnumBITS`: number of bits used to encode `expo`, `lg`, `signe`, `typ`, `valp`, `varn`.
- `PRECPSHIFT, SIGNSHIFT, TYPSHIFT, VARNSHIFT`: shifts used to recover or encode `precp`, `varn`, `typ`, `signe`
- `CLONEBIT, EXPOBITS, LGBITS, PRECPBITS, SIGNBITS, TYPBITS, VALPBITS, VARNBITS`: bitmasks used to extract `isclone`, `expo`, `lg`, `precp`, `signe`, `typ`, `valp`, `varn` from GEN codewords.
- `MAXVARN`: the largest possible variable number.
- `NO_VARIABLE`: sentinel returned by `gvar(x)` when `x` does not contain any polynomial; has a lower priority than any valid variable number.
- `HIGHEXPOBIT`: a power of 2, one more that the largest possible exponent for a `t_REAL`.
- `HIGHVALPBIT`: a power of 2, one more that the largest possible valuation for a `t_PADIC` or a `t_SER`.

62
5.3.3 \(\log 2, \pi \).

These are double approximations to useful constants:

- **M_PI**: \(\pi \).
- **M_LN2**: \(\log 2 \).
- **LOG10_2**: \(\log 2 / \log 10 \).
- **LOG2_10**: \(\log 10 / \log 2 \).

5.4 Iterating over small primes, low-level interface.

One of the methods used by the high-level prime iterator (see Section 4.8.2), is a precomputed table. Its direct use is deprecated, but documented here.

After `pari_init(size, maxprime)`, a “prime table” is initialized with the successive differences of primes up to (possibly just a little beyond) `maxprime`. The prime table occupies roughly `maxprime / log(maxprime)` bytes in memory, so be sensible when choosing `maxprime`; it is 500000 by default under `gp` and there is no real benefit in choosing a much larger value: the high-level iterator provide fast access to primes up to the square of `maxprime`. In any case, the implementation requires that `maxprime < 2^{BITS-IN-LONG} - 2048`, whatever memory is available.

PARI currently guarantees that the first 6547 primes, up to and including 65557, are present in the table, even if you set `maxprime` to zero. in the `pari_init` call.

Some convenience functions:

- **ulong maxprime()** the largest prime computable using our prime table.
- **void maxprime_check(ulong B)** raise an error if `maxprime()` is < `B`.

After the following initializations (the names `p` and `ptr` are arbitrary of course)

```
byteptr ptr = diffptr;
ulong p = 0;
```

calling the macro `NEXT_PRIME_VIADIFF_CHECK(p, ptr)` repeatedly will assign the successive prime numbers to `p`. Overrunning the prime table boundary will raise the error `e_MAXPRIME`, which just prints the error message:

```
*** not enough precomputed primes, need primelimit ~c
```

(for some numerical value `c`), then the macro aborts the computation. The alternative macro `NEXT_PRIME_VIADIFF` operates in the same way, but will omit that check, and is slightly faster. It should be used in the following way:

```
byteptr ptr = diffptr;
ulong p = 0;
if (maxprime() < goal) pari_err_MAXPRIME(goal); /* not enough primes */
while (p <= goal) /* run through all primes up to goal */
{
    NEXT_PRIME_VIADIFF(p, ptr);
}
...
Here, we use the general error handling function pari_err (see Section 4.7.3), with the codeword e_MAXPRIME, raising the “not enough primes” error. This could be rewritten as

```c
maxprime_check(goal);
while (p <= goal) /* run through all primes up to goal */
{
 NEXT_PRIME_VIADIFF(p, ptr);
 ...
}
```

bytepr initprimes(ulong maxprime, long *L, ulong *lastp) computes a (malloc’ed) “prime table”, in fact a table of all prime differences for \( p < \text{maxprime} \) (and possibly a little beyond). Set \( L \) to the table length (argument to malloc), and \( \text{lastp} \) to the last prime in the table.

void initprimetable(ulong maxprime) computes a prime table (of all prime differences for \( p < \text{maxprime} \)) and assign it to the global variable \( \text{diffptr} \). Don’t change \( \text{diffptr} \) directly, call this function instead. This calls initprimes and updates internal data recording the table size.

ulong init_primepointer_geq(ulong a, byteptr *pd) returns the smallest prime \( p \geq a \), and sets \( *pd \) to the proper offset of \( \text{diffptr} \) so that \( \text{NEXT_PRIME_VIADIFF}(p, *pd) \) correctly returns \( \text{unextprime}(p + 1) \).

ulong init_primepointer_gt(ulong a, byteptr *pd) returns the smallest prime \( p > a \).

ulong init_primepointer_leq(ulong a, byteptr *pd) returns the largest prime \( p \leq a \).

ulong init_primepointer_lt(ulong a, byteptr *pd) returns the largest prime \( p < a \).

### 5.5 Handling the PARI stack

#### 5.5.1 Allocating memory on the stack.

GEN cgetg(long n, long t) allocates memory on the stack for an object of length \( n \) and type \( t \), and initializes its first codeword.

GEN cgeti(long n) allocates memory on the stack for a \( t_{-}\text{INT} \) of length \( n \), and initializes its first codeword. Identical to cgetg(n,t_INT).

GEN cgetr(long n) allocates memory on the stack for a \( t_{-}\text{REAL} \) of length \( n \), and initializes its first codeword. Identical to cgetg(n,t_REAL).

GEN cgetc(long n) allocates memory on the stack for a \( t_{-}\text{COMPLEX} \), whose real and imaginary parts are \( t_{-}\text{REALs} \) of length \( n \).

GEN cgetp(GEN x) creates space sufficient to hold the \( t_{-}\text{PADIC} \) \( x \), and sets the prime \( p \) and the \( p \)-adic precision to those of \( x \), but does not copy (the \( p \)-adic unit or zero representative and the modulus of) \( x \).

GEN new_chunk(size_t n) allocates a GEN with \( n \) components, without filling the required codewords. This is the low-level constructor underlying cgetg, which calls new_chunk then sets the first code word. It works by simply returning the address ((GEN)avma) - n, after checking that it is larger than (GEN)bot.

void new_chunk_resize(size_t x) this function is called by new_chunk when the PARI stack overflows. There is no need to call it manually. It will either extend the stack or report an e_STACK error.
char* stack_malloc(size_t n) allocates memory on the stack for n chars (not n GENs). This is faster than using malloc, and easier to use in most situations when temporary storage is needed. In particular there is no need to free individually all variables thus allocated: a simple avma = oldavma might be enough. On the other hand, beware that this is not permanent independent storage, but part of the stack. The memory is aligned on sizeof(long) bytes boundaries.

char* stack_malloc_align(size_t n, long k) as stack_malloc, but the memory is aligned on k bytes boundaries. The number k must be a multiple of the sizeof(long).

char* stack_calloc(size_t n) as stack_malloc, setting the memory to zero.

Objects allocated through these last three functions cannot be gerepile'd, since they are not yet valid GENs: their codewords must be filled first.

GEN cgetalloc(long t, size_t l), same as cgetg(t, l), except that the result is allocated using pari_malloc instead of the PARI stack. The resulting GEN is now impervious to garbage collecting routines, but should be freed using pari_free.

5.5.2 Stack-independent binary objects.

GENbin* copy_bin(GEN x) copies x into a malloc’ed structure suitable for stack-independent binary transmission or storage. The object obtained is architecture independent provided, sizeof(long) remains the same on all PARI instances involved, as well as the multiprecision kernel (either native or GMP).

GENbin* copy_bin_canon(GEN x) as copy_bin, ensuring furthermore that the binary object is independent of the multiprecision kernel. Slower than copy_bin.

GEN bin_copy(GENbin *p) assuming p was created by copy_bin(x) (not necessarily by the same PARI instance: transmission or external storage may be involved), restores x on the PARI stack.

The routine bin_copy transparently encapsulate the following functions:

GEN GENbinbase(GENbin *p) the GEN data actually stored in p. All addresses are stored as offsets with respect to a common reference point, so the resulting GEN is unusable unless it is a non-recursive type; private low-level routines must be called first to restore absolute addresses.

void shiftaddress(GEN x, long dec) converts relative addresses to absolute ones.

void shiftaddress_canon(GEN x, long dec) converts relative addresses to absolute ones, and converts leaves from a canonical form to the one specific to the multiprecision kernel in use. The GENbin type stores whether leaves are stored in canonical form, so bin_copy can call the right variant.

Objects containing closures are harder to e.g. copy and save to disk, since closures contain pointers to libpari functions that will not be valid in another gp instance: there is little chance for them to be loaded at the exact same address in memory. Such objects must be saved along with a linking table.

GEN copybin_unlink(GEN C) returns a linking table allowing to safely store and transmit t_CLOSURE objects in C. If C = NULL return a linking table corresponding to the content of all gp variables. C may then be dumped to disk in binary form, for instance.

void bincopy_relink(GEN C, GEN V) given a binary object C, as dumped by writebin and read back into a session, and a linking table V, restore all closures contained in C (function pointers are translated to their current value).
5.5.3 Garbage collection. See Section 4.3 for a detailed explanation and many examples.

void cgiv(GEN x) frees object x, assuming it is the last created on the stack.

GEN gerepile(pari_sp p, pari_sp q, GEN x) general garbage collector for the stack.

void gerepileall(pari_sp av, int n, ...) cleans up the stack from av on (i.e from avma to av), preserving the n objects which follow in the argument list (of type GEN*). For instance, gerepileall(av, 2, &x, &y) preserves x and y.

void gerepileallsp(pari_sp av, pari_sp ltop, int n, ...) cleans up the stack between av and ltop, updating the n elements which follow n in the argument list (of type GEN*). Check that the elements of g have no component between av and ltop, and assumes that no garbage is present between avma and ltop. Analogous to (but faster than) gerepileall otherwise.

GEN gerepilecopy(pari_sp av, GEN x) cleans up the stack from av on, preserving the object x. Special case of gerepileall (case n = 1), except that the routine returns the preserved GEN instead of updating its address through a pointer.

void gerepilemany(pari_sp av, GEN* g[], int n) alternative interface to gerepileall. The preserved GENs are the elements of the array g of length n: g[0], g[1], ..., g[n-1]. Obsolete: no more efficient than gerepileall, error-prone, and clumsy (need to declare an extra GEN *g).

void gerepilemanysp(pari_sp av, pari_sp ltop, GEN* g[], int n) alternative interface to gerepileallsp. Obsolete.

void gerepilecoeffs(pari_sp av, GEN x, int n) cleans up the stack from av on, preserving x[0], ..., x[n-1] (which are GENs).

void gerepilecoeffssp(pari_sp av, pari_sp ltop, GEN x, int n) cleans up the stack from av to ltop, preserving x[0], ..., x[n-1] (which are GENs). Same assumptions as in gerepilemanysp, of which this is a variant. For instance:

```
 z = cgetg(3, t_COMPLEX);
 av = avma; garbage(); ltop = avma;
 z[1] = fun1();
 z[2] = fun2();
 gerepilecoeffssp(av, ltop, z + 1, 2);
 return z;
```

cleans up the garbage between av and ltop, and connects z and its two components. This is marginally more efficient than the standard

```
 av = avma; garbage(); ltop = avma;
 z = cgetg(3, t_COMPLEX);
 z[1] = fun1();
 z[2] = fun2(); return gerepile(av, ltop, z);
```

GEN gerepileupto(pari_sp av, GEN q) analogous to (but faster than) gerepilecopy. Assumes that q is connected and that its root was created before any component. If q is not on the stack, this is equivalent to avma = av; in particular, sentinels which are not even proper GENs such as q = NULL are allowed.

GEN gerepileuptoint(pari_sp av, GEN q) analogous to (but faster than) gerepileupto. Assumes further that q is a t_INT. The length and effective length of the resulting t_INT are equal.
GEN gerepileuptoleaf(pari_sp av, GEN q) analogous to (but faster than) gerepileupto. Assumes further that q is a leaf, i.e a non-recursive type (is_recursive_t(typ(q)) is non-zero). Contrary to gerepileuptoint and gerepileupto, gerepileuptoleaf leaves length and effective length of a t_INT unchanged.

5.5.4 Garbage collection: advanced use.

void stackdummy(pari_sp av, pari_sp ltop) inhibits the memory area between av included and ltop excluded with respect to gerepile, in order to avoid a call to gerepile(av, ltop,...). The stack space is not reclaimed though.

More precisely, this routine assumes that av is recorded earlier than ltop, then marks the specified stack segment as a non-recursive type of the correct length. Thus gerepile will not inspect the zone, at most copy it. To be used in the following situation:

```c
av0 = avma; z = cgetg(t_VEC, 3);
gel(z,1) = HUGE(); av = avma; garbage(); ltop = avma;
gel(z,2) = HUGE(); stackdummy(av, ltop);
```

Compared to the orthodox

```c
gel(z,2) = gerepile(av, ltop, gel(z,2));
```
or even more wasteful

```c
z = gerepilcopy(av0, z);
```
we temporarily lose (av−ltop) words but save a costly gerepile. In principle, a garbage collection higher up the call chain should reclaim this later anyway.

Without the stackdummy, if the [av,ltop] zone is arbitrary (not even valid GENs as could happen after direct truncation via setlg), we would leave dangerous data in the middle of z, which would be a problem for a later

```c
gerepile(..., ..., z);
```
And even if it were made of valid GENs, inhibiting the area makes sure gerepile will not inspect their components, saving time.

Another natural use in low-level routines is to “shorten” an existing GEN z to its first \( n - 1 \) components:

```c
setlg(z, n);
stackdummy((pari_sp)(z + lg(z)), (pari_sp)(z + n));
```
or to its last \( n \) components:

```c
long L = lg(z) - n, tz = typ(z);
stackdummy((pari_sp)(z + L), (pari_sp)z);
z += L; z[0] = evaltyp(tz) | evallg(L);
```

The first scenario (safe shortening an existing GEN) is in fact so common, that we provide a function for this:

```c
void fixlg(GEN z, long ly) a safe variant of setlg(z, ly). If ly is larger than lg(z) do nothing. Otherwise, shorten z in place, using stackdummy to avoid later gerepile problems.
```
GEN gcopy_avma(GEN x, pari_sp *AVMA) return a copy of x as from gcopy, except that we pretend that initially avma is *AVMA, and that *AVMA is updated accordingly (so that the total size of x is the difference between the two successive values of *AVMA). It is not necessary for *AVMA to initially point on the stack: gclone is implemented using this mechanism.

GEN icopy_avma(GEN x, pari_sp av) analogous to gcopy_avma but simpler: assume x is a t_INT and return a copy allocated as if initially we had avma equal to av. There is no need to pass a pointer and update the value of the second argument: the new (fictitious) avma is just the return value (typecast to pari_sp).

5.5.5 Debugging the PARI stack.

int chk_gerepileupto(GEN x) returns 1 if x is suitable for gerepileupto, and 0 otherwise. In the latter case, print a warning explaining the problem.

void dbg_gerepile(pari_sp ltop) outputs the list of all objects on the stack between avma and ltop, i.e. the ones that would be inspected in a call to gerepile(...,ltop,...).

void dbg_gerepileupto(GEN q) outputs the list of all objects on the stack that would be inspected in a call to gerepileupto(...,q).

5.5.6 Copies.

GEN gcopy(GEN x) creates a new copy of x on the stack.

GEN gcopy_lg(GEN x, long l) creates a new copy of x on the stack, pretending that lg(x) is l, which must be less than or equal to lg(x). If equal, the function is equivalent to gcopy(x).

int isonstack(GEN x) true iff x belongs to the stack.

void copyifstack(GEN x, GEN y) sets y = gcopy(x) if x belongs to the stack, and y = x otherwise. This macro evaluates its arguments once, contrary to

        y = isonstack(x)? gcopy(x): x;

void icopyifstack(GEN x, GEN y) as copyifstack assuming x is a t_INT.

5.5.7 Simplify.

GEN simplify(GEN x) you should not need that function in library mode. One rather uses:

GEN simplify_shallow(GEN x) shallow, faster, version of simplify.
5.6 The PARI heap.

5.6.1 Introduction.

It is implemented as a doubly-linked list of malloc’ed blocks of memory, equipped with reference counts. Each block has type GEN but need not be a valid GEN: it is a chunk of data preceded by a hidden header (meaning that we allocate \( x \) and return \( x + \text{headersize} \)). A clone, created by gclone, is a block which is a valid GEN and whose clone bit is set.

5.6.2 Public interface.

**GEN newblock(size_t n)** allocates a block of \( n \) words (not bytes).

**void killblock(GEN x)** deletes the block \( x \) created by newblock. Fatal error if \( x \) not a block.

**GEN gclone(GEN x)** creates a new permanent copy of \( x \) on the heap (allocated using newblock). The clone bit of the result is set.

**GEN gcloneref(GEN x)** if \( x \) is not a clone, clone it and return the result; otherwise, increase the clone reference count and return \( x \).

**void gunclone(GEN x)** deletes a clone. Deletion at first only decreases the reference count by 1. If the count remains positive, no further action is taken; if the count becomes zero, then the clone is actually deleted. In the current implementation, this is an alias for killblock, but it is cleaner to kill clones (valid GENs) using this function, and other blocks using killblock.

**void gunclone_deep(GEN x)** is only useful in the context of the GP interpreter which may replace arbitrary components of container types (t_VEC, t_COL, t_MAT, t_LIST) by clones. If \( x \) is such a container, the function recursively deletes all clones among the components of \( x \), then unclones \( x \). Useless in library mode: simply use gunclone.

**void traverseheap(void(*f)(GEN, void *), void *data)** this applies \( f(x, \text{data}) \) to each object \( x \) on the PARI heap, most recent first. Mostly for debugging purposes.

**GEN getheap()** a simple wrapper around traverseheap. Returns a two-component row vector giving the number of objects on the heap and the amount of memory they occupy in long words.

**GEN cgetg_block(long x, long y)** as cgetg(x,y), creating the return value as a block, not on the PARI stack.

**GEN cgetr_block(long prec)** as cgetr(prec), creating the return value as a block, not on the PARI stack.

5.6.3 Implementation note. The hidden block header is manipulated using the following private functions:

**void* bl_base(GEN x)** returns the pointer that was actually allocated by malloc (can be freed).

**long bl_refc(GEN x)** the reference count of \( x \): the number of pointers to this block. Decremented in killblock, incremented by the private function void gclone_refc(GEN x); block is freed when the reference count reaches 0.

**long bl_num(GEN x)** the index of this block in the list of all blocks allocated so far (including freed blocks). Uniquely identifies a block until \( 2^{31-1} \cdot \text{LONG} \) blocks have been allocated and this wraps around.
GEN bl_next(GEN x) the block after x in the linked list of blocks (NULL if x is the last block allocated not yet killed).

GEN bl_prev(GEN x) the block allocated before x (never NULL).

We documented the last four routines as functions for clarity (and type checking) but they are actually macros yielding valid lvalues. It is allowed to write bl_refc(x)++ for instance.

5.7 Handling user and temp variables.

Low-level implementation of user / temporary variables is liable to change. We describe it nevertheless for completeness. Currently variables are implemented by a single array of values divided in 3 zones: 0–nvar (user variables), max_avail–MAXVARN (temporary variables), and nvar+1–max_avail-1 (pool of free variable numbers).

5.7.1 Low-level.
void pari_var_init(): a small part of pari_init. Resets variable counters nvar and max_avail, notwithstanding existing variables! In effect, this even deletes x. Don’t use it.
void pari_var_close(void) attached destructor, called by pari_close.
long pari_var_next(): returns nvar, the number of the next user variable we can create.
long pari_var_next_temp() returns max_avail, the number of the next temp variable we can create.
long pari_var_create(entree *ep) low-level initialization of an EpVAR. Return the attached (new) variable number.

GEN vars_sort_inplace(GEN z) given a t_VECSMALL z of variable numbers, sort z in place according to variable priorities (highest priority comes first).

GEN vars_to_RgXV(GEN h) given a t_VECSMALL z of variable numbers, return the t_VEC of polx[z[i]].

5.7.2 User variables.
long fetch_user_var(char *s) returns a user variable whose name is s, creating it is needed (and using an existing variable otherwise). Returns its variable number.

GEN fetch_var_value(long v) returns a shallow copy of the current value of the variable numbered v. Return NULL for a temporary variable.

entree* is_entry(const char *s) returns the entree* attached to an identifier s (variable or function), from the interpreter hashtables. Return NULL is the identifier is unknown.

5.7.3 Temporary variables.
long fetch_var(void) returns the number of a new temporary variable (decreasing max_avail).
long delete_var(void) delete latest temp variable created and return the number of previous one.
void name_var(long n, char *s) rename temporary variable number n to s; mostly useful for nicer printout. Error when trying to rename a user variable.
5.8 Adding functions to PARI.

5.8.1 Nota Bene. As mentioned in the COPYING file, modified versions of the PARI package can be distributed under the conditions of the GNU General Public License. If you do modify PARI, however, it is certainly for a good reason, and we would like to know about it, so that everyone can benefit from your changes. There is then a good chance that your improvements are incorporated into the next release.

We classify changes to PARI into four rough classes, where changes of the first three types are almost certain to be accepted. The first type includes all improvements to the documentation, in a broad sense. This includes correcting typos or inaccuracies of course, but also items which are not really covered in this document, e.g. if you happen to write a tutorial, or pieces of code exemplifying fine points unduly omitted in the present manual.

The second type is to expand or modify the configuration routines and skeleton files (the Configure script and anything in the config/ subdirectory) so that compilation is possible (or easier, or more efficient) on an operating system previously not catered for. This includes discovering and removing idiosyncrasies in the code that would hinder its portability.

The third type is to modify existing (mathematical) code, either to correct bugs, to add new functionality to existing functions, or to improve their efficiency.

Finally the last type is to add new functions to PARI. We explain here how to do this, so that in particular the new function can be called from gp.

5.8.2 Coding guidelines. Code your function in a file of its own, using as a guide other functions in the PARI sources. One important thing to remember is to clean the stack before exiting your main function, since otherwise successive calls to the function clutters the stack with unnecessary garbage, and stack overflow occurs sooner. Also, if it returns a GEN and you want it to be accessible to gp, you have to make sure this GEN is suitable for gerepileupto (see Section 4.3).

If error messages or warnings are to be generated in your function, use pari_err and pari_warn respectively. Recall that pari_err does not return but ends with a longjmp statement. As well, instead of explicit printf / fprintf statements, use the following encapsulated variants:

```c
void pari_putchar(char c): write character c to the output stream.
void pari_putstr(char *s): write s to the output stream.
void pari_printf(const char *fmt, ...): write following arguments to the output stream, according to the conversion specifications in format fmt (see printf).
void err_printf(const char *fmt, ...): as pari_printf, writing to PARI's current error stream.
void err_flush(void) flush error stream.
```

Declare all public functions in an appropriate header file, if you want to access them from C. The other functions should be declared static in your file.

Your function is now ready to be used in library mode after compilation and creation of the library. If possible, compile it as a shared library (see the Makefile coming with the extgcd example in the distribution). It is however still inaccessible from gp.
5.8.3 GP prototypes, parser codes. A GP prototype is a character string describing all the GP parser needs to know about the function prototype. It contains a sequence of the following atoms:

- **Return type**: GEN by default (must be valid for gerepileupto), otherwise the following can appear as the first char of the code string:
  - i return int
  - l return long
  - u return ulong
  - v return void
  - m return a GEN which is not gerepile-safe.

  The m code is used for member functions, to avoid unnecessary copies. A copy opcode is generated by the compiler if the result needs to be kept safe for later use.

- **Mandatory arguments**, appearing in the same order as the input arguments they describe:
  - G GEN
  - & *GEN
  - L long (we implicitly typecast int to long)
  - U ulong
  - V loop variable
  - n variable, expects a variable number (a long, not an *entree)
  - W a GEN which is a lvalue to be modified in place (for t_LIST)
  - r raw input (treated as a string without quotes). Quoted args are copied as strings
    - Stops at first unquoted ')' or ','.
    - Special chars can be quoted using '\'
    - Example: aa"b\"n)"c yields the string "aab\n)c"
  - s expanded string. Example: Pi"x"2 yields "3.142x2"
  - Unquoted components can be of any PARI type, converted to string following current output format
  - I closure whose value is ignored, as in for loops,
    - to be processed by void closure_evalvoid(GEN C)
  - E closure whose value is used, as in sum loops,
    - to be processed by void closure_evalgen(GEN C)
  - J implicit function of arity 1, as in parsum loops,
    - to be processed by void closure_callgen1(GEN C)

  A closure is a GP function in compiled (bytecode) form. It can be efficiently evaluated using the closure_evalxxx functions.

- **Automatic arguments**:
  - f Fake *long. C function requires a pointer but we do not use the resulting long
  - b current real precision in bits
  - p current real precision in words
  - P series precision (default seriesprecision, global variable precdl for the library)
  - C lexical context (internal, for eval, see localvars_read_str)

- **Syntax requirements**, used by functions like for, sum, etc.:
  - = separator = required at this point (between two arguments)

- **Optional arguments and default values**:
  - E* any number of expressions, possibly 0 (see E)
  - s* any number of strings, possibly 0 (see s)
argument can be omitted and has a default value

The E@ code reads all remaining arguments in closure context and passes them as a single \texttt{t\_VEC}. The s* code reads all remaining arguments in \textit{string context} and passes the list of strings as a single \texttt{t\_VEC}. The automatic concatenation rules in string context are implemented so that adjacent strings are read as different arguments, as if they had been comma-separated. For instance, if the remaining argument sequence is: "xx" 1, "yy", the s* atom sends \{a, b, c\}, where a, b, c are \texttt{GEN}s of type \texttt{t\_STR} (content "xx"), \texttt{t\_INT} (equal to 1) and \texttt{t\_STR} (content "yy").

The format to indicate a default value (atom starts with a D) is "D\textit{value,type,}", where \textit{type} is the code for any mandatory atom (previous group), \textit{value} is any valid GP expression which is converted according to \textit{type}, and the ending comma is mandatory. For instance \texttt{D0,L}, stands for “this optional argument is converted to a \texttt{long}, and is 0 by default”. So if the user-given argument reads 1 + 3 at this point, 4L is sent to the function; and 0L if the argument is omitted. The following special notations are available:

- \texttt{DG} optional \texttt{GEN}, send NULL if argument omitted.
- \texttt{D\&} optional *\texttt{GEN}, send NULL if argument omitted.
- \texttt{DI, DE} optional closure, send NULL if argument omitted.
- \texttt{DP} optional \texttt{long}, send \texttt{precdl} if argument omitted.
- \texttt{DV} optional *\texttt{entree}, send NULL if argument omitted.
- \texttt{Dn} optional variable number, $-1$ if omitted.
- \texttt{Dr} optional raw string, send NULL if argument omitted.
- \texttt{Ds} optional \texttt{char *}, send NULL if argument omitted.

**Hardcoded limit.** C functions using more than 20 arguments are not supported. Use vectors if you really need that many parameters.

When the function is called under \texttt{gp}, the prototype is scanned and each time an atom corresponding to a mandatory argument is met, a user-given argument is read (\texttt{gp} outputs an error message if the argument was missing). Each time an optional atom is met, a default value is inserted if the user omits the argument. The “automatic” atoms fill in the argument list transparently, supplying the current value of the corresponding variable (or a dummy pointer).

For instance, here is how you would code the following prototypes, which do not involve default values:

- \texttt{GEN f(GEN x, GEN y, long prec) ----> "GGp"}
- \texttt{void f(GEN x, GEN y, long prec) ----> "vGGp"}
- \texttt{void f(GEN x, long y, long prec) ----> "vGLp"}
- \texttt{long f(GEN x) ----> "1G"}
- \texttt{int f(long x) ----> "1L"}

If you want more examples, \texttt{gp} gives you easy access to the parser codes attached to all GP functions: just type \texttt{\h function}. You can then compare with the C prototypes as they stand in \texttt{paridecl.h}.
Remark. If you need to implement complicated control statements (probably for some improved summation functions), you need to know how the parser implements closures and lexicals and how the evaluator lets you deal with them, in particular the push_lex and pop_lex functions. Check their descriptions and adapt the source code in language/sumiter.c and language/intnum.c.

5.8.4 Integration with gp as a shared module.

In this section we assume that your Operating System is supported by install. You have written a function in C following the guidelines is Section 5.8.2; in case the function returns a GEN, it must satisfy gerepileupto assumptions (see Section 4.3).

You then succeeded in building it as part of a shared library and want to finally tell gp about your function. First, find a name for it. It does not have to match the one used in library mode, but consistency is nice. It has to be a valid GP identifier, i.e. use only alphabetic characters, digits and the underscore character (_), the first character being alphabetic.

Then figure out the correct parser code corresponding to the function prototype (as explained in Section 5.8.3) and write a GP script like the following:

```plaintext
install(libname, code, gpname, library)
addhelp(gpname, "some help text")
```

The addhelp part is not mandatory, but very useful if you want others to use your module. libname is how the function is named in the library, usually the same name as one visible from C.

Read that file from your gp session, for instance from your preferences file (or gprc), and that’s it. You can now use the new function gpname under gp, and we would very much like to hear about it!

Example. A complete description could look like this:

```plaintext
{
 install(bnfinit0, "G0,L,DGp", ClassGroupInit, "libpari.so");
 addhelp(ClassGroupInit, "ClassGroupInit(P,\{flag=0\},\{data=\[]\}): compute the necessary data for ...");
}
```

which means we have a function ClassGroupInit under gp, which calls the library function bnfinit0. The function has one mandatory argument, and possibly two more (two ‘D’ in the code), plus the current real precision. More precisely, the first argument is a GEN, the second one is converted to a long using itos (0 is passed if it is omitted), and the third one is also a GEN, but we pass NULL if no argument was supplied by the user. This matches the C prototype (from paridecl.h):

```plaintext
GEN bnfinit0(GEN P, long flag, GEN data, long prec)
```

This function is in fact coded in basemath/buch2.c, and is in this case completely identical to the GP function bnfinit but gp does not need to know about this, only that it can be found somewhere in the shared library libpari.so.
Important note. You see in this example that it is the function’s responsibility to correctly interpret its operands: data = NULL is interpreted by the function as an empty vector. Note that since NULL is never a valid GEN pointer, this trick always enables you to distinguish between a default value and actual input: the user could explicitly supply an empty vector!

5.8.5 Library interface for install.

There is a corresponding library interface for this install functionality, letting you expand the GP parser/evaluator available in the library with new functions from your C source code. Functions such as gp_read_str may then evaluate a GP expression sequence involving calls to these new function!

entree * install(void *f, const char *gpname, const char *code)

where f is the (address of the) function (cast to void*), gpname is the name by which you want to access your function from within your GP expressions, and code is as above.

5.8.6 Integration by patching gp.

If install is not available, and installing Linux or a BSD operating system is not an option (why?), you have to hardcode your function in the gp binary. Here is what needs to be done:

- Fetch the complete sources of the PARI distribution.
- Drop the function source code module in an appropriate directory (a priori src/modules), and declare all public functions in src/headers/paridecl.h.
- Choose a help section and add a file src/functions/section/gpname containing the following, keeping the notation above:

```
Function: gpname
Section: section
C-Name: libname
Prototype: code
Help: some help text
```

(If the help text does not fit on a single line, continuation lines must start by a whitespace character.) Two GP2C-related fields (Description and Wrapper) are also available to improve the code GP2C generates when compiling scripts involving your function. See the GP2C documentation for details.

- Launch Configure, which should pick up your C files and build an appropriate Makefile. At this point you can recompile gp, which will first rebuild the functions database.

Example. We reuse the ClassGroupInit / bnfini0 from the preceding section. Since the C source code is already part of PARI, we only need to add a file

```
functions/number_fields/ClassGroupInit
```

containing the following:

```
Function: ClassGroupInit
Section: number_fields
C-Name: bnfini0
Prototype: GD0,L,DGp
Help: ClassGroupInit(P,{flag=0},{tech=[]}): this routine does ...
```

and recompile gp.
5.9 Globals related to PARI configuration.

5.9.1 PARI version numbers.

`paricfg_version_code` encodes in a single `long`, the Major and minor version numbers as well as the patchlevel.

`long PARI_VERSION(long M, long m, long p)` produces the version code attached to release `M.m.p`. Each code identifies a unique PARI release, and corresponds to the natural total order on the set of releases (bigger code number means more recent release).

`PARI_VERSION_SHIFT` is the number of bits used to store each of the integers `M`, `m`, `p` in the version code.

`paricfg_vcsversion` is a version string related to the revision control system used to handle your sources, if any. For instance `git-commit hash` if compiled from a git repository.

The two character strings `paricfg_version` and `paricfg_buildinfo`, correspond to the first two lines printed by `gp` just before the Copyright message. The character string `paricfg_compiledate` is the date of compilation which appears on the next line. The character string `paricfg_mt_engine` is the name of the threading engine on the next line.

`GEN pari_version()` returns the version number as a PARI object, a `t_VEC` with three `t_INT` and one `t_STR` components.

5.9.2 Miscellaneous.

`paricfg_datadir`: character string. The location of PARI’s `datadir`.

`paricfg_gphelp`: character string. The name of an external help command for `??` (such as the `gphelp` script)
Chapter 6:
Arithmetic kernel: Level 0 and 1

6.1 Level 0 kernel (operations on ulongs).

6.1.1 Micro-kernel. The Level 0 kernel simulates basic operations of the 68020 processor on which PARI was originally implemented. They need “global” ulong variables overflow (which will contain only 0 or 1) and hiremainder to function properly. A routine using one of these lowest-level functions where the description mentions either hiremainder or overflow must declare the corresponding

```c
LOCAL_HIREMAINDER; /* provides 'hiremainder' */
LOCAL_OVERFLOW; /* provides 'overflow' */
```

in a declaration block. Variables hiremainder and overflow then become available in the enclosing block. For instance a loop over the powers of an ulong p protected from overflows could read

```c
while (pk < lim)
{
 LOCAL_HIREMAINDER;
 ...
 pk = mulll(pk, p); if (hiremainder) break;
}
```

For most architectures, the functions mentioned below are really chunks of inlined assembler code, and the above ‘global’ variables are actually local register values.

ulong addll(ulong x, ulong y) adds x and y, returns the lower BITS_IN_LONG bits and puts the carry bit into overflow.

ulong addllx(ulong x, ulong y) adds overflow to the sum of the x and y, returns the lower BITS_IN_LONG bits and puts the carry bit into overflow.

ulong subll(ulong x, ulong y) subtracts x and y, returns the lower BITS_IN_LONG bits and put the carry (borrow) bit into overflow.

ulong subllx(ulong x, ulong y) subtracts overflow from the difference of x and y, returns the lower BITS_IN_LONG bits and puts the carry (borrow) bit into overflow.

int bfffo(ulong x) returns the number of leading zero bits in x. That is, the number of bit positions by which it would have to be shifted left until its leftmost bit first becomes equal to 1, which can be between 0 and BITS_IN_LONG − 1 for nonzero x. When x is 0, the result is undefined.

ulong mulll(ulong x, ulong y) multiplies x by y, returns the lower BITS_IN_LONG bits and stores the high-order BITS_IN_LONG bits into hiremainder.

ulong addmul(ulong x, ulong y) adds hiremainder to the product of x and y, returns the lower BITS_IN_LONG bits and stores the high-order BITS_IN_LONG bits into hiremainder.
ulong divll(ulong x, ulong y) returns the quotient of (hiremainder * 2^BITS_IN_LONG) + x by y and stores the remainder into hiremainder. An error occurs if the quotient cannot be represented by an ulong, i.e. if initially hiremainder ≥ y.

long hammingl(ulong x)) returns the Hamming weight of x, i.e. the number of non-zero bits in its binary expansion.

**Obsolete routines.** Those functions are awkward and no longer used; they are only provided for backward compatibility:

ulong shiftl(ulong x, ulong y) returns x shifted left by y bits, i.e. $x << y$, where we assume that $0 \leq y \leq$ BITS_IN_LONG. The global variable hiremainder receives the bits that were shifted out, i.e. $x >> (BITS_IN_LONG - y)$.

ulong shiftrl(ulong x, ulong y) returns x shifted right by y bits, i.e. $x >> y$, where we assume that $0 \leq y \leq$ BITS_IN_LONG. The global variable hiremainder receives the bits that were shifted out, i.e. $x << (BITS_IN_LONG - y)$.

### 6.1.2 Modular kernel.

The following routines are not part of the level 0 kernel per se, but implement modular operations on words in terms of the above. They are written so that no overflow may occur. Let $m \geq 1$ be the modulus; all operands representing classes modulo $m$ are assumed to belong to $[0, m-1]$. The result may be wrong for a number of reasons otherwise: it may not be reduced, overflow can occur, etc.

int odd(ulong x) returns 1 if x is odd, and 0 otherwise.

int both_odd(ulong x, ulong y) returns 1 if x and y are both odd, and 0 otherwise.

ulong invmod2BIL(ulong x) returns the smallest positive representative of $x^{-1} \mod 2^{BITS_IN_LONG}$, assuming x is odd.

ulong Fl_add(ulong x, ulong y, ulong m) returns the smallest positive representative of $x + y$ modulo m.

ulong Fl_neg(ulong x, ulong m) returns the smallest positive representative of $-x$ modulo m.

ulong Fl_sub(ulong x, ulong y, ulong m) returns the smallest positive representative of $x - y$ modulo m.

long Fl_center(ulong x, ulong m, ulong mo2) returns the representative in $\left(-m/2,m/2\right]$ of x modulo m. Assume $0 \leq x < m$ and mo2 = $m >> 1$.

ulong Fl_mul(ulong x, ulong y, ulong m) returns the smallest positive representative of $xy$ modulo m.

ulong Fl_double(ulong x, ulong m) returns $2x$ modulo m.

ulong Fl_triple(ulong x, ulong m) returns $3x$ modulo m.

ulong Fl_halve(ulong x, ulong m) returns $z$ such that $2z = x$ modulo $m$ assuming such $z$ exists.

ulong Fl_sqr(ulong x, ulong m) returns the smallest positive representative of $x^2$ modulo m.

ulong Fl_inv(ulong x, ulong m) returns the smallest positive representative of $x^{-1}$ modulo m. If x is not invertible mod m, raise an exception.

78
ulong Fl_invsafe(ulong x, ulong m) returns the smallest positive representative of $x^{-1}$ modulo $m$. If $x$ is not invertible mod $m$, return 0 (which is ambiguous if $m = 1$).

ulong Fl_invgen(ulong x, ulong m, ulong *pg) set *pg to $g = \gcd(x, m)$ and return $u$ in $(\mathbb{Z}/m\mathbb{Z})^*$ such that $xu = g$ modulo $m$. We have $g = 1$ if and only if $x$ is invertible, and in this case $u$ is its inverse.

ulong Fl_div(ulong x, ulong y, ulong m) returns the smallest positive representative of $xy^{-1}$ modulo $m$. If $y$ is not invertible mod $m$, raise an exception.

ulong Fl_powu(ulong x, ulong n, ulong m) returns the smallest positive representative of $x^n$ modulo $m$.

GEN Fl_powers(ulong x, long n, ulong p) returns $[x^0, \ldots, x^n]$ modulo $m$, as a t_VECSMALL.

ulong Fl_sqrt(ulong x, ulong p) returns the square root of $x$ modulo $p$ (smallest positive representative). Assumes $p$ to be prime, and $x$ to be a square modulo $p$.

ulong Fl_sqrtl(ulong x, ulong l, ulong p) returns a $l$-th root of $x$ modulo $p$. Assumes $p$ to be prime and $p \equiv 1 \pmod{l}$, and $x$ to be a $l$-th power modulo $p$.

ulong Fl_sqrtn(ulong a, ulong n, ulong p, ulong *zn) returns ULONG_MAX if $a$ is not an $n$-th power residue mod $p$. Otherwise, returns an $n$-th root of $a$; if $zn$ is non-NULL set it to a primitive $m$-th root of 1, $m = \gcd(p - 1, n)$ allowing to compute all $m$ solutions in $\mathbb{F}_p$ of the equation $x^n = a$.

ulong Fl_log(ulong a, ulong g, ulong ord, ulong p) Let $g$ such that $g^{ord} \equiv 1 \pmod{p}$. Return an integer $e$ such that $a^e \equiv g \pmod{p}$. If $e$ does not exist, the result is undefined.

ulong Fl_order(ulong a, ulong o, ulong p) returns the order of the $\mathbb{F}_p a$. It is assumed that $o$ is a multiple of the order of $a$, 0 being allowed (no non-trivial information).

ulong random_Fl(ulong p) returns a pseudo-random integer uniformly distributed in 0, 1, $\ldots$, $p - 1$.

ulong pgener_Fl(ulong p) returns the smallest primitive root modulo $p$, assuming $p$ is prime.

ulong pgener_Zl(ulong p) returns the smallest primitive root modulo $p^k$, $k > 1$, assuming $p$ is an odd prime.

ulong pgener_Fl_local(ulong p, GEN L) see gener_Fp_local, L is an Flv.

6.1.3 Modular kernel with “precomputed inverse”.

This is based on an algorithm by T. Grandlund and N. Möller in “Improved division by invariant integers” http://gmplib.org/~tege/division-paper.pdf.

In the following, we set $B = \text{BITS\_IN\_LONG}$.

ulong get_Fl_red(ulong p) returns a pseudo inverse $pi$ for $p$.

ulong divlll_pre(ulong x, ulong p, ulong yi) as divll, where $yi$ is the pseudo inverse of $y$.

ulong remlll_pre(ulong u1, ulong u0, ulong p, ulong pi) returns the Euclidean remainder of $u_12^B + u_0$ modulo $p$, assuming $pi$ is the pseudo inverse of $p$. This function is faster if $u_1 < p$.

ulong remlll_pre(ulong u2, ulong u1, ulong u0, ulong p, ulong pi) returns the Euclidean remainder of $u_22^{2B} + u_12^B + u_0$ modulo $p$, assuming $pi$ is the pseudo inverse of $p$.

ulong Fl_sqr_pre(ulong x, ulong p, ulong pi) returns $x^2$ modulo $p$, assuming $pi$ is the pseudo inverse of $p$. 79
ulong Fl_mul_pre(ulong x, ulong y, ulong p, ulong pi) returns \( xy \) modulo \( p \), assuming \( pi \) is the pseudo inverse of \( p \).

ulong Fl_addmul_pre(ulong a, ulong b, ulong c, ulong p, ulong pi) returns \( a \cdot b \cdot c \) modulo \( p \), assuming \( pi \) is the pseudo inverse of \( p \).

ulong Fl_addmulmul_pre(ulong a, ulong b, ulong c, ulong d, ulong p, ulong pi) returns \( a \cdot b \cdot c \cdot d \) modulo \( p \), assuming \( pi \) is the pseudo inverse of \( p \).

ulong Fl_powu_pre(ulong x, ulong n, ulong p, ulong pi) returns \( x^n \) modulo \( p \), assuming \( pi \) is the pseudo inverse of \( p \).

GEN Fl_powers_pre(ulong x, long n, ulong p, ulong pi) returns the vector \((t_{VECSMALL})\), assuming \( pi \) is the pseudo inverse of \( p \).

ulong Fl_log_pre(ulong a, ulong g, ulong ord, ulong p, ulong pi) as Fl_log, assuming \( pi \) is the pseudo inverse of \( p \).

ulong Fl_sqrt_pre(ulong x, ulong p, ulong pi) returns a square root of \( x \) modulo \( p \), assuming \( pi \) is the pseudo inverse of \( p \). See Fl_sqrt.

ulong Fl_sqrtl_pre(ulong x, ulong l, ulong p, ulong pi) returns a \( l \)-the root of \( x \) modulo \( p \), assuming \( pi \) is the pseudo inverse of \( p \), \( p \) prime and \( p \equiv 1 \pmod{l} \), and \( x \) to be a \( l \)-th power modulo \( p \).

ulong Fl_sqrtn_pre(ulong x, ulong n, ulong p, ulong *zn) See Fl_sqrtn, assuming \( pi \) is the pseudo inverse of \( p \).

ulong Fl_2gener_pre(ulong p, ulong pi) return a generator of the 2-Sylow subgroup of \( F^*_p \). To use with Fl_sqrt_pre_i.

ulong Fl_sqrt_pre_i(ulong x, ulong s2, ulong p, ulong pi) as Fl_sqrt_pre where \( s2 \) is the element returned by Fl_2gener_pre.

### 6.1.4 Switching between Fl xxx and standard operators.

Even though the Fl xxx routines are efficient, they are slower than ordinary long operations, using the standard +, %, etc. operators. The following macro is used to choose in a portable way the most efficient functions for given operands:

```c
int SMALL_ULONG(ulong p) true if \(2^p^2 < 2^{BITS_IN_LONG} \). In that case, it is possible to use ordinary operators efficiently. If \(p < 2^{BITS_IN_LONG} \), one may still use the Fl xxx routines. Otherwise, one must use generic routines. For instance, the scalar product of the GENs \(x \) and \(y \) mod \(p \) could be computed as follows.
```

```c
long i, l = lg(x);
if (lgefint(p) > 3)
{ /* arbitrary */
 GEN s = gen_0;
 for (i = 1; i < l; i++) s = addii(s, mulii(gel(x,i), gel(y,i)));
 return modii(s, p).
}
else
{
 ulong s = 0, pp = itou(p);
```

80
In effect, we have three versions of the same code: very small, small, and arbitrary inputs. The very small and arbitrary variants use lazy reduction and reduce only when it becomes necessary: when overflow might occur (very small), and at the very end (very small, arbitrary).

### 6.2 Level 1 kernel (operations on longs, integers and reals)

**Note.** Some functions consist of an elementary operation, immediately followed by an assignment statement. They will be introduced as in the following example:

**GEN gadd[z](GEN x, GEN y[, GEN z])** followed by the explicit description of the function **GEN gadd(GEN x, GEN y)**

which creates its result on the stack, returning a GEN pointer to it, and the parts in brackets indicate that there exists also a function

**void gaddz(GEN x, GEN y, GEN z)**

which assigns its result to the pre-existing object z, leaving the stack unchanged. These assignment variants are kept for backward compatibility but are inefficient: don’t use them.

#### 6.2.1 Creation.

- **GEN cgeti(long n)** allocates memory on the PARI stack for a t_INT of length n, and initializes its first codeword. Identical to **cgetg(n,t_INT)**.

- **GEN cgetipos(long n)** allocates memory on the PARI stack for a t_INT of length n, and initializes its two codewords. The sign of n is set to 1.

- **GEN cgetineg(long n)** allocates memory on the PARI stack for a negative t_INT of length n, and initializes its two codewords. The sign of n is set to −1.

- **GEN cgetr(long n)** allocates memory on the PARI stack for a t_REAL of length n, and initializes its first codeword. Identical to **cgetg(n,t_REAL)**.

81
GEN cgetc(long n) allocates memory on the PARI stack for a \texttt{t\_COMPLEX}, whose real and imaginary parts are \texttt{t\_REAL}s of length \(n\).

GEN real_1(long prec) create a \texttt{t\_REAL} equal to 1 to \texttt{prec} words of accuracy.

GEN real_1_bit(long bitprec) create a \texttt{t\_REAL} equal to 1 to \texttt{bitprec} bits of accuracy.

GEN real_m1(long prec) create a \texttt{t\_REAL} equal to \(-1\) to \texttt{prec} words of accuracy.

GEN real_0_bit(long bit) create a \texttt{t\_REAL} equal to 0 with exponent \(-\text{bit}\).

GEN real_0(long prec) is a shorthand for 

\[
\text{real}_0\text{bit}\left(-\text{prec2nbits}(\text{prec})\right)
\]

GEN int2n(long n) creates a \texttt{t\_INT} equal to \(2^n\) (i.e \(2^n\) if \(n \geq 0\), and 0 otherwise).

GEN int2u(ulong n) creates a \texttt{t\_INT} equal to \(2^n\).

GEN int2um1(long n) creates a \texttt{t\_INT} equal to \(2^n - 1\).

GEN real2n(long n, long prec) create a \texttt{t\_REAL} equal to \(2^n\) to \texttt{prec} words of accuracy.

GEN real_m2n(long n, long prec) create a \texttt{t\_REAL} equal to \(-2^n\) to \texttt{prec} words of accuracy.

GEN strtoi(char *s) convert the character string \(s\) to a non-negative \texttt{t\_INT}. Decimal numbers, hexadecimal numbers prefixed by 0x and binary numbers prefixed by 0b are allowed. The string \(s\) consists exclusively of digits: no leading sign, no whitespace. Leading zeroes are discarded.

GEN strtor(char *s, long prec) convert the character string \(s\) to a non-negative \texttt{t\_REAL} of precision \texttt{prec}. The string \(s\) consists exclusively of digits and optional decimal point and exponent (e or E): no leading sign, no whitespace. Leading zeroes are discarded.

6.2.2 Assignment. In this section, the \(z\) argument in the \(z\)-functions must be of type \texttt{t\_INT} or \texttt{t\_REAL}.

void mpaff(GEN x, GEN z) assigns \(x\) into \(z\) (where \(x\) and \(z\) are \texttt{t\_INT} or \texttt{t\_REAL}). Assumes that \(\lg(z) > 2\).

void affii(GEN x, GEN z) assigns the \texttt{t\_INT} \(x\) into the \texttt{t\_INT} \(z\).

void affir(GEN x, GEN z) assigns the \texttt{t\_INT} \(x\) into the \texttt{t\_REAL} \(z\). Assumes that \(\lg(z) > 2\).

void affiz(GEN x, GEN z) assigns \texttt{t\_INT} \(x\) into \texttt{t\_INT} or \texttt{t\_REAL} \(z\). Assumes that \(\lg(z) > 2\).

void affsi(long s, GEN z) assigns the long \(s\) into the \texttt{t\_INT} \(z\). Assumes that \(\lg(z) > 2\).

void affsr(long s, GEN z) assigns the long \(s\) into the \texttt{t\_REAL} \(z\). Assumes that \(\lg(z) > 2\).

void affsz(long s, GEN z) assigns the long \(s\) into the \texttt{t\_INT} or \texttt{t\_REAL} \(z\). Assumes that \(\lg(z) > 2\).

void affui(ulong u, GEN z) assigns the ulong \(u\) into the \texttt{t\_INT} \(z\). Assumes that \(\lg(z) > 2\).

void affur(ulong u, GEN z) assigns the ulong \(u\) into the \texttt{t\_REAL} \(z\). Assumes that \(\lg(z) > 2\).

void affrr(GEN x, GEN z) assigns the \texttt{t\_REAL} \(x\) into the \texttt{t\_REAL} \(z\).

void affgr(GEN x, GEN z) assigns the scalar \(x\) into the \texttt{t\_REAL} \(z\), if possible.

The function \texttt{affrs} and \texttt{affri} do not exist. So don’t use them.
void affrr_fixlg(GEN y, GEN z) a variant of affrr. First shorten z so that it is no longer than y, then assigns y to z. This is used in the following scenario: room is reserved for the result but, due to cancellation, fewer words of accuracy are available than had been anticipated; instead of appending meaningless 0s to the mantissa, we store what was actually computed.

Note that shortening z is not quite straightforward, since setlg(z, ly) would leave garbage on the stack, which gerepile might later inspect. It is done using

void fixlg(GEN z, long ly) see stackdummy and the examples that follow.

6.2.3 Copy.

GEN icopy(GEN x) copy relevant words of the t_INT x on the stack: the length and effective length of the copy are equal.

GEN rcopy(GEN x) copy the t_REAL x on the stack.

GEN leafcopy(GEN x) copy the leaf x on the stack (works in particular for t_INTs and t_REALs). Contrary to icopy, leafcopy preserves the original length of a t_INT. The obsolete form GEN mpcopy(GEN x) is still provided for backward compatibility.

This function also works on recursive types, copying them as if they were leaves, i.e. making a shallow copy in that case: the components of the copy point to the same data as the component of the source; see also shallowcopy.

GEN leafcopy_avma(GEN x, pari_sp av) analogous to gcopy_avma but simpler: assume x is a leaf and return a copy allocated as if initially we had avma equal to av. There is no need to pass a pointer and update the value of the second argument: the new (fictitious) avma is just the return value (typecast to pari_sp).

GEN icopyspec(GEN x, long nx) copy the nx words x[2],..., x[nx+1] to make up a new t_INT. Set the sign to 1.

6.2.4 Conversions.

GEN itor(GEN x, long prec) converts the t_INT x to a t_REAL of length prec and return the latter. Assumes that prec > 2.

long itos(GEN x) converts the t_INT x to a long if possible, otherwise raise an exception. We consider the conversion to be possible if and only if |x| ≤ LONG_MAX, i.e. |x| < 2^63 on a 64-bit architecture. Since the range is symmetric, the output of itos can safely be negated.

long itos_or_0(GEN x) converts the t_INT |x| to an ulong if possible, otherwise return 0.

int is_bigint(GEN n) true if itos(n) would give an error.

ulong itou(GEN x) converts the t_INT |x| to an ulong if possible, otherwise raise an exception. The conversion is possible if and only if lgefint(x) ≤ 3.

long itou_or_0(GEN x) converts the t_INT |x| to an ulong if possible, otherwise return 0.

GEN stoi(long s) creates the t_INT corresponding to the long s.

GEN stor(long s, long prec) converts the long s into a t_REAL of length prec and return the latter. Assumes that prec > 2.

GEN utoi(ulong s) converts the ulong s into a t_INT and return the latter.
GEN utoipos(ulong s) converts the non-zero ulong s into a t_INT and return the latter.

GEN utoineg(ulong s) converts the non-zero ulong s into the t_INT $-s$ and return the latter.

GEN utor(ulong s, long prec) converts the ulong s into a t_REAL of length prec and return the latter. Assumes that prec > 2.

GEN rtor(GEN x, long prec) converts the t_REAL x to a t_REAL of length prec and return the latter. If prec < lg(x), round properly. If prec > lg(x), pad with zeroes. Assumes that prec > 2.

The following function is also available as a special case of mkintn:

GEN uu32toi(ulong a, ulong b) returns the GEN equal to $2^{32}a + b$, assuming that $a, b < 2^{32}$. This does not depend on sizeof(long): the behavior is as above on both 32 and 64-bit machines.

GEN uu32toineg(ulong a, ulong b) returns the GEN equal to $-(2^{32}a + b)$, assuming that $a, b < 2^{32}$ and that one of $a$ or $b$ is positive. This does not depend on sizeof(long): the behavior is as above on both 32 and 64-bit machines.

GEN uutoi(ulong a, ulong b) returns the GEN equal to $2^{\text{BITS IN LONG}}a + b$.

GEN uutoineg(ulong a, ulong b) returns the GEN equal to $-(2^{\text{BITS IN LONG}}a + b)$.

6.2.5 Integer parts. The following four functions implement the conversion from t_REAL to t_INT using standard rounding modes. Contrary to usual semantics (complement the mantissa with an infinite number of 0), they will raise an error precision loss in truncation if the t_REAL represents a range containing more than one integer.

GEN ceilr(GEN x) smallest integer larger or equal to the t_REAL x (i.e. the ceil function).

GEN floorr(GEN x) largest integer smaller or equal to the t_REAL x (i.e. the floor function).

GEN roundr(GEN x) rounds the t_REAL x to the nearest integer (towards $+\infty$ in case of tie).

GEN truncr(GEN x) truncates the t_REAL x (not the same as floorr if x is negative).

The following four function are analogous, but can also treat the trivial case when the argument is a t_INT:

GEN mpceil(GEN x) as ceilr except that x may be a t_INT.

GEN mpfloor(GEN x) as floorr except that x may be a t_INT.

GEN mpround(GEN x) as roundr except that x may be a t_INT.

GEN mptrunc(GEN x) as truncr except that x may be a t_INT.

GEN diviiround(GEN x, GEN y) if x and y are t_INTs, returns the quotient $x/y$ of x and y, rounded to the nearest integer. If $x/y$ falls exactly halfway between two consecutive integers, then it is rounded towards $+\infty$ (as for roundr).

GEN ceil_safe(GEN x), x being a real number (not necessarily a t_REAL) returns the smallest integer which is larger than any possible incarnation of x. (Recall that a t_REAL represents an interval of possible values.) Note that gceil raises an exception if the input accuracy is too low compared to its magnitude.

GEN floor_safe(GEN x), x being a real number (not necessarily a t_REAL) returns the largest integer which is smaller than any possible incarnation of x. (Recall that a t_REAL represents an
interval of possible values.) Note that \texttt{gfloor} raises an exception if the input accuracy is too low compared to its magnitude.

\texttt{GEN trunc\_safe(GEN x)}, \(x\) being a real number (not necessarily a \texttt{t\_REAL}) returns the integer with the largest absolute value, which is closer to 0 than any possible incarnation of \(x\). (Recall that a \texttt{t\_REAL} represents an interval of possible values.)

\texttt{GEN roundr\_safe(GEN x)} rounds the \texttt{t\_REAL} \(x\) to the nearest integer (towards \(+\infty\)). Complement the mantissa with an infinite number of 0 before rounding, hence never raise an exception.

\subsection{2-adic valuations and shifts.}

\texttt{long vals(long s)} 2-adic valuation of the \texttt{long s}. Returns \(-1\) if \(s\) is equal to 0.

\texttt{long vali(GEN x)} 2-adic valuation of the \texttt{t\_INT} \(x\). Returns \(-1\) if \(x\) is equal to 0.

\texttt{GEN mpshift(GEN x, long n)} shifts the \texttt{t\_INT} or \texttt{t\_REAL} \(x\) by \(n\). If \(n\) is positive, this is a left shift, i.e. multiplication by \(2^n\). If \(n\) is negative, it is a right shift by \(-n\), which amounts to the truncation of the quotient of \(x\) by \(2^{-n}\).

\texttt{GEN shifti(GEN x, long n)} shifts the \texttt{t\_INT} \(x\) by \(n\).

\texttt{GEN shiftr(GEN x, long n)} shifts the \texttt{t\_REAL} \(x\) by \(n\).

\texttt{void shiftr\_inplace(GEN x, long n)} shifts the \texttt{t\_REAL} \(x\) by \(n\), in place.

\texttt{GEN trunc2nr(GEN x, long n)} given a \texttt{t\_REAL} \(x\), returns \texttt{truncr(shiftr(x,n))}, but faster, without leaving garbage on the stack and never raising a \textit{precision loss in truncation} error. Called by \texttt{gtrunc2n}.

\texttt{GEN trunc2nr\_lg(GEN x, long lx, long n)} given a \texttt{t\_REAL} \(x\), returns \texttt{trunc2nr(x,n)}, pretending that the length of \(x\) is \(lx\), which must be \(\leq \lg(x)\).

\texttt{GEN mantissa2nr(GEN x, long n)} given a \texttt{t\_REAL} \(x\), returns the mantissa of \(x\) \(2^\text{\texttt{n}}\) (disregards the exponent of \(x\)). Equivalent to

\[
\text{trunc2nr(x, n-\text{\texttt{expo(x)}}+\text{\texttt{bit\_prec(x)}}-1)}
\]

\texttt{GEN mantissa\_real(GEN z, long \*e)} returns the mantissa \(m\) of \(z\), and sets \(*e\) to the exponent \texttt{bit\_accuracy(lg(z))} \(-1 - \text{\texttt{expo(z)}}\), so that \(z = m/2^e\).

\textbf{Low-level.} In the following two functions, \texttt{s(ource)} and \texttt{t(arget)} need not be valid \texttt{GENs} (in practice, they usually point to some part of a \texttt{t\_REAL} mantissa): they are considered as arrays of words representing some mantissa, and we shift globally \(s\) by \(n > 0\) bits, storing the result in \(t\). We assume that \(m \leq M\) and only access \(s[m], s[m+1], \ldots s[M]\) (read) and likewise for \(t\) (write); we may have \(s = t\) but more general overlaps are not allowed. The word \(f\) is concatenated to \(s\) to supply extra bits.

\texttt{void shift\_left(GEN t, GEN s, long m, long M, ulong f, ulong n)} shifts the mantissa \(s[m], s[m+1], \ldots s[M], f\) left by \(n\) bits.

\texttt{void shift\_right(GEN t, GEN s, long m, long M, ulong f, ulong n)} shifts the mantissa \(f, s[m], s[m+1], \ldots s[M]\) right by \(n\) bits.

85
6.2.7 From \t_INT to bits or digits in base \(2^k\) and back.

\texttt{GEN binary_zv(GEN x)} given a \t_INT \(x\), return a \t_VECSMALL of bits, from most significant to least significant.

\texttt{GEN binary_2k(GEN x, long k)} given a \t_INT \(x\), and \(k > 0\), return a \t_VEC of digits of \(x\) in base \(2^k\), as \t_INTs, from most significant to least significant.

\texttt{GEN binary_2k_nv(GEN x, long k)} given a \t_INT \(x\), and \(0 < k < \text{BITS\_IN\_LONG}\), return a \t_VECSMALL of digits of \(x\) in base \(2^k\), as \ulongs, from most significant to least significant.

\texttt{GEN bits_to_int(GEN x, long l)} given a vector \(x\) of \(l\) bits (as a \t_VECSMALL or even a pointer to a part of a larger vector, so not a proper \t_GEN), return the integer \(\sum_{i=1}^{l} x[i] \cdot 2^{i-1}\), as a \t_INT.

\texttt{ulong bits_to_u(GEN v, long l)} same as \texttt{bits_to_int}, where \(l < \text{BITS\_IN\_LONG}\), so we can return an ulong.

\texttt{GEN fromdigits_u(GEN x, GEN B)} given a \t_VECSMALL \(x\) of length \(l\) and a \t_INT \(B\), return the integer \(\sum_{i=1}^{l} x[i] \cdot B^{i-1}\), as a \t_INT, where the \(x[i]\) are seen as unsigned integers.

\texttt{GEN fromdigits_2k(GEN x, long k)} converse of \texttt{binary_2k}: given a \t_VEC \(x\) of length \(l\) and a positive long \(k\), where each \(x[i]\) is a \t_INT with \(0 \leq x[i] < 2^k\), return the integer \(\sum_{i=1}^{l} x[i] \cdot 2^{k(l-1)}\), as a \t_INT.

\texttt{GEN nv_fromdigits_2k(GEN x, long k)} as \texttt{fromdigits_2k}, but with \(x\) being a \t_VECSMALL and each \(x[i]\) being a ulong with \(0 \leq x[i] < 2^{\min\{k, \text{BITS\_IN\_LONG}\}}\). Here \(k\) may be any positive long, and the \(x[i]\) are regarded as \(k\)-bit integers by truncating or extending with zeroes.

6.2.8 Integer valuation. For integers \(x\) and \(p\), such that \(x \neq 0\) and \(|p| > 1\), we define \(v_p(x)\) to be the largest integer exponent \(e\) such that \(p^e\) divides \(x\). If \(p\) is prime, this is the ordinary valuation of \(x\) at \(p\).

\texttt{long Z\_pvalrem(GEN x, GEN p, GEN *r)} applied to \t_INTs \(x \neq 0\) and \(p\), \(|p| > 1\), returns \(e := v_p(x)\) The quotient \(x/p^e\) is returned in \*r. If \(|p|\) is a prime, \*r is the prime-to-\(p\) part of \(x\).

\texttt{long Z\_lval(GEN x, GEN p)} as \texttt{Z\_pvalrem} but only returns \(v_p(x)\).

\texttt{long Z\_lvalrem(GEN x, ulong p, GEN *r)} as \texttt{Z\_pvalrem}, except that \(p\) is an ulong \((p > 1)\).

\texttt{long Z\_lvalrem_stop(GEN *x, ulong p, int *stop)} assume \(x > 0\); returns \(e := v_p(x)\) and replaces \(x\) by \(x/p^e\). Set \(\text{stop}\) to 1 if the new value of \(x\) is < \(p^2\) (and 0 otherwise). To be used when trial dividing \(x\) by successive primes: the \text{stop} condition is cheaply tested while testing whether \(p\) divides \(x\) (is the quotient less than \(p^2\)), and allows to decide that \(n\) is prime if no prime < \(p\) divides \(n\). Not memory-clean.

\texttt{long Z\_lval(ulong x, ulong p)} as \texttt{Z\_val}, except that \(p\) is an ulong \((p > 1)\).

\texttt{long u\_lvalrem(ulong x, ulong p, ulong *r)} as \texttt{Z\_pvalrem}, except the inputs/outputs are now ulongs.

\texttt{long u\_lvalrem_stop(ulong *n, ulong p, int *stop)} as \texttt{Z\_pvalrem\_stop}.

\texttt{long u\_pvalrem(ulong x, GEN p, ulong *r)} as \texttt{Z\_pvalrem}, except \(x\) and \(r\) are now ulongs.

\texttt{long u\_lval(ulong x, ulong p)} as \texttt{Z\_val}, except the inputs are now ulongs.

\texttt{long u\_pval(ulong x, GEN p)} as \texttt{Z\_val}, except \(x\) is now an ulong.

86
long z_lval(long x, ulong p) as u_lval, for signed x.

long z_lvalrem(long x, ulong p) as u_lvalrem, for signed x.

long z_pval(long x, GEN p) as Z_pval, except x is now a long.

long z_pvalrem(long x, GEN p) as Z_pvalrem, except x is now a long.

long Q_pval(GEN x, GEN p) valuation at the t_INT p of the t_INT or t_FRAC x.

long factorial_lval(ulong n, ulong p) returns v_p(n!), assuming p is prime.

The following convenience functions generalize Z_pval and its variants to “containers” (ZV and ZX):

long ZV_pvalrem(GEN x, GEN p, GEN *r) x being a ZV (a vector of t_INTs), return the min v of the valuations of its components and set *r to x/p^v. Infinite loop if x is the zero vector. This function is not stack clean.

long ZV_pval(GEN x, GEN p) as ZV_pvalrem but only returns the “valuation”.

int ZV_Z_dvd(GEN x, GEN p) returns 1 if p divides all components of x and 0 otherwise. Faster than testing ZV_pval(x,p) >= 1.

long ZV_lvalrem(GEN x, ulong p, GEN *px) as ZV_pvalrem, except that p is an ulong (p > 1). This function is not stack-clean.

long ZV_lval(GEN x, ulong p) as ZV_pval, except that p is an ulong (p > 1).

long ZX_pvalrem(GEN x, GEN p, GEN *r) as ZV_pvalrem, for a ZX x (a t_POL with t_INT coefficients). This function is not stack-clean.

long ZX_pval(GEN x, GEN p) as ZV_pval for a ZX x.

long ZX_lvalrem(GEN x, ulong p, GEN *px) as ZV_lvalrem, a ZX x. This function is not stack-clean.

long ZX_lval(GEN x, ulong p) as ZV_lval, except that p is an ulong (p > 1).

6.2.9 Generic unary operators. Let “op” be a unary operation among

- **neg**: negation (−x).
- **abs**: absolute value (|x|).
- **sqr**: square (x^2).

The names and prototypes of the low-level functions corresponding to op are as follows. The result is of the same type as x.

GEN opi(GEN x) creates the result of op applied to the t_INT x.

GEN opr(GEN x) creates the result of op applied to the t_REAL x.

GEN mpop(GEN x) creates the result of op applied to the t_INT or t_REAL x.

Complete list of available functions:

GEN absi(GEN x), GEN absr(GEN x), GEN mpabs(GEN x)

GEN negi(GEN x), GEN negr(GEN x), GEN mpneg(GEN x)
GEN sqri(GEN x), GEN sqrr(GEN x), GEN mpsqr(GEN x)

GEN absi_shallow(GEN x) x being a t_INT, returns a shallow copy of |x|, in particular returns x itself when x ≥ 0, and negi(x) otherwise.

GEN mpabs_shallow(GEN x) x being a t_INT or a t_REAL, returns a shallow copy of |x|, in particular returns x itself when x ≥ 0, and mpneg(x) otherwise.

Some miscellaneous routines:
GEN sqrs(long x) returns $x^2$.
GEN sqru(ulong x) returns $x^2$.

6.2.10 Comparison operators.
long minss(long x, long y)
ulong minuu(ulong x, ulong y)
double mindd(double x, double y) returns the min of x and y.
long maxss(long x, long y)
ulong maxuu(ulong x, ulong y)
double maxdd(double x, double y) returns the max of x and y.

int mpcmp(GEN x, GEN y) compares the t_INT or t_REAL x to the t_INT or t_REAL y. The result is the sign of x − y.
int cmpii(GEN x, GEN y) compares the t_INT x to the t_INT y.
int cmpir(GEN x, GEN y) compares the t_INT x to the t_REAL y.
int cmpis(GEN x, long s) compares the t_INT x to the long s.
int cmpiu(GEN x, ulong s) compares the t_INT x to the ulong s.
int cmpsi(long s, GEN x) compares the long s to the t_INT x.
int cmpui(ulong s, GEN x) compares the ulong s to the t_INT x.
int cmpsr(long s, GEN x) compares the long s to the t_REAL x.
int cmprri(GEN x, GEN y) compares the t_REAL x to the t_INT y.
int cmprr(GEN x, GEN y) compares the t_REAL x to the t_REAL y.
int cmprrs(GEN x, long s) compares the t_REAL x to the long s.
int equalii(GEN x, GEN y) compares the t_INTs x and y. The result is 1 if x = y, 0 otherwise.
int equalrr(GEN x, GEN y) compares the t_REALs x and y. The result is 1 if x = y, 0 otherwise. Equality is decided according to the following rules: all real zeroes are equal, and different from a non-zero real; two non-zero reals are equal if all their digits coincide up to the length of the shortest of the two, and the remaining words in the mantissa of the longest are all 0.
int equalis(GEN x, long s) compare the t_INT x and the long s. The result is 1 if x = y, 0 otherwise.
int equalsi(long s, GEN x)
int equaliu(GEN x, ulong s) compare the t_INT x and the ulong s. The result is 1 if x = y, 0 otherwise.

int equalui(ulong s, GEN x)

The remaining comparison operators disregard the sign of their operands

int absequaliu(GEN x, ulong u) compare the absolute value of the t_INT x and the ulong s. The result is 1 if |x| = y, 0 otherwise. This is marginally more efficient than equalis even when x is known to be non-negative.

int absequalui(ulong u, GEN x)

int abscmpiui(GEN x, ulong u) compare the absolute value of the t_INT x and the ulong u.

int abscmpuii(ulong u, GEN x)

int abscmpii(GEN x, GEN y) compares the t_INTs x and y. The result is the sign of |x| − |y|.

int absequalii(GEN x, GEN y) compares the t_INTs x and y. The result is 1 if |x| = |y|, 0 otherwise.

int absrnz_equal2n(GEN x) tests whether a non-zero t_REAL x is equal to ±2e for some integer e.

int absrnz_equal1(GEN x) tests whether a non-zero t_REAL x is equal to ±1.

6.2.11 Generic binary operators. The operators in this section have arguments of C-type GEN, long, and ulong, and only t_INT and t_REAL GENs are allowed. We say an argument is a real type if it is a t_REAL GEN, and an integer type otherwise. The result is always a t_REAL unless both x and y are integer types.

Let “op” be a binary operation among

- **add**: addition (x + y).
- **sub**: subtraction (x − y).
- **mul**: multiplication (x * y).
- **div**: division (x / y). In the case where x and y are both integer types, the result is the Euclidean quotient, where the remainder has the same sign as the dividend x. It is the ordinary division otherwise. A division-by-0 error occurs if y is equal to 0.

The last two generic operations are defined only when arguments have integer types; and the result is a t_INT:

- **rem**: remainder (“x % y”). The result is the Euclidean remainder corresponding to div, i.e. its sign is that of the dividend x.
- **mod**: true remainder (x % y). The result is the true Euclidean remainder, i.e. non-negative and less than the absolute value of y.
Important technical note. The rules given above fixing the output type (to \texttt{t_REAL} unless both inputs are integer types) are subtly incompatible with the general rules obeyed by PARI's generic functions, such as \texttt{gmul} or \texttt{gdiv} for instance: the latter return a result containing as much information as could be deduced from the inputs, so it is not true that if \( x \) is a \texttt{t_INT} and \( y \) a \texttt{t_REAL}, then \texttt{gmul}(x,y) is always the same as \texttt{mulir}(x,y). The exception is \( x = 0 \), in that case we can deduce that the result is an exact 0, so \texttt{gmul} returns \texttt{gen\_0}, while \texttt{mulir} returns a \texttt{t_REAL} 0. Specifically, the one resulting from the conversion of \texttt{gen\_0} to a \texttt{t_REAL} of precision \texttt{precision(y)}, multiplied by \( y \); this determines the exponent of the real 0 we obtain.

The reason for the discrepancy between the two rules is that we use the two sets of functions in different contexts: generic functions allow to write high-level code forgetting about types, letting PARI return results which are sensible and as simple as possible; type specific functions are used in kernel programming, where we do care about types and need to maintain strict consistency: it is much easier to compute the types of results when they are determined from the types of the inputs only (without taking into account further arithmetic properties, like being non-0).

The names and prototypes of the low-level functions corresponding to \texttt{op} are as follows. In this section, the z argument in the \texttt{z}-functions must be of type \texttt{t_INT} when no \texttt{r} or \texttt{mp} appears in the argument code (no \texttt{t_REAL} operand is involved, only integer types), and of type \texttt{t_REAL} otherwise.

\[
\begin{align*}
\text{GEN mpop[z]}(\text{GEN } x, \text{ GEN } y[, \text{ GEN } z]) & \text{ applies } \text{op} \text{ to the } \texttt{t_INT} \text{ or } \texttt{t_REAL} \text{ } x \text{ and } y. \text{ The function } \\
\text{mpdivz} & \text{ does not exist (its semantic would change drastically depending on the type of the } z \text{ argument), and neither do } \\
\text{mprem[z]} & \text{ nor } \text{mpmod[z]} \text{ (specific to integers).} \\
\text{GEN opsi[z]}(\text{long } s, \text{ GEN } x[, \text{ GEN } z]) & \text{ applies } \text{op} \text{ to the } \texttt{long} \text{ } s \text{ and the } \texttt{t_INT} \text{ } x. \text{ These functions always return the global constant } \texttt{gen\_0} \text{ (not a copy) when the sign of the result is 0.} \\
\text{GEN opsr[z]}(\text{long } s, \text{ GEN } x[, \text{ GEN } z]) & \text{ applies } \text{op} \text{ to the } \texttt{long} \text{ } s \text{ and the } \texttt{t_REAL} \text{ } x. \\
\text{GEN opss[z]}(\text{long } s, \text{ long } t[, \text{ GEN } z]) & \text{ applies } \text{op} \text{ to the } \texttt{longs} \text{ } s \text{ and } t. \text{ These functions always return the global constant } \texttt{gen\_0} \text{ (not a copy) when the sign of the result is 0.} \\
\text{GEN opii[z]}(\text{GEN } x, \text{ GEN } y[, \text{ GEN } z]) & \text{ applies } \text{op} \text{ to the } \texttt{t_INTs} \text{ } x \text{ and } y. \text{ These functions always return the global constant } \texttt{gen\_0} \text{ (not a copy) when the sign of the result is 0.} \\
\text{GEN opir[z]}(\text{GEN } x, \text{ GEN } y[, \text{ GEN } z]) & \text{ applies } \text{op} \text{ to the } \texttt{t_INT} \text{ } x \text{ and the } \texttt{t_REAL} \text{ } y. \\
\text{GEN opis[z]}(\text{GEN } x, \text{ long } s[, \text{ GEN } z]) & \text{ applies } \text{op} \text{ to the } \texttt{t_INT} \text{ } x \text{ and the } \texttt{long} \text{ } s. \text{ These functions always return the global constant } \texttt{gen\_0} \text{ (not a copy) when the sign of the result is 0.} \\
\text{GEN opri[z]}(\text{GEN } x, \text{ GEN } y[, \text{ GEN } z]) & \text{ applies } \text{op} \text{ to the } \texttt{t_REAL} \text{ } x \text{ and the } \texttt{t_INT} \text{ } y. \\
\text{GEN oprr[z]}(\text{GEN } x, \text{ GEN } y[, \text{ GEN } z]) & \text{ applies } \text{op} \text{ to the } \texttt{t_REALs} \text{ } x \text{ and } y. \\
\text{GEN oprs[z]}(\text{GEN } x, \text{ long } s[, \text{ GEN } z]) & \text{ applies } \text{op} \text{ to the } \texttt{t_REAL} \text{ } x \text{ and the } \texttt{long} \text{ } s.
\end{align*}
\]

Some miscellaneous routines:

\[
\begin{align*}
\text{long expu(ulong } x \text{) assuming } x > 0, \text{ returns the binary exponent of the real number equal to } x. \text{ This is a special case of } \texttt{gexpo}.
\end{align*}
\]

\[
\begin{align*}
\text{GEN adduu(ulong } x, \text{ ulong } y) \\
\text{GEN addiu(GEN } x, \text{ ulong } y) \\
\text{GEN addui(ulong } x, \text{ GEN } y) \text{ adds } x \text{ and } y. \\
\text{GEN subuu(ulong } x, \text{ ulong } y)
\end{align*}
\]
GEN subiu(GEN x, ulong y)
GEN subui(ulong x, GEN y) subtracts x by y.
GEN muluu(ulong x, ulong y) multiplies x by y.
ulong umuluu_le(ulong x, ulong y, ulong n) multiplies x by y. Return xy if xy ≤ n and 0 otherwise (in particular if xy does not fit in an ulong).
ulong umuluu_or_0(ulong x, ulong y) multiplies x by y. Return 0 if xy does not fit in an ulong.
GEN mului(ulong x, GEN y) multiplies x by y.
GEN muluui(ulong x, ulong y, GEN z) return xyz.
GEN muliu(GEN x, ulong y) multiplies x by y.
void addumului(ulong a, ulong b, GEN x) return a + b|x|.
GEN addmuliu(GEN x, GEN y, ulong u) returns x + yu.
GEN addmulii(GEN x, GEN y, GEN z) returns x + yz.
GEN addmulii_inplace(GEN x, GEN y, GEN z) returns x + yz, but returns x itself and not a copy if yz = 0. Not suitable for gerepile or gerepileupto.
GEN addmului_inplace(GEN x, GEN y, ulong u) returns x + yu, but returns x itself and not a copy if yu = 0. Not suitable for gerepile or gerepileupto.
GEN submului_inplace(GEN x, GEN y, ulong u) returns x − yu, but returns x itself and not a copy if yu = 0. Not suitable for gerepile or gerepileupto.
GEN lincombii(GEN u, GEN v, GEN x, GEN y) returns ux + vy.
GEN muls subii(GEN y, GEN z, GEN x) returns yz − x.
GEN submulii(GEN x, GEN y, GEN z) returns x − yz.
GEN submuliu(GEN x, GEN y, ulong u) returns x − yu.
GEN mulu_interval(ulong a, ulong b) returns a(a + 1)···b, assuming that a ≤ b.
GEN muls_interval(long a, long b) returns a(a + 1)···b, assuming that a ≤ b.
GEN invr(GEN x) returns the inverse of the non-zero t_REAL x.
GEN truedivii(GEN x, GEN y) returns the true Euclidean quotient (with non-negative remainder less than |y|).
GEN truedivis(GEN x, long y) returns the true Euclidean quotient (with non-negative remainder less than |y|).
GEN truedivsi(long x, GEN y) returns the true Euclidean quotient (with non-negative remainder less than |y|).
GEN centermodii(GEN x, GEN y, GEN y2), given t_INTs x, y, returns z congruent to x modulo y, such that −y/2 ≤ z < y/2. The function requires an extra argument y2, such that y2 = shifti(y, −1). (In most cases, y is constant for many reductions and y2 need only be computed once.)
GEN remi2n(GEN x, long n) returns x mod 2^n.
GEN addii_sign(GEN x, long sx, GEN y, long sy) add the t_INTs x and y as if their signs were sx and sy.

GEN addir_sign(GEN x, long sx, GEN y, long sy) add the t_INT x and the t_REAL y as if their signs were sx and sy.

GEN addrr_sign(GEN x, long sx, GEN y, long sy) add the t_REALs x and y as if their signs were sx and sy.

GEN addsi_sign(long x, GEN y, long sy) add x and the t_INT y as if its sign was sy.

GEN addui_sign(ulong x, GEN y, long sy) add x and the t_INT y as if its sign was sy.

6.2.12 Exact division and divisibility.

GEN diviiexact(GEN x, GEN y) returns the Euclidean quotient $x/y$, assuming $y$ divides $x$. Uses Jebelean algorithm (Jebelean-Krandick bidirectional exact division is not implemented).

GEN diviuexact(GEN x, ulong y) returns the Euclidean quotient $x/y$, assuming $y$ divides $x$ and $y$ is non-zero.

GEN diviuuexact(GEN x, ulong y, ulong z) returns the Euclidean quotient $x/(yz)$, assuming $yz$ divides $x$ and $yz \neq 0$.

The following routines return 1 (true) if $y$ divides $x$, and 0 otherwise. (Error if $y$ is 0, even if $x$ is 0.) All GEN are assumed to be t_INTs:

int dvdii(GEN x, GEN y), int dvdis(GEN x, long y), int dvdiu(GEN x, ulong y),
int dvdsi(long x, GEN y), int dvdui(ulong x, GEN y).

The following routines return 1 (true) if $y$ divides $x$, and in that case assign the quotient to $z$; otherwise they return 0. All GEN are assumed to be t_INTs:

int dvdiiiz(GEN x, GEN y, GEN z), int dvdisz(GEN x, long y, GEN z).

int dvdiiuz(GEN x, ulong y, GEN z) if $y$ divides $x$, assigns the quotient $|x|/y$ to $z$ and returns 1 (true), otherwise returns 0 (false).

6.2.13 Division with integral operands and t_REAL result.

GEN rdivii(GEN x, GEN y, long prec), assuming $x$ and $y$ are both of type t_INT, return the quotient $x/y$ as a t_REAL of precision prec.

GEN rdiviiiz(GEN x, GEN y, GEN z), assuming $x$ and $y$ are both of type t_INT, and $z$ is a t_REAL, assign the quotient $x/y$ to $z$.

GEN rdivis(GEN x, long y, long prec), assuming $x$ is of type t_INT, return the quotient $x/y$ as a t_REAL of precision prec.

GEN rdivsi(ulong x, GEN y, long prec), assuming $y$ is of type t_INT, return the quotient $x/y$ as a t_REAL of precision prec.

GEN rdivss(ulong x, long y, long prec), return the quotient $x/y$ as a t_REAL of precision prec.
6.2.14 Division with remainder. The following functions return two objects, unless specifically asked for only one of them — a quotient and a remainder. The quotient is returned and the remainder is returned through the variable whose address is passed as the r argument. The term true Euclidean remainder refers to the non-negative one (mod), and Euclidean remainder by itself to the one with the same sign as the dividend (rem). All GENs, whether returned directly or through a pointer, are created on the stack.

GEN dvmdii(GEN x, GEN y, GEN *r) returns the Euclidean quotient of the t_INT x by a t_INT y and puts the remainder into *r. If r is equal to NULL, the remainder is not created, and if r is equal to ONLY REM, only the remainder is created and returned. In the generic case, the remainder is created after the quotient and can be disposed of individually with a cgiv(r). The remainder is always of the sign of the dividend x. If the remainder is 0 set r = gen_0.

void dvmdiiz(GEN x, GEN y, GEN z, GEN t) assigns the Euclidean quotient of the t_INTs x and y into the t_INT z, and the Euclidean remainder into the t_INT t.

Analogous routines dvmdis[z], dvmdsi[z], dvmdss[z] are available, where s denotes a long argument. But the following routines are in general more flexible:

long sdivss_rem(long s, long t, long *r) computes the Euclidean quotient and remainder of the longs s and t. Puts the remainder into *r, and returns the quotient. The remainder is of the sign of the dividend s, and has strictly smaller absolute value than t.

long sdivsi_rem(long s, GEN x, long *r) computes the Euclidean quotient and remainder of the long s by the t_INT x. As sdivss_rem otherwise.

long sdivsi(long s, GEN x) as sdivsi_rem, without remainder.

GEN divis_rem(GEN x, long s, long *r) computes the Euclidean quotient and remainder of the t_INT x by the long s. As sdivss_rem otherwise.

GEN absdiviu_rem(GEN x, ulong s, ulong *r) computes the Euclidean quotient and remainder of absolute value of the t_INT x by the ulong s. As sdivss_rem otherwise.

ulong uabsdiviu_rem(GEN n, ulong d, ulong *r) as absdiviu_rem, assuming that |n|/d fits into an ulong.

ulong uabsdivui_rem(ulong x, GEN y, ulong *rem) computes the Euclidean quotient and remainder of x by |y|. As sdivss_rem otherwise.

ulong udivuu_rem(ulong x, ulong y, ulong *rem) computes the Euclidean quotient and remainder of x by y. As sdivss_rem otherwise.

ulong ceildivuu(ulong x, ulong y) return the ceiling of x/y.

GEN divsi_rem(long s, GEN y, long *r) computes the Euclidean quotient and remainder of the long s by the GEN y. As sdivss_rem otherwise.

GEN divss_rem(long x, long y, long *r) computes the Euclidean quotient and remainder of the long x by the long y. As sdivss_rem otherwise.

GEN truedvmdii(GEN x, GEN y, GEN *r), as dvmdii but with a non-negative remainder.

GEN truedvmdis(GEN x, long y, GEN *z), as dvmdis but with a non-negative remainder.

GEN truedvmdsi(long x, GEN y, GEN *z), as dvmdsi but with a non-negative remainder.

93
6.2.15 Modulo to longs. The following variants of \texttt{modii} do not clutter the stack:

\begin{verbatim}
long smodis(GEN x, long y) computes the true Euclidean remainder of the \texttt{t_INT} x by the long y. This is the non-negative remainder, not the one whose sign is the sign of x as in the \texttt{div} functions.

long smodss(long x, long y) computes the true Euclidean remainder of the long x by a long y.
ulong umodsu(long x, ulong y) computes the true Euclidean remainder of the long x by a ulong y.
ulong umodiu(ulong x, GEN y) computes the true Euclidean remainder of the long x by the t_INT |y|.

The routine \texttt{smodsi} does not exist, since it would not always be defined: for a negative x, if the quotient is \pm 1, the result x + |y| would in general not fit into a long. Use either \texttt{umodiui} or \texttt{modsi}.

These functions directly access the binary data and are thus much faster than the generic modulo functions:

\begin{verbatim}
int mpodd(GEN x) which is 1 if x is odd, and 0 otherwise.
ulong Mod2(GEN x)
ulong Mod4(GEN x)
ulong Mod8(GEN x)
ulong Mod16(GEN x)
ulong Mod32(GEN x)
ulong Mod64(GEN x) give the residue class of x modulo the corresponding power of 2.
ulong umodi2n(GEN x, long n) give the residue class of x modulo 2^n, 0 \leq n < BITS_IN_LONG.

The following functions assume that x \neq 0 and in fact disregard the sign of x. There are about 10\% faster than the safer variants above:

long mod2(GEN x)
long mod4(GEN x)
long mod8(GEN x)
long mod16(GEN x)
long mod32(GEN x)
long mod64(GEN x) give the residue class of |x| modulo the corresponding power of 2, for non-zero x. As well,
ulong mod2BIL(GEN x) returns the least significant word of |x|, still assuming that x \neq 0.
\end{verbatim}
\end{verbatim}
6.2.16 Powering, Square root.

GEN powii(GEN x, GEN n), assumes x and n are t_INTs and returns $x^n$.

GEN powuu(ulong x, ulong n), returns $x^n$.

GEN powiu(GEN x, ulong n), assumes x is a t_INT and returns $x^n$.

GEN powis(GEN x, long n), assumes x is a t_INT and returns $x^n$ (possibly a t_FRAC if n < 0).

GEN powrs(GEN x, long n), assumes x is a t_REAL and returns $x^n$. This is considered as a sequence of mulrr, possibly empty: as such the result has type t_REAL, even if $n = 0$. Note that the generic function gpowgs(x,0) would return gen_1, see the technical note in Section 6.2.11.

GEN powru(GEN x, ulong n), assumes x is a t_REAL and returns $x^n$ (always a t_REAL, even if $n = 0$).

GEN powersr(GEN e, long n). Given a t_REAL e, return the vector v of all $e^i$, 0 ≤ i ≤ n, where $v[i] = e^{i-1}$.

GEN powrshalf(GEN x, long n), assumes x is a t_REAL and returns $x^{n/2}$ (always a t_REAL, even if $n = 0$).

GEN powruhalf(GEN x, ulong n), assumes x is a t_REAL and returns $x^{n/2}$ (always a t_REAL, even if $n = 0$).

GEN powfract(GEN x, long n, long d), assumes x is a t_REAL and returns $x^{n/d}$ (always a t_REAL, even if $n = 0$).

GEN powIs(long n) returns $I^n \in \{1, I, -1, -I\}$ (t_INT for even $n$, t_COMPLEX otherwise).

ulong upowuu(ulong x, ulong n), returns $x^n$ when $2^\text{BITS}\_\text{IN}\_\text{LONG}$, and 0 otherwise (overflow).

GEN sqrtremi(GEN N, GEN *r), returns the integer square root $S$ of the non-negative t_INT N (rounded towards 0) and puts the remainder $R$ into *r. Precisely, $N = S^2 + R$ with 0 ≤ $R$ ≤ 2$S$. If r is equal to NULL, the remainder is not created. In the generic case, the remainder is created after the quotient and can be disposed of individually with cgiv(R). If the remainder is 0 set $R = \text{gen}_0$.

Uses a divide and conquer algorithm (discrete variant of Newton iteration) due to Paul Zimmermann (“Karatsuba Square Root”, INRIA Research Report 3805 (1999)).

GEN sqrti(GEN N), returns the integer square root $S$ of the non-negative t_INT N (rounded towards 0). This is identical to sqrtremi(N, NULL).

long logintall(GEN B, GEN y, GEN *ptq) returns the floor $e$ of $\log_y B$, where $B > 0$ and $y > 1$ are integers. If ptq is not NULL, set it to $y^e$. (Analogous to logint0, whithout sanity checks.)

ulong ulogintall(ulong B, ulong y, ulong *ptq) as logintall for ulong arguments.

long logint(GEN B, GEN y) returns the floor $e$ of $\log_y B$, where $B > 0$ and $y > 1$ are integers.

ulong ulogint(ulong B, ulong y) as logint for ulong arguments.

GEN vecpowuu(long N, ulong a) return the vector of $n^a$, $n = 1, \ldots, N$. Not memory clean.

GEN vecpowug(long N, GEN a, long prec) return the vector of $n^a$, $n = 1, \ldots, N$, where the powers are computed at precision prec. Not memory clean.
6.2.17 GCD, extended GCD and LCM.

long cgcd(long x, long y) returns the GCD of x and y.
ulong ugcd(ulong x, ulong y) returns the GCD of x and y.
ulong ugcdiu(GEN x, ulong y) returns the GCD of x and y.
ulong ugcdui(ulong x, GEN y) returns the GCD of x and y.
GEN coprimes_zv(ulong N) return a t_VECSMALL T with N entries such that T[i] = 1 iff (i, N) = 1 and 0 otherwise.
long clcm(long x, long y) returns the LCM of x and y, provided it fits into a long. Silently overflows otherwise.
ulong ulcm(ulong x, ulong y) returns the LCM of x and y, provided it fits into an ulong. Silently overflows otherwise.
GEN gcdii(GEN x, GEN y), returns the GCD of the t_INTs x and y.
GEN lcmii(GEN x, GEN y), returns the LCM of the t_INTs x and y.
GEN bezout(GEN a, GEN b, GEN *u, GEN *v), returns the GCD d of t_INTs a and b and sets u, v to the Bezout coefficients such that au + bv = d.
long cbezout(long a, long b, long *u, long *v), returns the GCD d of a and b and sets u, v to the Bezout coefficients such that au + bv = d.
GEN ZV_extgcd(GEN A) given a vector of n integers A, returns [d, U], where d is the GCD of the A[i] and U is a matrix in GL_n(Z) such that AU = [0, ..., 0, D].

6.2.18 Continued fractions and convergents.

GEN ZV_allpnqn(GEN x) given x = [a_0, ..., a_n] a continued fraction from gbounf, n ≥ 0, return all convergents as [P, Q], where P = [p_0, ..., p_n] and Q = [q_0, ..., q_n].

6.2.19 Pseudo-random integers. These routine return pseudo-random integers uniformly distributed in some interval. The all use the same underlying generator which can be seeded and restarted using getrand and setrand.

void setrand(GEN seed) reseeds the random number generator using the seed n. The seed is either a technical array output by getrand or a small positive integer, used to generate deterministically a suitable state array. For instance, running a randomized computation starting by setrand(1) twice will generate the exact same output.

GEN getrand(void) returns the current value of the seed used by the pseudo-random number generator random. Useful mainly for debugging purposes, to reproduce a specific chain of computations. The returned value is technical (reproduces an internal state array of type t_VECSMALL), and can only be used as an argument to setrand.

ulong pari_rand(void) returns a random 0 ≤ x < 2^BITS_IN_LONG.
long random_bits(long k) returns a random 0 ≤ x < 2^k. Assumes that 0 ≤ k ≤ BITS_IN_LONG.
ulong random_Fl(ulong p) returns a pseudo-random integer in 0, 1, ..., p − 1.
GEN randomi(GEN n) returns a random t_INT between 0 and n − 1.
GEN randomr(long prec) returns a random t_REAL in [0, 1[, with precision prec.
6.2.20 Modular operations. In this subsection, all GENs are t_INT.

GEN Fp_red(GEN a, GEN m) returns a modulo m (smallest non-negative residue). (This is identical to modii).

GEN Fp_neg(GEN a, GEN m) returns \(-a\) modulo m (smallest non-negative residue).

GEN Fp_add(GEN a, GEN b, GEN m) returns the sum of a and b modulo m (smallest non-negative residue).

GEN Fp_sub(GEN a, GEN b, GEN m) returns the difference of a and b modulo m (smallest non-negative residue).

GEN Fp_center(GEN a, GEN p, GEN pov2) assuming that pov2 is shifti(p,-1) and that \(-p/2 < a < p\), returns the representative of a in the symmetric residue system \([-p/2, p/2]\).

GEN Fp_center_i(GEN a, GEN p, GEN pov2) internal variant of Fp_center, not gerepile-safe: when a is already in the proper interval, it is returned as is, without a copy.

GEN Fp_mul(GEN a, GEN b, GEN m) returns the product of a by b modulo m (smallest non-negative residue).

GEN Fp_addmul(GEN x, GEN y, GEN z, GEN p) returns \(x + yz\).

GEN Fp_mulu(GEN a, ulong b, GEN m) returns the product of a by b modulo m (smallest non-negative residue).

GEN Fp_muls(GEN a, long b, GEN m) returns the product of a by b modulo m (smallest non-negative residue).

GEN Fp_halve(GEN x, GEN m) returns \(z\) such that \(2z = x\) modulo m assuming such \(z\) exists.

GEN Fp_sqr(GEN a, GEN m) returns \(a^2\) modulo m (smallest non-negative residue).

ulong Fp_powu(GEN x, ulong n, GEN m) raises x to the n-th power modulo m (smallest non-negative residue). Not memory-clean, but suitable for gerepileupto.

ulong Fp_pows(GEN x, long n, GEN m) raises x to the n-th power modulo m (smallest non-negative residue). A negative n is allowed Not memory-clean, but suitable for gerepileupto.

GEN Fp_pow(GEN x, GEN n, GEN m) returns \(x^n\) modulo m (smallest non-negative residue).

GEN Fp_pow_init(GEN x, GEN n, long k, GEN p) Return a table R that can be used with Fp_pow_table to compute the powers of x up to n. The table is of size \(2^k \log_2(n)\).

GEN Fp_pow_table(GEN R, GEN n, GEN m) Return \(x^n\), where R is as given by Fp_pow_init(x,m,k,p) for some integer \(m \geq n\).

GEN Fp_powers(GEN x, long n, GEN m) returns \([x^0, \ldots, x^n]\) modulo m as a t_VEC (smallest non-negative residue).

GEN Fp_inv(GEN a, GEN m) returns an inverse of a modulo m (smallest non-negative residue). Raise an error if a is not invertible.

GEN Fp_invsafe(GEN a, GEN m) as Fp_inv, but return NULL if a is not invertible.

GEN Fp_invgen(GEN x, GEN m, GEN *pg) set *pg to \(g = \gcd(x, m)\) and return u in \((\mathbb{Z}/m\mathbb{Z})^*\) such that \(xu = g \mod m\). We have \(g = 1\) if and only if x is invertible, and in this case u is its inverse.

GEN FpV_inv(GEN x, GEN m) x being a vector of t_INTs, return the vector of inverses of the \(x[i]\) \mod m. The routine uses Montgomery’s trick, and involves a single inversion mod m, plus \(3(N - 1)\).
multiplications for \( N \) entries. The routine is not stack-clean: \( 2N \) integers mod \( m \) are left on stack, besides the \( N \) in the result.

\[
\text{GEN Fp\textunderscore div(GEN a, GEN b, GEN m)} \text{ returns the quotient of a by b modulo m (smallest non-negative residue). Raise an error if b is not invertible.}
\]

\[
\text{int invmod(GEN a, GEN m, GEN *g), return 1 if a modulo m is invertible, else return 0 and set g = gcd(a,m).}
\]

In the following three functions the integer parameter \( \text{ord} \) can be given either as a positive \( \text{t\_INT} \ N \), or as its factorization matrix \( faN \), or as a pair \( [N,faN] \). The parameter may be omitted by setting it to \( \text{NULL} \) (the value is then \( p - 1 \)).

\[
\text{GEN Fp\textunderscore log(GEN a, GEN g, GEN ord, GEN p) Let g such that } g^{ord} \equiv 1 \pmod{p}. \text{ Return an integer } e \text{ such that } a^e \equiv g \pmod{p}. \text{ If } e \text{ does not exist, the result is undefined.}
\]

\[
\text{GEN Fp\textunderscore order(GEN a, GEN ord, GEN p) returns the order of the Fp a. Assume that ord is a multiple of the order of a.}
\]

\[
\text{GEN Fp\textunderscore factored\textunderscore order(GEN a, GEN ord, GEN p) returns } [o,F], \text{ where o is the multiplicative order of the Fp a in } F_p^*, \text{ and } F \text{ is the factorization of o. Assume that ord is a multiple of the order of a.}
\]

\[
\text{int Fp\textunderscore issquare(GEN x, GEN p) returns 1 if x is a square modulo p, and 0 otherwise.}
\]

\[
\text{int Fp\textunderscore ispower(GEN x, GEN n, GEN p) returns 1 if x is an n-th power modulo p, and 0 otherwise.}
\]

\[
\text{GEN Fp\textunderscore sqrt(GEN x, GEN p) returns a square root of x modulo p (the smallest non-negative residue), where x, p are t\_INTs, and p is assumed to be prime. Return NULL if x is not a quadratic residue modulo p.}
\]

\[
\text{GEN Fp\textunderscore 2gener(GEN p) return a generator of the 2-Sylow subgroup of } F_p^*. \text{ To use with Fp\textunderscore sqrt\_i.}
\]

\[
\text{GEN Fp\textunderscore sqrt\_i(GEN x, GEN s2, GEN p) as Fp\textunderscore sqrt where s2 is the element returned by Fp\textunderscore 2gener.}
\]

\[
\text{GEN Fp\textunderscore squrt(GEN a, GEN n, GEN p, GEN *zn) returns NULL if a is not an n-th power residue mod p. Otherwise, returns an n-th root of a; if zn is non-NULL set it to a primitive m-th root of 1, m = gcd(p - 1,n) allowing to compute all m solutions in F_p of the equation } x^n = a.
\]

\[
\text{GEN Zn\textunderscore sqrt(GEN x, GEN n) returns one of the square roots of x modulo n (possibly not prime), where x is a t\_INT and n is either a t\_INT or is given by its factorization matrix. Return NULL if no such square root exist.}
\]

\[
\text{long kross(long x, long y) returns the Kronecker symbol } (x|y), \text{ i.e. } -1, 0 \text{ or 1. If y is an odd prime, this is the Legendre symbol. (Contrary to krouu, kross also supports y = 0)}
\]

\[
\text{long krouu(ulong x, ulong y) returns the Kronecker symbol } (x|y), \text{ i.e. } -1, 0 \text{ or 1. Assumes y is non-zero. If y is an odd prime, this is the Legendre symbol.}
\]

\[
\text{long krois(GEN x, long y) returns the Kronecker symbol } (x|y) \text{ of t\_INT x and long y. As kross otherwise.}
\]

\[
\text{long kroui(GEN x, ulong y) returns the Kronecker symbol } (x|y) \text{ of t\_INT x and non-zero ulong y. As krouu otherwise.}
\]

\[
\text{long krois(long x, GEN y) returns the Kronecker symbol } (x|y) \text{ of long x and t\_INT y. As kross otherwise.}
\]

98
long kroui(ulong x, GEN y) returns the Kronecker symbol \((x\mid y)\) of long \(x\) and t_INT \(y\). As kross otherwise.

long kronecker(GEN x, GEN y) returns the Kronecker symbol \((x\mid y)\) of t_INT \(x\) and \(y\). As kross otherwise.

GEN pgener_Fp(GEN p) returns the smallest primitive root modulo \(p\), assuming \(p\) is prime.

GEN pgener_Zp(GEN p) returns the smallest primitive root modulo \(p^k\), \(k > 1\), assuming \(p\) is an odd prime.

long Zp_issquare(GEN x, GEN p) returns 1 if the t_INT \(x\) is a \(p\)-adic square, 0 otherwise.

long Zn_issquare(GEN x, GEN n) returns 1 if t_INT \(x\) is a square modulo \(n\) (possibly not prime), where \(n\) is either a t_INT or is given by its factorization matrix. Return 0 otherwise.

long Zn_ispower(GEN x, GEN n, GEN K, GEN *py) returns 1 if t_INT \(x\) is a \(K\)-th power modulo \(n\) (possibly not prime), where \(n\) is either a t_INT or is given by its factorization matrix. Return 0 otherwise. If \(py\) is not NULL, set it to \(y\) such that \(y^K = x\) modulo \(n\).

GEN pgener_Fp_local(GEN p, GEN L) returns the smallest integer \(x > 1\) which is a generator of the \(\ell\)-Sylow of \(\mathbb{F}_p^*\) for every \(\ell\) in \(L\). In other words, \(x^{(p-1)/\ell} \neq 1\) for all such \(\ell\). In particular, returns pgener_Fp(p) if \(L\) contains all primes dividing \(p-1\). It is not necessary, and in fact slightly inefficient, to include \(\ell = 2\), since 2 is treated separately in any case, i.e. the generator obtained is never a square.

GEN rootsof1_Fp(GEN n, GEN p) returns a primitive \(n\)-th root modulo the prime \(p\).

GEN rootsof1u_Fp(ulong n, GEN p) returns a primitive \(n\)-th root modulo the prime \(p\).

ulong rootsof1_Fl(ulong n, ulong p) returns a primitive \(n\)-th root modulo the prime \(p\).

6.2.21 Extending functions to vector inputs.

The following functions apply \(f\) to the given arguments, recursively if they are of vector / matrix type:

GEN map_proto_G(GEN (*f)(GEN), GEN x) For instance, if \(x\) is a t_VEC, return a t_VEC whose components are the \(f(x[i])\).

GEN map_proto_lG(long (*f)(GEN), GEN x) As above, applying the function stoi(\(f()\)).

GEN map_proto_GL(GEN (*f)(GEN, long), GEN x, long y)

GEN map_proto_lGL(long (*f)(GEN, long), GEN x, long y)

In the last function, \(f\) implements an associative binary operator, which we extend naturally to an \(n\)-ary operator \(f_n\) for any \(n\): by convention, \(f_0() = 1\), \(f_1(x) = x\), and

\[ f_n(x_1, \ldots, x_n) = f(f_{n-1}(x_1, \ldots, x_{n-1}), x_n), \]

for \(n \geq 2\).

GEN gassoc_proto(GEN (*f)(GEN, GEN), GEN x, GEN y) If \(y\) is not NULL, return \(f(x, y)\). Otherwise, \(x\) must be of vector type, and we return the result of \(f\) applied to its components, computed using a divide-and-conquer algorithm. More precisely, return

\[ f(f(x_1, \text{NULL}), f(x_2, \text{NULL})), \]

where \(x_1, x_2\) are the two halves of \(x\).
6.2.22 Miscellaneous arithmetic functions.

long bigomega_u(ulong n) returns the number of prime divisors of \( n > 0 \), counted with multiplicity.

ulong coreu(ulong n), unique squarefree integer \( d \) dividing \( n \) such that \( n/d \) is a square.
ulong coreu_fact(GEN fa) same, where \( fa \) is factoru(n).

ulong corediscs(ulong d, ulong *pt_f), \( d \) (possibly negative) being congruent to 0 or 1 modulo 4, return the fundamental discriminant \( D \) such that \( d = D \times f^2 \) and set *pt_f to \( f \) (if *pt_f not NULL).

ulong eulerphi_u(ulong n), Euler’s totient function of \( n \).
ulong eulerphi_u_fact(GEN fa) same, where \( fa \) is factoru(n).

ulong moebius_u(ulong n), Moebius \( \mu \)-function of \( n \).
ulong moebius_u_fact(GEN fa) same, where \( fa \) is factoru(n).

GEN divisorsu(ulong n), returns the divisors of \( n \) in a t_VECSMALL, sorted by increasing order.
GEN divisorsu_fact(GEN fa) same, where \( fa \) is factoru(n).

long numdivu(ulong n), returns the number of positive divisors of \( n > 0 \).
long numdivu_fact(GEN fa) same, where \( fa \) is factoru(n).

long omegau(ulong n) returns the number of prime divisors of \( n > 0 \).

long uissquarefree(ulong n) returns 1 if \( n \) is square-free, and 0 otherwise.
long uissquarefree_fact(GEN fa) same, where \( fa \) is factoru(n).

long uposisfundamental(ulong x) return 1 if \( x \) is a fundamental discriminant, and 0 otherwise.
long unegisfundamental(ulong x) return 1 if \( -x \) is a fundamental discriminant, and 0 otherwise.
long sisfundamental(long x) return 1 if \( x \) is a fundamental discriminant, and 0 otherwise.

int uis_357_power(ulong x, ulong *pt, ulong *mask) as is_357_power for ulong \( x \).
int uis_357_powermod(ulong x, ulong *mask) as uis_357_power, but only check for 3rd, 5th or 7th powers modulo 211 × 209 × 61 × 203 × 117 × 31 × 43 × 71.

long uisprimepower(ulong n, ulong *p) as isprimepower, for ulong \( n \).

int uislucaspsp(ulong n) returns 1 if the ulong \( n \) fails Lucas compositeness test (it thus may be prime or composite), and 0 otherwise (proving that \( n \) is composite).

ulong sumdigitsu(ulong n) returns the sum of decimal digits of \( u \).
GEN usumdiv_fact(GEN fa), sum of divisors of ulong \( n \), where \( fa \) is factoru(n).

GEN usumdivk_fact(GEN fa, ulong k), sum of \( k \)-th powers of divisors of ulong \( n \), where \( fa \) is factoru(n).

GEN hilbertii(GEN x, GEN y, GEN p), returns the Hilbert symbol \( (x,y) \) at the prime \( p \) (NULL for the place at infinity); \( x \) and \( y \) are t_INTs.
GEN sumdedekind(GEN h, GEN k) returns the Dedekind sum attached to the t_INT \( h \) and \( k, k > 0 \).
GEN sumdedekind_coprime(GEN h, GEN k) as sumdedekind, except that h and k are assumed to be coprime t_INTs.

GEN u_sumdedekind_coprime(long h, long k) Let k > 0, 0 ≤ h < k, (h, k) = 1. Returns [s₁, s₂] in a t_VECSMALL, such that s(h, k) = (s₂ + ks₁)/(12k). Requires max(h + k/2, k) < LONG_MAX to avoid overflow, in particular k ≤ (2/3)LONG_MAX is fine.
Chapter 7:
Level 2 kernel

These functions deal with modular arithmetic, linear algebra and polynomials where assumptions can be made about the types of the coefficients.

7.1 Naming scheme.

A function name is built in the following way: $A_1 \ldots A_n \text{fun}$ for an operation $\text{fun}$ with $n$ arguments of class $A_1, \ldots, A_n$. A class name is given by a base ring followed by a number of code letters. Base rings are among:

- $\mathbb{Z}/l\mathbb{Z}$ where $l < 2^{\text{BITS IN LONG}}$ is not necessarily prime. Implemented using $\text{ulong}$s
- $\mathbb{Z}/p\mathbb{Z}$ where $p$ is a $\text{t_INT}$, not necessarily prime. Implemented as $\text{t_INT}s$, preferably satisfying $0 \leq z < p$. More precisely, any $\text{t_INT}$ can be used as an $\mathbb{F}_p$, but reduced inputs are treated more efficiently. Outputs from $\mathbb{F}_p\text{xxx}$ routines are reduced.
- $\mathbb{F}_q[\mathbb{X}]/(p, T(\mathbb{X}))$, $p$ a $\text{t_INT}$, $T$ a $\text{t_POL}$ with $\mathbb{F}_p$ coefficients or NULL (in which case no reduction modulo $T$ is performed). Implemented as $\text{t_POL}s$ $z$ with $\mathbb{F}_p$ coefficients, $\deg(z) < \deg T$, although $z$ a $\text{t_INT}$ is allowed for elements in the prime field.
- $\mathbb{Z}$: the integers $\mathbb{Z}$, implemented as $\text{t_INT}s$.
- $\mathbb{Z}_p$: the $p$-adic integers $\mathbb{Z}_p$, implemented as $\text{t_INT}s$, for arbitrary $p$.
- $\mathbb{Z}_l$: the $p$-adic integers $\mathbb{Z}_p$, implemented as $\text{t_INT}s$, for $p < 2^{\text{BITS IN LONG}}$.
- $\mathbb{Z}$: the integers $\mathbb{Z}$, implemented using (signed) $\text{long}s$.
- $\mathbb{Q}$: the rational numbers $\mathbb{Q}$, implemented as $\text{t_INT}s$ and $\text{t_FRAC}s$.
- $\mathbb{Rg}$: a commutative ring, whose elements can be $\text{gadd}$-ed, $\text{gmul}$-ed, etc.

Possible letters are:

- $X$: polynomial in $X$ ($\text{t_POL}$ in a fixed variable), e.g. $\mathbb{F}_pX$ means $\mathbb{Z}/p\mathbb{Z}[X]$.
- $Y$: polynomial in $Y \neq X$. This is used to resolve ambiguities. E.g. $\mathbb{F}_pXY$ means $((\mathbb{Z}/p\mathbb{Z})[X])[Y]$.
- $V$: vector ($\text{t_VEC}$ or $\text{t_COL}$), treated as a line vector (independently of the actual type). E.g. $\mathbb{Z}V$ means $\mathbb{Z}^k$ for some $k$.
- $C$: vector ($\text{t_VEC}$ or $\text{t_COL}$), treated as a column vector (independently of the actual type). The difference with $V$ is purely semantic: if the result is a vector, it will be of type $\text{t_COL}$ unless mentioned otherwise. For instance the function $\mathbb{Z}C\text{add}$ receives two integral vectors ($\text{t_COL}$ or $\text{t_VEC}$, possibly different types) of the same length and returns a $\text{t_COL}$ whose entries are the sums of the input coefficients.
- $M$: matrix ($\text{t_MAT}$). E.g. $\mathbb{Q}M$ means a matrix with rational entries.
- $T$: Trees. Either a leaf or a $\text{t_VEC}$ of trees.
- $E$: point over an elliptic curve, represented as two-component vectors $[x, y]$, except for the represented by the one-component vector $[0]$. Not all curve models are supported.
Q: representative (t_POL) of a class in a polynomial quotient ring. E.g. an FpXQ belongs to \((\mathbb{Z}/p\mathbb{Z})[X]/(T(X))\), FpXQV means a vector of such elements, etc.

n: a polynomial representative (t_POL) for a truncated power series modulo \(X^n\). E.g. an FpXn belongs to \((\mathbb{Z}/p\mathbb{Z})[X]/(X^n)\), FpXnV means a vector of such elements, etc.

x, y, m, v, c, q: as their uppercase counterpart, but coefficient arrays are implemented using t_VECSMALLs, which coefficient understood as ulong.

x and y (and q) are implemented by a t_VECSMALL whose first coefficient is used as a code-word and the following are the coefficients, similarly to a t_POL. This is known as a 'POLSMALL'.

m are implemented by a t_MAT whose components (columns) are t_VECSMALLs. This is known as a 'MATSMALL'.

v and c are regular t_VECSMALLs. Difference between the two is purely semantic.

Omitting the letter means the argument is a scalar in the base ring. Standard functions fun are

add: add
sub: subtract
mul: multiply
sqr: square
div: divide (Euclidean quotient)
rem: Euclidean remainder

divrem: return Euclidean quotient, store remainder in a pointer argument. Three special values of that pointer argument modify the default behavior: NULL (do not store the remainder, used to implement div), ONLY_REM (return the remainder, used to implement rem), ONLY_DIVIDES (return the quotient if the division is exact, and NULL otherwise).

gcd: GCD
extgcd: return GCD, store Bezout coefficients in pointer arguments
pow: exponentiate
eval: evaluation / composition
7.2 Coefficient ring.

long Rg_type(GEN x, GEN *ptp, GEN *ptpol, long *ptprec) returns the “natural” base ring over which the object \( x \) is defined.

Raise an error if it detects consistency problems in modular objects: incompatible rings (e.g. \( \mathbb{F}_p \) and \( \mathbb{F}_q \) for primes \( p \neq q \), \( \mathbb{F}_p[X]/(T) \) and \( \mathbb{F}_p[X]/(U) \) for \( T \neq U \)). Minor discrepancies are supported if they make general sense (e.g. \( \mathbb{F}_p \) and \( \mathbb{F}_p^k \), but not \( \mathbb{F}_p \) and \( \mathbb{Q}_p \); \( \text{t_FFELT} \) and \( \text{t_POLMOD} \) of \( \text{t_INTMOD} \)s are considered inconsistent, even if they define the same field: if you need to use simultaneously these different finite field implementations, multiply the polynomial by a \( \text{t_FFELT} \) equal to 1 first.

- 0: none of the others (presumably multivariate, possibly inconsistent).
- \( \text{t_INT} \): defined over \( \mathbb{Z} \).
- \( \text{t_FRAC} \): defined over \( \mathbb{Q} \).
- \( \text{t_INTMOD} \): defined over \( \mathbb{Z}/p\mathbb{Z} \), where \( *ptp \) is set to \( p \). It is not checked whether \( p \) is prime.
- \( \text{t_COMPLEX} \): defined over \( \mathbb{C} \) (at least one \( \text{t_COMPLEX} \) with at least one inexact floating point \( \text{t_REAL} \) component). Set \( *ptprec \) to the minimal accuracy (as per \texttt{precision}) of inexact components.
- \( \text{t_REAL} \): defined over \( \mathbb{R} \) (at least one inexact floating point \( \text{t_REAL} \) component). Set \( *ptprec \) to the minimal accuracy (as per \texttt{precision}) of inexact components.
- \( \text{t_PADIC} \): defined over \( \mathbb{Q}_p \), where \( *ptp \) is set to \( p \) and \( *ptprec \) to the \( p \)-adic accuracy.
- \( \text{t_FFELT} \): defined over a finite field \( \mathbb{F}_{p^k} \), where \( *ptp \) is set to the field characteristic \( p \) and \( *ptpol \) is set to a \( \text{t_FFELT} \) belonging to the field.
- \( \text{t_POL} \): defined over a polynomial ring.
- Other values are composite corresponding to quotients \( R[X]/(T) \), with one primary type \( t1 \), describing the form of the quotient, and a secondary type \( t2 \), describing \( R \). If \( t \) is the \( \text{RgX_type} \), \( t1 \) and \( t2 \) are recovered using

```c
void RgX_type_decode(long t, long *t1, long *t2)
```

\( t1 \) is one of
- \( \text{t_POLMOD} \): at least one \( \text{t_POLMOD} \) component, set \( *ppol \) to the modulus,
- \( \text{t_QUAD} \): no \( \text{t_POLMOD} \), at least one \( \text{t_QUAD} \) component, set \( *ppol \) to the modulus \( (-.\text{pol}) \) of the \( \text{t_QUAD} \),
- \( \text{t_COMPLEX} \): no \( \text{t_POLMOD} \) or \( \text{t_QUAD} \), at least one \( \text{t_COMPLEX} \) component, set \( *ppol \) to \( y^2 + 1 \).

and the underlying base ring \( R \) is given by \( t2 \), which is one of \( \text{t_INT} \), \( \text{t_INTMOD} \) (set \( *ptp \)) or \( \text{t_PADIC} \) (set \( *ptp \) and \( *ptprec \)), with the same meaning as above.

```c
int RgX_type_is_composite(long t) t as returned by RgX_type, return 1 if t is a composite type, and 0 otherwise.
```

GEN Rg.get_0(GEN x) returns 0 in the base ring over which \( x \) is defined, to the proper accuracy (e.g. 0, \( \text{Mod}(0,3) \), \( O(5^{10}) \)).

GEN Rg.get_1(GEN x) returns 1 in the base ring over which \( x \) is defined, to the proper accuracy (e.g. 0, \( \text{Mod}(0,3) \),
long RgX_type(GEN x, GEN *ptp, GEN *ptpol, long *ptprec) returns the “natural” base ring over which the polynomial $x$ is defined, otherwise as Rg_type.

long RgX_Rg_type(GEN x, GEN y, GEN *ptp, GEN *ptpol, long *ptprec) returns the “natural” base ring over which the polynomial $x$ and the element $y$ are defined, otherwise as Rg_type.

long RgX_type2(GEN x, GEN y, GEN *ptp, GEN *ptpol, long *ptprec) returns the “natural” base ring over which the polynomials $x$ and $y$ are defined, otherwise as Rg_type.

long RgX_type3(GEN x, GEN y, GEN z, GEN *ptp, GEN *ptpol, long *ptprec) returns the “natural” base ring over which the polynomials $x$, $y$ and $z$ are defined, otherwise as Rg_type.

long RgM_type(GEN x, GEN *ptp, GEN *ptpol, long *ptprec) returns the “natural” base ring over which the matrix $x$ is defined, otherwise as Rg_type.

long RgM_type2(GEN x, GEN y, GEN *ptp, GEN *ptpol, long *ptprec) returns the “natural” base ring over which the matrices $x$ and $y$ are defined, otherwise as Rg_type.

long RgM_RgC_type(GEN x, GEN y, GEN *ptp, GEN *ptpol, long *ptprec) returns the “natural” base ring over which the matrix $x$ and the vector $y$ are defined, otherwise as Rg_type.

7.3 Modular arithmetic.

These routines implement univariate polynomial arithmetic and linear algebra over finite fields, in fact over finite rings of the form $(\mathbb{Z}/p\mathbb{Z})[X]/(T)$, where $p$ is not necessarily prime and $T \in (\mathbb{Z}/p\mathbb{Z})[X]$ is possibly reducible; and finite extensions thereof. All this can be emulated with t_INTMOD and t_POLMOD coefficients and using generic routines, at a considerable loss of efficiency. Also, specialized routines are available that have no obvious generic equivalent.

7.3.1 FpC / FpV, FpM. A $\mathbb{Z}V$ (resp. a $\mathbb{Z}M$) is a t_VEC or t_COL (resp. t_MAT) with t_INT coefficients. An FpV or FpM, with respect to a given t_INT $p$, is the same with Fp coordinates; operations are understood over $\mathbb{Z}/p\mathbb{Z}$.

7.3.1.1 Conversions.

int Rg_is_Fp(GEN z, GEN *p), checks if $z$ can be mapped to $\mathbb{Z}/p\mathbb{Z}$: a t_INT or a t_INTMOD whose modulus is equal to *p, (if *p not NULL), in that case return 1, else 0. If a modulus is found it is put in *p, else *p is left unchanged.

int RgV_is_FpV(GEN z, GEN *p), z a t_VEC (resp. t_COL), checks if it can be mapped to a FpV (resp. FpC), by checking Rg_is_Fp coefficientwise.

int RgM_is_FpM(GEN z, GEN *p), z a t_MAT, checks if it can be mapped to a FpM, by checking RgV_is_FpV columnwise.

GEN Rg_to_Fp(GEN z, GEN p), z a scalar which can be mapped to $\mathbb{Z}/p\mathbb{Z}$: a t_INT, a t_INTMOD whose modulus is divisible by $p$, a t_FRAC whose denominator is coprime to $p$, or a t_PADIC with underlying prime $\ell$ satisfying $p = \ell^n$ for some $n$ (less than the accuracy of the input). Returns lift(z * Mod(1,p)), normalized.

GEN padic_to_Fp(GEN x, GEN p) special case of Rg_to_Fp, for a $x$ a t_PADIC.

GEN RgV_to_FpV(GEN z, GEN p), z a t_VEC or t_COL, returns the FpV (as a t_VEC) obtained by applying Rg_to_Fp coefficientwise.
GEN RgC_to_FpC(GEN z, GEN p), z a t_VEC or t_COL, returns the FpC (as a t_COL) obtained by applying Rg_to_Fp coefficientwise.

GEN RgM_to_FpM(GEN z, GEN p), z a t_MAT, returns the FpM obtained by applying RgC_to_FpC columnwise.

GEN RgM_Fp_init(GEN z, GEN p, ulong *pp), given an RgM z, whose entries can be mapped to F_p (as per Rg_to_Fp), and a prime number p. This routine returns a normal form of z: either an F2m (p = 2), an Flm (p fits into an ulong) or an FpM. In the first two cases, pp is set to itou(p), and to 0 in the last.

The functions above are generally used as follow:

GEN add(GEN x, GEN y)
{
    GEN p = NULL;
    if (Rg_is_Fp(x, &p) && Rg_is_Fp(y, &p) && p)
    {
        x = Rg_to_Fp(x, p); y = Rg_to_Fp(y, p);
        z = Fp_add(x, y, p);
        return Fp_to_mod(z);
    }
    else return gadd(x, y);
}

GEN FpC_red(GEN z, GEN p), z a ZC. Returns lift(Col(z) * Mod(1,p)), hence a t_COL.

GEN FpV_red(GEN z, GEN p), z a ZV. Returns lift(Vec(z) * Mod(1,p)), hence a t_VEC.

GEN FpM_red(GEN z, GEN p), z a ZM. Returns lift(z * Mod(1,p)), which is an FpM.

7.3.1.2 Basic operations.

GEN random_FpC(long n, GEN p) returns a random FpC with n components.

GEN random_FpV(long n, GEN p) returns a random FpV with n components.

GEN FpC_center(GEN z, GEN p, GEN pov2) returns a t_COL whose entries are the Fp_center of the gel(z,i).

GEN FpM_center(GEN z, GEN p, GEN pov2) returns a matrix whose entries are the Fp_center of the gcoeff(z,i,j).

void FpC_center_inplace(GEN z, GEN p, GEN pov2) in-place version of FpC_center, using affii.

void FpM_center_inplace(GEN z, GEN p, GEN pov2) in-place version of FpM_center, using affii.

GEN FpC_add(GEN x, GEN y, GEN p) adds the ZC x and y and reduce modulo p to obtain an FpC.

GEN FpV_add(GEN x, GEN y, GEN p) same as FpC_add, returning and FpV.

GEN FpM_add(GEN x, GEN y, GEN p) adds the two ZMs x and y (assumed to have compatible dimensions), and reduce modulo p to obtain an FpM.

GEN FpC_sub(GEN x, GEN y, GEN p) subtracts the ZC y to the ZC x and reduce modulo p to obtain an FpC.
GEN FpV_sub(GEN x, GEN y, GEN p) same as FpC_sub, returning and FpV.

GEN FpM_sub(GEN x, GEN y, GEN p) subtracts the two ZMs x and y (assumed to have compatible dimensions), and reduce modulo p to obtain an FpM.

GEN FpC_Fp_mul(GEN x, GEN y, GEN p) multiplies the ZC x (seen as a column vector) by the t_INT y and reduce modulo p to obtain an FpC.

GEN FpM_Fp_mul(GEN x, GEN y, GEN p) multiplies the ZM x (seen as a column vector) by the t_INT y and reduce modulo p to obtain an FpM.

GEN FpC_FpV_mul(GEN x, GEN y, GEN p) multiplies the ZC x (seen as a column vector) by the ZV y (seen as a row vector, assumed to have compatible dimensions), and reduce modulo p to obtain an FpM.

GEN FpM_mul(GEN x, GEN y, GEN p) multiplies the two ZMs x and y (assumed to have compatible dimensions), and reduce modulo p to obtain an FpM.

GEN FpM_powu(GEN x, ulong n, GEN p) computes $x^n$ where x is a square FpM.

GEN FpM_FpC_mul(GEN x, GEN y, GEN p) multiplies the ZM x by the ZC y (seen as a column vector, assumed to have compatible dimensions), and reduce modulo p to obtain an FpC.

GEN FpM_FpC_mul_FpX(GEN x, GEN y, GEN p, long v) is a memory-clean version of

```
GEN tmp = FpM_FpC_mul(x,y,p);
return RgV_to_RgX(tmp, v);
```

GEN FpV_FpC_mul(GEN x, GEN y, GEN p) multiplies the ZV x (seen as a row vector) by the ZC y (seen as a column vector, assumed to have compatible dimensions), and reduce modulo p to obtain an Fp.

GEN FpV_dotproduct(GEN x, GEN y, GEN p) scalar product of x and y (assumed to have the same length).

GEN FpV_dotsquare(GEN x, GEN y, GEN p) scalar product of x with itself. has t_INT entries.

GEN FpV_factorback(GEN x, GEN L, GEN e, GEN p) given an FpV L and a ZV e of the same length, return $\prod_i L_i^{e_i} \text{ modulo } p$.

7.3.1.3 Fp-linear algebra. The implementations are not asymptotically efficient ($O(n^3)$ standard algorithms).

GEN FpM_deplin(GEN x, GEN p) returns a non-trivial kernel vector, or NULL if none exist.

GEN FpM_det(GEN x, GEN p) as det

GEN FpM_gauss(GEN a, GEN b, GEN p) as gauss, where a and b are FpM.

GEN FpM_FpC_gauss(GEN a, GEN b, GEN p) as gauss, where a is a FpM and b a FpC.

GEN FpM_image(GEN x, GEN p) as image

GEN FpM_intersect(GEN x, GEN y, GEN p) as intersect

GEN FpM_inv(GEN x, GEN p) returns a left inverse of x (the inverse if x is square), or NULL if x is not invertible.

GEN FpM_FpC_invimage(GEN A, GEN y, GEN p) given an FpM A and an FpC y, returns an x such that $Ax = y$, or NULL if no such vector exist.
GEN FpM_invimage(GEN A, GEN y, GEN p) given two FpM A and y, returns x such that Ax = y, or NULL if no such matrix exist.

GEN FpM_ker(GEN x, GEN p) as ker
long FpM_rank(GEN x, GEN p) as rank
GEN FpM_indexrank(GEN x, GEN p) as indexrank
GEN FpM_suppl(GEN x, GEN p) as suppl
GEN FpM_hess(GEN x, GEN p) upper Hessenberg form of x over F_p.
GEN FpM_charpoly(GEN x, GEN p) characteristic polynomial of x.

7.3.1.4 FqC, FqM and Fq-linear algebra.

An FqM (resp. FqC) is a matrix (resp a t_COL) with Fq coefficients (with respect to given T, p), not necessarily reduced (i.e arbitrary t_INTs and ZXs in the same variable as T).

GEN RgC_to_FqC(GEN z, GEN T, GEN p)
GEN RgM_to_FqM(GEN z, GEN T, GEN p)
GEN FqC_add(GEN a, GEN b, GEN T, GEN p)
GEN FqC_sub(GEN a, GEN b, GEN T, GEN p)
GEN FqC_Fq_mul(GEN a, GEN b, GEN T, GEN p)
GEN FqM_FqC_gauss(GEN a, GEN b, GEN T, GEN p) as gauss, where b is a FqC.
GEN FqM_FqC_invimage(GEN a, GEN b, GEN T, GEN p)
GEN FqM_FqC_mul(GEN a, GEN b, GEN T, GEN p)
GEN FqM_deplin(GEN x, GEN T, GEN p) returns a non-trivial kernel vector, or NULL if none exist.
GEN FqM_det(GEN x, GEN T, GEN p) as det
GEN FqM_gauss(GEN a, GEN b, GEN T, GEN p) as gauss, where b is a FqM.
GEN FqM_image(GEN x, GEN T, GEN p) as image
GEN FqM_indexrank(GEN x, GEN T, GEN p) as indexrank
GEN FqM_inv(GEN x, GEN T, GEN p) returns the inverse of x, or NULL if x is not invertible.
GEN FqM_invimage(GEN a, GEN b, GEN T, GEN p) as invimage
GEN FqM_ker(GEN x, GEN T, GEN p) as ker
GEN FqM_mul(GEN a, GEN b, GEN T, GEN p)
long FqM_rank(GEN x, GEN T, GEN p) as rank
GEN FqM_suppl(GEN x, GEN T, GEN p) as suppl
7.3.2 Flc / Flv, Flm. See FpV, FpM operations.

GEN Flv_copy(GEN x) returns a copy of x.

GEN Flv_center(GEN z, ulong p, ulong ps2)

GEN random_Flv(long n, ulong p) returns a random Flv with n components.

GEN Flm_copy(GEN x) returns a copy of x.

GEN matid_Flm(long n) returns an Flm which is an $n \times n$ identity matrix.

GEN scalar_Flm(long s, long n) returns an Flm which is $s$ times the $n \times n$ identity matrix.

GEN Flm_center(GEN z, ulong p, ulong ps2)

GEN Flm_Fl_add(GEN x, ulong y, ulong p) returns $x + y \cdot \text{Id}$ ($x$ must be square).

GEN Flm_Flc_mul(GEN x, GEN y, ulong p) multiplies x and y (assumed to have compatible dimensions).

GEN Flm_Flc_mul_pre(GEN x, GEN y, ulong p, ulong pi) multiplies x and y (assumed to have compatible dimensions), assuming $pi$ is the pseudo inverse of $p$.

GEN Flc_Flv_mul(GEN x, GEN y, ulong p) multiplies the column vector $x$ by the row vector $y$. The result is a matrix.

GEN Flm_Flc_mul_pre_Flx(GEN x, GEN y, ulong p, ulong pi, long sv) return Flv to Flx(Flm_Flc_mul_pre(x, y, p, pi), sv).

GEN Flm_Fl_mul(GEN x, ulong y, ulong p) multiplies the Flm $x$ by $y$.

GEN Flm_neg(GEN x, ulong p) negates the Flm $x$.

void Flm_Fl_mul_inplace(GEN x, ulong y, ulong p) replaces the Flm $x$ by $x \cdot y$.

GEN Flv_Fl_mul(GEN x, ulong y, ulong p) multiplies the Flv $x$ by $y$.

void Flv_Fl_mul_inplace(GEN x, ulong y, ulong p) replaces the Flc $x$ by $x \cdot y$.

void Flv_Fl_mul_part_inplace(GEN x, ulong y, ulong p, long l) multiplies $x[1..l]$ by $y$ modulo $p$. In place.

GEN Flv_Fl_div(GEN x, ulong y, ulong p) divides the Flv $x$ by $y$.

void Flv_Fl_div_inplace(GEN x, ulong y, ulong p) replaces the Flv $x$ by $x/y$.

void Flc_lincomb1_inplace(GEN X, GEN Y, ulong v, ulong q) sets $X \leftarrow X + vY$, where $X,Y$ are Flc. Memory efficient (e.g. no-op if $v = 0$), and gerepile-safe.

GEN Flv_add(GEN x, GEN y, ulong p) adds two Flv.

void Flv_add_inplace(GEN x, GEN y, ulong p) replaces $x$ by $x + y$.

GEN Flv_neg(GEN x, ulong p) returns $-x$.

void Flv_neg_inplace(GEN x, ulong p) replaces $x$ by $-x$.

GEN Flv_sub(GEN x, GEN y, ulong p) subtracts $y$ to $x$.

void Flv_sub_inplace(GEN x, GEN y, ulong p) replaces $x$ by $x - y$.

ulong Flv_dotproduct(GEN x, GEN y, ulong p) returns the scalar product of $x$ and $y$. 

110
ulong Flv_dotproduct_pre(GEN x, GEN y, ulong p, ulong pi) returns the scalar product of x and y assuming pi is the pseudo inverse of p.

ulong Flv_sum(GEN x, ulong p) returns the sum of the components of x.

ulong Flv_prod(GEN x, ulong p) returns the product of the components of x.

ulong Flv_prod_pre(GEN x, ulong p, ulong pi) as Flv_prod assuming pi is the pseudo inverse of p.

GEN Flv_inv(GEN x, ulong p) returns the vector of inverses of the elements of x (as a Flv). Use Montgomery trick.

void Flv_inv_inplace(GEN x, ulong p) in place variant of Flv_inv.

GEN Flv_inv_pre(GEN x, ulong p, ulong pi) as Flv_inv assuming pi is the pseudo inverse of p.

void Flv_inv_pre_inplace(GEN x, ulong p, ulong pi) in place variant of Flv_inv.

GEN Flc_FpV_mul(GEN x, GEN y, GEN p) multiplies x (seen as a column vector) by y (seen as a row vector, assumed to have compatible dimensions) to obtain an Flm.

GEN Flc_Flp_v(GEN x, GEN y, GEN p) as Flc_FpV_mul.

GEN Flc_Flnc_gauss(GEN a, GEN b, ulong p) as Flm_gauss, where b is a Flm.

GEN Flm_Flnc_gauss(GEN a, GEN b, ulong p) as Flm_gauss, where b is a Flc.

GEN Flm_indexrank(GEN x, ulong p)

GEN Flm_deplin(GEN x, ulong p)

ulong Flm_det(GEN x, ulong p)

ulong Flm_det_sp(GEN x, ulong p), as Flm_det, in place (destroys x).

GEN Flm_gauss(GEN a, GEN b, ulong p) as gauss, where b is a Flm.

GEN Flm_Flnc_gauss(GEN a, GEN b, ulong p) as gauss, where b is a Flc.

GEN Flm_indexrank(GEN x, ulong p)

GEN Flm_inv(GEN x, ulong p)

GEN Flm_adjoint(GEN x, ulong p) as matadjoint.
GEN Flm_Flc_invimage(GEN A, GEN y, ulong p) given an Flm A and an Flc y, returns an x such that $Ax = y$, or NULL if no such vector exist.

GEN Flm_invimage(GEN A, GEN y, ulong p) given two Flm A and y, returns x such that $Ax = y$, or NULL if no such matrix exist.

GEN Flm_ker(GEN x, ulong p)
GEN Flm_ker_sp(GEN x, ulong p, long deplin), as Flm ker (if deplin=0) or Flm_deplin (if deplin=1), in place (destroys x).

long Flm_rank(GEN x, ulong p)
long Flm_suppl(GEN x, ulong p)
GEN Flm_image(GEN x, ulong p)
GEN Flm_intersect(GEN x, GEN y, ulong p)
GEN Flm_transpose(GEN x)
GEN Flm_hess(GEN x, ulong p) upper Hessenberg form of x over $\mathbb{F}_p$.

7.3.3 $\mathbb{F}_2/c / \mathbb{F}_2v, \mathbb{F}_2m$. An $\mathbb{F}_2$ v is a t_VECSMALL representing a vector over $\mathbb{F}_2$. Specifically $\text{z}[0]$ is the usual codeword, $\text{z}[1]$ is the number of components of $v$ and the coefficients are given by the bits of remaining words by increasing indices.

ulong F2v_coeff(GEN x, long i) returns the coefficient $i \geq 1$ of x.
void F2v_clear(GEN x, long i) sets the coefficient $i \geq 1$ of x to 0.
void F2v_flip(GEN x, long i) adds 1 to the coefficient $i \geq 1$ of x.
void F2v_set(GEN x, long i) sets the coefficient $i \geq 1$ of x to 1.
void F2v_copy(GEN x) returns a copy of x.

GEN F2v_slice(GEN x, long a, long b) returns the F2v with entries $x[a], \ldots, x[b]$. Assumes $a \leq b$.
ulong F2m_coeff(GEN x, long i, long j) returns the coefficient $(i,j)$ of x.
void F2m_clear(GEN x, long i, long j) sets the coefficient $(i,j)$ of x to 0.
void F2m_flip(GEN x, long i, long j) adds 1 to the coefficient $(i,j)$ of x.
void F2m_set(GEN x, long i, long j) sets the coefficient $(i,j)$ of x to 1.
void F2m_copy(GEN x) returns a copy of x.

GEN F2m_rowslice(GEN x, long a, long b) returns the F2m built from the a-th to b-th rows of the F2m x. Assumes $a \leq b$.
GEN F2m_F2c_mul(GEN x, GEN y) multiplies x and y (assumed to have compatible dimensions).
GEN F2m_image(GEN x) gives a subset of the columns of x that generate the image of x.
GEN F2m_invimage(GEN A, GEN B)
GEN F2m_F2c_invimage(GEN A, GEN y) as gauss, where b is a F2m.
GEN F2m_F2c_gauss(GEN a, GEN b) as gauss, where b is a F2c.

GEN F2m_indexrank(GEN x) x being a matrix of rank r, returns a vector with two t_VECSMALL components y and z of length r giving a list of rows and columns respectively (starting from 1) such that the extracted matrix obtained from these two vectors using vecextract(x, y, z) is invertible.

GEN F2m_mul(GEN x, GEN y) multiplies x and y (assumed to have compatible dimensions).

GEN F2m_powu(GEN x, ulong n) computes $x^n$ where x is a square F2m.

long F2m_rank(GEN x) as rank.

long F2m_suppl(GEN x) as suppl.

GEN matid_F2m(long n) returns an F2m which is an $n \times n$ identity matrix.

GEN zero_F2v(long n) creates a F2v with n components set to 0.

GEN const_F2v(long n) creates a F2v with n components set to 1.

GEN F2v_ei(long n, long i) creates a F2v with n components set to 0, but for the $i$-th one, which is set to 1 ($i$-th vector in the canonical basis).

GEN zero_F2m(long m, long n) creates a F1m with $m \times n$ components set to 0. Note that the result allocates a single column, so modifying an entry in one column modifies it in all columns.

GEN F2v_to_Flv(GEN x)
GEN F2c_to_ZC(GEN x)
GEN ZV_to_F2v(GEN x)
GEN RgV_to_F2v(GEN x)
GEN F2m_to_Flm(GEN x)
GEN F2m_to_ZM(GEN x)
GEN Flv_to_F2v(GEN x)
GEN Flm_to_F2m(GEN x)
GEN ZM_to_F2m(GEN x)
GEN RgM_to_F2m(GEN x)
void F2v_add_inplace(GEN x, GEN y) replaces x by $x + y$. It is allowed for y to be shorter than x.

ulong F2m_det(GEN x)
ulong F2m_det_sp(GEN x), as F2m_det, in place (destroys x).
GEN F2m_deplin(GEN x)
ulong F2v_dotproduct(GEN x, GEN y) returns the scalar product of x and y
GEN F2m_inv(GEN x)
GEN F2m_ker(GEN x)
GEN F2m_ker_sp(GEN x, long deplin), as F2m_ker (if deplin=0) or F2m_deplin (if deplin=1), in place (destroys x).
7.3.4 FlxqV, FlxqC, FlxqM. See FqV, FqC, FqM operations.

GEN FlxqV_dotproduct(GEN x, GEN y, GEN T, ulong p) as FpV_dotproduct.
GEN FlxM_Flx_add_shallow(GEN x, GEN y, ulong p) as RgM_Rg_add_shallow.
GEN FlxqC_Flxq_mul(GEN x, GEN y, GEN T, ulong p)
GEN FlxqM_Flxq_mul(GEN x, GEN y, GEN T, ulong p)
GEN FlxqM_FlxqC_gauss(GEN a, GEN b, GEN T, ulong p)
GEN FlxqM_FlxqC_invimage(GEN a, GEN b, GEN T, ulong p)
GEN FlxqM_FlxqC_mul(GEN a, GEN b, GEN T, ulong p)
GEN FlxqM_deplin(GEN x, GEN T, ulong p)
GEN FlxqM_det(GEN x, GEN T, ulong p)
GEN FlxqM_gauss(GEN a, GEN b, GEN T, ulong p)
GEN FlxqM_image(GEN x, GEN T, ulong p)
GEN FlxqM_indexrank(GEN x, GEN T, ulong p)
GEN FlxqM_inv(GEN x, GEN T, ulong p)
GEN FlxqM_invimage(GEN a, GEN b, GEN T, ulong p)
GEN FlxqM_ker(GEN x, GEN T, ulong p)
GEN FlxqM_mul(GEN a, GEN b, GEN T, ulong p)
long FlxqM_rank(GEN x, GEN T, ulong p)
GEN FlxqM_suppl(GEN x, GEN T, ulong p)
GEN matid_FlxqM(long n, GEN T, ulong p)

7.3.5 FpX. Let \( p \) an understood \( \text{t\_INT} \), to be given in the function arguments; in practice \( p \) is not assumed to be prime, but be wary. Recall than an \( \text{Fp} \) object is a \( \text{t\_INT} \), preferably belonging to \([0, p - 1]\); an \( \text{FpX} \) is a \( \text{t\_POL} \) in a fixed variable whose coefficients are \( \text{Fp} \) objects. Unless mentioned otherwise, all outputs in this section are \( \text{FpXs} \). All operations are understood to take place in \((\mathbb{Z}/p\mathbb{Z})[X] \).

7.3.5.1 Conversions. In what follows \( p \) is always a \( \text{t\_INT} \), not necessarily prime.

int RgX_is_FpX(GEN z, GEN *p), z a \( \text{t\_POL} \), checks if it can be mapped to a \( \text{FpX} \), by checking \( \text{Rg\_is\_Fp} \) coefficientwise.

GEN RgX_to_FpX(GEN z, GEN p), z a \( \text{t\_POL} \), returns the \( \text{FpX} \) obtained by applying \( \text{Rg\_to\_Fp} \) coefficientwise.

GEN FpX_red(GEN z, GEN p), z a \( \text{ZX} \), returns \( \text{lift}(z \mod 1,p) \), normalized.

GEN FpXV_red(GEN z, GEN p), z a \( \text{t\_VEC} \) of \( \text{ZX} \). Applies \( \text{FpX\_red} \) componentwise and returns the result (and we obtain a vector of \( \text{FpXs} \)).

GEN FpXT_red(GEN z, GEN p), z a tree of \( \text{ZX} \). Applies \( \text{FpX\_red} \) to each leaf and returns the result (and we obtain a tree of \( \text{FpXs} \)).
7.3.5.2 Basic operations. In what follows \( p \) is always a \texttt{t\_INT}, not necessarily prime.

Now, except for \( p \), the operands and outputs are all \texttt{FpX} objects. Results are undefined on other inputs.

\[
\text{GEN FpX\_add(GEN x, GEN y, GEN p)} \text{ adds } x \text{ and } y.
\]

\[
\text{GEN FpX\_neg(GEN x, GEN p)} \text{ returns } -x, \text{ the components are between 0 and } p \text{ if this is the case for the components of } x.
\]

\[
\text{GEN FpX\_renormalize(GEN x, long l)} \text{, as normalizepol, where } l = \log_2(x), \text{ in place.}
\]

\[
\text{GEN FpX\_halve(GEN x, GEN p)} \text{ returns } z \text{ such that } 2^z = x \text{ modulo } p \text{ assuming such } z \text{ exists.}
\]

\[
\text{GEN FpX\_mul(GEN x, GEN y, GEN p)} \text{ returns } xy.
\]

\[
\text{GEN FpX\_sqr(GEN x, GEN p)} \text{ returns } x^2.
\]

\[
\text{GEN FpX\_powu(GEN x, ulong n, GEN p)} \text{ returns } x^n.
\]

\[
\text{GEN FpX\_convol(GEN x, GEN y, GEN p)} \text{ return the-term by-term product of } x \text{ and } y.
\]

\[
\text{GEN FpX\_divrem(GEN x, GEN y, GEN p, GEN *pr)} \text{ returns the quotient of } x \text{ by } y, \text{ and sets } \text{pr} \text{ to the remainder.}
\]

\[
\text{GEN FpX\_div(GEN x, GEN y, GEN p)} \text{ returns the quotient of } x \text{ by } y.
\]

\[
\text{GEN FpX\_div\_by\_X\_x(GEN A, GEN a, GEN p, GEN *r)} \text{ returns the quotient of the } \text{FpX A} \text{ by } (X - a), \text{ and sets } \text{r} \text{ to the remainder } A(a).
\]

\[
\text{GEN FpX\_rem(GEN x, GEN y, GEN p)} \text{ returns the remainder } x \text{ mod } y.
\]

\[
\text{long FpX\_valrem(GEN x, GEN t, GEN p, GEN *r)} \text{ The arguments } x \text{ and } t \text{ being non-zero } \text{FpX} \text{ returns the highest exponent } e \text{ such that } t^e \text{ divides } x. \text{ The quotient } x/t^e \text{ is returned in } \text{*r}. \text{ In particular, if } t \text{ is irreducible, this returns the valuation at } t \text{ of } x, \text{ and } \text{*r} \text{ is the prime-to-} t \text{ part of } x.
\]

\[
\text{GEN FpX\_deriv(GEN x, GEN p)} \text{ returns the derivative of } x. \text{ This function is not memory-clean, but nevertheless suitable for gerepileupto.}
\]

\[
\text{GEN FpX\_integ(GEN x, GEN p)} \text{ returns the primitive of } x \text{ whose constant term is 0.}
\]

\[
\text{GEN FpX\_digits(GEN x, GEN B, GEN p)} \text{ returns a vector of } \text{FpX} \{c_0,\ldots,c_n\} \text{ of degree less than the degree of } B \text{ and such that } x = \sum_{i=0}^{n} c_i B^i.
\]

\[
\text{GEN FpX\_translate(GEN P, GEN c, GEN p)} \text{ let } c \text{ be an } \text{Fp} \text{ and let } P \text{ be an } \text{FpX}; \text{ returns the translated } \text{FpX} \text{ of } P(X + c).
\]

\[
\text{GEN FpX\_gcd(GEN x, GEN y, GEN p)} \text{ returns a (not necessarily monic) greatest common divisor of } x \text{ and } y.
\]

\[
\text{GEN FpX\_halfgcd(GEN x, GEN y, GEN p)} \text{ returns a two-by-two } \text{FpXM} M \text{ with determinant } \pm 1 \text{ such that the image } (a, b) \text{ of } (x, y) \text{ by } M \text{ has the property that } \deg a \geq \frac{\deg x}{2} > \deg b.
\]

115
GEN FpX_extgcd(GEN x, GEN y, GEN p, GEN *u, GEN *v) returns \(d = \text{GCD}(x, y)\) (not necessarily monic), and sets \(*u, *v\) to the Bezout coefficients such that \(*u x + *v y = d\). If \(*u\) is set to NULL, it is not computed which is a bit faster. This is useful when computing the inverse of \(y\) modulo \(x\).

GEN FpX_center(GEN z, GEN p, GEN pov2) returns the polynomial whose coefficient belong to the symmetric residue system. Assumes the coefficients already belong to \([-p/2, p]\) and that \(pov2\) is \(\text{shifti}(p, -1)\).

GEN FpX_center_i(GEN z, GEN p, GEN pov2) internal variant of FpX_center, not gerepile-safe.

GEN FpX_Frobenius(GEN T, GEN p) returns \(X^p \pmod{T(X)}\).

GEN FpX_matFrobenius(GEN T, GEN p) returns the matrix of the Frobenius automorphism \(x \mapsto x^p\) over the power basis of \(\mathbb{F}_p[X]/(T)\).

7.3.5.3 Mixed operations. The following functions implement arithmetic operations between FpX and Fp operands, the result being of type FpX. The integer \(p\) need not be prime.

GEN Z_to_FpX(GEN x, GEN p, long v) converts a t_INT to a scalar polynomial in variable \(v\), reduced modulo \(p\).

GEN FpX_Fp_add(GEN y, GEN x, GEN p) adds the Fp x to the FpX y.

GEN FpX_Fp_add_shallow(GEN y, GEN x, GEN p) adds the Fp x to the FpX y, using a shallow copy (result not suitable for gerepileupto)

GEN FpX_Fp_sub(GEN y, GEN x, GEN p) subtracts the Fp x from the FpX y.

GEN FpX_Fp_sub_shallow(GEN y, GEN x, GEN p) subtracts the Fp x from the FpX y, using a shallow copy (result not suitable for gerepileupto)

GEN Fp_FpX_sub(GEN x, GEN y, GEN p) returns \(x - y\), where \(x\) is a t_INT and \(y\) an FpX.

GEN FpX_Fp_mul(GEN x, GEN y, GEN p) multiplies the FpX x by the Fp y.

GEN FpX_Fp_mulspec(GEN x, GEN y, GEN p, long lx) see ZX_mulspec

GEN FpX_mulu(GEN x, ulong y, GEN p) multiplies the FpX x by \(y\).

GEN FpX_Fp_mul_to_monic(GEN y, GEN x, GEN p) returns \(yx\) assuming the result is monic of the same degree as \(y\) (in particular \(x \neq 0\)).

7.3.5.4 Miscellaneous operations.

GEN FpX_normalize(GEN z, GEN p) divides the FpX z by its leading coefficient. If the latter is 1, z itself is returned, not a copy. If not, the inverse remains uncollected on the stack.

GEN FpX_invBarrett(GEN T, GEN p) returns the Barrett inverse \(M\) of \(T\) defined by \(M(x)x^n \times T(1/x) \equiv 1 \pmod{x^{n-1}}\) where \(n\) is the degree of \(T\).

GEN FpX_rescale(GEN P, GEN h, GEN p) returns \(h^{\text{deg}(P)}P(x/h)\). \(P\) is an FpX and \(h\) is a non-zero Fp (the routine would work with any non-zero t_INT but is not efficient in this case).

GEN FpX_eval(GEN x, GEN y, GEN p) evaluates the FpX \(x\) at the Fp \(y\). The result is an Fp.

GEN FpX_FpV_multieval(GEN P, GEN v, GEN p) returns the vector \([P(v[1]), \ldots, P(v[n]])\] as a FpV.

GEN FpX_dotproduct(GEN x, GEN y, GEN p) return the scalar product \(\sum_{i \geq 0} x_iy_i\) of the coefficients of \(x\) and \(y\).
GEN FpXV_FpC_mul(GEN V, GEN W, GEN p) multiplies a non-empty line vector of $\mathbb{F}_p^X$ by a column vector of $\mathbb{F}_p$ of compatible dimensions. The result is an $\mathbb{F}_p^X$.

GEN FpXV_prod(GEN V, GEN p), $V$ being a vector of $\mathbb{F}_p^X$, returns their product.

GEN FpV_roots_to_pol(GEN V, GEN p, long v), $V$ being a vector of INTs, returns the monic $\mathbb{F}_p^X \prod_i (\text{pol}_x[v] - V[i])$.

GEN FpX_chinese_coprime(GEN x, GEN y, GEN Tx, GEN Ty, GEN Tz, GEN p): returns an $\mathbb{F}_p^X$, congruent to $x$ mod $T_x$ and to $y$ mod $T_y$. Assumes $T_x$ and $T_y$ are coprime, and $T_z = T_x \ast T_y$ or NULL (in which case it is computed within).

GEN FpV_polint(GEN x, GEN y, GEN p, long v) returns the interpolation polynomial with value $y[i]$ at $x[i]$. Assumes lengths are the same, components are t_INTs, and the $x[i]$ are distinct modulo $p$.

GEN FpV_FpM_polint(GEN x, GEN V, GEN p, long v) equivalent (but faster) to applying FpV_polint($x, ...$) to all the elements of the vector $V$ (thus, returns a $\mathbb{F}_p^X$).

GEN FpV_invVandermonde(GEN L, GEN d, GEN p) $L$ being a $\mathbb{F}_p^V$ of length $n$, return the inverse $M$ of the Vandermonde matrix attached to the elements of $L$, eventually multiplied by $d$ if it is not NULL. If $A$ is a $\mathbb{F}_p^V$ and $B = MA$, then the polynomial $P = \sum_{i=1}^{n} B[i]X^{i-1}$ verifies $P(L[i]) = dA[i]$ for $1 \leq i \leq n$.

int FpX_is_squarefree(GEN f, GEN p) returns 1 if the $\mathbb{F}_p^X f$ is squarefree, 0 otherwise.

int FpX_is_irred(GEN f, GEN p) returns 1 if the $\mathbb{F}_p^X f$ is irreducible, 0 otherwise. Assumes that p is prime. If f has few factors, FpX_nbfact($f, p$) == 1 is much faster.

int FpX_is_totally_split(GEN f, GEN p) returns 1 if the $\mathbb{F}_p^X f$ splits into a product of distinct linear factors, 0 otherwise. Assumes that p is prime.

long FpX_ispower(GEN f, ulong k, GEN p, GEN *pt) return 1 if the $\mathbb{F}_p^X f$ is a $k$-th power, 0 otherwise. If pt is not NULL, set it to $g$ such that $g^k = f$.

GEN FpX_factor(GEN f, GEN p), factors the $\mathbb{F}_p^X f$. Assumes that p is prime. The returned value $v$ is a t_VEC with two components: $v[1]$ is a vector of distinct irreducible (FpX) factors, and $v[2]$ is a t_VECSMALL of corresponding exponents. The order of the factors is deterministic (the computation is not).

GEN FpX_factor_squarefree(GEN f, GEN p) returns the squarefree factorization of $f$ modulo $p$. This is a vector $[u_1, ... , u_k]$ of pairwise coprime FpX such that $u_k \neq 1$ and $f = \prod u_i$. Shallow function.

GEN FpX_ddf(GEN f, GEN p) assuming that $f$ is squarefree, returns the distinct degree factorization of $f$ modulo $p$. The returned value $v$ is a t_VEC with two components: $F=v[1]$ is a vector of (FpX) factors, and $E=v[2]$ is a t_VECSMALL of corresponding exponents. The order of the factors is deterministic (the computation is not).

GEN FpX_ddf_degree(GEN f, GEN XP, GEN p) assuming that $f$ is squarefree and that all its factors have the same degree, return the common degree, where XP is FpX_Frobenius($f$, $p$).

long FpX_nbfact(GEN f, GEN p), assuming the $\mathbb{F}_p^X f$ is squarefree, returns the number of its irreducible factors. Assumes that p is prime.

long FpX_nbfact_Frobenius(GEN f, GEN XP, GEN p), as FpX_nbfact($f, p$) but faster, where XP is FpX_Frobenius($f, p$).
GEN FpX_degfact(GEN f, GEN p), as FpX_factor, but the degrees of the irreducible factors are returned instead of the factors themselves (as a t_VECSMALL). Assumes that p is prime.

long FpX_nbroots(GEN f, GEN p) returns the number of distinct roots in \(Z/pZ\) of the FpX f. Assumes that p is prime.

GEN FpX_oneroot(GEN f, GEN p) returns one root in \(Z/pZ\) of the FpX f. Return NULL if no root exists. Assumes that p is prime.

GEN FpX_oneroot_split(GEN f, GEN p) as FpX_oneroot. Faster when f is close to be totally split.

GEN FpX_roots(GEN f, GEN p) returns the roots in \(Z/pZ\) of the FpX f (without multiplicity, as a vector of Fps). Assumes that p is prime.

GEN FpX_split_part(GEN f, GEN p) returns the largest totally split squarefree factor of f.

GEN random_FpX(long d, long v, GEN p) returns a random FpX in variable v, of degree less than d.

GEN FpX_resultant(GEN x, GEN y, GEN p) returns the resultant of x and y, both FpX. The result is a t_INT belonging to \([0,p-1]\).

GEN FpX_disc(GEN x, GEN p) returns the discriminant of the FpX x. The result is a t_INT belonging to \([0,p-1]\).

GEN FpX_FpXY_resultant(GEN a, GEN b, GEN p), a a t_POL of t_INTs (say in variable X), b a t_POL (say in variable X) whose coefficients are either t_POLs in \(Z[Y]\) or t_INTs. Returns ResX(a,b) in \(F_p[Y]\) as an FpY. The function assumes that X has lower priority than Y.

GEN FpX_Newton(GEN x, long n, GEN p) return \(\sum_{i=0}^{n-1} \pi_i X^i\) where \(\pi_i\) is the sum of the \(i\)th-power of the roots of x in an algebraic closure.

GEN FpX_fromNewton(GEN x, GEN p) recover a polynomial from its Newton sums given by the coefficients of x. This function assumes that p and the accuracy of x as a FpXn is larger than the degree of the solution.

GEN FpX_Laplace(GEN x, GEN p) return \(\sum_i i! x_i X^i\).

GEN FpX_invLaplace(GEN x, GEN p) return \(\sum_i i! x_i / i! X^i\).

7.3.6 FpXQ, Fq. Let p a t_INT and T an FpX for p, both to be given in the function arguments; an FpXQ object is an FpX whose degree is strictly less than the degree of T. An Fq is either an FpXQ or an Fp. Both represent a class in \((Z/pZ)[X]/(T)\), in which all operations below take place. In addition, Fq routines also allow T = NULL, in which case no reduction mod T is performed on the result.

For efficiency, the routines in this section may leave small unused objects behind on the stack (their output is still suitable for gerepileupto). Besides T and p, arguments are either FpXQ or Fq depending on the function name. (All Fq routines accept FpXQs by definition, not the other way round.)
7.3.6.1 Preconditioned reduction.

For faster reduction, the modulus $T$ can be replaced by an extended modulus in all $\text{FpXQ}$- and $\text{Fq}$-classes functions, and in $\text{FpX}\_\text{rem}$ and $\text{FpX}\_\text{divrem}$. An extended modulus($\text{FpXT}$, which is a tree whose leaves are $\text{FpX}$)In current implementation, an extended modulus is either a plain modulus (an $\text{FpX}$) or a pair of polynomials, one being the plain modulus $T$ and the other being $\text{FpX}\_\text{invBarret}(T, p)$.

GEN $\text{FpX}\_\text{get_red}(\text{GEN } T, \text{ GEN } p)$ returns the extended modulus $eT$.

To write code that works both with plain and extended moduli, the following accessors are defined:

GEN $\text{get_FpX}\_\text{mod}(\text{GEN } eT)$ returns the underlying modulus $T$.

GEN $\text{get_FpX}\_\text{var}(\text{GEN } eT)$ returns the variable number $\text{varn}(T)$.

GEN $\text{get_FpX}\_\text{degree}(\text{GEN } eT)$ returns the degree $\text{degpol}(T)$.

7.3.6.2 Conversions.

GEN $\text{Rg\_is_FpXQ}(\text{GEN } z, \text{ GEN } *T, \text{ GEN } *p)$, checks if $z$ is a GEN which can be mapped to $\mathbb{F}_p[\mathbb{X}] / (T)$: anything for which $\text{Rg\_is_Fp}$ return 1, a $\text{t\_POL}$ for which $\text{RgX\_to_FpX}$ return 1, a $\text{t\_POLMOD}$ whose modulus is equal to $*T$ if $*T$ is not NULL (once mapped to a $\text{FpX}$), or a $\text{t\_FFELT}$ $z$ with the same definition field as $*T$ if $*T$ is not NULL and is a $\text{t\_FFELT}$.

If an integer modulus is found it is put in $*p$, else $*p$ is left unchanged. If a polynomial modulus is found it is put in $*T$, if a $\text{t\_FFELT}$ $z$ is found, $z$ is put in $*T$, else $*T$ is left unchanged.

int $\text{RgX\_is_FpXQX}(\text{GEN } z, \text{ GEN } *T, \text{ GEN } *p)$, $z$ a $\text{t\_POL}$, checks if it can be mapped to a $\text{FpXQ}$, by checking $\text{Rg\_is_FpXQ}$ coefficientwise.

GEN $\text{Rg\_to_FpXQ}(\text{GEN } z, \text{ GEN } T, \text{ GEN } p)$, $z$ a GEN which can be mapped to $\mathbb{F}_p[\mathbb{X}] / (T)$: anything $\text{Rg\_to_Fp}$ can be applied to, a $\text{t\_POL}$ to which $\text{RgX\_to_FpX}$ can be applied to, a $\text{t\_POLMOD}$ whose modulus is divisible by $T$ (once mapped to a $\text{FpX}$), a suitable $\text{t\_RFrac}$. Returns $z$ as an $\text{FpXQ}$, normalized.

GEN $\text{Rg\_to_Fq}(\text{GEN } z, \text{ GEN } T, \text{ GEN } p)$, applies $\text{Rg\_to_Fp}$ if $T$ is NULL and $\text{Rg\_to_FpXQ}$ otherwise.

GEN $\text{RgX\_to_FpXQX}(\text{GEN } z, \text{ GEN } T, \text{ GEN } p)$, $z$ a $\text{t\_POL}$, returns the $\text{FpXQ}$ obtained by applying $\text{Rg\_to_FpXQ}$ coefficientwise.

GEN $\text{RgX\_to_FqX}(\text{GEN } z, \text{ GEN } T, \text{ GEN } p)$: let $z$ be a $\text{t\_POL}$; returns the $\text{FqX}$ obtained by applying $\text{Rg\_to_Fq}$ coefficientwise.

GEN $\text{Fq\_to_FpXQ}(\text{GEN } z, \text{ GEN } T, \text{ GEN } p / */\text{unused}*/)$ if $z$ is a $\text{t\_INT}$, convert it to a constant polynomial in the variable of $T$, otherwise return $z$ (shallow function).

GEN $\text{Fq\_red}(\text{GEN } x, \text{ GEN } T, \text{ GEN } p)$, $x$ a $\text{ZX}$ or $\text{t\_INT}$, reduce it to an $\text{Fq}$ ($T = \text{NULL}$ is allowed iff $x$ is a $\text{t\_INT}$).

GEN $\text{FqX\_red}(\text{GEN } x, \text{ GEN } T, \text{ GEN } p)$, $x$ a $\text{t\_POL}$ whose coefficients are $\text{ZXs}$ or $\text{t\_INTs}$, reduce them to $\text{Fqs}$. (If $T = \text{NULL}$, as $\text{FpX}\_\text{red}(x, p)$.)

GEN $\text{FqV\_red}(\text{GEN } x, \text{ GEN } T, \text{ GEN } p)$, $x$ a vector of $\text{ZXs}$ or $\text{t\_INTs}$, reduce them to $\text{Fqs}$. (If $T = \text{NULL}$, only reduce components mod $p$ to $\text{FpXs}$ or $\text{Fps}$.)

GEN $\text{FpXQ\_red}(\text{GEN } x, \text{ GEN } T, \text{ GEN } p)$ $x$ a $\text{t\_POL}$ whose coefficients are $\text{t\_INTs}$, reduce them to $\text{FpXQs}$.
7.3.7 FpXQ.

GEN FpXQ_add(GEN x, GEN y, GEN T, GEN p)
GEN FpXQ_sub(GEN x, GEN y, GEN T, GEN p)
GEN FpXQ_mul(GEN x, GEN y, GEN T, GEN p)
GEN FpXQ_sqr(GEN x, GEN T, GEN p)
GEN FpXQ_div(GEN x, GEN y, GEN T, GEN p)
GEN FpXQ_inv(GEN x, GEN T, GEN p)
computes the inverse of x
GEN FpXQ_invsafe(GEN x, GEN T, GEN p), as FpXQ_inv, returning NULL if x is not invertible.
GEN FpXQ_pow(GEN x, GEN n, GEN T, GEN p) computes x^n.
GEN FpXQ_powu(GEN x, ulong n, GEN T, GEN p) computes x^n for small n.

In the following three functions the integer parameter ord can be given either as a positive t_INT N, or as its factorization matrix faN, or as a pair [N,faN]. The parameter may be omitted by setting it to NULL (the value is then \( p^d - 1, d = \text{deg} T \)).

GEN FpXQ_log(GEN a, GEN g, GEN ord, GEN T, GEN p) Let g be of order ord in the finite field \( \mathbb{F}_p[X]/(T) \), return e such that \( a^e = g \). If e does not exists, the result is undefined. Assumes that T is irreducible mod p.

GEN Fp_PFXQ_log(GEN a, GEN g, GEN ord, GEN T, GEN p) As FpXQ_log, a being a Fp.

GEN FpXQ_order(GEN a, GEN ord, GEN T, GEN p) returns the order of the FpXQ a. Assume that ord is a multiple of the order of a. Assume that T is irreducible mod p.

int FpXQ_issquare(GEN x, GEN T, GEN p) returns 1 if x is a square and 0 otherwise. Assumes that T is irreducible mod p.

GEN FpXQ_sqrt(GEN x, GEN T, GEN p) returns a square root of x. Return NULL if x is not a square.

GEN FpXQ_sqrtn(GEN x, GEN n, GEN T, GEN p, GEN *zn) Let T be irreducible mod p and \( q = p^{\text{deg} T} \); returns NULL if a is not an n-th power residue mod p. Otherwise, returns an n-th root of a; if zn is non-NULL set it to a primitive m-th root of 1 in \( \mathbb{F}_q \), \( m = \gcd(q - 1, n) \) allowing to compute all m solutions in \( \mathbb{F}_q \) of the equation \( x^m = a \).

7.3.8 Fq.

GEN Fq_add(GEN x, GEN y, GEN T/*unused*/, GEN p)
GEN Fq_sub(GEN x, GEN y, GEN T/*unused*/, GEN p)
GEN Fq_mul(GEN x, GEN y, GEN T, GEN p)
GEN Fq_Fp_mul(GEN x, GEN y, GEN T, GEN p) multiplies the Fq x by the t_INT y.
GEN Fq_mulu(GEN x, ulong y, GEN T, GEN p) multiplies the Fq x by the scalar y.
GEN Fq_halve(GEN x, GEN T, GEN p) returns z such that 2z = x assuming such z exists.
GEN Fq_sqr(GEN x, GEN T, GEN p)
GEN Fq_neg(GEN x, GEN T, GEN p)

120
GEN Fq_neg_inv(GEN x, GEN T, GEN p) computes $-x^{-1}$.
GEN Fq_inv(GEN x, GEN pol, GEN p) computes $x^{-1}$, raising an error if $x$ is not invertible.
GEN Fq_invsafe(GEN x, GEN pol, GEN p) as Fq_inv, but returns NULL if $x$ is not invertible.
GEN Fq_div(GEN x, GEN y, GEN T, GEN p)
GEN FqV_inv(GEN x, GEN T, GEN p) $x$ being a vector of $Fq$ s, return the vector of inverses of the $x[i]$. The routine uses Montgomery’s trick, and involves a single inversion, plus $3(N-1)$ multiplications for $N$ entries. The routine is not stack-clean: $2N FpXQ$ are left on stack, besides the $N$ in the result.
GEN Fq_pow(GEN x, GEN n, GEN pol, GEN p) returns $x^n$.
GEN Fq_powu(GEN x, ulong n, GEN pol, GEN p) returns $x^n$ for small $n$.
GEN Fq_log(GEN a, GEN g, GEN ord, GEN T, GEN p) as Fp_log or FpXQ_log.
int Fq_issquare(GEN x, GEN T, GEN p) returns 1 if $x$ is a square and 0 otherwise. Assumes that T is irreducible mod p and that $p$ is prime; $T = NULL$ is forbidden unless $x$ is an Fp.
long Fq_ispower(GEN x, GEN n, GEN T, GEN p) returns 1 if $x$ is a $n$-th power and 0 otherwise. Assumes that T is irreducible mod p and that $p$ is prime; $T = NULL$ is forbidden unless $x$ is an Fp.
GEN Fq_sqrt(GEN x, GEN T, GEN p) returns a square root of $x$. Return NULL if $x$ is not a square.
GEN Fq_sqrtn(GEN a, GEN n, GEN T, GEN p, GEN *zn) as FpXQ_sqrtn.
GEN FpXQ_charpoly(GEN x, GEN T, GEN p) returns the characteristic polynomial of $x$.
GEN FpXQ_minpoly(GEN x, GEN T, GEN p) returns the minimal polynomial of $x$.
GEN FpXQ_norm(GEN x, GEN T, GEN p) returns the norm of $x$.
GEN FpXQ_trace(GEN x, GEN T, GEN p) returns the trace of $x$.
GEN FpXQ_conjvec(GEN x, GEN T, GEN p) returns the vector of conjugates $[x, x^p, x^{p^2}, \ldots, x^{p^{n-1}}]$ where $n$ is the degree of $T$.
GEN gener_FpXQ(GEN T, GEN p, GEN *po) returns a primitive root modulo $(T,p)$. $T$ is an FpX assumed to be irreducible modulo the prime $p$. If po is not NULL it is set to $[o,fa]$, where $o$ is the order of the multiplicative group of the finite field, and $fa$ is its factorization.
GEN gener_FpXQ_local(GEN T, GEN p, GEN L), L being a vector of primes dividing $p^{\deg T} - 1$, returns an element of $G := F_p[x]/(T)$ which is a generator of the $\ell$-Sylow of $G$ for every $\ell$ in L. It is not necessary, and in fact slightly inefficient, to include $\ell = 2$, since 2 is treated separately in any case, i.e. the generator obtained is never a square if $p$ is odd.
GEN gener_Fq_local(GEN T, GEN p, GEN L) as pgener_Fp_local(p, L) if $T$ is NULL, or gener_FpXQ_local (otherwise).
GEN FpXQ_powers(GEN x, long n, GEN T, GEN p) returns $[x^0, \ldots, x^n]$ as t_VEC of FpXQs.
GEN FpXQ_matrix_pow(GEN x, long m, long n, GEN T, GEN p), as FpXQ_powers($x, n-1, T, p$), but returns the powers as a an $m \times n$ matrix. Usually, we have $m = n = \deg T$.
GEN FpXQ_autpow(GEN a, ulong n, GEN T, GEN p) computes $\sigma^n(X)$ assuming $a = \sigma(X)$ where $\sigma$ is an automorphism of the algebra $F_p[X]/T(X)$. 

121
GEN FpXQAutsum(GEN a, ulong n, GEN T, GEN p) \( a \) being a two-component vector, \( \sigma \) being the automorphism defined by \( \sigma(X) = a[1] \pmod{T(X)} \), returns the vector \([\sigma^n(X), b\sigma(b) \ldots \sigma^{n-1}(b)]\) where \( b = a[2] \).

GEN FpXQAuttrace(GEN a, ulong n, GEN T, GEN p) \( a \) being a two-component vector, \( \sigma \) being the automorphism defined by \( \sigma(X) = a[1] \pmod{T(X)} \), returns the vector \([\sigma^n(X), b + \sigma(b) + \ldots + \sigma^{n-1}(b)]\) where \( b = a[2] \).

GEN FpXQAutpowers(GEN S, long n, GEN T, GEN p) returns \([x, S(x), S(S(x)), \ldots, S^{(n)}(x)]\) as a t_VEC of FpXQs.

GEN FpXQMAutsum(GEN a, long n, GEN T, GEN p) \( \sigma \) being the automorphism defined by \( \sigma(X) = a[1] \pmod{T(X)} \), returns the vector \([\sigma^n(X), b\sigma(b) \ldots \sigma^{n-1}(b)]\) where \( b = a[2] \) is a square matrix.

GEN FpXFPXQEval(GEN f, GEN x, GEN T, GEN p) returns \( f(x) \).

GEN FpXFpXQV_eval(GEN f, GEN V, GEN T, GEN p) returns \( f(x) \), assuming that \( V \) was computed by FpXQpowers(x,n,T,p).

GEN FpXC_FpXQV_eval(GEN C, GEN V, GEN T, GEN p) applies FpX_FpXQV_eval to all elements of the vector \( C \) and returns a t_COL.

GEN FpXM_FpXQV_eval(GEN M, GEN V, GEN T, GEN p) applies FpX_FpXQV_eval to all elements of the matrix \( M \).

7.3.9 FpXn. Let \( p \) a t_INT and \( T \) an FpX for \( p \), both to be given in the function arguments; an FpXn object is an FpX whose degree is strictly less than \( n \). They represent a class in \( \left( \mathbb{Z}/p\mathbb{Z} \right)[X]/(X^n) \), in which all operations below take place. They can be seen as truncated power series.

GEN FpXnMul(GEN x, GEN y, long n, GEN p) return \( xy \pmod{X^n} \).

GEN FpXnSqr(GEN x, long n, GEN p) return \( x^2 \pmod{X^n} \).

GEN FpXnInv(GEN x, long n, GEN p) return \( 1/x \pmod{X^n} \).

GEN FpXnExp(GEN x, long n, GEN p) return \( \exp(x) \) as a composition of formal power series. It is required that the valuation of \( x \) is positive and that \( p > n \).

7.3.10 FpXC, FpXM.

GEN FpXC_Center(GEN C, GEN p, GEN pov2)

GEN FpXM_Center(GEN M, GEN p, GEN pov2)

122
7.3.11 FpXX, FpXY. Contrary to what the name implies, an FpXX is a t_POL whose coefficients are either t_INTs or FpXs. This reduces memory overhead at the expense of consistency. The prefix FpXY is an alias for FpXX when variables matters.

GEN FpXX_red(GEN z, GEN p), z a t_POL whose coefficients are either ZXs or t_INTs. Returns the t_POL equal to z with all components reduced modulo p.

GEN FpXX_renormalize(GEN x, long l), as normalizepol, where l = lg(x), in place.

GEN FpXX_add(GEN x, GEN y, GEN p) adds x and y.

GEN FpXX_sub(GEN x, GEN y, GEN p) returns x − y.

GEN FpXX_neg(GEN x, GEN p) returns −x.

GEN FpXX_Fp_mul(GEN x, GEN y, GEN p) multiplies the FpXX x by the Fp y.

GEN FpXX_FpX_mul(GEN x, GEN y, GEN p) multiplies the coefficients of the FpXX x by the FpX y.

GEN FpXX_mulu(GEN x, GEN y, GEN p) multiplies the FpXX x by the scalar y.

GEN FpXX_halve(GEN x, GEN p) returns z such that 2z = x assuming such z exists.

GEN FpXX_deriv(GEN P, GEN p) differentiates P with respect to the main variable.

GEN FpXX_integ(GEN P, GEN p) returns the primitive of P with respect to the main variable whose constant term is 0.

GEN FpXY_eval(GEN Q, GEN y, GEN x, GEN p) Q being an FpXY, i.e. a t_POL with Fp or FpX coefficients representing an element of $\mathbb{F}_p[X][Y]$. Returns the Fp $Q(x, y)$.

GEN FpXY_evalx(GEN Q, GEN x, GEN p) Q being an FpXY, returns the FpX $Q(x, Y)$, where Y is the main variable of Q.

GEN FpXY_evaly(GEN Q, GEN y, GEN p, long vx) Q an FpXY, returns the FpX $Q(X, y)$, where X is the second variable of Q, and vx is the variable number of X.

GEN FpXY_Fq_evaly(GEN Q, GEN y, GEN T, GEN p, long vx) Q an FpXY and y being an Fq, returns the FqX $Q(x, y)$, where X is the second variable of Q, and vx is the variable number of X.

GEN FpXY_FpXQ_evalx(GEN Q, GEN x, ulong p) Q an FpXY and x being an FpXQ, returns the FpXQX $Q(x, Y)$, where Y is the first variable of Q.

GEN FpXY_FpXQV_evalx(GEN Q, GEN V, ulong p) Q an FpXY and x being an FpXQ, returns the FpXQX $Q(x, Y)$, where Y is the first variable of Q, assuming that V was computed by FpXQQ_pow(x, n, T, p).

GEN FpXYQQ_pow(GEN x, GEN n, GEN S, GEN T, GEN p), x being a FpXY, T being a FpX and S being a FpY, return $x^n \pmod{S,T,p}$.

7.3.12 FpXQX, FqX. Contrary to what the name implies, an FpXQX is a t_POL whose coefficients are Fqs. So the only difference between FqX and FpXQX routines is that T = NULL is not allowed in the latter. (It was thought more useful to allow t_INT components than to enforce strict consistency, which would not imply any efficiency gain.)
7.3.12.1 Basic operations.

GEN FqX_add(GEN x, GEN y, GEN T, GEN p)
GEN FqX_Fq_add(GEN x, GEN y, GEN T, GEN p) adds the Fq y to the FqX x.
GEN FqX_sub(GEN x, GEN y, GEN T, GEN p) substracts the Fq y to the FqX x.
GEN FqX_neg(GEN x, GEN T, GEN p)
GEN FqX_sub(GEN x, GEN y, GEN T, GEN p)
GEN FqX_mul(GEN x, GEN y, GEN T, GEN p)
GEN FqX_Fq_mul(GEN x, GEN y, GEN T, GEN p) multiplies the FqX x by the Fq y.
GEN FqX_mulu(GEN x, ulong y, GEN T, GEN p) multiplies the FqX x by the scalar y.
GEN FqX_halve(GEN x, GEN T, GEN p) returns z such that 2z = x assuming such z exists.
GEN FqX_Fp_mul(GEN x, GEN y, GEN T, GEN p) multiplies the FqX x by the t_INT y.
GEN FqX_Fq_mul_to_monic(GEN x, GEN y, GEN T, GEN p) returns xy assuming the result is monic of the same degree as x (in particular y ≠ 0).
GEN FpXQX_normalize(GEN z, GEN T, GEN p)
GEN FqX_normalize(GEN z, GEN T, GEN p) divides the FqX z by its leading term. The leading coefficient becomes 1 as a t_INT.
GEN FqX_sqr(GEN x, GEN T, GEN p)
GEN FqX_powu(GEN x, ulong n, GEN T, GEN p)
GEN FqX_divrem(GEN x, GEN y, GEN T, GEN p, GEN *z)
GEN FqX_div(GEN x, GEN y, GEN T, GEN p)
GEN FqX_div_by_X_x(GEN a, GEN x, GEN T, GEN p, GEN *r)
GEN FqX_rem(GEN x, GEN y, GEN T, GEN p)
GEN FqX_deriv(GEN x, GEN T, GEN p) returns the derivative of x. (This function is suitable for gerepilupto but not memory-clean.)
GEN FqX_integ(GEN x, GEN T, GEN p) returns the primitive of x whose constant term is 0.
GEN FqX_translate(GEN P, GEN c, GEN T, GEN p) let c be an Fq defined modulo (p,T), and let P be an FqX; returns the translated FqX of P(X + c).
GEN FqX_gcd(GEN P, GEN Q, GEN T, GEN p) returns a (not necessarily monic) greatest common divisor of x and y.
GEN FqX_extgcd(GEN x, GEN y, GEN T, GEN p, GEN *ptu, GEN *ptv) returns d = GCD(x,y) (not necessarily monic), and sets *u, *v to the Bezout coefficients such that *u*x + *v*y = d.
GEN FqX_halfgcd(GEN x, GEN y, GEN T, GEN p) returns a two-by-two FqXM M with determinant ±1 such that the image (a,b) of (x,y) by M has the property that deg a ≥ \frac{\deg x}{2} > \deg b.
GEN FqX_eval(GEN x, GEN y, GEN T, GEN p) evaluates the FqX x at the Fq y. The result is an Fq.
GEN FqXY_eval(GEN Q, GEN y, GEN x, GEN T, GEN p) Q an FqXY, i.e. a t_POL with Fq or FqX coefficients representing an element of $F_q[X][Y]$. Returns the Fq $Q(x,y)$.

GEN FqXY_evalx(GEN Q, GEN x, GEN T, GEN p) Q being an FqXY, returns the FqX $Q(x,Y)$, where Y is the main variable of Q.

GEN random_FpXQX(long d, long v, GEN T, GEN p) returns a random FpXQX in variable v, of degree less than d.

GEN FpXQX_renormalize(GEN x, long lx)

GEN FpXQX_red(GEN z, GEN T, GEN p) z a t_POL whose coefficients are ZXs or t_INTs, reduce them to FpXQs.

GEN FpXQX_to_mod(GEN P, GEN T, GEN p) P being a FpXQX, converts each coefficient to a t_POLMOD with t_INTMOD coefficients.

GEN FqX_to_mod(GEN P, GEN T, GEN p) same but allow T = NULL.

GEN FpXQX_FpXQ_mul(GEN x, GEN y, GEN T, GEN p) GEN Kronecker_to_FpXQX(GEN z, GEN T, GEN p). Let $n = \deg T$ and let $P(X,Y) \in Z[X,Y]$ lift a polynomial in $K[Y]$, where $K := F_p[X]/(T)$ and $\deg_X P < 2n - 1$ — such as would result from multiplying minimal degree lifts of two polynomials in $K[Y]$. Let $z = P(t,t^{2^n-1})$ be a Kronecker form of $P$, this function returns $Q \in Z[X,t]$ such that $Q$ is congruent to $P(X,t) \mod (p,T(X))$, $\deg_X Q < n$, and all coefficients are in $[0,p]$. Not stack-clean. Note that $t$ need not be the same variable as $Y$!

GEN FpXQX_FpXQ_mul(GEN x, GEN y, GEN T, GEN p)

GEN FpXQX_sqr(GEN x, GEN T, GEN p)

GEN FpXQX_divrem(GEN x, GEN y, GEN T, GEN p, GEN *pr)

GEN FpXQX_div(GEN x, GEN y, GEN T, GEN p)

GEN FpXQX_div_by_X_x(GEN a, GEN x, GEN T, GEN p, GEN *r)

GEN FpXQX_rem(GEN x, GEN y, GEN T, GEN p)

GEN FpXQX_powu(GEN x, ulong n, GEN T, GEN p) returns $x^n$.

GEN FpXQX_digits(GEN x, GEN B, GEN T, GEN p)

GEN FpXQXV_FpXQX_fromdigits(GEN v, GEN B, GEN T, GEN p)

GEN FpXQXV_prod(GEN V, GEN T, GEN p), V being a vector of FpXQX, returns their product.
7.3.13 FpXQXn, FqXn.

A FpXQXn is a t_FpXQX which represents an element of the ring \( (Fp[X]/T(X))[Y]/(Y^n) \), where \( T \) is a FpX.

\[
\begin{align*}
\text{GEN FpXQXn_sqr(GEN x, long n, GEN T, GEN p)} \\
\text{GEN FqXn_sqr(GEN x, long n, GEN T, GEN p)} \\
\text{GEN FpXQXn_mul(GEN x, GEN y, long n, GEN T, GEN p)} \\
\text{GEN FqXn_mul(GEN x, GEN y, long n, GEN T, GEN p)} \\
\text{GEN FpXQXn_inv(GEN x, long n, GEN T, GEN p)} \\
\text{GEN FqXn_inv(GEN x, long n, GEN T, GEN p)} \\
\text{GEN FpXQXn_exp(GEN x, long n, GEN T, GEN p)} \\
\end{align*}
\]

It is required that the valuation of \( x \) is positive and that \( p > n \).

7.3.14 FpXQX, FqX.

A FpXQX is a t_FpXQX which represents an element of the ring \( (Fp[X]/T(X))[Y]/S(X,Y) \), where \( T \) is a FpX and \( S \) a FpXQX modulo \( T \). A FqXQ is identical except that \( T \) is allowed to be NULL in which case \( S \) must be a FpX.

7.3.14.1 Preconditioned reduction.

For faster reduction, the modulus \( S \) can be replaced by an extended modulus, which is an FpXQXT, in all FpXQXQ- and FqXQ-classes functions, and in FpXQX_rem and FpXQX_divrem.

\[
\begin{align*}
\text{GEN FpXQX_get_red(GEN S, GEN T, GEN p)} \\
\text{GEN FqX_get_red(GEN S, GEN T, GEN p)} \\
\end{align*}
\]

identical, but allow \( T \) to be NULL, in which case it returns FpX_get_red(S,p).

To write code that works both with plain and extended moduli, the following accessors are defined:

\[
\begin{align*}
\text{GEN get_FpXQX_mod(GEN eS)} \\
\text{GEN get_FpXQX_var(GEN eS)} \\
\text{GEN get_FpXQX_degree(GEN eS)} \\
\end{align*}
\]

Furthermore, ZXXT_to_FlxXT allows to convert an extended modulus for a FpXQX to an extended modulus for the corresponding FlxqX.

126
7.3.14.2 basic operations.

GEN FpXQX_FpXQXQV_eval(GEN f, GEN V, GEN S, GEN T, GEN p) returns \( f(x) \), assuming that \( V \) was computed by FpXQX_powers\( (x, n, S, T, p) \).

GEN FpXQX_div(GEN x, GEN y, GEN S, GEN T, GEN p), \( x \) and \( S \) being FpXQXs, returns \( x+y^{-1} \) modulo \( S \).

GEN FpXQX_inv(GEN x, GEN S, GEN T, GEN p), \( x \) and \( S \) being FpXQXs, returns \( x^{-1} \) modulo \( S \).

GEN FpXQX_invsafe(GEN x, GEN S, GEN T, GEN p), as FpXQX_inv, returning NULL if \( x \) is not invertible.

GEN FpXQX_mul(GEN x, GEN y, GEN S, GEN T, GEN p), \( x \) and \( S \) being FpXQXs, returns \( xy \) modulo \( S \).

GEN FpXQX_sqr(GEN x, GEN S, GEN T, GEN p), \( x \) and \( S \) being FpXQXs, returns \( x^2 \) modulo \( S \).

GEN FpXQX_matrix_pow(GEN x, long m, long n, GEN S, GEN T, GEN p), \( x \) and \( S \) being FpXQXs, returns \( x^m \) modulo \( S \).

GEN FpXQX_powers(GEN x, long n, GEN S, GEN T, GEN p), \( x \) and \( S \) being FpXQXs, returns \([x^0, \ldots, x^n] \) as a t_VEC of FpXQXs.

GEN FpXQX_minpoly(GEN x, GEN S, GEN T, GEN p), as FpXQX_minpoly

GEN FqXQ_add(GEN x, GEN y, GEN S, GEN T, GEN p), \( x \) and \( S \) being FqXs, returns \( x+y \) modulo \( S \).

GEN FqXQ_sub(GEN x, GEN y, GEN S, GEN T, GEN p), \( x \) and \( S \) being FqXs, returns \( x-y \) modulo \( S \).

GEN FqXQ_mul(GEN x, GEN y, GEN S, GEN T, GEN p), \( x \) and \( S \) being FqXs, returns \( xy \) modulo \( S \).

GEN FqXQ_div(GEN x, GEN y, GEN S, GEN T, GEN p), \( x \) and \( S \) being FqXs, returns \( x/y \) modulo \( S \).

GEN FqXQ_inv(GEN x, GEN S, GEN T, GEN p), \( x \) and \( S \) being FqXs, returns \( x^{-1} \) modulo \( S \).

GEN FqXQ_invsafe(GEN x, GEN S, GEN T, GEN p), as FqXQ_inv, returning NULL if \( x \) is not invertible.

127
GEN FqXQ_sqr(GEN x, GEN S, GEN T, GEN p), x and S being FqXs, returns \( x^2 \) modulo S.

GEN FqXQ_pow(GEN x, GEN n, GEN S, GEN T, GEN p), x and S being FqXs, returns \( x^n \) modulo S.

GEN FqXQ_powers(GEN x, long n, GEN S, GEN T, GEN p), x and S being FqXs, returns \([x^0,\ldots,x^n]\) as a t_VEC of FqXs.

GEN FqXQ_matrix_pow(GEN x, long m, long n, GEN S, GEN T, GEN p) returns the same powers of \( x \) as FqXQ_powers \((x, n - 1, S, T, p)\), but as an \( m \times n \) matrix.

GEN FqV_roots_to_pol(GEN V, GEN T, GEN p, long v), V being a vector of FqXs, returns the monic FqX \( \prod_i (pol_x[v_i] - V[i]) \).

### 7.3.14.3 Miscellaneous operations.

GEN init_Fq(GEN p, long n, long v) returns an irreducible polynomial of degree \( n > 0 \) over \( \mathbb{F}_p \), in variable \( v \).

int FqX_is_squarefree(GEN P, GEN T, GEN p) GEN FpXQX_roots(GEN f, GEN T, GEN p) return the roots of \( f \) in \( \mathbb{F}_p[X]/(T) \). Assumes \( p \) is prime and \( T \) irreducible in \( \mathbb{F}_p[X] \).

GEN FqX_roots(GEN f, GEN T, GEN p) same but allow \( T = \text{NULL} \).

GEN FpXQX_factor(GEN f, GEN T, GEN p) same output convention as FpX_factor. Assumes \( p \) is prime and \( T \) irreducible in \( \mathbb{F}_p[X] \).

GEN FqX_factor(GEN f, GEN T, GEN p) same but allow \( T = \text{NULL} \).

GEN FpXQX_factor_squarefree(GEN f, GEN T, GEN p) squarefree factorization of \( f \) modulo \((T,p)\); same output convention as FpX_factor_squarefree. Assumes \( p \) is prime and \( T \) irreducible in \( \mathbb{F}_p[X] \).

GEN FqX_factor_squarefree(GEN f, GEN T, GEN p) same but allow \( T = \text{NULL} \).

GEN FpXQX_ddf(GEN f, GEN T, GEN p) as FpX_ddf.

GEN FqX_ddf(GEN f, GEN T, GEN p) same but allow \( T = \text{NULL} \).

long FpXQX_ddf_degree(GEN f, GEN XP, GEN T, GEN p), as FpX_ddf_degree.

GEN FpXQX_degfact(GEN f, GEN T, GEN p), as FpX_degfact.

GEN FqX_degfact(GEN f, GEN T, GEN p) same but allow \( T = \text{NULL} \).

GEN FpXQX_split_part(GEN f, GEN T, GEN p) returns the largest totally split squarefree factor of \( f \).

long FpXQX_ispower(GEN f, ulong k, GEN T, GEN p, GEN *pt) return 1 if the FpXQX \( f \) is a \( k \)-th power, 0 otherwise. If pt is not NULL, set it to \( g \) such that \( g^k = f \).

long FqX_ispower(GEN f, ulong k, GEN T, GEN p, GEN *pt) same but allow \( T = \text{NULL} \).

GEN FpX_factorff(GEN P, GEN T, GEN p). Assumes \( p \) prime and \( T \) irreducible in \( \mathbb{F}_p[X] \). Factor the FpX P over the finite field \( \mathbb{F}_p[Y]/(T(Y)) \). See FpX_factorff_irred if \( P \) is known to be irreducible of \( \mathbb{F}_p \).

GEN FpX_rootsff(GEN P, GEN T, GEN p). Assumes \( p \) prime and \( T \) irreducible in \( \mathbb{F}_p[X] \). Returns the roots of the FpX P belonging to the finite field \( \mathbb{F}_p[Y]/(T(Y)) \).
GEN FpX_factorff_irred(GEN P, GEN T, GEN p). Assumes p prime and T irreducible in \(F_p[X]\). Factors the irreducible FpX P over the finite field \(F_p[Y]/(T(Y))\) and returns the vector of irreducible FqXs factors (the exponents, being all equal to 1, are not included).

GEN FpX_ffisom(GEN P, GEN Q, GEN p). Assumes p prime, P, Q are ZXs, both irreducible mod p, and \(\deg(P) | \deg(Q)\). Outputs a monomorphism between \(F_p[X]/(P)\) and \(F_p[X]/(Q)\), as a polynomial \(R\) such that \(Q | P(R)\) in \(F_p[X]\). If P and Q have the same degree, it is of course an isomorphism.

void FpX_ffintersect(GEN P, GEN Q, long n, GEN p, GEN *SP, GEN *SQ, GEN MA, GEN MB) Assumes p is prime, T a ZX, which is irreducible modulo p, S a ZX representing an automorphism of \(F_q := F_p[X]/(T)\). \(S(X)\) is the image of \(X\) by the automorphism.) Returns the inverse automorphism of \(S\), in the same format, i.e. an FpX \(H\) such that \(H(S) \equiv X \mod (T,p)\).

long FpXQX_nbfact(GEN S, GEN T, GEN p) returns the number of irreducible factors of the polynomial S over the finite field \(F_q\) defined by T and p.

long FpXQX_nbfact_Frobenius(GEN S, GEN Xq, GEN T, GEN p) as FpXQX_nbfact where Xq is FpXQX_Frobenius(S, T, p).

long FqX_nbfact(GEN S, GEN T, GEN p) as above but accept T=NULL.

long FpXQX_nbroots(GEN S, GEN T, GEN p) returns the number of roots of the polynomial S over the finite field \(F_q\) defined by T and p.

long FqX_nbroots(GEN S, GEN T, GEN p) as above but accept T=NULL.

GEN FpXQX_Frobenius(GEN S, GEN T, GEN p) returns \(X^q \mod (S(X))\) over the finite field \(F_q\) defined by T and p, thus \(q = p^n\) where n is the degree of T.

7.3.15 Flx. Let p an understood ulong, assumed to be prime, to be given the function arguments; an Flx is an ulong belonging to \([0, p-1]\), an Flx z is a t_VECsmall representing a polynomial with small integer coefficients. Specifically z[0] is the usual codeword, \(z[1] = \text{evalvarn}(v)\) for some variable \(v\), then the coefficients by increasing degree. An Flx is a t_POL whose coefficients are Flxs.

In the following, an argument called sv is of the form \(\text{evalvarn}(v)\) for some variable number \(v\).

7.3.15.1 Preconditioned reduction.

For faster reduction, the modulus T can be replaced by an extended modulus \((\text{FlxT})\) in all Flxq-classes functions, and in Flx_divrem.

GEN Flx_get_red(GEN T, ulong p) returns the extended modulus eT.

To write code that works both with plain and extended moduli, the following accessors are defined:

GEN get_Flx_mod(GEN eT) returns the underlying modulus T.

GEN get_Flx_var(GEN eT) returns the variable number of the modulus.
GEN get_Flx_degree(GEN eT) returns the degree of the modulus.

Furthermore, ZXT_to_FlxT allows to convert an extended modulus for a FpX to an extended modulus for the corresponding Flx.

### 7.3.15.2 Basic operations.

ulong Flx_lead(GEN x) returns the leading coefficient of x as a ulong (return 0 for the zero polynomial).

ulong Flx_constant(GEN x) returns the constant coefficient of x as a ulong (return 0 for the zero polynomial).

GEN Flx_red(GEN z, ulong p) converts from zx with non-negative coefficients to Flx (by reducing them mod p).

int Flx_equal1(GEN x) returns 1 (true) if the Flx x is equal to 1, 0 (false) otherwise.

int Flx_equal(GEN x, GEN y) returns 1 (true) if the Flx x and y are equal, and 0 (false) otherwise.

GEN Flx_add(GEN x, GEN y, ulong p)

GEN Flx_Fl_add(GEN y, ulong x, ulong p)

GEN Flx_neg(GEN x, ulong p)

GEN Flx_neg_inplace(GEN x, ulong p), same as Flx_neg, in place (x is destroyed).

GEN Flx_sub(GEN x, GEN y, ulong p)

GEN Flx_halve(GEN x, ulong p) returns \( z \) such that \( 2z = x \) modulo \( p \) assuming such \( z \) exists.

GEN Flx_mul(GEN x, GEN y, ulong p)

GEN Flxn_mul(GEN a, GEN b, long n, ulong p) returns \( ab \) modulo \( X^n \).

GEN Flxn_inv(GEN a, long n, ulong p) returns \( 1/a \) modulo \( X^n \).

GEN Flx_Fl_mul(GEN y, ulong x, ulong p)

GEN Flx_double(GEN y, ulong p) returns \( 2y \).

GEN Flx_triple(GEN y, ulong p) returns \( 3y \).

GEN Flx_mulu(GEN y, ulong x, ulong p) as Flx_Fl_mul but do not assume that \( x < p \).

GEN Flx_Fl_mul_to_monic(GEN y, ulong x, ulong p) returns \( yx \) assuming the result is monic of the same degree as \( y \) (in particular \( x \neq 0 \)).

GEN Flx_sqr(GEN x, ulong p)

GEN Flx_powu(GEN x, ulong n, ulong p) return \( x^n \).

GEN Flx_divrem(GEN x, GEN y, ulong p, GEN *pr)

GEN Flx_div(GEN x, GEN y, ulong p)

GEN Flx_rem(GEN x, GEN y, ulong p)

GEN Flx_deriv(GEN z, ulong p)

GEN Flx_translate1(GEN P, ulong p) return \( P(x + 1) \)
GEN Flx_diff1(GEN P, ulong p)
return $P(x + 1) - P(x)$

GEN Flx_digits(GEN x, GEN B, ulong p) returns a vector of Flx $[c_0, \ldots, c_n]$ of degree less than the degree of $B$ and such that $x = \sum_{i=0}^n c_i B^i$.

GEN FlxV_Flx_fromdigits(GEN v, GEN B, ulong p) where $v = [c_0, \ldots, c_n]$ is a vector of Flx, returns $\sum_{i=0}^n c_i B^i$.

GEN Flx_Frobenius(GEN T, ulong p)
GEN Flx_matFrobenius(GEN T, ulong p)

GEN Flx_gcd(GEN a, GEN b, ulong p) returns a (not necessarily monic) greatest common divisor of $x$ and $y$.

GEN Flx_halfgcd(GEN x, GEN y, ulong p) returns a two-by-two FlxM $M$ with determinant $\pm 1$ such that the image $(a, b)$ of $(x, y)$ by $M$ has the property that $\deg a \geq \frac{\deg x}{2} > \deg b$.

GEN Flx_extgcd(GEN a, GEN b, ulong p, GEN *ptu, GEN *ptv)

GEN Flx_roots(GEN f, ulong p) returns the vector of roots of $f$ (without multiplicity, as a t_VECSMALL). Assumes that $p$ is prime.

ulong Flx_oneroot(GEN f, ulong p) returns one root $0 \leq r < p$ of the Flx $f$ in $\mathbb{Z}/p\mathbb{Z}$. Return $p$ if no root exists. Assumes that $p$ is prime.

ulong Flx_oneroot_split(GEN f, ulong p) as Flx_oneroot but assume $f$ is totally split.

long Flx_ispower(GEN f, ulong k, ulong p, GEN *pt) return 1 if the Flx $f$ is a $k$-th power, 0 otherwise. If pt is not NULL, set it to $g$ such that $g^k = f$.

GEN Flx_factor(GEN f, ulong p)
GEN Flx_ddf(GEN f, ulong p)

GEN Flx_factor_squarefree(GEN f, ulong p) returns the squarefree factorization of $f$ modulo $p$. This is a vector $[u_1, \ldots, u_k]$ of pairwise coprime Flx such that $u_k \neq 1$ and $f = \prod u_i$. Shallow function.

GEN Flx_mod_Xn1(GEN T, ulong n, ulong p) return $T$ modulo $(X^n + 1, p)$. Shallow function.

GEN Flx_mod_Xnm1(GEN T, ulong n, ulong p) return $T$ modulo $(X^n - 1, p)$. Shallow function.

GEN Flx_degfact(GEN f, ulong p) as FpX_degfact.

GEN Flx_factorff_irred(GEN P, GEN Q, ulong p) as FpX_factorff_irred.

GEN Flx_rootsff(GEN P, GEN T, ulong p) as FpX_rootsff.

GEN Flx_ffisom(GEN P, GEN Q, ulong l) as FpX_ffisom.

131
### 7.3.15.3 Miscellaneous operations.

**GEN** pol0_Flx(long sv) returns a zero Flx in variable v.

**GEN** zero_Flx(long sv) alias for pol0_Flx.

**GEN** pol1_Flx(long sv) returns the unit Flx in variable v.

**GEN** polx_Flx(long sv) returns the variable v as degree 1 Flx.

**GEN** monomial_Flx(ulong a, long d, long sv) returns the Flx $aX^d$ in variable v.

**GEN** Flx_normalize(GEN z, ulong p), as $F_{pX}$ normalize.

**GEN** Flx_rescale(GEN P, ulong h, ulong p) returns $h^{\deg(P)}P(x/h)$, P is a Flx and h is a non-zero integer.

**GEN** random_Flx(long d, long sv, ulong p) returns a random Flx in variable v, of degree less than d.

**GEN** Flx_recip(GEN x), returns the reciprocal polynomial.

**ulong** Flx_resultant(GEN a, GEN b, ulong p), returns the resultant of a and b.

**ulong** Flx_extresultant(GEN a, GEN b, ulong p, GEN *ptU, GEN *ptV) given two Flx a and b, returns their resultant and sets Bezout coefficients (if the resultant is 0, the latter are not set).

**GEN** Flx_invBarrett(GEN T, ulong p), returns the Barrett inverse $M$ of $T$ defined by $M(x) \times x^n(1/x) \equiv 1 \mod x^n - 1$ where n is the degree of $T$.

**GEN** Flx_renormalize(GEN x, long l) as $F_{pX}$ renormalize, where $l = \lg(x)$, in place.

**GEN** Flx_shift(GEN T, long n) returns $T \ast x^n$ if $n \geq 0$, and $T \backslash x^{-n}$ otherwise.

**long** Flx_val(GEN x) returns the valuation of x, i.e. the multiplicity of the 0 root.

**long** Flx_valrem(GEN x, GEN *Z) as $Rg_X$ valrem, returns the valuation of x. In particular, if the valuation is 0, set *Z to x, not a copy.

**GEN** Flx_div_by_X_x(GEN A, ulong a, ulong p, ulong *rem) returns the Euclidean quotient of the Flx A by $X - a$, and sets rem to the remainder A(a).

**ulong** Flx_dotproduct(GEN x, GEN y, ulong p) returns the scalar product of the coefficients of x and y.

**GEN** Flx_deflate(GEN P, long d) assuming $P$ is a polynomial of the form $Q(X^d)$, return $Q$.

**GEN** Flx_splitting(GEN P, long k), as $Rg_X$ splitting.

**GEN** Flx_inflate(GEN P, long d) returns $P(X^d)$.
int Flx_is_squarefree(GEN z, ulong p)
int Flx_is_irred(GEN f, ulong p), as FpX_is_irred.
int Flx_is_smooth(GEN f, long r, ulong p) return 1 if all irreducible factors of f are of degree
at most r, 0 otherwise.
long Flx_nbroots(GEN f, ulong p), as FpX_nbroots.
long Flx_nbfact(GEN z, ulong p), as FpX_nbfact.
long Flx_nbfact_Frobenius(GEN f, GEN XP, ulong p), as FpX_nbfact_Frobenius.
GEN Flx_degfact(GEN f, ulong p), as FpX_degfact.
GEN Flx_nbfact_by_degree(GEN z, long *nb, ulong p) Assume that the Flx z is squarefree
mod the prime p. Returns a t_VECSMALL D with deg z entries, such that D[i] is the number of
irreducible factors of degree i. Set nb to the total number of irreducible factors (the sum of the
D[i]).
void Flx_ffintersect(GEN P, GEN Q, long n, ulong p, GEN*SP, GEN*SQ, GEN MA, GEN MB)
, as FpX_ffintersect
GEN Flv_polint(GEN x, GEN y, ulong p, long sv) as FpV_polint, returning an Flx in variable
v.
GEN Flv_Flm_polint(GEN x, GEN V, ulong p, long sv) equivalent (but faster) to applying
Flv_polint(x, ...) to all the elements of the vector V (thus, returns a FlxV).
GEN Flv_invVandermonde(GEN L, ulong d, ulong p) L being a Flv of length n, return the
inverse M of the Vandermonde matrix attached to the elements of L, multiplied by d. If A is a Flv
and B = MA, then the polynomial P = \sum_{i=1}^{n} B[i]X^{i-1} verifies P(L[i]) = dA[i] for 1 \leq i \leq n.
GEN Flv_roots_to_pol(GEN a, ulong p, long sv) as FpV_roots_to_pol returning an Flx in
variable v.

7.3.16 FlxV. See FpXV operations.
GEN FlxV_Flc_mul(GEN V, GEN W, ulong p), as FpXV_FpC_mul.
GEN FlxV_red(GEN V, ulong p) reduces each components with Flx_red.
GEN FlxV_prod(GEN V, ulong p), V being a vector of Flx, returns their product.
ulong FlxC_eval_powers_pre(GEN x, GEN y, ulong p, ulong pi) apply Flx_eval_powers_pre
to all elements of x.
GEN FlxC_neg(GEN x, ulong p)
GEN FlxC_sub(GEN x, GEN y, ulong p)
GEN zero_FlxC(long n, long sv)
7.3.17 FlxM. See FpXM operations.

ulong FlxM_eval_powers_pre(GEN M, GEN y, ulong p, ulong pi) this function applies FlxC_eval_powers_pre to all entries of M.

GEN FlxM_neg(GEN x, ulong p)
GEN FlxM_sub(GEN x, GEN y, ulong p)
GEN zero_FlxM(long r, long c, long sv)

7.3.18 FlxT. See FpXT operations.

GEN FlxT_red(GEN V, ulong p) reduces each leaf with Flx_red.

7.3.19 Flxq. See FpXQ operations.

GEN Flxq_add(GEN x, GEN y, GEN T, ulong p)
GEN Flxq_sub(GEN x, GEN y, GEN T, ulong p)
GEN Flxq_mul(GEN x, GEN y, GEN T, ulong p)
GEN Flxq_sqr(GEN y, GEN T, ulong p)
GEN Flxq_inv(GEN x, GEN T, ulong p)
GEN Flxq_invsafe(GEN x, GEN T, ulong p)
GEN Flxq_div(GEN x, GEN y, GEN T, ulong p)
GEN Flxq_pow(GEN x, GEN n, GEN T, ulong p)
GEN Flxq_powu(GEN x, ulong n, GEN T, ulong p)
GEN Flxq_pow_init(GEN x, GEN n, long k, GEN T, ulong p)
GEN Flxq_pow_table(GEN R, GEN n, GEN T, ulong p)
GEN Flxq_powers(GEN x, long n, GEN T, ulong p)
GEN Flxq_matrix_pow(GEN x, long m, long n, GEN T, ulong p), see FpXQ_matrix_pow.
GEN Flxq_autpow(GEN a, long n, GEN T, ulong p) see FpXQ_autpow.
GEN Flxq_autsum(GEN a, long n, GEN T, ulong p) see FpXQ_autsum.
GEN Flxq_auttrace(GEN a, ulong n, GEN T, ulong p) see FpXQ_auttrace.
GEN Flxq_ffisom_inv(GEN S, GEN T, ulong p), as FpXQ_ffisom_inv.
GEN Flx_Flxq_eval(GEN f, GEN x, GEN T, ulong p) returns f(x).
GEN Flx_FlxqV_eval(GEN f, GEN x, GEN T, ulong p), see FpX_FpXQV_eval.
GEN FlxqV_roots_to_pol(GEN V, GEN T, ulong p, long v) as FqV_roots_to_pol returning an FlxqX in variable v.

int Flxq_issquare(GEN x, GEN T, ulong p) returns 1 if x is a square and 0 otherwise. Assume that T is irreducible mod p.

int Flxq_is2npower(GEN x, long n, GEN T, ulong p) returns 1 if x is a 2^n-th power and 0 otherwise. Assume that T is irreducible mod p.
GEN Flxq_order(GEN a, GEN ord, GEN T, ulong p) as FpXQ_order.
GEN Flxq_log(GEN a, GEN g, GEN ord, GEN T, ulong p) as FpXQ_log
GEN Flxq_sqrtn(GEN x, GEN n, GEN T, ulong p, GEN *zn) as FpXQ_sqrtn.
GEN Flxq_sqrt(GEN x, GEN T, ulong p) returns a square root of x. Return NULL if x is not a square.
GEN Flxq_lroot(GEN a, GEN T, ulong p) returns x such that $x^p = a$.
GEN Flxq_lroot_fast(GEN a, GEN V, GEN T, ulong p) assuming that $V = \text{Flxq\_powers}(s, p-1, T, p)$ where $s(x)^p \equiv x \pmod{T(x), p}$, returns $b$ such that $b^p = a$. Only useful if $p$ is less than the degree of $T$.
GEN Flxq_charpoly(GEN x, GEN T, ulong p) returns the characteristic polynomial of x
GEN Flxq_minpoly(GEN x, GEN T, ulong p) returns the minimal polynomial of x
ulong Flxq_norm(GEN x, GEN T, ulong p) returns the norm of x
ulong Flxq_trace(GEN x, GEN T, ulong p) returns the trace of x
GEN Flxq_conjvec(GEN x, GEN T, ulong p) returns the conjugates $[x, x^p, x^{p^2}, \ldots, x^{p^{n-1}}]$ where $n$ is the degree of $T$.
GEN gener_Flxq(GEN T, ulong p, GEN *po) returns a primitive root modulo $(T, p)$. $T$ is an Flx assumed to be irreducible modulo the prime $p$. If po is not NULL it is set to $[o, fa]$, where $o$ is the order of the multiplicative group of the finite field, and $fa$ is its factorization.

7.3.20 FlxX. See FpXX operations.
GEN pol1_FlxX(long vX, long sx) returns the unit FlxX as a t_POL in variable vX which only coefficient is pol1_Flx(sx).
GEN polx_FlxX(long vX, long sx) returns the variable $X$ as a degree 1 t_POL with Flx coefficients in the variable $x$.
long FlxY_degreeex(GEN P) return the degree of $P$ with respect to the secondary variable.
GEN FlxX_add(GEN P, GEN Q, ulong p)
GEN FlxX_sub(GEN P, GEN Q, ulong p)
GEN FlxX_Fl_mul(GEN x, ulong y, ulong p)
GEN FlxX_double(GEN x, ulong p)
GEN FlxX_triple(GEN x, ulong p)
GEN FlxX_neg(GEN x, ulong p)
GEN FlxX_Flx_add(GEN x, GEN y, ulong p)
GEN FlxX_Flx_sub(GEN x, GEN y, ulong p)
GEN FlxX_Flx_mul(GEN x, GEN y, ulong p)
GEN FlxY_Flx_div(GEN x, GEN y, ulong p) divides the coefficients of x by y using Flx_div.
GEN FlxX_deriv(GEN P, ulong p) returns the derivative of P with respect to the main variable.
GEN FlxY_evalx(GEN P, ulong z, ulong p) \( P \) being an FlxY, returns the Flx \( P(z,Y) \), where \( Y \) is the main variable of \( P \).

GEN FlxY_Flx_translate(GEN P, GEN f, ulong p) \( P \) being an FlxY and \( f \) being an Flx, return \( (P(x,Y + f(x))) \), where \( Y \) is the main variable of \( P \).

ulong FlxY_evalx_powers_pre(GEN P, GEN xp, ulong p, ulong pi), \( xp \) being the vector \([1,x,\ldots,x^n]\), where \( n \) is larger or equal to the degree of \( P \) in \( X \), return \( P(x,Y) \), where \( Y \) is the main variable of \( Q \), assuming \( pi \) is the pseudo inverse of \( p \).

ulong FlxY_eval_powers_pre(GEN P, GEN xp, GEN yp, ulong p, ulong pi), \( xp \) being the vector \([1,x,\ldots,x^n]\), where \( n \) is larger or equal to the degree of \( P \) in \( X \) and \( yp \) being the vector \([1,y,\ldots,y^m]\), where \( m \) is larger or equal to the degree of \( P \) in \( Y \) return \( P(x,y) \), assuming \( pi \) is the pseudo inverse of \( p \).

GEN FlxY_Flxq_evalx(GEN x, GEN y, GEN T, ulong p) as FpXY_FpXQ_evalx.

GEN FlxY_FlxqV_evalx(GEN x, GEN V, GEN T, ulong p) as FpXY_FpXQV_evalx.

GEN FlxX_renormalize(GEN x, long l), as normalizepol, where \( l = \text{lg}(x) \), in place.

GEN FlxX_resultant(GEN u, GEN v, ulong p, long sv) Returns Res\(_X(u,v)\), which is an Flx. The coefficients of \( u \) and \( v \) are assumed to be in the variable \( v \).

GEN Flx_FlxY_resultant(GEN a, GEN b, ulong p) Returns Res\(_X(a,b)\), which is an Flx in the main variable of \( b \).

GEN FlxX_shift(GEN a, long n, long sv), as RgX_shift_shallow, where \( v \) is the secondary variable.

GEN FlxX_swap(GEN x, long n, long ws), as RgXY_swap.

GEN FlxYqq_pow(GEN x, GEN n, GEN S, GEN T, ulong p), as FpXYQQ_pow.

### 7.3.21 FlxqX

See FpXQX operations.

#### 7.3.21.1 Preconditioned reduction.

For faster reduction, the modulus \( S \) can be replaced by an extended modulus, which is an FlxqXT, in all FlxqXQ-classes functions, and in FlxqX_rem and FlxqX_divrem.

GEN FlxqX_get_red(GEN S, GEN T, ulong p) returns the extended modulus \( eS \).

To write code that works both with plain and extended moduli, the following accessors are defined:

GEN get_FlxqX_mod(GEN eS) returns the underlying modulus \( S \).

GEN get_FlxqX_var(GEN eS) returns the variable number of the modulus.

GEN get_FlxqX_degree(GEN eS) returns the degree of the modulus.
7.3.21.2 basic functions.

GEN random_FlxqX(long d, long v, GEN T, ulong p) returns a random FlxqX in variable v, of degree less than d.

GEN zxX_to_Kronecker(GEN P, GEN Q) assuming P(X,Y) is a polynomial of degree in X strictly less than n, returns P(X, X^{2n-1}), the Kronecker form of P.

GEN Kronecker_to_FlxqX(GEN z, GEN T, ulong p). Let n = deg T and let P(X,Y) ∈ Z[X,Y] lift a polynomial in K[Y], where K := F_p[X]/(T) and deg_X P < 2n-1 — such as would result from multiplying minimal degree lifts of two polynomials in K[Y]. Let z = P(t, t^{2n-1}) be a Kronecker form of P, this function returns Q ∈ Z[X,t] such that Q is congruent to P(X, t) mod (p, T(X)), deg_X Q < n, and all coefficients are in [0,p]. Not stack-clean. Note that t need not be the same variable as Y!

GEN FlxqX_red(GEN z, GEN T, ulong p)
GEN FlxqX_normalize(GEN z, GEN T, ulong p)
GEN FlxqX_mul(GEN x, GEN y, GEN T, ulong p)
GEN FlxqX_Flxq_mul(GEN P, GEN U, GEN T, ulong p) returns P ∗ U assuming the result is monic of the same degree as P (in particular U ≠ 0).
GEN FlxqX_sqr(GEN x, GEN T, ulong p)
GEN FlxqX_powu(GEN x, ulong n, GEN T, ulong p)
GEN FlxqX_divrem(GEN x, GEN y, GEN T, ulong p, GEN *pr)
GEN FlxqX_div(GEN x, GEN y, GEN T, ulong p)
GEN FlxqX_rem(GEN x, GEN y, GEN T, ulong p)
GEN FlxqX_invBarrett(GEN T, GEN Q, ulong p)
GEN FlxqX_gcd(GEN x, GEN y, ulong p) returns a (not necessarily monic) greatest common divisor of x and y.
GEN FlxqX_extgcd(GEN x, GEN y, GEN T, ulong p, GEN *ptu, GEN *ptv)
GEN FlxqX_halfgcd(GEN x, GEN y, GEN T, ulong p) Returns the monic GCD of P and Q if Euclid’s algorithm succeeds and NULL otherwise. In particular, if p is not prime or T is not irreducible over F_p[X], the routine may still be used (but will fail if non-invertible leading terms occur).
GEN FlxqX_dotproduct(GEN x, GEN y, GEN T, ulong p) returns the scalar product of the coefficients of x and y.

long FlxqX_is_squarefree(GEN S, GEN T, ulong p), as FpX_is_squarefree.

long FlxqX_ispower(GEN f, ulong k, GEN T, ulong p, GEN *pt) return 1 if the FlxqX f is a k-th power, 0 otherwise. If pt is not NULL, set it to g such that g^k = f.
GEN FlxqX_Frobenius(GEN S, GEN T, ulong p), as FpXQX_Frobenius
GEN FlxqX_roots(GEN f, GEN T, ulong p) return the roots of f in \( \mathbf{F}_p[X]/(T) \). Assumes p is prime and T irreducible in \( \mathbf{F}_p[X] \).

GEN FlxqX_factor(GEN f, GEN T, ulong p) return the factorization of f over \( \mathbf{F}_p[X]/(T) \). Assumes p is prime and T irreducible in \( \mathbf{F}_p[X] \).

GEN FlxqX_factor_squarefree(GEN f, GEN T, ulong p) returns the squarefree factorization of f, see FpX_factor_squarefree.

GEN FlxqX_ddf(GEN f, GEN T, ulong p) as FpX_ddf.

long FlxqX_ddf_degree(GEN f, GEN XP, GEN T, GEN p), as FpX_ddf_degree.

GEN FlxqX_degfact(GEN f, GEN T, ulong p), as FpX_degfact.

long FlxqX_nbroots(GEN S, GEN T, ulong p), as FpX_nbroots.

long FlxqX_nbfact(GEN S, GEN T, ulong p), as FpX_nbfact.

long FlxqX_nbfact_Frobenius(GEN S, GEN Xq, GEN T, ulong p), as FpX_nbfact_Frobenius.

GEN FlxqX_FlxqXQ_eval(GEN Q, GEN x, GEN S, GEN T, ulong p) as FpX_FpXQQ_eval.

GEN FlxqX_FlxqXQV_eval(GEN P, GEN V, GEN S, GEN T, ulong p) as FpX_FpXQV_eval.

7.3.22 FlxqXQ. See FpXQXQ operations.

GEN FlxqXQ_mul(GEN x, GEN y, GEN S, GEN T, ulong p)
GEN FlxqXQ_sqr(GEN x, GEN S, GEN T, ulong p)
GEN FlxqXQ_inv(GEN x, GEN S, GEN T, ulong p)
GEN FlxqXQ_invsafe(GEN x, GEN S, GEN T, ulong p)
GEN FlxqXQ_div(GEN x, GEN y, GEN S, GEN T, ulong p)
GEN FlxqXQ_pow(GEN x, GEN n, GEN S, GEN T, ulong p)
GEN FlxqXQ_powu(GEN x, ulong n, GEN S, GEN T, ulong p)
GEN FlxqXQ_powers(GEN x, long n, GEN S, GEN T, ulong p)
GEN FlxqXQ_matrix_pow(GEN x, long n, long m, GEN S, GEN T, ulong p)
GEN FlxqXQ_autpow(GEN a, long n, GEN S, GEN T, ulong p) as FpXQXQ_autpow
GEN FlxqXQ_autsum(GEN a, long n, GEN S, GEN T, ulong p) as FpXQXQ_autsum
GEN FlxqXQ_auttrace(GEN a, long n, GEN S, GEN T, ulong p) as FpXQXQ_auttrace
GEN FlxqXQ_halfFrobenius(GEN A, GEN S, GEN T, ulong p), as FpXQXQ_halfFrobenius
GEN FlxqXQ_minpoly(GEN x, GEN S, GEN T, ulong p), as FpXQQ_minpoly
7.3.23 F2x. An F2x z is a t_VECSMALL representing a polynomial over \( \mathbb{F}_2[X] \). Specifically \( z[0] \) is the usual codeword, \( z[1] = \text{evalvarn}(v) \) for some variable \( v \) and the coefficients are given by the bits of remaining words by increasing degree.

7.3.23.1 Preconditioned reduction.

For faster reduction, the modulus \( T \) can be replaced by an extended modulus (FlxT) in all Flxq-classes functions, and in Flx_divrem.

GEN F2x_get_red(GEN T) returns the extended modulus eT.

To write code that works both with plain and extended moduli, the following accessors are defined:

GEN get_F2x_mod(GEN eT) returns the underlying modulus T.

GEN get_F2x_var(GEN eT) returns the variable number of the modulus.

GEN get_F2x_degree(GEN eT) returns the degree of the modulus.

7.3.23.2 Basic operations.

ulong F2x_coeff(GEN x, long i) returns the coefficient \( i \geq 0 \) of \( x \).

void F2x_clear(GEN x, long i) sets the coefficient \( i \geq 0 \) of \( x \) to 0.

void F2x_flip(GEN x, long i) adds 1 to the coefficient \( i \geq 0 \) of \( x \).

void F2x_set(GEN x, long i) sets the coefficient \( i \geq 0 \) of \( x \) to 1.

GEN F2x_copy(GEN x)

GEN Flx_to_F2x(GEN x)

GEN Z_to_F2x(GEN x, long v)

GEN ZX_to_F2x(GEN x)

GEN F2v_to_F2x(GEN x, long sv)

GEN F2x_to_Flx(GEN x)

GEN F2x_to_F2xX(GEN x, long sv)

GEN F2x_to_ZX(GEN x)

GEN pol0_F2x(long sv) returns a zero F2x in variable \( v \).

GEN zero_F2x(long sv) alias for pol0_F2x.

GEN pol1_F2x(long sv) returns the F2x in variable \( v \) constant to 1.

GEN polx_F2x(long sv) returns the variable \( v \) as degree 1 F2x.

GEN monomial_F2x(long d, long sv) returns the F2x \( X^d \) in variable \( v \).

GEN random_F2x(long d, long sv) returns a random F2x in variable \( v \), of degree less than \( d \).

long F2x_degree(GEN x) returns the degree of the F2x \( x \). The degree of 0 is defined as −1.

int F2x_equal1(GEN x)

int F2x_equal(GEN x, GEN y)
GEN F2x_1_add(GEN y) returns \( y+1 \) where \( y \) is a F2x.

GEN F2x_add(GEN x, GEN y)

GEN F2x_mul(GEN x, GEN y)

GEN F2x_sqr(GEN x)

GEN F2x_divrem(GEN x, GEN y, GEN *pr)

GEN F2x_rem(GEN x, GEN y)

GEN F2x_div(GEN x, GEN y)

GEN F2x_renormalize(GEN x, long lx)

GEN F2x_deriv(GEN x)

GEN F2x_deflate(GEN x, long d)

ulong F2x_eval(GEN P, ulong u) returns \( P(u) \).

void F2x_shift(GEN x, long d) as RgX_shift

void F2x_even_odd(GEN P, GEN *pe, GEN *po) as RgX_even_odd

long F2x_valrem(GEN x, GEN *Z)

GEN F2x_extgcd(GEN a, GEN b, GEN *ptu, GEN *ptv)

GEN F2x_gcd(GEN a, GEN b)

GEN F2x_halfgcd(GEN a, GEN b)

int F2x_issquare(GEN x) returns 1 if \( x \) is a square of a F2x and 0 otherwise.

int F2x_is_irred(GEN f), as FpX_is_irred.

GEN F2x_degfact(GEN f) as FpX_degfact.

GEN F2x_sqrt(GEN x) returns the square root of \( x \), assuming \( x \) is a square of a F2x.

GEN F2x_Frobenius(GEN T)

GEN F2x_matFrobenius(GEN T)

GEN F2x_factor(GEN f)

GEN F2x_factor_squarefree(GEN f)

GEN F2x_ddf(GEN f)
7.3.24 F2xq. See FpXQ operations.

```c
GEN F2xq_mul(GEN x, GEN y, GEN T)
GEN F2xq_sqr(GEN x, GEN T)
GEN F2xq_div(GEN x, GEN y, GEN T)
GEN F2xq_inv(GEN x, GEN T)
GEN F2xq_invsafe(GEN x, GEN T)
GEN F2xq_pow(GEN x, GEN n, GEN T)
GEN F2xq_powu(GEN x, ulong n, GEN T)
GEN F2xq_pow_init(GEN x, GEN n, long k, GEN T)
GEN F2xq_pow_table(GEN R, GEN n, GEN T)
ulong F2xq_trace(GEN x, GEN T)
GEN F2xq_conjvec(GEN x, GEN T)
``` 
returns the vector of conjugates \([x, x^2, x^{2^2}, \ldots, x^{2^{n-1}}]\) where \(n\) is the degree of \(T\).

```c
GEN F2xq_log(GEN a, GEN g, GEN ord, GEN T)
GEN F2xq_order(GEN a, GEN ord, GEN T)
GEN F2xq_Artin_Schreier(GEN a, GEN T)
```
returns a solution of \(x^2 + x = a\), assuming it exists.

```c
GEN F2xq_sqrt(GEN a, GEN T)
GEN F2xq_sqrt_fast(GEN a, GEN s, GEN T)
```
assuming that \(s^2 \equiv x \pmod{T(x)}\), computes \(b \equiv a(s) \pmod{T}\) so that \(b^2 = a\).

```c
GEN F2xq_sqrtntn(GEN a, GEN n, GEN T, GEN *zeta)
GEN gener_F2xq(GEN T, GEN *po)
GEN F2xq_powers(GEN x, long n, GEN T)
GEN F2xq_matrix_pow(GEN x, long m, long n, GEN T)
GEN F2x_F2xq_eval(GEN f, GEN x, GEN T)
GEN F2x_F2xqV_eval(GEN f, GEN x, GEN T), see FpX_FpXqv_eval.
GEN F2xq_autpow(GEN a, long n, GEN T)
```
computes \(\sigma^n(X)\) assuming \(a = \sigma(X)\) where \(\sigma\) is an automorphism of the algebra \(\mathbb{F}_2[X]/T(X)\).
7.3.25 \( F_{2xqV}, F_{2xqM} \). See \( F_{qV}, F_{qM} \) operations.

\[
\begin{align*}
GEN\ F_{2xqM\_F2xqC\_gauss}(GEN\ a,\ GEN\ b,\ GEN\ T) \\
GEN\ F_{2xqM\_F2xqC\_invimage}(GEN\ a,\ GEN\ b,\ GEN\ T) \\
GEN\ F_{2xqM\_F2xqC\_mul}(GEN\ a,\ GEN\ b,\ GEN\ T) \\
GEN\ F_{2xqM\_deplin}(GEN\ x,\ GEN\ T) \\
GEN\ F_{2xqM\_det}(GEN\ a,\ GEN\ T) \\
GEN\ F_{2xqM\_gauss}(GEN\ a,\ GEN\ b,\ GEN\ T) \\
GEN\ F_{2xqM\_image}(GEN\ x,\ GEN\ T) \\
GEN\ F_{2xqM\_indexrank}(GEN\ x,\ GEN\ T) \\
GEN\ F_{2xqM\_inv}(GEN\ a,\ GEN\ T) \\
GEN\ F_{2xqM\_invimage}(GEN\ a,\ GEN\ b,\ GEN\ T) \\
GEN\ F_{2xqM\_ker}(GEN\ x,\ GEN\ T) \\
GEN\ F_{2xqM\_mul}(GEN\ a,\ GEN\ b,\ GEN\ T) \\
long\ F_{2xqM\_rank}(GEN\ x,\ GEN\ T) \\
GEN\ F_{2xqM\_suppl}(GEN\ x,\ GEN\ T) \\
GEN\ matid\ F_{2xqM}(long\ n,\ GEN\ T)
\end{align*}
\]

7.3.26 \( F_{2xX} \). See \( F_{pX} \) operations.

\[
\begin{align*}
GEN\ \text{ZXX\_to\_F2xX}(GEN\ x,\ long\ v) \\
GEN\ \text{F1xx\_to\_F2xX}(GEN\ x) \\
GEN\ \text{F2xx\_to\_ZXX}(GEN\ B) \\
GEN\ \text{F2xx\_renormalize}(GEN\ x,\ long\ lx) \\
long\ \text{F2xx\_degree}(GEN\ P)\ \text{return\ the\ degree\ of}\ P\ \text{with\ respect\ to\ the\ secondary\ variable.} \\
GEN\ \text{pol1\_F2xx}(long\ v,\ long\ sv) \\
GEN\ \text{polx\_F2xx}(long\ v,\ long\ sv) \\
GEN\ \text{F2xx\_add}(GEN\ x,\ GEN\ y) \\
GEN\ \text{F2xx\_F2x\_add}(GEN\ x,\ GEN\ y) \\
GEN\ \text{F2xx\_F2x\_mul}(GEN\ x,\ GEN\ y) \\
GEN\ \text{F2xx\_deriv}(GEN\ P)\ \text{returns\ the\ derivative\ of}\ P\ \text{with\ respect\ to\ the\ main\ variable.} \\
GEN\ \text{Kronecker\_to\_F2xqX}(GEN\ z,\ GEN\ T) \\
GEN\ \text{F2xx\_to\_Kronecker}(GEN\ z,\ GEN\ T) \\
GEN\ \text{F2xy\_F2xq\_evalx}(GEN\ x,\ GEN\ y,\ GEN\ T)\ \text{as}\ FpXY\_FpXQ\_evalx. \\
GEN\ \text{F2xy\_F2xqV\_evalx}(GEN\ x,\ GEN\ V,\ GEN\ T)\ \text{as}\ FpXY\_FpXQV\_evalx.
\end{align*}
\]
7.3.27 F2xXV/F2xX. See FpXX operations.

GEN F1xXC_to_F2xXC(GEN B)
GEN F2xX_to_ZXXC(GEN B)

7.3.28 F2qxX. See F1xX operations.

7.3.28.1 Preconditioned reduction.

For faster reduction, the modulus S can be replaced by an extended modulus, which is an
F2qxXT, in all F2qxXQ-classes functions, and in F2qxX_rem and F2qxX_divrem.

GEN F2qxX_get_red(GEN S, GEN T) returns the extended modulus eS.

To write code that works both with plain and extended moduli, the following accessors are
defined:

GEN get_F2qx_X_mod(GEN eS) returns the underlying modulus S.
GEN get_F2qx_X_var(GEN eS) returns the variable number of the modulus.
GEN get_F2qx_X_degree(GEN eS) returns the degree of the modulus.

7.3.28.2 basic functions.

GEN random_F2qxX(long d, long v, GEN T, ulong p) returns a random F2qxX in variable v, of
degree less than d.
GEN F2qxX_red(GEN z, GEN T)
GEN F2qxX_normalize(GEN z, GEN T)
GEN F2qxX_F2qx_mul(GEN P, GEN U, GEN T)
GEN F2qxX_F2qx_mul_to_monic(GEN P, GEN U, GEN T)
GEN F2qxX_mul(GEN x, GEN y, GEN T)
GEN F2qxX_sqr(GEN x, GEN T)
GEN F2qxX_powu(GEN x, ulong n, GEN T)
GEN F2qxX_rem(GEN x, GEN y, GEN T)
GEN F2qxX_div(GEN x, GEN y, GEN T)
GEN F2qxX_divrem(GEN x, GEN y, GEN T, GEN *pr)
GEN F2qxXQ_inv(GEN x, GEN S, GEN T)
GEN F2qxXQ_invsafe(GEN x, GEN S, GEN T)
GEN F2qxXQ_invBarrett(GEN T, GEN Q)
GEN F2qxXQ_extgcd(GEN x, GEN y, GEN T, GEN *ptu, GEN *ptv)
GEN F2qxXQ_gcd(GEN x, GEN y, GEN T)
long F2qxX_ispower(GEN f, ulong k, GEN T, GEN *pt)
GEN F2qxX_F2qxXQ_eval(GEN Q, GEN x, GEN S, GEN T) as FpX_FpXQ_eval.
GEN F2xqX_roots(GEN f, GEN T) return the roots of f in $\mathbb{F}_2[X]/(T)$. Assumes T irreducible in $\mathbb{F}_2[X]$.

GEN F2xqX_factor(GEN f, GEN T) return the factorization of f over $\mathbb{F}_2[X]/(T)$. Assumes T irreducible in $\mathbb{F}_2[X]$.

GEN F2xqX_factor_squarefree(GEN f, GEN T) as FlxqX_factor_squarefree.

GEN F2xqX_ddf(GEN f, GEN T) as FpX_ddf.

GEN F2xqX_degfact(GEN f, GEN T) as FpX_degfact.

7.3.29 F2xqX. See FlxqX operations.

GEN FlxqX_inv(GEN x, GEN S, GEN T)
GEN FlxqX_invsafe(GEN x, GEN S, GEN T)
GEN F2xqX_mul(GEN x, GEN y, GEN S, GEN T)
GEN F2xqX_sqr(GEN x, GEN S, GEN T)
GEN F2xqX_pow(GEN x, GEN S, GEN T)
GEN F2xqX_powers(GEN x, long n, GEN S, GEN T)
GEN F2xqX_autpow(GEN a, long n, GEN S, GEN T) as FpXQXQ_autpow
GEN F2xqXQV_red(GEN x, GEN S, GEN T)

7.3.30 Functions returning objects with t_INTMOD coefficients.

Those functions are mostly needed for interface reasons: t_INTMODs should not be used in library mode since the modular kernel is more flexible and more efficient, but GP users do not have access to the modular kernel. We document them for completeness:

GEN Fp_to_mod(GEN z, GEN p), z a t_INT. Returns $z \cdot \text{Mod}(1,p)$, normalized. Hence the returned value is a t_INTMOD.

GEN FpX_to_mod(GEN z, GEN p), z a ZX. Returns $z \cdot \text{Mod}(1,p)$, normalized. Hence the returned value has t_INTMOD coefficients.

GEN FpC_to_mod(GEN z, GEN p), z a ZC. Returns $\text{Col}(z) \cdot \text{Mod}(1,p)$, a t_COL with t_INTMOD coefficients.

GEN FpV_to_mod(GEN z, GEN p), z a ZV. Returns $\text{Vec}(z) \cdot \text{Mod}(1,p)$, a t_VEC with t_INTMOD coefficients.

GEN FpVV_to_mod(GEN z, GEN p), z a ZVV. Returns $\text{Vec}(z) \cdot \text{Mod}(1,p)$, a t_VEC of t_VEC with t_INTMOD coefficients.

GEN FpM_to_mod(GEN z, GEN p), z a ZM. Returns $z \cdot \text{Mod}(1,p)$, with t_INTMOD coefficients.

GEN F2c_to_mod(GEN x)
GEN F2m_to_mod(GEN x)
GEN Flc_to_mod(GEN z)
GEN Flm_to_mod(GEN z)
GEN FqM_to_mod(GEN z, GEN T, GEN p)
GEN FpXQC_to_mod(GEN V, GEN T, GEN p) V being a vector of FpXQ, converts each entry to a t_POLMOD with t_INTMOD coefficients, and return a t_COL.

GEN QXQV_to_mod(GEN V, GEN T) V a vector of QXQ, which are lifted representatives of elements of Q[X]/(T) (number field elements in most applications) and T is in Z[X]. Return a vector where all non-rational entries are converted to t_POLMOD modulo T; no reduction mod T is attempted: the representatives should be already reduced. Used to normalize the output of nfroots.

GEN QXQX_to_mod_shallow(GEN P, GEN T) P a polynomial with QXQ coefficients; replace them by mkpolmod(.,T). Shallow function.
GEN QXQC_to_mod_shallow(GEN V, GEN T) V a vector with QXQ coefficients; replace them by mkpolmod(.,T). Shallow function.
GEN QXQM_to_mod_shallow(GEN M, GEN T) M a matrix with QXQ coefficients; replace them by mkpolmod(.,T). Shallow function.
GEN QXQXV_to_mod(GEN V, GEN T) V a vector of polynomials whose coefficients are QXQ. Analogous to QXQV_to_mod. Used to normalize the output of nffactor.

The following functions are obsolete and should not be used: they receive a polynomial with arbitrary coefficients, apply a conversion function to map them to a finite field, a function from the modular kernel, then _to_mod:

GEN rootmod(GEN f, GEN p), applies FpX.roots.
GEN rootmod2(GEN f, GEN p), (now) identical to rootmod.
GEN rootmod0(GEN f, GEN p, long flag), calls either rootmod or rootmod2 depending on flag.
GEN factmod(GEN f, GEN p) applies *_factor.
GEN simplefactmod(GEN f, GEN p) applies *_degfact.

7.3.31 Slow Chinese remainder theorem over Z. The routines in this section have quadratic time complexity with respect to the input size; see the routines in the next two sections for quasi-linear time variants.

GEN Z_chinese(GEN a, GEN b, GEN A, GEN B) returns the integer in [0, lcm(A,B)] congruent to a mod A and b mod B, assuming it exists; in other words, that a and b are congruent mod gcd(A,B).

GEN Z_chinese_all(GEN a, GEN b, GEN A, GEN B, GEN *pC) as Z_chinese, setting *pC to the lcm of A and B.

GEN Z_chinese_coprime(GEN a, GEN b, GEN A, GEN B, GEN C), as Z_chinese, assuming that gcd(A,B) = 1 and that C = lcm(A,B) = AB.

ulong u_chinese_coprime(ulong a, ulong b, ulong A, ulong B, ulong C), as Z_chinese_coprime for ulong inputs and output.

congruent to 0 mod \((A/d)\) and 1 mod \((B/d)\). It is allowed to set \(pd = NULL\), in which case, \(d\) is still computed, but not saved.

\[
\text{GEN Z\_chinese\_post(GEN a, GEN b, GEN C, GEN U, GEN d) returns the solution to the chinese remainder problem } x \equiv a \mod A \text{ and } b \mod B, \text{ where } C, U, d \text{ were set in Z\_chinese\_pre.}
\]

If \(d\) is \(NULL\), assume the problem has a solution. Otherwise, return \(NULL\) if it has no solution.

The following pair of functions is used in homomorphic imaging schemes, when reconstructing an integer from its images modulo pairwise coprime integers. The idea is as follows: we want to discover an integer \(H\) which satisfies \(|H| < B\) for some known bound \(B\); we are given pairs \((H_p,p)\) with \(H\) congruent to \(H_p\) modulo \(p\) and all \(p\) pairwise coprime.

Given \(H\) congruent to \(H_p\) modulo a number of \(p\), whose product is \(q\), and a new pair \((H_p,p)\), \(p\) coprime to \(q\), the following incremental functions use the chinese remainder theorem (CRT) to find a new \(H\), congruent to the preceding one modulo \(q\), but also to \(H_p\) modulo \(p\). It is defined uniquely modulo \(qp\), and we choose the centered representative. When \(P\) is larger than \(2B\), we have \(H = H\), but of course, the value of \(H\) may stabilize sooner. In many applications it is possible to directly check that such a partial result is correct.

\[
\text{GEN Z\_init\_CRT(ulong Hp, ulong p) given a Fl Hp in } [0,p-1], \text{ returns the centered representative } H \text{ congruent to Hp modulo p.}
\]

\[
\text{int Z\_incremental\_CRT(GEN *H, ulong Hp, GEN *q, ulong p) given a t\_INT \*H, centered modulo \*q, a new pair (Hp,p) with p coprime to q, this function updates \*H so that it also becomes congruent to (Hp,p), and \*q to the productqP = P \cdot \*q. It returns 1 if the new value is equal to the old one, and 0 otherwise.}
\]

\[
\text{GEN chinese1\_coprime\_Z(GEN v) an alternative divide-and-conquer implementation: } v \text{ is a vector of t\_INTMOD with pairwise coprime moduli. Return the t\_INTMOD solving the corresponding chinese remainder problem. This is a streamlined version of}
\]

\[
\text{GEN chinese1(GEN v), which solves a general chinese remainder problem (not necessarily over Z, moduli not assumed coprime).}
\]

As above, for \(H\) a \(ZM\): we assume that \(H\) and all \(Hp\) have dimension \(> 0\). The original \(*H\) is destroyed.

\[
\text{GEN ZM\_init\_CRT(GEN Hp, ulong p)}
\]

\[
\text{int ZM\_incremental\_CRT(GEN \*H, GEN Hp, GEN \*q, ulong p)}
\]

As above for \(H\) a \(ZX\): note that the degree may increase or decrease. The original \(*H\) is destroyed.

\[
\text{GEN ZX\_init\_CRT(GEN Hp, ulong p, long v)}
\]

\[
\text{int ZX\_incremental\_CRT(GEN \*H, GEN Hp, GEN \*q, ulong p)}
\]

As above, for \(H\) a matrix whose coefficient are \(ZX\). The original \(*H\) is destroyed. The entries of \(H\) are not normalized, use \(ZX\_renormalize\) for this.

\[
\text{GEN ZXM\_init\_CRT(GEN Hp, long deg, ulong p) where deg is the maximal degree of all the Hp}
\]

\[
\text{int ZXM\_incremental\_CRT(GEN \*H, GEN Hp, GEN \*q, ulong p)}
\]
7.3.32 Fast remainders.

The routines in these section are asymptotically fast (quasi-linear time in the input size).

GEN Zv_ZV_mod(GEN A, GEN P) given a t_INT A and a vector P of positive pairwise coprime integers of length \( n \geq 1 \), return a vector B of the same length such that \( B[i] = A \pmod{P[i]} \) and \( 0 \leq B[i] < P[i] \) for all \( 1 \leq i \leq n \). The vector P may be a t_VEC or a t_VECSMALL (treated as ulongs) and B has the same type as P.

GEN Zv_nv_mod(GEN A, GEN P) given a t_INT A and a t_VECSMALL P of positive pairwise coprime integers of length \( n \geq 1 \), return a t_VECSMALL B of the same length such that \( B[i] = A \pmod{P[i]} \) and \( 0 \leq B[i] < P[i] \) for all \( 1 \leq i \leq n \). The entries of P and B are treated as ulongs.

The following low level functions allow precomputations:

GEN Zv_producttree(GEN P) where \( P \) is a vector of integers (or t_VECSMALL) of length \( n \geq 1 \), return the vector of t_VECS [\( f(P), f^2(P), \ldots, f^k(P) \)] where \( f \) is the transformation \([p_1, p_2, \ldots, p_m] \mapsto [p_1p_2p_3p_4, \ldots, p_{m-1}p_m] \) if \( m \) is even and \([p_1p_2, p_3p_4, \ldots, p_{m-2p_{m-1}}, p_m] \) if \( m \) is odd, and \( k = O(\log m) \) is minimal so that \( f^k(P) \) has length 1; in other words, \( f^k(P) = [p_1p_2\ldots p_m] \).

GEN Zv_ZV_mod_tree(GEN A, GEN P, GEN T) as Zv_mod where T is the tree Zv_producttree(P).

GEN Zv_nv_mod_tree(GEN A, GEN P, GEN T) A being a ZV and P a t_VECSMALL of length \( n \geq 1 \), the elements of P being pairwise coprime, return the vector of Flv \([A \pmod{P[1]}], \ldots, A \pmod{P[n]}\) where T is the tree Zv_producttree(P).

GEN Zm_nv_mod_tree(GEN A, GEN P, GEN T) A being a ZM and P a t_VECSMALL of length \( n \geq 1 \), the elements of P being pairwise coprime, return the vector of Flm \([A \pmod{P[1]}], \ldots, A \pmod{P[n]}\) where T is the tree Zv_producttree(P).

GEN ZX_nv_mod_tree(GEN A, GEN P, GEN T) A being a ZX and P a t_VECSMALL of length \( n \geq 1 \), the elements of P being pairwise coprime, return the vector of Flx polynomials \([A \pmod{P[1]}], \ldots, A \pmod{P[n]}\) where T is the tree Zv_producttree(P).

GEN ZXC_nv_mod_tree(GEN A, GEN P, GEN T) A being a ZXC and P a t_VECSMALL of length \( n \geq 1 \), the elements of P being pairwise coprime, return the vector of FlxC \([A \pmod{P[1]}], \ldots, A \pmod{P[n]}\) where T is the tree Zv_producttree(P).

GEN ZXM_nv_mod_tree(GEN A, GEN P, GEN T) A being a ZXM and P a t_VECSMALL of length \( n \geq 1 \), the elements of P being pairwise coprime, return the vector of FlxM \([A \pmod{P[1]}], \ldots, A \pmod{P[n]}\) where T is the tree Zv_producttree(P).

GEN ZXX_nv_mod_tree(GEN A, GEN P, GEN T, long v) A being a ZXX, and P a t_VECSMALL of length \( n \geq 1 \), the elements of P being pairwise coprime, return the vector of FlxX \([A \pmod{P[1]}], \ldots, A \pmod{P[n]}\) where T is assumed to be the tree created by Zv_producttree(P).
7.3.33 Fast Chinese remainder theorem over $\mathbb{Z}$. The routines in these section are asymptotically fast (quasi-linear time in the input size) and should be used whenever the moduli are known from the start.

The simplest function is

\[
\text{GEN ZV\_chinese(GEN A, GEN P, GEN *)pM) let P be a vector of positive pairwise coprime integers, let A be a vector of integers of the same length } n \geq 1 \text{ such that } 0 \leq A[i] < P[i] \text{ for all } i, \text{ and let } M \text{ be the product of the elements of } P. \text{ Returns the integer in } [0, M[ \text{ congruent to } A[i] \mod P[i] \text{ for all } 1 \leq i \leq n. \text{ If pM is not NULL, set *pM to M. We also allow t\_VECSMALLs for A and P (seen as vectors of unsigned integers).}
\]

\[
\text{GEN ZV\_chinese\_center(GEN A, GEN P, GEN *pM) As ZV\_chinese but return integers in } [-M/2, M/2] \text{ instead.}
\]

The following functions allow to solve many Chinese remainder problems simultaneously, for a given set of moduli:

\[
\text{GEN nxV\_chinese\_center(GEN A, GEN P, GEN *pt\_mod) where A is a vector of nx and P a t\_VECSMALL of the same length } n \geq 1, \text{ the elements of } P \text{ being pairwise coprime, and } M \text{ being the product of the elements of } P, \text{ returns the t\_POL whose entries are integers in } [-M/2, M/2[ \text{ congruent to } A[i] \mod P[i] \text{ for all } 1 \leq i \leq n. \text{ If pt\_mod is not NULL, set *pt\_mod to M.}
\]

\[
\text{GEN ncV\_chinese\_center(GEN A, GEN P, GEN *pM) where A is a vector of VECSMALLs (seen as vectors of unsigned integers) and P a t\_VECSMALL of the same length } n \geq 1, \text{ the elements of } P \text{ being pairwise coprime, and } M \text{ being the product of the elements of } P, \text{ returns the t\_COL whose entries are integers in } [-M/2, M/2[ \text{ congruent to } A[i] \mod P[i] \text{ for all } 1 \leq i \leq n. \text{ If pM is not NULL, set *pM to M. N.B.: this function uses the parallel GP interface.}
\]

\[
\text{GEN nmV\_chinese\_center(GEN A, GEN P, GEN *pM) where A is a vector of MATSMALLs (seen as matrices of unsigned integers) and P a t\_VECSMALL of the same length } n \geq 1, \text{ the elements of } P \text{ being pairwise coprime, and } M \text{ being the product of the elements of } P, \text{ returns the t\_COL whose entries are integers in } [-M/2, M/2[ \text{ congruent to } A[i] \mod P[i] \text{ for all } 1 \leq i \leq n. \text{ If pM is not NULL, set *pM to M. N.B.: this function uses the parallel GP interface.}
\]

\[
\text{GEN nxCV\_chinese\_center(GEN A, GEN P, GEN *pM) where A is a vector of nxCSs and P a t\_VECSMALL of the same length } n \geq 1, \text{ the elements of } P \text{ being pairwise coprime, and } M \text{ being the product of the elements of } P, \text{ returns the t\_COL whose entries are integers in } [-M/2, M/2[ \text{ congruent to } A[i] \mod P[i] \text{ for all } 1 \leq i \leq n. \text{ If pM is not NULL, set *pM to M.}
\]

\[
\text{GEN nxMV\_chinese\_center(GEN A, GEN P, GEN *pM) where A is a vector of nxMSs and P a t\_VECSMALL of the same length } n \geq 1, \text{ the elements of } P \text{ being pairwise coprime, and } M \text{ being the product of the elements of } P, \text{ returns the matrix whose entries are integers in } [-M/2, M/2[ \text{ congruent to } A[i] \mod P[i] \text{ for all } 1 \leq i \leq n. \text{ If pM is not NULL, set *pM to M. N.B.: this function uses the parallel GP interface.}
\]

The other routines allow for various precomputations:

\[
\text{GEN ZV\_chinesetree(GEN P, GEN T) given P a vector of integers (or t\_VECSMALL) and a product tree } T \text{ from ZV\_producttree(P) for the same } P, \text{ return a “chinese remainder tree” } R, \text{ preconditioning the solution of Chinese remainder problems modulo the } P[i].
\]

\[
\text{GEN ZV\_chinese\_tree(GEN A, GEN P, GEN T, GEN R) return ZV\_chinese(A, P, NULL), where } T \text{ is created by ZV\_producttree(P) and } R \text{ by ZV\_chinesetree(P, T).}
\]

148
GEN nmV\_chinese\_center\_tree(GEN A, GEN P, GEN T, GEN R) as \textit{nmV\_chinese\_center} where \( T \) is assumed to be the tree created by \( ZV\text{-producttree}(P) \) and \( R \) by \( ZV\text{-chinesetree}(P,T) \).

GEN nxV\_chinese\_center\_tree(GEN A, GEN P, GEN T, GEN R) as \textit{nxV\_chinese\_center} where \( T \) is assumed to be the tree created by \( ZV\text{-producttree}(P) \) and \( R \) by \( ZV\text{-chinesetree}(P,T) \).

7.3.34 Rational reconstruction.

\textbf{int \texttt{Fp\_ratlift}(GEN \( x \), GEN \( m \), GEN \( amax \), GEN \( bmax \), GEN *\( a \), GEN *\( b \))}. Assuming that \( 0 \leq x < m \), \( amax \geq 0 \), and \( bmax > 0 \) are \texttt{t\_INT}s, and that \( 2amaxbmax < m \), attempts to recognize \( x \) as a rational \( a/b \), i.e. to find \texttt{t\_INT}s \( a \) and \( b \) such that

\begin{itemize}
  \item \( a \equiv bx \bmod m \),
  \item \(|a| \leq amax, 0 < b \leq bmax, \)
  \item \( \gcd(m,b) = \gcd(a,b) \).
\end{itemize}

If unsuccessful, the routine returns 0 and leaves \( a \), \( b \) unchanged; otherwise it returns 1 and sets \( a \) and \( b \).

In almost all applications, we actually know that a solution exists, as well as a non-zero multiple \( B \) of \( b \), and \( m = p^e \) is a prime power, for a prime \( p \) chosen coprime to \( B \) hence to \( b \). Under the single assumption \( \gcd(m,b) = 1 \), if a solution \( a,b \) exists satisfying the three conditions above, then it is unique.

\textbf{GEN \texttt{FpM\_ratlift}(GEN \( M \), GEN \( m \), GEN \( amax \), GEN \( bmax \), GEN \( \text{denom} \))} given an \texttt{FpM} modulo \( m \) with reduced or \texttt{Fp\_center}-ed entries, reconstructs a matrix with rational coefficients by applying \texttt{Fp\_ratlift} to all entries. Assume that all preconditions for \texttt{Fp\_ratlift} are satisfied, as well \( \gcd(m,b) = 1 \) (so that the solution is unique if it exists). Return \texttt{NULL} if the reconstruction fails, and the rational matrix otherwise. If \texttt{denom} is not \texttt{NULL} check further that all denominators divide \texttt{denom}.

The functions is not stack clean if one coefficients of \( M \) is negative (centered residues), but still suitable for \texttt{gerepileupto}.

\textbf{GEN \texttt{FpX\_ratlift}(GEN \( P \), GEN \( m \), GEN \( amax \), GEN \( bmax \), GEN \( \text{denom} \))} as \texttt{FpM\_ratlift}, where \( P \) is an \texttt{FpX}.

\textbf{GEN \texttt{FpC\_ratlift}(GEN \( P \), GEN \( m \), GEN \( amax \), GEN \( bmax \), GEN \( \text{denom} \))} as \texttt{FpM\_ratlift}, where \( P \) is an \texttt{FpC}.

7.3.35 Zp.

\textbf{GEN \texttt{Zp\_sqrt}(GEN \( b \), GEN \( p \), long \( e \)) \( b \) and \( p \) being \texttt{t\_INT}s, with \( p \) a prime (possibly 2), returns a \texttt{t\_INT} \( a \) such that \( a^2 \equiv b \bmod p^e \).}

\textbf{GEN \texttt{Z2\_sqrt}(GEN \( b \), long \( e \)) \( b \) being a \texttt{t\_INT} returns a \texttt{t\_INT} \( a \) such that \( a^2 \equiv b \bmod 2^e \).}

\textbf{GEN \texttt{Zp\_sqrtnlift}(GEN \( b \), GEN \( a \), GEN \( p \), long \( e \)) let \( a,b,p \) be \texttt{t\_INT}s, with \( p > 1 \) odd, such that \( a^2 \equiv b \bmod p \). Returns a \texttt{t\_INT} \( A \) such that \( A^2 \equiv b \bmod p^e \). Special case of \texttt{Zp\_sqrtnlift}.}

\textbf{GEN \texttt{Zp\_sqrtnlift}(GEN \( b \), GEN \( n \), GEN \( a \), GEN \( p \), long \( e \)) let \( a,b,n,p \) be \texttt{t\_INT}s, with \( n,p > 1 \), and \( p \) coprime to \( n \), such that \( a^n \equiv b \bmod p \). Returns a \texttt{t\_INT} \( A \) such that \( A^n \equiv b \bmod p^e \). Special case of \texttt{ZpX\_liftroot}.}

149
GEN Zp_teichmuller(\text{GEN } x, \text{ GEN } p, \text{ long } e, \text{ GEN } pe) \text{ for } p \text{ an odd prime, } x \text{ a } \text{t}_\text{INT} \text{ coprime to } p, \text{ and } pe = p^e, \text{ returns the } (p - 1)\text{-th root of 1 congruent to } x \text{ modulo } p, \text{ modulo } p^e. \text{ For convenience, } p = 2 \text{ is also allowed and we return 1 } (x \text{ is 1 mod 4}) \text{ or } 2^e - 1 \text{ ( } x \text{ is 3 mod 4}).

GEN teichmullerinit(\text{long } p, \text{ long } n) \text{ returns the values of } Zp\text{.teichmuller} \text{ at all } x = 1,\ldots,p - 1.

7.3.36 ZpX.

GEN ZpX\_roots(\text{GEN } f, \text{ GEN } p, \text{ long } e) \text{ } f \text{ a } ZX \text{ with leading term prime to } p, \text{ and without multiple roots } \text{mod } p. \text{ Return a vector of } \text{t}_\text{INTs} \text{ which are the roots of } f \text{ mod } p^e.

GEN ZpX\_liftroot(\text{GEN } f, \text{ GEN } a, \text{ GEN } p, \text{ long } e) \text{ } f \text{ a } ZX \text{ with leading term prime to } p, \text{ and } a \text{ a root mod } p \text{ such that } v_p(f'(a)) = 0. \text{ Return a } \text{t}_\text{INT} \text{ which is the root of } f \text{ mod } p^e \text{ congruent to } a \text{ mod } p.

GEN ZX\_Zp\_root(\text{GEN } f, \text{ GEN } a, \text{ GEN } p, \text{ long } e) \text{ } f, g \text{ are both } ZX, \text{ and that } p \text{ is a prime number coprime to the leading coefficient of } f, g. \text{ Proceeds by dynamically increasing the } -\text{adic accuracy; infinite loop if the discriminant of } f, g \text{ is 0.}

GEN ZpX\_roots(\text{GEN } f, \text{ GEN } S, \text{ GEN } p, \text{ long } e) \text{ } f \text{ a ZX with leading term prime to } p, \text{ and } S \text{ a vector of simple roots mod } p. \text{ Return a vector of } \text{t}_\text{INTs} \text{ which are the root of } f \text{ mod } p^e \text{ congruent to the } S[i] \text{ mod } p.

GEN ZpX\_liftfact(\text{GEN } A, \text{ GEN } B, \text{ GEN } pe, \text{ GEN } p, \text{ long } e) \text{ is the routine underlying polhensellift. Here, } p \text{ prime defines a finite field } F_p. A \text{ is a polynomial in } Z[X], \text{ whose leading coefficient is non-zero in } F_q. B \text{ is a vector of monic } F_p[X], \text{ pairwise coprime in } F_p[X], \text{ whose product is congruent to } A/lc(A) \text{ in } F_p[X]. \text{ Lifts the elements of } B \text{ mod } pe = p^e.

GEN ZpX\_Frobenius(\text{GEN } T, \text{ GEN } p, \text{ ulong } e) \text{ returns the } p\text{-adic lift of the Frobenius automorphism of } F_p[X]/(T) \text{ to precision } e.

long ZpX\_disc\_val(\text{GEN } f, \text{ GEN } p) \text{ returns the valuation at } p \text{ of the discriminant of } f. \text{ Assume that } f \text{ is a monic } \text{separable } ZX \text{ and that } p \text{ is a prime number. Proceeds by dynamically increasing the } p\text{-adic accuracy; infinite loop if the discriminant of } f \text{ is 0.}

long ZpX\_resultant\_val(\text{GEN } f, \text{ GEN } g, \text{ GEN } p, \text{ long } M) \text{ returns the valuation at } p \text{ of } \text{Res}(f, g). \text{ Assume } f, g \text{ are both } ZX, \text{ and that } p \text{ is a prime number coprime to the leading coefficient of } f. \text{ Proceeds by dynamically increasing the } p\text{-adic accuracy. To avoid an infinite loop when the resultant is 0, we return } M \text{ if the Sylvester matrix mod } p^M \text{ still does not have maximal rank.}

GEN ZpX\_gcd(\text{GEN } f, \text{ GEN } g, \text{ GEN } p, \text{ GEN } pm) \text{ } f \text{ a monic } ZX, \text{ g a } ZX, \text{ } pm = p^m \text{ a prime power. There is a unique integer } r \geq 0 \text{ and a monic } h \in Q_p[X] \text{ such that }

\[ p^r h Z_p[X] + p^m Z_p[X] = f Z_p[X] + g Z_p[X] + p^m Z_p[X]. \]

Return the 0 polynomial if } r \geq m \text{ and a monic } h \in Z[1/p][X] \text{ otherwise (whose valuation at } p \text{ is } > -m).

GEN ZpX\_reduced\_resultant(\text{GEN } f, \text{ GEN } g, \text{ GEN } p, \text{ GEN } pm) \text{ } f \text{ a monic } ZX, \text{ g a } ZX, \text{ } pm = p^m \text{ a prime power. The } p\text{-adic } \text{reduced resultant of } f \text{ and } g \text{ is 0 if } f, g \text{ not coprime in } Z_p[X], \text{ and otherwise the generator of the form } p^d \text{ of }

\[(f Z_p[X] + g Z_p[X]) \cap Z_p.\]
Return the reduced resultant modulo \( p^n \).

\[
\text{GEN ZpX\textunderscore\text{reduced}\textunderscore\text{resultant\textunderscore\text{fast}}(\text{GEN } f, \text{ GEN } g, \text{ GEN } p, \text{ long } M) \text{ f a monic } Z[X], \text{ g a } Z[X], \text{ p a prime. Returns the } p\text{-adic reduced resultant of } f \text{ and } g \text{ modulo } p^M. \text{ This function computes resultants for a sequence of increasing } p\text{-adic accuracies (up to } M \text{ } p\text{-adic digits), returning as soon as it obtains a non-zero result. It is very inefficient when the resultant is 0, but otherwise usually more efficient than computations using a priori bounds.}
\]

\[
\text{GEN ZpX\textunderscore\text{monic}\textunderscore\text{factor}(\text{GEN } f, \text{ GEN } p, \text{ long } M) \text{ f a monic } Z[X], \text{ p a prime, return the } p\text{-adic factorization of } f \text{ modulo } p^M. \text{ This is the underlying low-level recursive function behind } \text{factorpadic} \text{ (using a combination of Round 4 factorization and Hensel lifting); the factors are not sorted and the function is not gerepile\text{-clean).}
\]

7.3.37 ZpXQ.

\[
\text{GEN ZpXQ\textunderscore\text{inv\textunderscore\text{lift}}(\text{GEN } b, \text{ GEN } a, \text{ GEN } T, \text{ GEN } p, \text{ long } e) \text{ let } p \text{ be a prime } t\text{-INT and } a, b \text{ be } FpXQs \text{ (modulo } T) \text{ such that } ab \equiv 1 \text{ mod } (p, T). \text{ Returns an } FpXQ A \text{ such that } Ab \equiv 1 \text{ mod } (p^e, T). \text{ Special case of ZpXQ\textunderscore\text{liftroot.}
}\]

\[
\text{GEN ZpXQ\textunderscore\text{inv}(\text{GEN } b, \text{ GEN } T, \text{ GEN } p, \text{ long } e) \text{ let } p \text{ be a prime } t\text{-INT and } b \text{ be a } FpXQ \text{ (modulo } T, p^e). \text{ Returns an } FpXQ A \text{ such that } Ab \equiv 1 \text{ mod } (p^e, T).
\]

\[
\text{GEN ZpXQ\textunderscore\text{div}(\text{GEN } a, \text{ GEN } b, \text{ GEN } T, \text{ GEN } q, \text{ GEN } p, \text{ long } e) \text{ let } p \text{ be a prime } t\text{-INT and } a \text{ and } b \text{ be a } FpXQ \text{ (modulo } T, p^e). \text{ Returns an } FpXQ c \text{ such that } cb \equiv a \text{ mod } (p^e, T). \text{ The parameter } q \text{ must be equal to } p^e.
\]

\[
\text{GEN ZpXQ\textunderscore\text{sqrtlift}(\text{GEN } b, \text{ GEN } n, \text{ GEN } a, \text{ GEN } T, \text{ GEN } p, \text{ long } e) \text{ let } n, p > 1 \text{ and } p \text{ coprime to } n, \text{ and } a, b \text{ be } FpXQs \text{ (modulo } T) \text{ such that } a^n \equiv b \text{ mod } (p, T). \text{ Returns an } Fq A \text{ such that } A^n \equiv b \text{ mod } (p^e, T). \text{ Special case of ZpXQ\textunderscore\text{liftroot.}
}\]

\[
\text{GEN ZpXQ\textunderscore\text{sqrt}(\text{GEN } b, \text{ GEN } T, \text{ GEN } p, \text{ long } e) \text{ let } p \text{ being a odd prime and } b \text{ be a } FpXQ \text{ (modulo } T, p^e), \text{ returns } a \text{ such that } a^2 \equiv b \text{ mod } (p^e, T).
\]

\[
\text{GEN ZpX\textunderscore\text{ZpXQ\textunderscore\text{liftroot}}(\text{GEN } f, \text{ GEN } a, \text{ GEN } T, \text{ GEN } p, \text{ long } e) \text{ as } ZpXQ\textunderscore\text{liftroot, but } f \text{ is a polynomial in } Z[X].
\]

\[
\text{GEN ZpX\textunderscore\text{ZpXQ\textunderscore\text{liftroot\textunderscore\text{ea}}(\text{GEN } f, \text{ GEN } a, \text{ GEN } T, \text{ GEN } p, \text{ long } e, \text{ void } *E, \text{ int } early(\text{void } *E, \text{ GEN } x, \text{ GEN } q)) \text{ as ZpX\textunderscore\text{ZpXQ\textunderscore\text{liftroot} with early abort: the function } early(E,x,q) \text{ will be called with } x \text{ is a root of } f \text{ modulo } q = p^n \text{ for some } n. \text{ If early returns a non-zero value, the function returns } x \text{ immediately.}
\]

\[
\text{GEN ZpXQ\textunderscore\text{log}(\text{GEN } a, \text{ GEN } T, \text{ GEN } p, \text{ long } e) \text{ T being a ZpX irreducible modulo } p, \text{ return the logarithm of } a \text{ in } Z_p[X]/(T) \text{ to precision } e, \text{ assuming that } a \equiv 1 \text{ } (\text{mod } pZ_p[X]) \text{ if } p \text{ odd or } a \equiv 1 \text{ } (\text{mod } 4Z_2[X]) \text{ if } p = 2.
\]

7.3.38 Zq.

\[
\text{GEN Zq\textunderscore\text{sqrtlift}(\text{GEN } b, \text{ GEN } n, \text{ GEN } a, \text{ GEN } T, \text{ GEN } p, \text{ long } e)
\]

7.3.39 ZpXQM.

\[
\text{GEN ZpXQM\textunderscore\text{prodFrobenius}(\text{GEN } M, \text{ GEN } T, \text{ GEN } p, \text{ long } e) \text{ returns the product of matrices } M\sigma(M)a^2(M)\ldots a^{n-1}(M) \text{ to precision } e \text{ where } \sigma \text{ is the lift of the Frobenius automorphism over } Z_p[X]/(T) \text{ and } n \text{ is the degree of } T.
\]
7.3.40 ZpXQX.

GEN ZpXQX_liftfact(GEN A, GEN B, GEN T, GEN pe, GEN p, long e) is the routine underlying polhensellift. Here, \( p \) is prime, \( T(Y) \) defines a finite field \( \mathbb{F}_q \). \( A \) is a polynomial in \( \mathbb{Z}[X,Y] \), whose leading coefficient is non-zero in \( \mathbb{F}_q \). \( B \) is a vector of monic or \( \mathbb{F}_q[X] \), pairwise coprime in \( \mathbb{F}_q[X] \), whose product is congruent to \( A/lc(A) \) in \( \mathbb{F}_q[X] \). Lifts the elements of \( B \) mod \( pe = p^e \), such that the congruence now holds mod \((T,p^e)\).

GEN ZpXQX_liftroot(GEN f, GEN a, GEN T, GEN p, long e) as \( \text{ZpX_liftroot} \), but \( f \) is now a polynomial in \( \mathbb{Z}[X,Y] \) and lift the root \( a \) in the unramified extension of \( \mathbb{Q}_p \) with residue field \( \mathbb{F}_p[Y]/(T) \), assuming \( v_p(f(a)) > 0 \) and \( v_p(f'(a)) = 0 \).

GEN ZpXQX_liftroot_vald(GEN f, GEN a, GEN v, GEN T, GEN p, long e) returns the roots of \( f \) as \( \text{ZpXQX_liftroot} \), where \( v \) is the valuation of the content of \( f' \) and it is required that \( v_p(f(a)) > v \) and \( v_p(f'(a)) = v \).

GEN ZpXQX_roots(GEN F, GEN T, GEN p, long e)\n
GEN ZpXQX_divrem(GEN x, GEN Sp, GEN T, GEN q, GEN p, long e, GEN *pr) as \( \text{FpXQX} \text{divrem} \). The parameter \( q \) must be equal to \( pe = p^e \).

GEN ZpXQX_digits(GEN x, GEN B, GEN T, GEN q, GEN p, long e) As \( \text{FpXQX} \text{digits} \). The parameter \( q \) must be equal to \( pe = p^e \).

7.3.41 ZqX.

GEN ZqX_roots(GEN F, GEN T, GEN p, long e)\n
GEN ZqX_liftfact(GEN A, GEN B, GEN T, GEN pe, GEN p, long e)\n
GEN ZqX_liftroot(GEN f, GEN a, GEN T, GEN p, long e)

7.3.42 Other \( p \)-adic functions.

GEN ZpM_echelon(GEN M, long early_abort, GEN p, GEN pm) given a \( \mathbb{Z}_M \) \( M \), a prime \( p \) and \( pm = p^m \), returns an echelon form \( E \) for \( M \) mod \( p^m \). I.e. there exist a square integral matrix \( U \) with \( \text{det}U \) coprime to \( p \) such that \( E = MU \) modulo \( p^m \). \( \text{I early_abort} \) is non-zero, return NULL as soon as one pivot in the echelon form is divisible by \( p^m \). The echelon form is an upper triangular \( \text{HNF}, \) we do not waste time to reduce it to Gauss-Jordan form.

GEN zlm_echelon(GEN M, long early_abort, ulong p, ulong pm) variant of \( \text{ZpM} \text{echelon}, \) for a \( \mathbb{Z}_M \) \( M \).

GEN ZLM_gauss(GEN a, GEN b, ulong p, long e, GEN C) as \( \text{gauss} \) with the following peculiarities: \( a \) and \( b \) are \( \mathbb{Z}_M \), such that \( a \) is invertible modulo \( p \). Optional \( C \) is an \( \text{Flm} \) that is an inverse of \( a \mod p \) or NULL. Return the matrix \( x \) such that \( ax = b \mod pe \) and all elements of \( x \) are in \([0,p^e-1]\). For efficiency, it is better to reduce \( a \) and \( b \) mod \( p^e \) first.

GEN padic_to_Q(GEN x) truncate the \( \text{t_PADIC} \) to a \( \text{t_INT} \) or \( \text{t_FRAC} \).

GEN padic_to_Q_shallow(GEN x) shallow version of \( \text{padic_to_Q} \)

GEN QpV_to_QV(GEN v) apply \( \text{padic_to_Q} \text{shallow} \)

long padicprec(GEN x, GEN p) returns the absolute \( p \)-adic precision of the object \( x \), by definition the minimum precision of the components of \( x \). For a non-zero \( \text{t_PADIC} \), this returns \( \text{valp}(x) + \text{precp}(x) \).
long padicprec_relative(GEN x) returns the relative $p$-adic precision of the $t_{\text{INT}}, t_{\text{FRAC}}$, or $t_{\text{PADIC}}$ $x$ (minimum precision of the components of $x$ for $t_{\text{POL}}$ or vector/matrices). For a $t_{\text{PADIC}}$, this returns $\text{precp}(x)$ if $x \neq 0$, and 0 for $x = 0$.

7.3.42.1 low-level.

The following technical function returns an optimal sequence of $p$-adic accuracies, for a given target accuracy:

ulong quadratic_prec_mask(long n) we want to reach accuracy $n \geq 1$, starting from accuracy 1, using a quadratically convergent, self-correcting, algorithm; in other words, from inputs correct to accuracy $l$ one iteration outputs a result correct to accuracy $2l$. For instance, to reach $n = 9$, we want to use accuracies $[1, 2, 3, 5, 9]$ instead of $[1, 2, 4, 8, 9]$. The idea is to essentially double the accuracy at each step, and not overshoot in the end.

Let $a_0 = 1$, $a_1 = 2, \ldots, a_k = n$, be the desired sequence of accuracies. To obtain it, we work backwards and set

$$a_k = n, \quad a_{i-1} = (a_i + 1) \div 2.$$  

This is in essence what the function returns. But we do not want to store the $a_i$ explicitly, even as a $t_{\text{VECSMALL}}$, since this would leave an object on the stack. Instead, we store $a_i$ implicitly in a bitmask MASK: let $a_0 = 1$, if the $i$-th bit of the mask is set, set $a_{i+1} = 2a_i - 1$, and $2a_i$ otherwise; in short the bits indicate the places where we do something special and do not quite double the accuracy (which would be the straightforward thing to do).

In fact, to avoid returning separately the mask and the sequence length $k + 1$, the function returns $\text{MASK} + 2^{k+1}$, so the highest bit of the mask indicates the length of the sequence, and the following ones give an algorithm to obtain the accuracies. This is much simpler than it sounds, here is what it looks like in practice:

```
ulong mask = quadratic_prec_mask(n);
long l = 1;
while (mask > 1) {
 /* here, the result is known to accuracy l */
 l = 2*l; if (mask & 1) l--; /* new accuracy l for the iteration */
 mask >>= 1; /* pop low order bit */
 /* ... lift to the new accuracy ... */
}
/* we are done. At this point l = n */
```

We just pop the bits in mask starting from the low order bits, stop when mask is 1 (that last bit corresponds to the $2^{k+1}$ that we added to the mask proper). Note that there is nothing specific to Hensel lifts in that function: it would work equally well for an Archimedean Newton iteration.

Note that in practice, we rather use an infinite loop, and insert an

```
if (mask == 1) break;
```

in the middle of the loop: the loop body usually includes preparations for the next iterations (e.g. lifting Bezout coefficients in a quadratic Hensel lift), which are costly and useless in the last iteration.
7.3.43 Conversions involving single precision objects.

7.3.43.1 To single precision.

ulong Rg_to_Fl(GEN z, ulong p), z which can be mapped to \( \mathbb{Z}/p\mathbb{Z} \): a \textit{t\_INT}, a \textit{t\_INTMOD} whose modulus is divisible by \( p \), a \textit{t\_FRAC} whose denominator is coprime to \( p \), or a \textit{t\_PADIC} with underlying prime \( \ell \) satisfying \( p = \ell^n \) for some \( n \) (less than the accuracy of the input). Returns \( \text{lift}(z \ast \text{Mod}(1,p)) \), normalized, as an \textit{Fl}.

ulong Rg_to_F2(GEN z), as \text{Rg\_to\_Fl} for \( p = 2 \).

ulong padic_to_Fl(GEN x, ulong p) special case of \text{Rg\_to\_Fl}, for a \textit{xa t\_PADIC}.

GEN RgX_to_F2x(GEN x), \( x \text{ a t\_POL}, \) returns the \textit{F2x} obtained by applying \text{Rg\_to\_Fl} coefficientwise.

GEN RgX_to_Flx(GEN x, ulong p), \( x \text{ a t\_POL}, \) returns the \textit{Flx} obtained by applying \text{Rg\_to\_Fl} coefficientwise.

GEN RgX_to_F2xq(GEN z, GEN T), \( z \text{ a GEN which can be mapped to } \mathbb{F}_2[\mathbb{X}]/(T): \) anything \text{Rg\_to\_Fl} can be applied to, a \textit{t\_POL} to which \text{RgX\_to\_F2x} can be applied to, a \textit{t\_POLMOD} whose modulus is divisible by \( T \) (once mapped to a \textit{F2x}), a suitable \textit{t\_RFRAC}. Returns \( z \) as an \textit{F2xq}, normalized.

GEN RgX_to_Flxq(GEN z, GEN T, ulong p), \( z \text{ a GEN which can be mapped to } \mathbb{F}_p[\mathbb{X}]/(T): \) anything \text{Rg\_to\_Flx} can be applied to, a \textit{t\_POL} to which \text{RgX\_to\_Flx} can be applied to, a \textit{t\_POLMOD} whose modulus is divisible by \( T \) (once mapped to a \textit{Flx}), a suitable \textit{t\_RFRAC}. Returns \( z \) as an \textit{Flxq}, normalized.

GEN RgX_to_FlxqX(GEN z, GEN T, ulong p), \( z \text{ a GEN which can be mapped to } \mathbb{F}_p[\mathbb{X}]/(T)[\mathbb{X}]: \) anything \text{Rg\_to\_Flxq} can be applied to, a \textit{t\_POL} to which \text{RgX\_to\_Flxq} can be applied to, a \textit{t\_POLMOD} whose modulus is divisible by \( T \) (once mapped to a \textit{Flxq}), a suitable \textit{t\_RFRAC}. Returns \( z \) as an \textit{FlxqX}, normalized.

GEN ZX_to_Flx(GEN x, ulong p) reduce \( ZX \ \text{x \ modulo \ p} \) (yielding an \textit{Flx}). Faster than \text{RgX\_to\_Flx}.

GEN ZV_to_Flv(GEN x, ulong p) reduce \( ZV \ \text{x \ modulo \ p} \) (yielding an \textit{Flv}).

GEN ZXV_to_FlxV(GEN v, ulong p), as \text{ZX\_to\_Flx}, repeatedly called on the vector’s coefficients.

GEN ZXT_to_FlxT(GEN v, ulong p), as \text{ZX\_to\_Flx}, repeatedly called on the tree leaves.

GEN ZXV_to_FlxV(GEN V, ulong p, long v), as \text{ZX\_to\_Flx}, repeatedly called on the polynomial’s coefficients.

GEN zxX_to_FlxX(GEN z, ulong p) as \text{zx\_to\_Flx}, repeatedly called on the polynomial’s coefficients.

GEN ZXXV_to_FlxXV(GEN V, ulong p, long v), as \text{ZXX\_to\_FlxX}, repeatedly called on the vector’s coefficients.

GEN ZXXT_to_FlxXT(GEN V, ulong p, long v), as \text{ZXX\_to\_FlxX}, repeatedly called on the tree leaves.

GEN RgV_to_Flv(GEN x, ulong p) reduce the \textit{t\_VEC/t\_COL} \x mod \ p, yielding a \textit{t\_VECSMALL}.

GEN RgM_to_Flm(GEN x, ulong p) reduce the \textit{t\_MAT} \x mod \ p.

GEN ZM_to_Flm(GEN x, ulong p) reduce \( ZM \ \text{x \ modulo \ p} \) (yielding an \textit{Flm}).

GEN ZV_to_zv(GEN z), converts coefficients using \text{itos}.
GEN ZV_to_nv(GEN z), converts coefficients using itou
GEN ZM_to_zm(GEN z), converts coefficients using itos
GEN FqC_to_FlxC(GEN x, GEN T, GEN p), converts coefficients in Fq to coefficient in Flx, result being a column vector.
GEN FqV_to_FlxV(GEN x, GEN T, GEN p), converts coefficients in Fq to coefficient in Flx, result being a line vector.
GEN FqM_to_FlxM(GEN x, GEN T, GEN p), converts coefficients in Fq to coefficient in Flx.

7.3.43.2 From single precision.
GEN Flx_to_ZX(GEN z), converts to ZX (t_POL of non-negative t_INTs in this case)
GEN Flx_to_FlxX(GEN z), converts to FlxX (t_POL of constant Flx in this case).
GEN Flx_to_ZX_inplace(GEN z), same as Flx_to_ZX, in place (z is destroyed).
GEN FlxX_to_ZXX(GEN B), converts an FlxX to a polynomial with ZXX or t_INT coefficients (repeated calls to FlxX_to_ZXX).
GEN FlxC_to_ZXXC(GEN B), converts an FlxC to a t_COL with ZXX coefficients (repeated calls to FlxX_to_ZXX).
GEN FlxXM_to_ZXXM(GEN B), converts an FlxXM to a t_MAT with ZXX coefficients (repeated calls to FlxX_to_ZXX).
GEN FlxC_to_ZXC(GEN x), converts a vector of Flx to a column vector of polynomials with t_INT coefficients (repeated calls to Flx_to_ZX).
GEN FlxV_to_ZXV(GEN x), as above but return a t_VEC.
void F2xV_to_FlxV_inplace(GEN v) v is destroyed.
void F2xV_to_ZXV_inplace(GEN v) v is destroyed.
void FlxV_to_ZXV_inplace(GEN v) v is destroyed.
GEN FlxM_to_ZXM(GEN z), converts a matrix of Flx to a matrix of polynomials with t_INT coefficients (repeated calls to Flx_to_ZX).
GEN zx_to_ZX(GEN z), as Flx_to_ZX, without assuming the coefficients to be non-negative.
GEN zx_to_Flx(GEN z, ulong p) as Flx_red without assuming the coefficients to be non-negative.
GEN Flc_to_ZC(GEN z), converts to ZC (t_COL of non-negative t_INTs in this case)
GEN Flc_to_ZC_inplace(GEN z), same as Flc_to_ZC, in place (z is destroyed).
GEN Flv_to_ZV(GEN z), converts to ZV (t_VEC of non-negative t_INTs in this case)
GEN Flm_to_ZM(GEN z), converts to ZM (t_MAT with non-negative t_INTs coefficients in this case)
GEN Flm_to_ZM_inplace(GEN z), same as Flm_to_ZM, in place (z is destroyed).
GEN zc_to_ZC(GEN z) as Flc_to_ZC, without assuming coefficients are non-negative.
GEN zv_to_ZV(GEN z) as Flv_to_ZV, without assuming coefficients are non-negative.
GEN zm_to_ZM(GEN z) as Flm_to_ZM, without assuming coefficients are non-negative.

GEN zv_to_Flv(GEN z, ulong p)
GEN zm_to_Flm(GEN z, ulong p)

7.3.43.3 Mixed precision linear algebra. Assumes dimensions are compatible. Multiply a
multiprecision object by a single-precision one.

GEN RgM_zc_mul(GEN x, GEN y)
GEN RgMrow_zc_mul(GEN x, GEN y, long i)
GEN RgM_zm_mul(GEN x, GEN y)
GEN RgV_zc_mul(GEN x, GEN y)
GEN RgV_zm_mul(GEN x, GEN y)
GEN ZM_zc_mul(GEN x, GEN y)
GEN zv_ZM_mul(GEN x, GEN y)
GEN ZV_zc_mul(GEN x, GEN y)
GEN ZM_zm_mul(GEN x, GEN y)
GEN ZC_z_mul(GEN x, long y)
GEN ZM_nm_mul(GEN x, GEN y) the entries of $y$ are ulongs.
GEN nm_Z_mul(GEN y, GEN c) the entries of $y$ are ulongs.

7.3.43.4 Miscellaneous involving Fl.

GEN Fl_to_Flx(ulong x, long evx) converts a unsigned long to a scalar Flx. Assume that
$evx = \text{evalvarn}(vx)$ for some variable number $vx$.

GEN Z_to_Flx(GEN x, ulong p, long sv) converts a t_INT to a scalar Flx polynomial. Assume
that $sv = \text{evalvarn}(v)$ for some variable number $v$.

GEN Flx_to_Flv(GEN x, long n) converts from Flx to Flv with $n$ components (assumed larger
than the number of coefficients of $x$).

GEN zx_to_zv(GEN x, long n) as Flx_to_Flv.

GEN Flv_to_Flx(GEN x, long sv) converts from vector (coefficient array) to (normalized) poly-
nomial in variable $v$.

GEN zv_to_zx(GEN x, long n) as Flv_to_Flx.

GEN Flm_to_FlxV(GEN x, long sv) converts the columns of Flm $x$ to an array of Flx in the
variable $v$ (repeated calls to Flv_to_Flx).

GEN zm_to_zxV(GEN x, long n) as Flm_to_FlxV.

GEN Flm_to_FlxX(GEN x, long sv, long sv) same as Flm_to_FlxV($x, sv$) but returns the result
as a (normalized) polynomial in variable $w$.

GEN FlxV_to_Flm(GEN v, long n) reverse Flm_to_FlxV, to obtain an Flm with $n$ rows (repeated
calls to Flx_to_Flv).

GEN FlxX_to_Flx(GEN P) Let $P(x, X)$ be a FlxX, return $P(0, X)$ as a Flx.
GEN FlxX_to_Flm(GEN v, long n) reverse Flm_to_FlxX, to obtain an Flm with n rows (repeated calls to Flx_to_Flv).

GEN FlxX_to_FlxC(GEN B, long n, long sv) see RgX_to_RgV. The coefficients of B are assumed to be in the variable v.

GEN FlxV_to_FlxM(GEN V, long n, long sv) see RgXV_to_RgM. The coefficients of V[i] are assumed to be in the variable v.

GEN Fly_to_FlxY(GEN a, long sv) convert coefficients of a to constant Flx in variable v.

7.3.43.5 Miscellaneous involving F2x.

GEN F2x_to_F2v(GEN x, long n) converts from F2x to F2v with n components (assumed larger than the number of coefficients of x).

GEN F2xC_to_ZXC(GEN x), converts a vector of F2x to a column vector of polynomials with t_INT coefficients (repeated calls to F2x_to_ZX).

GEN F2xC_to_FlxC(GEN x)
GEN FlxC_to_F2xC(GEN x)
GEN F2xV_to_F2m(GEN v, long n) F2x to F2v to each polynomial to get an F2m with n rows.

7.4 Higher arithmetic over Z: primes, factorization.

7.4.1 Pure powers.

long Z_issquare(GEN n) returns 1 if the t_INT n is a square, and 0 otherwise. This is tested first modulo small prime powers, then sqrtremi is called.

long Z_issquareall(GEN n, GEN *sqrtn) as Z_issquare. If n is indeed a square, set sqrtn to its integer square root. Uses a fast congruence test mod 64 × 63 × 65 × 11 before computing an integer square root.

long Z_ispow2(GEN x) returns 1 if the t_INT x is a power of 2, and 0 otherwise.

long uissquare(ulong n) as Z_issquare, for an ulong operand n.

long uissquareall(ulong n, ulong *sqrtn) as Z_issquareall, for an ulong operand n.

ulong usqrt(ulong a) returns the floor of the square root of a.

ulong usqrtn(ulong a, ulong n) returns the floor of the n-th root of a.

long Z_ispower(GEN x, ulong k) returns 1 if the t_INT n is a k-th power, and 0 otherwise; assume that k > 1.

long Z_ispowerall(GEN x, ulong k, GEN *pt) as Z_ispower. If n is indeed a k-th power, set *pt to its integer k-th root.

long Z_isanypower(GEN x, GEN *ptn) returns the maximal k ≥ 2 such that the t_INT x = n^k is a perfect power, or 0 if no such k exist; in particular ispower(1), ispower(0), ispower(-1) all return 0. If the return value k is not 0 (so that x = n^k) and ptn is not NULL, set *ptn to n.

The following low-level functions are called by Z_isanypower but can be directly useful:
int is_357_power(GEN x, GEN *ptn, ulong *pmask) tests whether the integer \( x > 0 \) is a 3-rd, 5-th or 7-th power. The bits of *mask initially indicate which test is to be performed; bit 0: 3-rd, bit 1: 5-th, bit 2: 7-th (e.g. *pmask = 7 performs all tests). They are updated during the call: if the "i-th power" bit is set to 0 then \( x \) is not a \( k \)-th power. The function returns 0 (not a 3-rd, 5-th or 7-th power), 3 (3-rd power, not a 5-th or 7-th power), 5 (5-th power, not a 7-th power), or 7 (7-th power); if an i-th power bit is initially set to 0, we take it at face value and assume \( x \) is not an \( i \)-th power without performing any test. If the return value \( k \) is non-zero, set *ptn to \( n \) such that \( x = n^k \).

int is_pth_power(GEN x, GEN *ptn, forprime_t *T, ulong cutoff) let \( x > 0 \) be an integer, \( \text{cutoff} > 0 \) and \( T \) be an iterator over primes \( \geq 11 \), we look for the smallest prime \( p \) such that \( x = n^p \) (advancing \( T \) as we go along). The 11 is due to the fact that \is_357_power and \issquare are faster than the generic version for \( p < 11 \).

Fail and return 0 when the existence of \( p \) would imply \( 2^{\text{cutoff}} > x^{1/p} \), meaning that a possible \( n \) is so small that it should have been found by trial division; for maximal speed, you should start by a round of trial division, but the cut-off may also be set to 1 for a rigorous result without any trial division.

Otherwise returns the smallest suitable prime power \( p^i \) and set *ptn to the \( p^i \)-th root of \( x \) (which is now not a \( p \)-th power). We may immediately recall the function with the same parameters after setting \( x = *\text{ptn} \); it will start at the next prime.

### 7.4.2 Factorization.

GEN \Z_factor\(\text{(GEN n)}\) factors the t_INT \( n \). The “primes” in the factorization are actually strong pseudoprimes.

GEN absZ_factor(GEN n) returns \Z_factor(absi(n)).

long \Z_issmooth\(\text{(GEN n, ulong lim)}\) returns 1 if all the prime factors of the t_INT \( n \) are less or equal to \( \text{lim} \).

GEN \Z_issmooth\_fact\(\text{(GEN n, ulong lim)}\) returns NULL if a prime factor of the t_INT \( n \) is \( > \text{lim} \), and returns the factorization of \( n \) otherwise, as a t_MAT with t_VECSMALL columns (word-size primes and exponents). Neither memory-clean nor suitable for \gerepileupto\.

GEN \Z_factor\_until\(\text{(GEN n, GEN lim)}\) as \Z_factor, but stop the factorization process as soon as the unfactored part is smaller than \( \text{lim} \). The resulting factorization matrix only contains the factors found. No other assumptions can be made on the remaining factors.

GEN \Z_factor\_limit\(\text{(GEN n, ulong lim)}\) trial divide \( n \) by all primes \( p < \text{lim} \) in the precomputed list of prime numbers and return the corresponding factorization matrix. In this case, the last “prime” divisor in the first column of the factorization matrix may well be a proven composite.

If \( \text{lim} = 0 \), the effect is the same as setting \( \text{lim} = \maxprime() + 1 \): use all precomputed primes.

GEN absZ_factor\_limit\(\text{(GEN n, ulong all)}\)returns \Z_factor\_limit(absi(n)).

GEN boundfact(GEN x, ulong lim) as \Z_factor\_limit, applying to t_INT or t_FRAC inputs.

GEN \Z_smooth\(\text{then(GEN n, GEN L, GEN *pP, GEN *pE)}\) given a t_VECSMALL \( L \) containing a list of small primes and a t_INT \( n \), trial divide \( n \) by the elements of \( L \) and return the cofactor. Return NULL if the cofactor is \( \pm 1 \). *p and *e contain the list of prime divisors found and their exponents, as t_VECSMALLs. Neither memory-clean, nor suitable for \gerepileupto\.
where

$$\text{GEN factoru}(\text{ulong } n)$$
returns the factorization of $$p^n - 1$$, where $$p$$ is prime and $$n$$ is a positive integer.

$$\text{GEN factor_pn_1}(\text{GEN } p, \text{ulong } n)$$
returns the factorization of $$p^{n-1}$$, where $$p$$ is prime and an Aurifeuillian factor exists ($$p \neq 2$$).

$$\phi_n$$
is a non-zero integer and $$n > 2$$. Returns 1 if no Aurifeuillian factor exists.

$$\text{GEN factor_Aurifeuille_prime}(\text{GEN } p, \text{long } n)$$
an Aurifeuillian factor exists ($$p \leq B$$), assuming $$p$$ prime and $$n > B^2$$ in the output
factorization matrix is a priori not a prime (but may well be).

$$\text{GEN factor_Aurifeuille}(\text{GEN } a, \text{long } d)$$
an Aurifeuillian factor of $$\text{GEN factoru}(\text{ulong } n)$$, assuming $$a$$ is a non-zero integer.

$$\text{GEN odd_prime_divisors}(\text{GEN } a)$$
t_VEC of all prime divisors of the integer $$a$$.

$$\text{GEN vecfactoru}(\text{ulong } a, \text{ulong } b)$$
returns the factorization of $$n$$, where $$P$$ and $$E$$ are non-regular containing the prime divisors of $$n$$, and the $$v_p(n)$$.

$$\text{GEN vecfactoru_pow}(\text{ulong } n)$$
returns the factorization of $$n$$, where $$P$$ and $$E$$ and $$C$$ are regular containing the prime divisors of $$n$$, the $$v_p(n)$$ and the $$p^{v_p(n)}$$.

$$\text{GEN vecfactoroddu}(\text{ulong } a, \text{ulong } b)$$
returns a $$\text{t_VEC}$$ $$v$$ containing the factorizations ($$\text{vecfactoru}$$ format) of $$a, \ldots, b$$; assume that $$b > a > 0$$. Uses a sieve with primes up to $$\sqrt{b}$$. For all $$c, a \leq c \leq b$$, the factorization of $$c$$ is given in $$v[c - a + 1]$$.

$$\text{GEN vecfactoroddu_i}(\text{ulong } a, \text{ulong } b)$$
returns a $$\text{t_VEC}$$ $$v$$ containing the factorizations ($$\text{vecfactoru}$$ format) of odd integers in $$a, \ldots, b$$; assume that $$b > a > 0$$ are odd. Uses a sieve with primes up to $$\sqrt{b}$$ For all odd $$c, a \leq c \leq b$$, the factorization of $$c$$ is given in $$v[(c - a)/2 + 1]$$.

$$\text{GEN vecfactorsquarefreeu}(\text{ulong } a, \text{ulong } b)$$
return a $$\text{t_VEC}$$ $$v$$ containing the prime divisors of squarefree integers in $$a, \ldots, b$$; assume that $$a \leq b$$. Uses a sieve with primes up to $$\sqrt{b}$$. For all squarefree $$c, a \leq c \leq b$$, the prime divisors of $$c$$ (as a $$\text{t_VECSMALL}$$) are given in $$v[c - a + 1]$$, and the other entries are NULL. Note that because of these NULL markers, $$v$$ is not a valid GEN, it is not memory clean and cannot be used in garbage collection routines.

$$\text{GEN vecsquarefreeu}(\text{ulong } a, \text{ulong } b)$$
return a $$\text{t_VECSMALL}$$ $$v$$ containing the squarefree integers in $$a, \ldots, b$$. Assume that $$a \leq b$$. Uses a sieve with primes up to $$\sqrt{b}$$.

$$\text{ulong tridiv_bound}(\text{GEN } n)$$
returns the trial division bound used by $$\text{Z_factor}(n)$$.

$$\text{GEN Z_pollardbrent}(\text{GEN } N, \text{long } n, \text{long } seed)$$
try to factor $$\text{t_INT } N$$ using $$n \geq 1$$ rounds of Pollard iterations; $$seed$$ is an integer whose value (mod 8) selects the quadratic polynomial use to generate Pollard’s (pseudo)random walk. Returns NULL on failure, else a vector of 2 (possibly 3) integers whose product is $$N$$.

$$\text{GEN Z_ECM}(\text{GEN } N, \text{long } n, \text{long } seed, \text{ulong } B1)$$
try to factor $$\text{t_INT } N$$ using $$n \geq 1$$ rounds of ECM iterations (on 8 to 64 curves simultaneously, depending on the size of $$N$$); $$seed$$ is an integer
whose value selects the curves to be used: increase it by \( 64n \) to make sure that a subsequent call with a factor of \( N \) uses a disjoint set of curves. Finally \( B_1 > 7 \) determines the computations performed on the curves: we compute \(|k|P \) for some point in \( E(\mathbb{Z}/N\mathbb{Z}) \) and \( k = q \prod p^{e_p} \) where \( p^{e_p} \leq B_1 \) and \( q \leq B_2 := 110B_1 \); a higher value of \( B_1 \) means higher chances of hitting a factor and more time spent. The computation is deterministic for a given set of parameters. Returns NULL on failure, else a non trivial factor or \( N \).

\[
\text{GEN Q\_factor(GEN x)} \quad \text{as } \text{Z\_factor, where } x \text{ is a t\_INT or a t\_FRAC.}
\]

\[
\text{GEN Q\_factor\_limit(GEN x, ulong lim)} \quad \text{as } \text{Z\_factor\_limit, where } x \text{ is a t\_INT or a t\_FRAC.}
\]

7.4.3 Coprime factorization.

Given \( a \) and \( b \) two non-zero integers, let \( \text{ppi}(a, b) \), \( \text{ppo}(a, b) \), \( \text{ppg}(a, b) \), \( \text{pple}(a, b) \) (powers in \( a \) of primes inside \( b \), outside \( b \), greater than those in \( b \), less than or equal to those in \( b \)) be the integers defined by

\[
\begin{align*}
\|v_p(\text{ppi}) &= v_p(a)[v_p(b) > 0], \\
\|v_p(\text{ppo}) &= v_p(a)[v_p(b) = 0], \\
\|v_p(\text{ppg}) &= v_p(a)[v_p(a) > v_p(b)], \\
\|v_p(\text{pple}) &= v_p(a)[v_p(a) \leq v_p(b)].
\end{align*}
\]

\[
\text{GEN Z\_ppo(GEN a, GEN b)} \quad \text{returns } \text{ppo}(a, b); \text{shallow function.}
\]

\[
\text{ulong u\_ppo(ulong a, ulong b)} \quad \text{returns } \text{ppo}(a, b).
\]

\[
\text{GEN Z\_ppgle(GEN a, GEN b)} \quad \text{returns } \{\text{ppg}(a, b), \text{pple}(a, b)\}; \text{shallow function.}
\]

\[
\text{GEN Z\_ppio(GEN a, GEN b)} \quad \text{returns } \{\text{gcd}(a, b), \text{ppi}(a, b), \text{ppo}(a, b)\}; \text{shallow function.}
\]

\[
\text{GEN Z\_cba(GEN a, GEN b)} \quad \text{fast natural coprime base algorithm. Returns a vector of coprime divisors of } a \text{ and } b \text{ such that both } a \text{ and } b \text{ can be multiplicatively generated from this set. Perfect powers are not removed, is } \text{Z\_isanypower} \text{ if needed; shallow function.}
\]

\[
\text{GEN ZV\_cba\_extend(GEN P, GEN b)} \quad \text{extend a coprime basis } P \text{ by the integer } b, \text{ the result being a coprime basis for } P \cup \{b\}. \text{ Perfect powers are not removed; shallow function.}
\]

\[
\text{GEN ZV\_cba(GEN v)} \quad \text{given a vector of non-zero integers } v, \text{ return a coprime basis for } v. \text{ Perfect powers are not removed; shallow function.}
\]

7.4.4 Checks attached to arithmetic functions.

Arithmetic functions accept arguments of the following kind: a plain positive integer \( N \) (t\_INT), the factorization \( fa \) of a positive integer (a t\_MAT with two columns containing respectively primes and exponents), or a vector \([N, fa]\). A few functions accept non-zero integers (e.g. omega), and some others arbitrary integers (e.g. factorint, ...).

\[
\text{int is\_Z\_factorpos(GEN f)} \quad \text{returns 1 if } f \text{ looks like the factorization of a positive integer, and 0 otherwise. Useful for sanity checks but not 100% foolproof. Specifically, this routine checks that } f \text{ is a two-column matrix all of whose entries are positive integers. It does not check that entries in the first column ("primes") are prime, or even pairwise coprime, nor that they are strictly increasing.}
\]

\[
\text{int is\_Z\_factornon0(GEN f)} \quad \text{returns 1 if } f \text{ looks like the factorization of a non-zero integer, and 0 otherwise. Useful for sanity checks but not 100% foolproof, analogous to } \text{is\_Z\_factorpos}. \text{ (Entries in the first column need only be non-zero integers.)}
\]

160
int is_Z_factor(GEN f) returns 1 if f looks like the factorization of an integer, and 0 otherwise. Useful for sanity checks but not 100% foolproof. Specifically, this routine checks that f is a two-column matrix all of whose entries are integers. Entries in the second column ("exponents") are all positive. Either it encodes the “factorization” \( 0^e, e > 0 \), or entries in the first column ("primes") are all non-zero.

GEN clean_Z_factor(GEN f) assuming f is the factorization of an integer \( n \), return the factorization of \( |n| \), i.e. remove \(-1\) from the factorization. Shallow function.

GEN fuse_Z_factor(GEN f, GEN B) assuming f is the factorization of an integer \( n \), return \( \text{bound-fact}(n, B) \), i.e. return a factorization where all primary factors for \( |p| \leq B \) are preserved, and all others are “fused” into a single composite integer; if that remainder is trivial, i.e. equal to 1, it is of course not included. Shallow function.

In the following three routines, f is the name of an arithmetic function, and \( n \) a supplied argument. They all raise exceptions if \( n \) does not correspond to an integer or an integer factorization of the expected shape.

GEN check_arith_pos(GEN n, const char *f) check whether \( n \) is attached to the factorization of a positive integer, and return NULL (plain t_INT) or a factorization extracted from \( n \) otherwise. May raise an e_DOMAIN (\( n \leq 0 \)) or an e_TYPE exception (other failures).

GEN check_arith_non0(GEN n, const char *f) check whether \( n \) is attached to the factorization of a non-0 integer, and return NULL (plain t_INT) or a factorization extracted from \( n \) otherwise. May raise an e_TYPE exception.

GEN check_arith_all(GEN n, const char *f) is attached to the factorization of an integer, and return NULL (plain t_INT) or a factorization extracted from \( n \) otherwise.

7.4.5 Incremental integer factorization.

Routines attached to the dynamic factorization of an integer \( n \), iterating over successive prime divisors. This is useful to implement high-level routines allowed to take shortcuts given enough partial information: e.g. \( \text{moebius}(n) \) can be trivially computed if we hit \( p \) such that \( p^2 \mid n \). For efficiency, trial division by small primes should have already taken place. In any case, the functions below assume that no prime \( \leq 2^{14} \) divides \( n \).

GEN ifac_start(GEN n, int moebius) schedules a new factorization attempt for the integer \( n \). If \( \text{moebius} \) is non-zero, the factorization will be aborted as soon as a repeated factor is detected (Moebius mode). The function assumes that \( n > 1 \) is a composite t_INT whose prime divisors satisfy \( p > 2^{14} \) and that one can write to \( n \) in place.

This function stores data on the stack, no gerepile call should delete this data until the factorization is complete. Returns partial, a data structure recording the partial factorization state.

int ifac_next(GEN *partial, GEN *p, long *e) deletes a primary factor \( p^e \) from partial and sets \( p \) (prime) and \( e \) (exponent), and normally returns 1. Whatever remains in the partial structure is now coprime to \( p \).

Returns 0 if all primary factors have been used already, so we are done with the factorization. In this case \( p \) is set to NULL. If we ran in Moebius mode and the factorization was in fact aborted, we have \( e = 1 \), otherwise \( e = 0 \).
int ifac_read(GEN part, GEN *k, long *e) peeks at the next integer to be factored in the list \( k^k \), where \( k \) is not necessarily prime and can be a perfect power as well, but will be factored by the next call to ifac_next. You can remove this factorization from the schedule by calling:

void ifac_skip(GEN part) removes the next scheduled factorization.

int ifac_isprime(GEN n) given \( n \) whose prime divisors are \( > 2^{14} \), returns the decision the factoring engine would take about the compositeness of \( n \): 0 if \( n \) is a proven composite, and 1 if we believe it to be prime; more precisely, \( n \) is a proven prime if factor_proven is set, and only a BPSW-pseudoprime otherwise.

7.4.6 Integer core, squarefree factorization.

long Z_isquarefree(GEN n) returns 1 if the \( t_{\text{INT}} \) \( n \) is square-free, and 0 otherwise.

long Z_isfundamental(GEN x) returns 1 if the \( t_{\text{INT}} \) \( x \) is a fundamental discriminant, and 0 otherwise.

GEN core(GEN n) unique squarefree integer \( d \) dividing \( n \) such that \( n/d \) is a square. The core of 0 is defined to be 0.

GEN core2(GEN n) return \([d, f]\) with \( d \) squarefree and \( n = df^2 \).

GEN corepartial(GEN n, long lim) as core, using boundfact(n,lim) to partially factor \( n \). The result is not necessarily squarefree, but \( p^2 \mid n \) implies \( p > \text{lim} \).

GEN core2partial(GEN n, long lim) as core2, using boundfact(n,lim) to partially factor \( n \). The resulting \( d \) is not necessarily squarefree, but \( p^2 \mid n \) implies \( p > \text{lim} \).

7.4.7 Primes, primality and compositeness tests.

7.4.7.1 Chebyshev’s \( \pi \) function, bounds.

ulong uprimepi(ulong n), returns the number of primes \( p \leq n \) (Chebyshev’s \( \pi \) function).

double primepi_upper_bound(double x) return a quick upper bound for \( \pi(x) \), using Dusart bounds.

GEN gprimepi_upper_bound(GEN x) as primepi_upper_bound, returns a \( t_{\text{REAL}} \).

double primepi_lower_bound(double x) return a quick lower bound for \( \pi(x) \), using Dusart bounds.

GEN gprimepi_lower_bound(GEN x) as primepi_lower_bound, returns a \( t_{\text{REAL}} \) or \( \text{gen}_0 \).

7.4.7.2 Primes, primes in intervals.

ulong unextprime(ulong n), returns the smallest prime \( \geq n \). Return 0 if it cannot be represented as an ulong (\( n \) bigger than \( 2^{64} - 59 \) or \( 2^{32} - 5 \) depending on the word size).

ulong uprecprime(ulong n), returns the largest prime \( \leq n \). Return 0 if \( n \leq 1 \).

ulong uprime(long n) returns the \( n \)-th prime, assuming it fits in an ulong (overflow error otherwise).

GEN prime(long n) same as utoi(uprime(n)).

GEN primes_zv(long m) returns the first \( m \) primes, in a \( t_{\text{VECSMALL}} \).

GEN primes(long m) return the first \( m \) primes, as a \( t_{\text{VEC}} \) of \( t_{\text{INT}s} \).
GEN primes_interval(GEN a, GEN b) return the primes in the interval \([a, b]\), as a \text{t\_VEC} of \text{t\_INT}s.

GEN primes_interval_zv(ulong a, ulong b) return the primes in the interval \([a, b]\), as a \text{t\_VECSMALL} of ulongs.

GEN primes_upto_zv(ulong b) return the primes in the interval \([2, b]\), as a \text{t\_VECSMALL} of ulongs.

7.4.7.3 Tests.

int uisprime(ulong p), returns 1 if \(p\) is a prime number and 0 otherwise.

int uisprime_101(ulong p), assuming that \(p\) has no divisor \(\leq 101\), returns 1 if \(p\) is a prime number and 0 otherwise.

int uisprime_661(ulong p), assuming that \(p\) has no divisor \(\leq 661\), returns 1 if \(p\) is a prime number and 0 otherwise.

int isprime(GEN n), returns 1 if the \text{t\_INT} \(n\) is a (fully proven) prime number and 0 otherwise.

long isprimeAPRCL(GEN n), returns 1 if the \text{t\_INT} \(n\) is a prime number and 0 otherwise, using only the APRCL test — not even trial division or compositeness tests. The workhorse \text{isprime} should be faster on average, especially if non-primes are included!

long isprimeECPP(GEN n), returns 1 if the \text{t\_INT} \(n\) is a prime number and 0 otherwise, using only the ECPP test. The workhorse \text{isprime} should be faster on average.

long BPSW_psp(GEN n), returns 1 if the \text{t\_INT} \(n\) is a Baillie-Pomerance-Selfridge-Wagstaff pseudoprime, and 0 otherwise (proven composite).

int BPSW_isprime(GEN x) assuming \(x\) is a BPSW-pseudoprime, rigorously prove its primality. The function \text{isprime} is currently implemented as

\[
\text{BPSW\_pse}(x) \land\land \text{BPSW\_isprime}(x)
\]

long millerrabin(GEN n, long k) performs \(k\) strong Rabin-Miller compositeness tests on the \text{t\_INT} \(n\), using \(k\) random bases. This function also caches square roots of \(-1\) that are encountered during the successive tests and stops as soon as three distinct square roots have been produced; we have in principle factored \(n\) at this point, but unfortunately, there is currently no way for the factoring machinery to become aware of it. (It is highly implausible that hard to find factors would be exhibited in this way, though.) This should be slower than \text{BPSW\_pse} for \(k \geq 4\) and we would expect it to be less reliable.

GEN ecpp(GEN N) returns an ECPP certificate for \text{t\_INT} \(N\); underlies \text{primecert}.

GEN ecppexport(GEN cert, long flag) export a PARI ECPP certificate to MAGMA or Primo format; underlies \text{primecertexport}.

long ecppisvalid(GEN cert) checks whether a PARI ECPP certificate is valid; underlies \text{primecertisvalid}.

163
7.4.8 Iterators over primes.

int forprime_init(forprime_t *T, GEN a, GEN b) initialize an iterator T over primes in \([a, b]\); over primes \(\geq a\) if \(b = \text{NULL}\). Return 0 if the range is known to be empty from the start (as if \(b < a\) or \(b < 0\)), and return 1 otherwise. Use forprime_next to iterate over the prime collection.

int forprimestep_init(forprime_t *T, GEN a, GEN b, GEN q) initialize an iterator T over primes in an arithmetic progression in \([a, b]\); over primes \(\geq a\) if \(b = \text{NULL}\). The argument q is either a t_INT (\(p \equiv a \pmod{q}\)) or a t_INTMOD Mod(c, N) and we restrict to that congruence class. Return 0 if the range is known to be empty from the start (as if \(b < a\) or \(b < 0\)), and return 1 otherwise. Use forprime_next to iterate over the prime collection.

GEN forprime_next(forprime_t *T) returns the next prime in the range, assuming that T was initialized by forprime_init.

int u_forprime_init(forprime_t *T, ulong a, ulong b)
ulong u_forprime_next(forprime_t *T)
void u_forprime_restrict(forprime_t *T, ulong c) let T an iterator over primes initialized via u_forprime_init(&T, a, b), possibly followed by a number of calls to u_forprime_next, and a \(\leq c \leq b\). Restrict the range of primes considered to \([a, c]\).

int u_forprime_arith_init(forprime_t *T, ulong a, ulong b, ulong c, ulong q) initialize an iterator over primes in \([a, b]\), congruent to \(c\) modulo \(q\). Subsequent calls to u_forprime_next will only return primes congruent to \(c\) modulo \(q\). Note that unless \((c, q) = 1\) there will be at most one such prime.

7.5 Integral, rational and generic linear algebra.

7.5.1 \(\mathbb{Z}/\mathbb{Z}\), \(\mathbb{Z}/\mathbb{V}\), \(\mathbb{Z}/\mathbb{M}\). A \(\mathbb{Z}/\mathbb{V}\) (resp. a \(\mathbb{Z}/\mathbb{M}\), resp. a \(\mathbb{Z}/\mathbb{X}\)) is a t_VEC or t_COL (resp. t_MAT, resp. t_POL) with t_INT coefficients.

7.5.1.1 \(\mathbb{Z}/\mathbb{V}\).

void RgV_check_ZV(GEN x, const char *s) Assuming x is a t_VEC or t_COL raise an error if it is not a \(\mathbb{Z}/\mathbb{V}\) (s should point to the name of the caller).

int RgV_is_ZV(GEN x) Assuming x is a t_VEC or t_COL return 1 if it is a \(\mathbb{Z}/\mathbb{V}\), and 0 otherwise.

int RgV_is_ZVpos(GEN x) Assuming x is a t_VEC or t_COL return 1 if it is a \(\mathbb{Z}/\mathbb{V}\) with positive entries, and 0 otherwise.

int RgV_is_ZVnon0(GEN x) Assuming x is a t_VEC or t_COL return 1 if it is a \(\mathbb{Z}/\mathbb{V}\) with non-zero entries, and 0 otherwise.

int RgV_is_QV(GEN P) return 1 if the RgV P has only t_INT and t_FRAC coefficients, and 0 otherwise.

int ZV_equal0(GEN x) returns 1 if all entries of the ZV x are zero, and 0 otherwise.

int ZV_cmp(GEN x, GEN y) compare two ZV, which we assume have the same length (lexicographic order, comparing absolute values).

int ZV_abscmp(GEN x, GEN y) compare two ZV, which we assume have the same length (lexicographic order).
int ZV_equal(GEN x, GEN y) returns 1 if the two ZV are equal and 0 otherwise. A t_COL and a t_VEC with the same entries are declared equal.

GEN ZC_add(GEN x, GEN y) adds x and y.

GEN ZC_sub(GEN x, GEN y) subtracts x and y.

GEN ZC_Z_add(GEN x, GEN y) adds y to x[1].

GEN ZC_Z_sub(GEN x, GEN y) subtracts y to x[1].

GEN ZC_Z_mul(GEN x, GEN y) multiplies the ZC or ZV x (which can be a column or row vector) by the t_INT y, returning a ZC.

GEN ZC_lincomb(GEN u, GEN v, GEN x, GEN y) returns ux + vy, where u, v are t_INT and x, y are ZC or ZV. Return a ZC

GEN ZC_copy(GEN x) returns a (t_COL) copy of x.

GEN ZC_neg(GEN x) returns −x as a t_COL.

void ZV_neg_inplace(GEN x) negates the ZV x in place, by replacing each component by its opposite (the type of x remains the same, t_COL or t_COL). If you want to save even more memory by avoiding the implicit component copies, use ZV_togglesign.

void ZV_togglesign(GEN x) negates x in place, by toggling the sign of its integer components. Universal constants gen_1, gen_m1, gen_2 and gen_m2 are handled specially and will not be corrupted. (We use togglesign_safe.)

GEN ZC_Z_divexact(GEN x, GEN y) returns x/y assuming all divisions are exact.

GEN ZC_Z_div(GEN x, GEN y) returns x/y, where the resulting vector has rational entries.

GEN ZV_dotproduct(GEN x, GEN y) as RgV_dotproduct assuming x and y have t_INT entries.

GEN ZV_dotsquare(GEN x) as RgV_dotsquare assuming x has t_INT entries.

GEN ZC_lincomb1_inplace(GEN X, GEN Y, GEN v) sets X ← X + vY, where v is a t_INT and X, Y are ZC or ZV. (The result has the type of X.) Memory efficient (e.g. no-op if v = 0), but not gerepile-safe.

void ZC_lincomb1_inplace_i(GEN X, GEN Y, GEN v, long n) internal version of ZC_lincomb1_inplace: only update X[1],...,X[n], assuming that n < lg(X).

GEN ZC_ZV_mul(GEN x, GEN y, GEN p) multiplies the ZC x (seen as a column vector) by the ZV y (seen as a row vector, assumed to have compatible dimensions).

GEN ZV_content(GEN x) returns the GCD of all the components of x.

GEN ZV_extgcd(GEN A) given a vector of n integers A, returns [d, U], where d is the content of A and U is a matrix in GLn(Z) such that AU = [D, 0, ..., 0].

GEN ZV_prod(GEN x) returns the product of all the components of x (1 for the empty vector).

GEN ZV_sum(GEN x) returns the sum of all the components of x (0 for the empty vector).

long ZV_max_lg(GEN x) returns the effective length of the longest entry in x.
int ZV_dvd(GEN x, GEN y) assuming $x$, $y$ are two ZVs of the same length, return 1 if $y[i]$ divides $x[i]$ for all $i$ and 0 otherwise. Error if one of the $y[i]$ is 0.

GEN ZV_sort(GEN L) sort the ZV $L$. Returns a vector with the same type as $L$.

void ZV_sort_inplace(GEN L) sort the ZV $L$, in place.

GEN ZV_sort_uniq(GEN L) sort the ZV $L$, removing duplicate entries. Returns a vector with the same type as $L$.

long ZV_search(GEN L, GEN y) look for the t_INT $y$ in the sorted ZV $L$. Return an index $i$ such that $L[i] = y$, and 0 otherwise.

GEN ZV_indexsort(GEN L) returns the permutation which, applied to the ZV $L$, would sort the vector. The result is a t_VECSMALL.

GEN ZV_union_shallow(GEN x, GEN y) given two sorted ZV (as per ZV_sort, returns the union of $x$ and $y$. Shallow function. In case two entries are equal in $x$ and $y$, include the one from $x$.

GEN ZC_union_shallow(GEN x, GEN y) as ZV_union_shallow but return a t_COL.

7.5.1.2 ZM.

void RgM_check_ZM(GEN A, const char *s) Assuming $x$ is a t_MAT raise an error if it is not a ZM (s should point to the name of the caller).

GEN RgM_rescale_to_int(GEN x) given a matrix $x$ with real entries (t_INT, t_FRAC or t_REAL), return a ZM wich is very close to $Dx$ for some well-chosen integer $D$. More precisely, if the input is exact, $D$ is the denominator of $x$; else it is a power of 2 chosen so that all inexact entries are correctly rounded to 1 ulp.

GEN ZM_copy(GEN x) returns a copy of $x$.

int ZM_equal(GEN A, GEN B) returns 1 if the two ZM are equal and 0 otherwise.

int ZM_equal0(GEN A) returns 1 if the ZM $A$ is identically equal to 0.

GEN ZM_add(GEN x, GEN y) returns $x + y$ (assumed to have compatible dimensions).

GEN ZM_sub(GEN x, GEN y) returns $x - y$ (assumed to have compatible dimensions).

GEN ZM_neg(GEN x) returns $-x$.

void ZM_togglesign(GEN x) negates $x$ in place, by toggling the sign of its integer components. Universal constants gen_1, gen_m1, gen_2 and gen_m2 are handled specially and will not be corrupted. (We use togglesign_safe.)

GEN ZM_mul(GEN x, GEN y) multiplies $x$ and $y$ (assumed to have compatible dimensions).

GEN ZM_sqr(GEN x) returns $x^2$, where $x$ is a square ZM.

GEN ZM_Z_mul(GEN x, GEN y) multiplies the ZM $x$ by the t_INT $y$.

GEN ZM_ZC_mul(GEN x, GEN y) multiplies the ZM $x$ by the ZC $y$ (seen as a column vector, assumed to have compatible dimensions).

GEN ZM_ZX_mul(GEN x, GEN T) returns $x \times y$, where $y$ is RgX_to_RgC($T$, lg($x$) − 1).

GEN ZM_diag_mul(GEN d, GEN m) given a vector $d$ with integer entries and a ZM $m$ of compatible dimensions, return diagonal($d$) $* \ m$. 166
GEN ZM_mul_diag(GEN m, GEN d) given a vector $d$ with integer entries and a ZM $m$ of compatible dimensions, return $m \ast \text{diagonal}(d)$.

GEN ZM_multosym(GEN x, GEN y)

GEN ZM_transmultosym(GEN x, GEN y)

GEN ZM_transmul(GEN x, GEN y)

GEN ZMrow_ZC_mul(GEN x, GEN y, long i) multiplies the $i$-th row of ZM $x$ by the ZC $y$ (seen as a column vector, assumed to have compatible dimensions). Assumes that $x$ is non-empty and $0 < i < \lg(x[1])$.

GEN ZV_ZM_mul(GEN x, GEN y) multiplies the ZV $x$ by the ZM $y$. Returns a t_VEC.

GEN ZM_Q_mul(GEN x, GEN y) returns $x \ast y$, where $y$ is a rational number and the resulting t_COL has rational entries.

GEN ZM_pow(GEN x, GEN n) returns $x^n$, assuming $x$ is a square ZM and $n \geq 0$.

GEN ZM_powu(GEN x, ulong n) returns $x^n$, assuming $x$ is a square ZM and $n \geq 0$.

GEN ZM_det(GEN M) if $M$ is a ZM, returns the determinant of $M$. This is the function underlying matdet whenever $M$ is a ZM.

GEN ZM_permanent(GEN M) if $M$ is a ZM, returns its permanent. This is the function underlying matpermanent whenever $M$ is a ZM. It assumes that the matrix is square of dimension $< \text{BITS}_IN\_LONG$.

GEN ZM_supnorm(GEN x) return the sup norm of the ZM $x$.

GEN ZM_charpoly(GEN M) returns the characteristic polynomial (in variable 0) of the ZM $M$.

GEN ZM_imagecompl(GEN x) returns matimagecompl(x).

long ZM_rank(GEN x) returns matrank(x).

GEN ZM_ker(GEN x) returns matker(x)

GEN ZM_indexrank(GEN x) returns matindexrank(x).

GEN ZM_indeximage(GEN x) returns gel(ZM indexrank(x), 2).

long ZM_max_lg(GEN x) returns the effective length of the longest entry in $x$.

GEN ZM_inv(GEN M, GEN *pd) if $M$ is a ZM, return a primitive matrix $H$ such that $MH$ is $d$ times the identity and set *pd to $d$. Uses a multimodular algorithm up to Hadamard’s bound. If you suspect that the denominator is much smaller than det $M$, you may use ZM_inv_ratlift.

GEN ZM_inv_ratlift(GEN M, GEN *pd) if $M$ is a ZM, return a primitive matrix $H$ such that $MH$ is $d$ times the identity and set *pd to $d$. Uses a multimodular algorithm, attempting rational
reconstruction along the way. To be used when you expect that the denominator of $M^{-1}$ is much smaller than $\det M$ else use $ZM_inv$.

GEN $ZM_pseudoinv$(GEN $M$, GEN *pv, GEN *pd) if $M$ is a non-empty $ZM$, let $v = [y, z]$ returned by $indexrank$ and let $M_1$ be the corresponding square invertible matrix. Return a primitive left-inverse $H$ such that $HM$ is $d$ times the identity and set *pd to $d$. If pv is not NULL, set *pv to $v$. Not gerepile-safe.

GEN $ZM_gauss$(GEN $a$, GEN $b$) as $gauss$, where $a$ and $b$ coefficients are $t_{INT}$s.

GEN $ZM_det_triangular$(GEN $x$) returns the product of the diagonal entries of $x$ (its determinant if it is indeed triangular).

int $ZM_isidentity$(GEN $x$) return 1 if the $ZM$ is the identity matrix, and 0 otherwise.

int $ZM_isdiagonal$(GEN $x$) return 1 if the $ZM$ is diagonal, and 0 otherwise.

int $ZM_isscalar$(GEN $x$, GEN $s$) given a $ZM$ and a $t_{INT}$, return 1 if $x$ is equal to $s$ times the identity, and 0 otherwise. If s is NULL, test whether $x$ is an arbitrary scalar matrix.

long $ZC_is_ei$(GEN $x$) return $i$ if the $ZC$ has 0 entries, but for a 1 at position $i$.

int $ZM_ishnf$(GEN $x$) return 1 if $x$ is in HNF form, i.e. is upper triangular with positive diagonal coefficients, and for $j > i$, $x_{i,j} \geq 0$.

7.5.2 QM.

GEN $QM_charpoly_ZX$(GEN $M$) returns the characteristic polynomial (in variable 0) of the $QM$ $M$, assuming that the result has integer coefficients.

GEN $QM_charpoly_ZX_bound$(GEN $M$, long $b$) as $QM_charpoly_ZX$ assuming that the sup norm of the (integral) result is $\leq 2^b$.

GEN $QM_gauss$(GEN $a$, GEN $b$) as $gauss$, where $a$ and $b$ coefficients are $t_{FRAC}$s.

GEN $QM_indexrank$(GEN $x$) returns $matindexrank(x)$.

GEN $QM_inv$(GEN $M$) return the inverse of the $QM$ $M$.

long $QM_rank$(GEN $x$) returns $matrank(x)$.

7.5.3 Qevproj.

GEN $Qevproj_init$(GEN $M$) let $M$ be a $n \times d$ $ZM$ of maximal rank $d \leq n$, representing the basis of a $Q$-subspace $V$ of $Q^n$. Return a projector on $V$, to be used by $Qevproj_apply$. The interface details may change in the future, but this function currently returns $[M, B, D, p]$, where $p$ is a $t_{VECSMALL}$ with $d$ entries such that the submatrix $A = rowpermute(M, p)$ is invertible, $B$ is a $ZM$ and $d$ a $t_{INT}$ such that $AB = DId_d$.

GEN $Qevproj_apply$(GEN $T$, GEN $pro$) let $T$ be an $n \times n$ $QM$, stabilizing a $Q$-subspace $V \subset Q^n$ of dimension $d$, and let $pro$ be a projector on that subspace initialized by $Qevproj_init(M)$. Return the $d \times d$ matrix representing $T|_V$ on the basis given by the columns of $M$.

GEN $Qevproj_apply_vecei$(GEN $T$, GEN $pro$, long $k$) as $Qevproj_apply$, return only the image of the $k$-th basis vector $M[k]$ (still on the basis given by the columns of $M$).

GEN $Qevproj_down$(GEN $T$, GEN $pro$) given a $ZC$ (resp. a $ZM$) $T$ representing an element (resp. a vector of elements) in the subspace $V$ return a $QC$ (resp. a $QM$) $U$ such that $T = MU$.
7.5.4 \texttt{zv}, \texttt{zm}.

\begin{verbatim}
GEN zv_neg(GEN x) return $-x$. No check for overflow is done, which occurs in the fringe case where an entry is equal to $2^{\text{BITS}_\text{IN}_\text{LONG}} - 1$.

GEN zv_neg_inplace(GEN x) negates \(x\) in place and return it. No check for overflow is done, which occurs in the fringe case where an entry is equal to $2^{\text{BITS}_\text{IN}_\text{LONG}} - 1$.

GEN zm_zc_mul(GEN x, GEN y)
GEN zm_mul(GEN x, GEN y)
GEN zv_z_mul(GEN x, long n) return \(nx\). No check for overflow is done.

long zv_content(GEN x) returns the gcd of the entries of \(x\).

long zv_dotproduct(GEN x, GEN y)
GEN zm_copy(GEN x) as Flv_copy.
GEN zm_transpose(GEN x) as Flm_transpose.
GEN zm_row(GEN A, long x0) as Flm_row.

GEN zm_permanent(GEN M) return the permanent of \(M\). The function assumes that the matrix is square of dimension $< \text{BITS}_\text{IN}_\text{LONG}$.

int zvV_equal(GEN x, GEN y) returns 1 if the two \texttt{zvV} (vectors of \texttt{zv}) are equal and 0 otherwise.
\end{verbatim}
7.5.6 QC / QV, QM.

GEN QM_mul(GEN x, GEN y) multiplies x and y (assumed to have compatible dimensions).
GEN QM_QC_mul(GEN x, GEN y) multiplies x and y (assumed to have compatible dimensions).
GEN QM_det(GEN M) returns the determinant of M.
GEN QM_ker(GEN x) returns matker(x).

7.5.7 RgC / RgV, RgM.

RgC and RgV routines assume the inputs are VEC or COL of the same dimension. RgM assume the inputs are MAT of compatible dimensions.

7.5.7.1 Matrix arithmetic.

void RgM_dimensions(GEN x, long *m, long *n) sets m, resp. n, to the number of rows, resp. columns of the t_MAT x.
GEN RgC_add(GEN x, GEN y) returns $x + y$ as a t_COL.
GEN RgC_neg(GEN x) returns $-x$ as a t_COL.
GEN RgC_sub(GEN x, GEN y) returns $x - y$ as a t_COL.
GEN RgV_add(GEN x, GEN y) returns $x + y$ as a t_VEC.
GEN RgV_neg(GEN x) returns $-x$ as a t_VEC.
GEN RgV_sub(GEN x, GEN y) returns $x - y$ as a t_VEC.
GEN RgM_add(GEN x, GEN y) return $x + y$.
GEN RgM_neg(GEN x) returns $-x$.
GEN RgM_sub(GEN x, GEN y) returns $x - y$.
GEN RgM_Rg_add(GEN x, GEN y) assuming x is a square matrix and y a scalar, returns the square matrix $x + y \times \text{Id}$.
GEN RgM_Rg_add_shallow(GEN x, GEN y) as RgM_Rg_add with much fewer copies. Not suitable for gerepileupto.
GEN RgM_Rg_sub(GEN x, GEN y) assuming x is a square matrix and y a scalar, returns the square matrix $x - y \times \text{Id}$.
GEN RgM_Rg_sub_shallow(GEN x, GEN y) as RgM_Rg_sub with much fewer copies. Not suitable for gerepileupto.
GEN RgC_Rg_add(GEN x, GEN y) assuming x is a non-empty column vector and y a scalar, returns the vector $[x_1 + y, x_2, \ldots, x_n]$.
GEN RgC_Rg_sub(GEN x, GEN y) assuming x is a non-empty column vector and y a scalar, returns the vector $[x_1 - y, x_2, \ldots, x_n]$.
GEN RgC_Rg_sub(GEN a, GEN x) assuming x is a non-empty column vector and a a scalar, returns the vector $[a - x_1, -x_2, \ldots, -x_n]$.
GEN RgC_Rg_div(GEN x, GEN y) returns $x/y$ (y treated as a scalar).
GEN RgC_Rg_mul(GEN x, GEN y)
GEN RgV_Rg_mul(GEN x, GEN y)
GEN RgM_Rg_mul(GEN x, GEN y) returns \( x \times y \) (\( y \) treated as a scalar).
GEN RgV_RgC_mul(GEN x, GEN y) returns \( x \times y \).
GEN RgM_RgM_mul(GEN x, GEN y) returns \( x \times y \).
GEN RgM_RgX_mul(GEN x, GEN T) returns \( x \times y \), where \( y \) is RgX_to_RgC(T, lg(x) − 1).
GEN RgM_mul(GEN x, GEN y) returns \( x \times y \).
GEN RgM_transmul(GEN x, GEN y) returns \( x^\ast \times y \).
GEN RgM_multosym(GEN x, GEN y) returns \( x \times y \), assuming the result is a symmetric matrix (about twice faster than a generic matrix multiplication).
GEN RgM_transmultosym(GEN x, GEN y) returns \( x^\ast \times y \), assuming the result is a symmetric matrix (about twice faster than a generic matrix multiplication).
GEN RgMrow_RgC_mul(GEN x, GEN y, long i) multiplies the \( i \)-th row of RgM \( x \) by the RgC \( y \) (seen as a column vector, assumed to have compatible dimensions). Assumes that \( x \) is non-empty and \( 0 < i < lg(x[1]) \).
GEN RgM_mulreal(GEN x, GEN y) returns the real part of \( x \times y \) (whose entries are \( \text{t\_INT} \), \( \text{t\_FRAC} \), \( \text{t\_REAL} \) or \( \text{t\_COMPLEX} \)).
GEN RgM_sqr(GEN x) returns \( x^2 \).
GEN RgC_RgV_mul(GEN x, GEN y) returns \( x \times y \) (the matrix \((x_i y_j)\)).

The following two functions are not well defined in general and only provided for convenience in specific cases:
GEN RgC_RgM_mul(GEN x, GEN y) returns \( x \times y[1,] \) if \( y \) is a row matrix \( 1 \times n \), error otherwise.
GEN RgM_RgV_mul(GEN x, GEN y) returns \( x \times y[1,] \) if \( y \) is a column matrix \( n \times 1 \), error otherwise.
GEN RgM_powers(GEN x, long n) returns \([x^0, \ldots, x^n]\) as a \text{t\_VEC} of RgMs.
GEN RgV_sum(GEN v) sum of the entries of \( v \)
GEN RgV_prod(GEN v) product of the entries of \( v \), using a divide and conquer strategy
GEN RgV_sumpart(GEN v, long n) returns the sum \( v[1] + \ldots + v[n] \) (assumes that \( 1g(v) > n \)).
GEN RgV_sumpart2(GEN v, long m, long n) returns the sum \( v[m] + \ldots + v[n] \) (assumes that \( 1g(v) > n \) and \( m > 0 \)). Returns gen\_0 when \( m > n \).
GEN RgM_sumcol(GEN v) returns a \text{t\_COL}, sum of the columns of the \text{t\_MAT} \( v \).
GEN RgV_dotproduct(GEN x, GEN y) returns the scalar product of \( x \) and \( y \)
GEN RgV_dotsquare(GEN x) returns the scalar product of \( x \) with itself.
GEN RgV_kill0(GEN v) returns a shallow copy of \( v \) where entries matched by gequal0 are replaced by NULL. The return value is not a valid GEN and must be handled specially. The idea is to pre-treat a vector of coefficients to speed up later linear combinations or scalar products.
GEN gram_matrix(GEN v) returns the Gram matrix ($v_i \cdot v_j$) attached to the entries of v (matrix, or vector of vectors).

GEN RgV_polint(GEN X, GEN Y, long v) X and Y being two vectors of the same length, returns the polynomial $T$ in variable $v$ such that $T(X[i]) = Y[i]$ for all $i$. The special case $X = \text{NULL}$ corresponds to $X = [1, 2, \ldots, n]$, where $n$ is the length of $Y$.

### 7.5.7.2 Special shapes

The following routines check whether matrices or vectors have a special shape, using gequal1 and gequal0 to test components. (This makes a difference when components are inexact.)

- int RgV_isscalar(GEN x) return 1 if all the entries of $x$ are 0 (as per gequal0), except possibly the first one. The name comes from vectors expressing polynomials on the standard basis $1, T, \ldots, T^{n-1}$, or on nf.zk (whose first element is 1).

- int QV_isscalar(GEN x) as RgV_isscalar, assuming $x$ is a QV (t_INT and t_FRAC entries only).

- int ZV_isscalar(GEN x) as RgV_isscalar, assuming $x$ is a ZV (t_INT entries only).

- int RgM_isscalar(GEN x, GEN s) return 1 if $x$ is the scalar matrix equal to $s$ times the identity, and 0 otherwise. If $s$ is NULL, test whether $x$ is an arbitrary scalar matrix.

- int RgM_isidentity(GEN x) return 1 if the t_MAT $x$ is the identity matrix, and 0 otherwise.

- int RgM_isdiagonal(GEN x) return 1 if the t_MAT $x$ is a diagonal matrix, and 0 otherwise.

- long RgC_is_ei(GEN x) return $i$ if the t_COL $x$ has 0 entries, but for a 1 at position $i$.

- int RgM_is_ZM(GEN x) return 1 if the t_MAT $x$ has only t_INT coefficients, and 0 otherwise.

- int RgM_is_QM(GEN x) return 1 if the t_MAT $x$ has only t_INT or t_FRAC coefficients, and 0 otherwise.

- long RgV_isin(GEN v, GEN x) return the first index $i$ such that $v[i] = x$ if it exists, and 0 otherwise. Naive search in linear time, does not assume that v is sorted.

GEN RgM_diagonal(GEN m) returns the diagonal of $m$ as a t_VEC.

GEN RgM_diagonal_shallow(GEN m) shallow version of RgM_diagonal

### 7.5.7.3 Conversion to floating point entries

GEN RgC_gtofp(GEN x, GEN prec) returns the t_COL obtained by applying gtofp(gel(x,i), prec) to all coefficients of $x$.

GEN RgV_gtofp(GEN x, GEN prec) returns the t_VEC obtained by applying gtofp(gel(x,i), prec) to all coefficients of $x$.

GEN RgC_gtomp(GEN x, long prec) returns the t_COL obtained by applying gtomp(gel(x,i), prec) to all coefficients of $x$.

GEN RgM_gtofp(GEN x, GEN prec) returns the t_MAT obtained by applying gtofp(gel(x,i), prec) to all coefficients of $x$.

GEN RgM_gtomp(GEN x, long prec) returns the t_MAT obtained by applying gtomp(gel(x,i), prec) to all coefficients of $x$. 

GEN RgC_fpnorml2(GEN x, long prec) returns (a stack-clean variant of)

\[ \text{gnorml2( RgC_gtofp(x, prec) )} \]

GEN RgM_gtofp(GEN x, GEN prec) returns the t_MAT obtained by applying gtofp(gel(x,i), prec) to all coefficients of $x$.

GEN RgM_gtomp(GEN x, long prec) returns the t_MAT obtained by applying gtomp(gel(x,i), prec) to all coefficients of $x$. 

172
GEN RgM_fnorml2(GEN x, long prec) returns (a stack-clean variant of) 
gnorml2( RgM_gtofp(x, prec) )

7.5.7.4 Linear algebra, linear systems.

GEN RgM_inv(GEN a) returns a left inverse of a (which needs not be square), or NULL if this turns out to be impossible. The latter happens when the matrix does not have maximal rank (or when rounding errors make it appear so).

GEN RgM_inv_upper(GEN a) as RgM_inv, assuming that a is a non-empty invertible upper triangular matrix, hence a little faster.

GEN RgM_RgC_invimage(GEN A, GEN B) returns a t_COL X such that AX = B if one such exists, and NULL otherwise.

GEN RgM_invimage(GEN A, GEN B) returns a t_MAT X such that AX = B if one such exists, and NULL otherwise.

GEN RgM_Hadamard(GEN a) returns an upper bound for the absolute value of det(a). The bound is a t_INT.

GEN RgM_solve(GEN a, GEN b) returns a−1b where a is a square t_MAT and b is a t_COL or t_MAT. Returns NULL if a−1 cannot be computed, see RgM_inv.

If b = NULL, the matrix a need no longer be square, and we strive to return a left inverse for a (NULL if it does not exist).

GEN RgM_solve_realimag(GEN M, GEN b) M being a t_MAT with r1+r2 rows and r1+2r2 columns, y a t_COL or t_MAT such that the equation Mx = y makes sense, returns x under the following simplifying assumptions: the first r1 rows of M and y are real (the r2 others are complex), and x is real. This is stabler and faster than calling RgM_solve(M, b) over C. In most applications, M approximates the complex embeddings of an integer basis in a number field, and x is actually rational.

GEN split_realimag(GEN x, long r1, long r2) x is a t_COL or t_MAT with r1+r2 rows, whose first r1 rows have real entries (the r2 others are complex). Return an object of the same type as x and r1 + 2r2 rows, such that the first r1 + r2 rows contain the real part of x, and the r2 following ones contain the imaginary part of the last r2 rows of x. Called by RgM_solve_realimag.

GEN RgM_det_triangular(GEN x) returns the product of the diagonal entries of x (its determinant if it is indeed triangular).

GEN Frobeniusform(GEN V, long n) given the vector V of elementary divisors for M − xId, where M is an n × n square matrix. Returns the Frobenius form of M.

int RgM_QR_init(GEN x, GEN *pB, GEN *pQ, GEN *pL, long prec) QR-decomposition of a square invertible t_MAT x with real coefficients. Sets *pB to the vector of squared lengths of the x[i], *pL to the Gram-Schmidt coefficients and *pQ to a vector of successive Householder transforms. If R denotes the transpose of L and Q is the result of applying *pQ to the identity matrix, then x = QR is the QR decomposition of x. Returns 0 is x is not invertible or we hit a precision problem, and 1 otherwise.

int QR_init(GEN x, GEN *pB, GEN *pQ, GEN *pL, long prec) as RgM_QR_init, assuming further that x has t_INT or t_REAL coefficients.
GEN $R_{\text{from\_QR}}(\text{GEN } x, \text{ long prec})$ assuming that $x$ is a square invertible $\text{t\_MAT}$ with $\text{t\_INT}$ or $\text{t\_REAL}$ coefficients, return the upper triangular $R$ from the $QR$ decomposition of $x$. Not memory clean. If the matrix is not known to have $\text{t\_INT}$ or $\text{t\_REAL}$ coefficients, apply $\text{RgM\_gtomp}$ first.

GEN $\text{gaussred\_from\_QR}(\text{GEN } x, \text{ long prec})$ assuming that $x$ is a square invertible $\text{t\_MAT}$ with $\text{t\_INT}$ or $\text{t\_REAL}$ coefficients, returns $\text{qfgaussred}(x \ast x)$; this is essentially the upper triangular $R$ matrix from the $QR$ decomposition of $x$, renormalized to accommodate $\text{qfgaussred}$ conventions. Not memory clean.

GEN $\text{RgM\_gram\_schmidt}(\text{GEN } e, \text{ GEN } *\text{ptB})$ naive (unstable) Gram-Schmidt orthogonalization of the basis $(e_i)$ given by the columns of $\text{t\_MAT } e$. Return the $e_i^\ast$ (as columns of a $\text{t\_MAT}$) and set $*\text{ptB}$ to the vector of squared lengths $|e_i^\ast|^2$.

GEN $\text{RgM\_Babai}(\text{GEN } M, \text{ GEN } y)$ given an LLL-reduced $\text{t\_MAT } M$ and a $\text{t\_COL } y$ of the same dimension, apply Babai’s nearest plane algorithm to return an integral $x$ such that $y - Mx$ has small $L_2$ norm. This yields an approximate solution to the closest vector problem.

7.5.8 ZG.

Let $G$ be a multiplicative group with neutral element $1_G$ whose multiplication is supported by $\text{gmul}$ and where equality test is performed using $\text{gidentical}$, e.g. a matrix group. The following routines implement basic computations in the group algebra $\mathbb{Z}[G]$. All of them are shallow for efficiency reasons. A $\text{ZG}$ is either

- a $\text{t\_INT } n$, representing $n[1_G]$
- or a “factorization matrix” with two columns $[g, e]$: the first one contains group elements, sorted according to $\text{cmp\_universal}$, and the second one contains integer “exponents”, representing $\sum e_i[g_i]$.

Note that $\text{to\_famat}$ and $\text{to\_famat\_shallow}(g, e)$ allow to build the $\text{ZG } e[g]$ from $e \in \mathbb{Z}$ and $g \in G$.

GEN $\text{ZG\_normalize}(\text{GEN } x)$ given a $\text{t\_INT } x$ or a factorization matrix without assuming that the first column is properly sorted. Return a valid (sorted) $\text{ZG}$. Shallow function.

GEN $\text{ZG\_add}(\text{GEN } x, \text{ GEN } y)$ return $x + y$; shallow function.

GEN $\text{ZG\_neg}(\text{GEN } x)$ return $-x$; shallow function.

GEN $\text{ZG\_sub}(\text{GEN } x, \text{ GEN } y)$ return $x - y$; shallow function.

GEN $\text{ZG\_mul}(\text{GEN } x, \text{ GEN } y)$ return $xy$; shallow function.

GEN $\text{ZG\_G\_mul}(\text{GEN } x, \text{ GEN } y)$ given a $\text{ZG } x$ and $y \in G$, return $xy$; shallow function.

GEN $\text{G\_ZG\_mul}(\text{GEN } x, \text{ GEN } y)$ given a $\text{ZG } y$ and $x \in G$, return $xy$; shallow function.

GEN $\text{ZG\_Z\_mul}(\text{GEN } x, \text{ GEN } n)$ given a $\text{ZG } x$ and $y \in \mathbb{Z}$, return $xy$; shallow function.

GEN $\text{ZGC\_G\_mul}(\text{GEN } v, \text{ GEN } x)$ given $v$ a vector of $\text{ZG}$ and $x \in G$ return the vector (with the same type as $v$ with entries $v[i] \ast x$). Shallow function.

void $\text{ZGC\_G\_mul\_inplace}(\text{GEN } v, \text{ GEN } x)$ as $\text{ZGC\_G\_mul}$, modifying $v$ in place.

GEN $\text{ZGC\_Z\_mul}(\text{GEN } v, \text{ GEN } n)$ given $v$ a vector of $\text{ZG}$ and $n \in \mathbb{Z}$ return the vector (with the same type as $v$ with entries $n \ast v[i]$). Shallow function.
GEN G_ZGC_mul(GEN x, GEN v) given \( v \) a vector of \( ZG \) and \( x \in G \) return the vector of \( x \cdot v[i] \). Shallow function.

GEN ZGCs_add(GEN x, GEN y) add two sparse vectors of \( ZG \) elements (see Blackbox linear algebra below).

### 7.5.9 Blackbox linear algebra.

A sparse column \( zCs \) \( v \) is a \( \text{t\_COL} \) with two components \( C \) and \( E \) which are \( \text{t\_VECSMALL} \) of the same length, representing \( \sum_i E[i] \cdot e_{C[i]} \), where \( (e_i) \) is the canonical basis. A sparse matrix \( (zMs) \) is a \( \text{t\_VEC} \) of \( zCs \).

\( \text{FpCs} \) and \( \text{FpMs} \) are identical to the above, but \( E[i] \) is now interpreted as a signed C long integer representing an element of \( \mathbb{F}_p \). This is important since \( p \) can be so large that \( p + E[i] \) would not fit in a C long.

\( \text{RgCs} \) and \( \text{RgMs} \) are similar, except that the type of the components of \( E \) is now unspecified. Functions handling those later objects must not depend on the type of those components.

It is not possible to derive the space dimension (number of rows) from the above data. Thus most functions take an argument \( \text{nbrow} \) which is the number of rows of the corresponding column/matrix in dense representation.

GEN \( zCs\_to\_ZC(GEN C, \text{long} \ nbrow) \) convert the sparse vector \( C \) to a dense \( ZC \) of dimension \( nbrow \).

GEN \( zMs\_to\_ZM(GEN M, \text{long} \ nbrow) \) convert the sparse matrix \( M \) to a dense \( ZM \) whose columns have dimension \( nbrow \).

GEN \( \text{FpMs\_FpC\_mul}(GEN M, GEN B, GEN p) \) multiply the sparse matrix \( M \) (over \( \mathbb{F}_p \)) by the sparse vector \( B \). The result is an \( \text{FpC} \), i.e. a dense vector.

GEN \( \text{zMs\_ZC\_mul}(GEN M, \text{GEN} B, \text{GEN} p) \) multiply the sparse matrix \( M \) by the sparse vector \( B \) (over \( \mathbb{Z} \)). The result is an \( \text{ZC} \), i.e. a dense vector.

GEN \( \text{FpV\_FpMs\_mul}(GEN B, \text{GEN} M, \text{GEN} p) \) multiply the sparse vector \( B \) by the sparse matrix \( M \) (over \( \mathbb{F}_p \)). The result is an \( \text{FpV} \), i.e. a dense vector.

GEN \( \text{ZV\_zMs\_mul}(GEN B, \text{GEN} M, \text{GEN} p) \) multiply the sparse vector \( B \) (over \( \mathbb{Z} \)) by the sparse matrix \( M \). The result is a \( \text{ZV} \), i.e. a dense vector.

void \( \text{RgMs\_structelim}(GEN M, \text{long} \ nbrow, GEN A, \text{GEN} *p\_col, \text{GEN} *p\_row) \) \( M \) being a \( \text{RgMs} \) with \( nbrow \) rows, \( A \) being a list of row indices, Perform structured elimination on \( M \) by removing some rows and columns until the number of effectively present rows is equal to the number of columns. The result is stored in two \( \text{t\_VECSMALLs} \), \( *p\_col \) and \( *p\_row \). \( *p\_col \) is a map from the new columns indices to the old one. \( *p\_row \) is a map from the old rows indices to the new one (0 if removed).

GEN \( \text{FpMs\_leftkernel\_elt}(GEN M, \text{long} \ nbrow, \text{GEN} p) \) \( M \) being a sparse matrix over \( \mathbb{F}_p \), return a non-zero kbdFpV \( X \) such that \( XM \) components are almost all 0.

GEN \( \text{FpMs\_FpCs\_solve}(GEN M, \text{GEN} B, \text{long} \ nbrow, \text{GEN} p) \) solve the equation \( MX = B \), where \( M \) is a sparse matrix and \( B \) is a sparse vector, both over \( \mathbb{F}_p \). Return either a solution as a \( \text{t\_COL} \) (dense vector), the index of a column which is linearly dependent from the others as a \( \text{t\_VECSMALL} \) with a single component, or \( \text{NULL} \) (can happen if \( B \) is not in the image of \( M \)).
GEN FpMs_FpCs_solve_safe(GEN M, GEN B, long nbrow, GEN p) as above, but in the event that p is not a prime and an impossible division occurs, return NULL.

GEN ZpMs_ZpCs_solve(GEN M, GEN B, long nbrow, GEN p, long e) solve the equation $M X = B$, where $M$ is a sparse matrix and $B$ is a sparse vector, both over $\mathbb{Z}/p^e\mathbb{Z}$. Return either a solution as a t_COL (dense vector), or the index of a column which is linearly dependent from the others as a t_VECSMALL with a single component.

GEN gen_FpM_Wiedemann(void *E, GEN (*f)(void*, GEN), GEN B, GEN p) solve the equation $f(X) = B$ over $\mathbb{F}_p$, where $B$ is a FpV, and $f$ is a blackbox endomorphism, where $f(E, X)$ computes the value of $f$ at the (dense) column vector $X$. Returns either a solution t_COL, or a kernel vector as a t_VEC.

GEN gen_ZpM_Dixon(void *E, GEN (*f)(void*, GEN), GEN B, GEN p, long e) solve equation $f(X) = B$ over $\mathbb{Z}/p^e\mathbb{Z}$, where $B$ is a ZV, and $f$ is a blackbox endomorphism, where $f(E, X)$ computes the value of $f$ at the (dense) column vector $X$. Returns either a solution t_COL, or a kernel vector as a t_VEC.

7.5.10 Obsolete functions.

The functions in this section are kept for backward compatibility only and will eventually disappear.

GEN image2(GEN x) compute the image of $x$ using a very slow algorithm. Use image instead.

7.6 Integral, rational and generic polynomial arithmetic.

7.6.1 ZX.

void RgX_check_ZX(GEN x, const char *s) Assuming $x$ is a t_POL raise an error if it is not a ZX ($s$ should point to the name of the caller).

GEN ZX_copy(GEN x, GEN p) returns a copy of $x$.

long ZX_max_lg(GEN x) returns the effective length of the longest component in $x$.

GEN scalar_ZX(GEN x, long v) returns the constant ZX in variable $v$ equal to the t_INT $x$.

GEN scalar_ZX_shallow(GEN x, long v) returns the constant ZX in variable $v$ equal to the t_INT $x$. Shallow function not suitable for gerepile and friends.

GEN ZX_renormalize(GEN x, long l), as normalizepol, where $l = \lg(x)$, in place.

int ZX_equal(GEN x, GEN y) returns 1 if the two ZX have the same degpol and their coefficients are equal. Variable numbers are not checked.

int ZX_equal1(GEN x) returns 1 if the ZX $x$ is equal to 1 and 0 otherwise.

int ZX_is_monic(GEN x) returns 1 if the ZX $x$ is monic and 0 otherwise. The zero polynomial considered not monic.

GEN ZX_add(GEN x, GEN y) adds $x$ and $y$.

GEN ZX_sub(GEN x, GEN y) subtracts $x$ and $y$.

GEN ZX_neg(GEN x) returns $-x$. 

176
GEN ZX_Z_add(GEN x, GEN y) adds the integer y to the ZX x.
GEN ZX_Z_add_shallow(GEN x, GEN y) shallow version of ZX_Z_add.
GEN ZX_Z_sub(GEN x, GEN y) subtracts the integer y to the ZX x.
GEN Z_ZX_sub(GEN x, GEN y) subtracts the ZX y to the integer x.
GEN ZX_Z_mul(GEN x, GEN y) multiplies the ZX x by the integer y.
GEN ZX_mulu(GEN x, ulong y) multiplies x by the integer y.
GEN ZX_shifti(GEN x, long n) shifts all coefficients of x by n bits, which can be negative.
GEN ZX_Z_divexact(GEN x, GEN y) returns x/y assuming all divisions are exact.
GEN ZX_remi2n(GEN x, long n) reduces all coefficients of x to n bits, using remi2n.
GEN ZX_mul(GEN x, GEN y) multiplies x and y.
GEN ZX_sqr(GEN x, GEN p) returns x².
GEN ZX_mulspec(GEN a, GEN b, long na, long nb). Internal routine: a and b are arrays of coefficients representing polynomials $\sum_{i=0}^{na-1} a[i]X^i$ and $\sum_{i=0}^{nb-1} b[i]X^i$. Returns their product (as a true GEN) in variable 0.
GEN ZX_sqrspec(GEN a, long na). Internal routine: a is an array of coefficients representing polynomial $\sum_{i=0}^{na-1} a[i]X^i$. Return its square (as a true GEN) in variable 0.
GEN ZX_rem(GEN x, GEN y) returns the remainder of the Euclidean division of x mod y. Assume that x, y are two ZX and that y is monic.
GEN ZX_mod_Xnm1(GEN T, ulong n) return T modulo $X^n-1$). Shallow function.
GEN ZX_div_by_X_1(GEN T, GEN *r) return the quotient of T by $X-1$. If r is not NULL set it to T(1).
GEN ZX_gcd(GEN x, GEN y) returns a gcd of the ZX x and y. Not memory-clean, but suitable for gerepileupto.
GEN ZX_gcd_all(GEN x, GEN y, GEN *pX) returns a gcd d of x and y. If pX is not NULL, set *pX to a (non-zero) integer multiple of x/d. If x and y are both monic, then d is monic and *pX is exactly x/d. Not memory clean if the gcd is 1 (in that case *pX is set to x).
GEN ZX_radical(GEN x) returns the largest squarefree divisor of the ZX x. Not memory clean.
GEN ZX_content(GEN x) returns the content of the ZX x.

long ZX_val(GEN P) as RgX_val, but assumes P has t_INT coefficients.
long ZX_valrem(GEN P, GEN *z) as RgX_valrem, but assumes P has t_INT coefficients.
GEN ZX_to_monic(GEN q GEN *L) given q a non-zero ZX, returns a monic integral polynomial Q such that $Q(x) = Cq(x/L)$, for some rational C and positive integer $L > 0$. If L is not NULL, set *L to L; if $L = 1$, *L is set to gen1. Not suitable for gerepileupto.
GEN ZX_primitive_to_monic(GEN q, GEN *L) as ZX_to_monic except q is assumed to have trivial content, which avoids recomputing it. The result is suboptimal if q is not primitive ($L$ larger than necessary), but remains correct.
GEN ZX_Z_normalize(GEN q, GEN *L) a restricted version of ZX.primitive_to_monic, where q is a monic ZX of degree > 0. Finds the largest integer $L > 0$ such that $Q(X) := L^{-\deg q}q(Lx)$ is integral and return $Q$; this is not well-defined if $q$ is a monomial, in that case, set $L = 1$ and $Q = q$. If $L$ is not NULL, set *L to $L$.

GEN ZX_Q_normalize(GEN q, GEN *L) a variant of ZX_Z_normalize where $L > 0$ is allowed to be rational, the monic $Q \in \mathbb{Z}[X]$ has possibly smaller coefficients.

GEN ZX_Q_mul(GEN x, GEN y) returns $x \ast y$, where $y$ is a rational number and the resulting t_POL has rational entries.

long ZX_deflate_order(GEN P) given a non-constant ZX P, returns the largest exponent $d$ such that $P$ is of the form $P(x^d)$.

long ZX_deflate_max(GEN P, long *d). Given a non-constant polynomial with integer coefficients $P$, sets $d$ to ZX_deflate_order($P$) and returns \text{RgX_deflate}(P,d). Shallow function.

GEN ZX_rescale(GEN P, GEN h) returns $h^{\deg(P)}P(x/h)$. P is a ZX and h is a non-zero integer. Neither memory-clean nor suitable for \text{gerepileupto}.

GEN ZX_rescale2n(GEN P, long n) returns $2^n^{\deg(P)}P(x \gg n)$ where P is a ZX. Neither memory-clean nor suitable for \text{gerepileupto}.

GEN ZX_rescale_lt(GEN P) returns the monic integral polynomial $h^{\deg(P)} - 1 P(x/h)$, where P is a non-zero ZX and h is its leading coefficient. Neither memory-clean nor suitable for \text{gerepileupto}.

GEN ZX_translate(GEN P, GEN c) assume P is a ZX and c an integer. Returns $P(X+c)$ (optimized for $c = \pm 1$).

GEN ZX_unscale(GEN P, GEN h) given a ZX P and a t_INT h, returns $P(hx)$. Not memory clean.

GEN ZX_z_unscale(GEN P, long h) given a ZX P, returns $P(hx)$. Not memory clean.

GEN ZX_unscale2n(GEN P, long n) given a ZX P, returns $P(x \ll n)$. Not memory clean.

GEN ZX_unscale_div(GEN P, GEN h) given a ZX P and a t_INT h such that $h \mid P(0)$, returns $P(hx)/h$. Not memory clean.

GEN ZX_eval1(GEN P) returns the integer $P(1)$.

GEN ZX_graeffe(GEN p) returns the Graeffe transform of p, i.e. the ZX q such that $p(x)p(-x) = q(x^2)$.

GEN ZX_deriv(GEN x) returns the derivative of x.

GEN ZX_resultant(GEN A, GEN B) returns the resultant of the ZX A and B.

GEN ZX_disc(GEN T) returns the discriminant of the ZX T.

GEN ZX_factor(GEN T) returns the factorization of the primitive part of T over $\mathbb{Q}[X]$ (the content is lost).

int ZX_is_squarefree(GEN T) returns 1 if the ZX T is squarefree, 0 otherwise.

long ZX_is_irred(GEN T) returns 1 if T is irreducible, and 0 otherwise.

GEN ZX_squff(GEN T, GEN *E) write T as a product $\prod T_i^{e_i}$ with the $e_1 < e_2 < \cdots$ all distinct and the $T_i$ pairwise coprime. Return the vector of the $T_i$, and set *E to the vector of the $e_i$, as a t_VECSMALL.
GEN ZX_Uspensky(GEN P, GEN ab, long flag, long bitprec) let P be a primitive ZX polynomial whose real roots are simple and bitprec is the relative precision in bits.

- If flag is 0 returns a list of intervals that isolate the real roots of P. The return value is a column of elements which are either vectors [a,b] meaning that there is a single root in the open interval (a,b) or elements x0 such that x0 is a root of P. There is no guarantee that all rational roots are found (at most those with denominator a power of 2 can be found and even those are not guaranteed). Beware that the limits of the open intervals can be roots of the polynomial.
- If flag is 1 returns an approximation of the real roots of P.
- If flag is 2 returns the number of roots.

The argument ab specify the interval in which the roots are searched. The default interval is $(-\infty, \infty)$. If ab is an integer or fraction $a$ then the interval is $[a, \infty)$. If ab is a vector $[a, b]$, where t_INT, t_FRAC or t_INFINITY are allowed for a and b, the interval is $[a,b]$.

long ZX_sturm(GEN P) number of real roots of the non-constant squarefree ZX P. For efficiency, it is advised to make P primitive first.

long ZX_sturmpart(GEN P, GEN ab) number of real roots of the non-constant squarefree ZX P in the interval specified by ab: either NULL (no restriction) or a t_VEC $[a,b]$ with two real components (of type t_INT, t_FRAC or t_INFINITY). For efficiency, it is advised to make P primitive first.

7.6.2 Resultants.

GEN ZX_ZXY_resultant(GEN A, GEN B) under the assumption that A in $\mathbb{Z}[Y]$, B in $\mathbb{Q}[Y][X]$, and $R = \text{Res}_Y(A, B) \in \mathbb{Z}[X]$, returns the resultant $R$.

GEN ZX_compositum_disjoint(GEN A, GEN B) given two irreducible ZX defining linearly disjoint extensions, returns a ZX defining their compositum.

GEN ZX_ZXY_rnfequation(GEN A, GEN B, long *lambda), assume A in $\mathbb{Z}[Y]$, B in $\mathbb{Q}[Y][X]$, and $R = \text{Res}_Y(A, B) \in \mathbb{Z}[X]$. If lambda = NULL, returns $R$ as in ZY_ZXY_resultant. Otherwise, lambda must point to some integer, e.g. 0 which is used as a seed. The function then finds a small $\lambda \in \mathbb{Z}$ (starting from *lambda) such that $R_{\lambda}(X) := \text{Res}_Y(A, B(X + \lambda Y))$ is squarefree, resets *lambda to the chosen value and returns $R_{\lambda}$.

7.6.3 ZXV.

GEN ZXV_equal(GEN x, GEN y) returns 1 if the two vectors of ZX are equal, as per ZX_equal (variables are not checked to be equal) and 0 otherwise.

GEN ZXV_Z_mul(GEN x, GEN y) multiplies the vector of ZX x by the integer y.

GEN ZXV_remi2n(GEN x, long n) applies ZX_remi2n to all coefficients of x.

GEN ZXV_dotproduct(GEN x, GEN y) as RgV_dotproduct assuming x and y have ZX entries.

7.6.4 ZXT.

GEN ZXT_remi2n(GEN x, long n) applies ZX_remi2n to all leaves of the tree x.
7.6.5 ZXQ.
GEN ZXQ_mul(GEN x, GEN y, GEN T) returns \( x \cdot y \mod T \), assuming that all inputs are ZXs and that \( T \) is monic.
GEN ZXQ_sqr(GEN x, GEN T) returns \( x^2 \mod T \), assuming that all inputs are ZXs and that \( T \) is monic.
GEN ZXQ_charpoly(GEN A, GEN T, long v): let \( T \) and \( A \) be ZXs, returns the characteristic polynomial of \( \text{Mod}(A, T) \). More generally, \( A \) is allowed to be a QX, hence possibly has rational coefficients, assuming the result is a ZX, i.e. the algebraic number \( \text{Mod}(A,T) \) is integral over \( \mathbb{Z} \).

7.6.6 ZXn.
GEN ZXn_mul(GEN x, GEN y, long n) return \( xy \mod X^n \).
GEN ZXn_sqr(GEN x, long n) return \( x^2 \mod X^n \).
GEN eta_ZXn(long r, long n) return \( \eta(X^r) = \prod_{i>0}(1-X^{ri}) \mod X^n \), \( r > 0 \).
GEN eta_product_ZXn(GEN DR, long n): \( DR = [D,R] \) being a vector with two t_VECSMALL components, return \( \prod_i \eta(X^{d_i}r^i) \). Shallow function.

7.6.7 ZXQM.
ZXQM are matrices of ZXQ. All entries must be integers or polynomials of degree strictly less than the degree of \( T \).
GEN ZXQM_mul(GEN x, GEN y, GEN T) returns \( x \cdot y \mod T \), assuming that all inputs are ZXs and that \( T \) is monic.
GEN ZXQM_sqr(GEN x, GEN T) returns \( x^2 \mod T \), assuming that all inputs are ZXs and that \( T \) is monic.

7.6.8 ZXQX.
GEN ZXQX_mul(GEN x, GEN y, GEN T) returns \( x \cdot y \), assuming that all inputs are ZXQXs and that \( T \) is monic.
GEN ZXQX_sqr(GEN x, GEN T) returns \( x^2 \), assuming that all inputs are ZXQXs and that \( T \) is monic.

7.6.9 ZXX.
void RgX_check_ZXX(GEN x, const char *s) Assuming \( x \) is a t_POL raise an error if it one of its coefficients is not an integer or a ZX (\( s \) should point to the name of the caller).
GEN ZXX_renormalize(GEN x, long l), as normalizepol, where \( l = \lg(x) \), in place.
long ZXX_max_lg(GEN x) returns the effective length of the longest component in \( x \); assume all coefficients are t_INT or ZXs.
GEN ZXX_Z_mul(GEN x, GEN y) returns \( xy \).
GEN ZXX_Z_add_shallow(GEN x, GEN y) returns \( x + y \). Shallow function.
GEN ZXX_Z_divexact(GEN x, GEN y) returns \( x/y \) assuming all integer divisions are exact.
GEN ZXX_to_Kronecker(GEN P, long n) Assuming \( P(X,Y) \) is a polynomial of degree in \( X \) strictly less than \( n \), returns \( P(X,X^{2^n-1}) \), the Kronecker form of \( P \). Shallow function.
GEN ZXX_to_Kronecker_spec(GEN Q, long lQ, long n) return ZXX_to_Kronecker(P, n), where
P is the polynomial \( \sum_{i=0}^{lQ-1} Q[i] x^i \). To be used when splitting the coefficients of genuine polynomials into blocks. Shallow function.

GEN Kronecker_to_ZXX(GEN z, long n, long v) recover P(X,Y) from its Kronecker form P(X, X^{2n-1}), v is the variable number corresponding to Y. Shallow function.

GEN ZXX_mul_Kronecker(GEN P, GEN Q, long n) return ZX_mul applied to the Kronecker forms P(X, X^{2n-1}) and Q(X, X^{2n-1}) of P and Q. Not memory clean.

GEN ZXX_sqr_Kronecker(GEN P, long n) return ZX_sqr applied to the Kronecker forms P(X, X^{2n-1}) of P. Not memory clean.

7.6.10 QX.

void RgX_check_QX(GEN x, const char *s) Assuming x is a t_POL raise an error if it is not a QX (s should point to the name of the caller).

GEN QX_mul(GEN x, GEN y)
GEN QX_sqr(GEN x)
GEN QX_ZX_rem(GEN x, GEN y) y is assumed to be monic.
GEN QX_gcd(GEN x, GEN y) returns a gcd of the QX x and y.
GEN QX_disc(GEN T) returns the discriminant of the QX T.
GEN QX_factor(GEN T) as ZX_factor.
GEN QX_resultant(GEN A, GEN B) returns the resultant of the QX A and B.
GEN QX_complex_roots(GEN p, long l) returns the complex roots of the QX p at accuracy l, where real roots are returned as t_REALs. More efficient when p is irreducible and primitive. Special case of cleanroots.

7.6.11 QXQ.

GEN QXQ_norm(GEN A, GEN B) A being a QX and B being a ZX, returns the norm of the algebraic number A mod B, using a modular algorithm. To ensure that B is a ZX, one may replace it by Q_primpart(B), which of course does not change the norm.

If A is not a ZX — it has a denominator —, but the result is nevertheless known to be an integer, it is much more efficient to call QXQ_intnorm instead.

GEN QXQ_intnorm(GEN A, GEN B) A being a QX and B being a ZX, returns the norm of the algebraic number A mod B, assuming that the result is an integer, which is for instance the case if A is a ZX. To ensure that B is a ZX, one may replace it by Q_primpart(B) (which of course does not change the norm).

If the result is not known to be an integer, you must use QXQ_norm instead, which is slower.

GEN QXQ_mul(GEN A, GEN B, GEN T) returns the product of A and B modulo T where both A and B are a QX and T is a monic ZX.

GEN QXQ_sqr(GEN A, GEN T) returns the square of A modulo T where A is a QX and T is a monic ZX.
GEN QXQ_inv(GEN A, GEN B) returns the inverse of A modulo B where A is a QX and B is a ZX. Should you need this for a QX B, just use

QXQ_inv(A, Q_primpart(B));

But in all cases where modular arithmetic modulo B is desired, it is much more efficient to replace B by Q_primpart(B) once and for all.

GEN QXQ_div_ratlift(GEN C, GEN A, GEN B) returns $C/A$ modulo $B$ where $A$ and $C$ are QX and $B$ is a ZX. Use this function when the result is known to be “small” compared to $A^{-1} \text{mod} \ B$, it will be faster than QXQ_inv in this case.

GEN QXQ_charpoly(GEN A, GEN T, long v) where $A$ is a QX and $T$ is a ZX, returns the characteristic polynomial of $\text{Mod}(A, T)$. If the result is known to be a ZX, then calling ZXQ_charpoly will be faster.

GEN QXQ_powers(GEN x, long n, GEN T) returns $[x^0, \ldots, x^n]$ as RgXQ_powers would, but in a more efficient way when $x$ has a huge integer denominator (we start by removing that denominator). Meant to be used to precompute powers of algebraic integers in $\mathbb{Q}[t]/(T)$. The current implementation does not require $x$ to be a QX: any polynomial to which Q_remove_denom can be applied is fine.

GEN QXQ_reverse(GEN f, GEN T) as RgXQ_reverse, assuming $f$ is a QX.

GEN QX_ZXQV_eval(GEN f, GEN nV, GEN dV) as RgX_RgXQV_eval, except that $f$ is assumed to be a QX, $V$ is given implicitly by a numerator $nV$ (ZV) and denominator $dV$ (a positive t_INT or NULL for trivial denominator). Not memory clean, but suitable for gerepileupto.

GEN QXV_QXQ_eval(GEN v, GEN a, GEN T) $v$ is a vector of QXs (possibly scalars, i.e. rational numbers, for convenience), $a$ and $T$ both QX. Return the vector of evaluations at $a$ modulo $T$. Not memory clean, nor suitable for gerepileupto.

GEN QXX_QXQ_eval(GEN P, GEN a, GEN T) $P(X,Y)$ is a t_POL with QX coefficients (possibly scalars, i.e. rational numbers, for convenience), $a$ and $T$ both QX. Return the QX $P(X,a \text{mod} \ T)$. Not memory clean, nor suitable for gerepileupto.

GEN nfgcd(GEN P, GEN Q, GEN T, GEN den) given $P$ and $Q$ in $\mathbb{Z}[X,Y], T$ monic irreducible in $\mathbb{Z}[Y]$, returns the primitive $d$ in $\mathbb{Z}[X,Y]$ which is a gcd of $P, Q$ in $K[X]$, where $K$ is the number field $\mathbb{Q}[Y]/(T)$. If not NULL, den is a multiple of the integral denominator of the (monic) gcd of $P, Q$ in $K[X]$.

GEN nfgcd_all(GEN P, GEN Q, GEN T, GEN den, GEN *Pnew) as nfgcd. If Pnew is not NULL, set *Pnew to a non-zero integer multiple of $P/d$. If $P$ and $Q$ are both monic, then $d$ is monic and *Pnew is exactly $P/d$. Not memory clean if the gcd is 1 (in that case *Pnew is set to $P$).

7.6.12 QXQM.

QXQM are matrices of QX. All entries must be t_INT, t_FRAC or polynomials of degree strictly less than the degree of $T$, which must be a monic ZX.

GEN QXQM_mul(GEN x, GEN y, GEN T) returns $x \ast y \text{mod} \ T$.

GEN QXQM_sqr(GEN x, GEN T) returns $x^2 \text{mod} \ T$.

182
7.6.13 zx.

GEN zero_zx(long sv) returns a zero zx in variable v.

GEN polx_zx(long sv) returns the variable v as degree 1 Flx.

GEN zx_renormalize(GEN x, long l) returns Flx_renormalize, where l = lg(x), in place.

GEN zx_shift(GEN T, long n) returns T multiplied by x^n, assuming n >= 0.

7.6.14 RgX.


long RgX_degree(GEN x, long v) x being a t_POL and v >= 0, returns the degree in v of x. Error if x is not a polynomial in v.

int RgX_isscalar(GEN x) return 1 if all the coefficients of x of degree > 0 are 0 (as per gequal0).

int RgX_is_rational(GEN P) return 1 if the RgX P has only rational coefficients (t_INT and t_FRAC), and 0 otherwise.

int RgX_is_QX(GEN P) return 1 if the RgX P has only t_INT and t_FRAC coefficients, and 0 otherwise.

int RgX_is_ZX(GEN P) return 1 if the RgX P has only t_INT coefficients, and 0 otherwise.

int RgX_is_monomial(GEN x) returns 1 (true) if x is a non-zero monomial in its main variable, 0 otherwise.

long RgX_equal(GEN x, GEN y) returns 1 if the t_POLs x and y have the same degpol and their coefficients are equal (as per gequal). Variable numbers are not checked. Note that this is more stringent than gequal(x,y), which only checks whether x−y satisfies gequal0; in particular, they may have different apparent degrees provided the extra leading terms are 0.

long RgX_equal_var(GEN x, GEN y) returns 1 if x and y have the same variable number and RgX_equal(x,y) is 1.

7.6.14.2 Coefficients, blocks.

GEN RgX_coeff(GEN P, long n) return the coefficient of x^n in P, defined as gen0 if n < 0 or n > degpol(P). Shallow function.

int RgX_blocks(GEN P, long n, long m) writes P(X) = a0(X) + X^n * a1(X) + X^n + ... + X^{n*(m-1)}a_{m-1}(X), where the ai are polynomial of degree at most n−1 (except possibly for the last one) and returns [a0(X),a1(X),...,a_{m-1}(X)]. Shallow function.

void RgX_even_odd(GEN p, GEN *pe, GEN *po) write p(X) = E(X^2) + XO(X^2) and set *pe = E, *po = 0. Shallow function.

GEN RgX_splitting(GEN P, long k) write P(X) = a0(X^k) + Xa1(X^k) + ... + X^{k-1}a_{k-1}(X^k) and return [a0(X),a1(X),...,a_{k-1}(X)]. Shallow function.

GEN RgX_copy(GEN x) returns (a deep copy of) x.

GEN RgX_renormalize(GEN x) remove leading terms in x which are equal to (necessarily inexact) zeros.

GEN RgX_renormalize_lg(GEN x, long lx) as setlg(x, lx) followed by RgX_renormalize(x). Assumes that 1x <= lg(x).
GEN RgX_recip(GEN P) returns the reverse of the polynomial $P$, i.e. $X^{\deg P} P(1/X)$.

GEN RgX_recip_shallow(GEN P) shallow function of RgX_recip, where we further assume that $P(0) \neq 0$, so that the degree of the output is the degree of $P$.

GEN RgX_deflate(GEN P, long d) assuming $P$ is a polynomial of the form $Q(X^d)$, return $Q$. Shallow function, not suitable for gerepileupto.

long RgX_deflate_order(GEN P) given a non-constant polynomial $P$, returns the largest exponent $d$ such that $P$ is of the form $P(x^d)$ (use gequal0 to check whether coefficients are 0).

long RgX_deflate_max(GEN P, long *d) given a non-constant polynomial $P$, sets $d$ to RgX_deflate_order($P$) and returns RgX_deflate($P$, $d$). Shallow function.

GEN RgX_inflate(GEN P, long d) return $P(X^d)$. Shallow function, not suitable for gerepileupto.

GEN RgX_rescale_to_int(GEN x) given a polynomial $x$ with real entries (t_INT, t_FRAC or t_REAL), return a ZX which is very close to $Dx$ for some well-chosen integer $D$. More precisely, if the input is exact, $D$ is the denominator of $x$; else it is a power of 2 chosen so that all inexact entries are correctly rounded to 1 ulp.

7.6.14.3 Shifts, valuations.

GEN RgX_shift(GEN x, long n) returns $x \cdot t^n$ if $n \geq 0$, and $x/t^{-n}$ otherwise.

GEN RgX_shift_shallow(GEN x, long n) as RgX_shift, but shallow (coefficients are not copied).

GEN RgX_rotate_shallow(GEN P, long k, long p) returns $P \cdot X^k \pmod{X^p - 1}$, assuming the degree of $P$ is strictly less than $p$, and $k \geq 0$.

void RgX_shift_inplace_init(long v) $v \geq 0$, prepare for a later call to RgX_shift_inplace. Reserves $v$ words on the stack.

GEN RgX_shift_inplace(GEN x, long v) $v \geq 0$, assume that RgX_shift_inplace_init($v$) has been called (reserving $v$ words on the stack), immediately followed by a t_POL $x$. Return RgX_shift($x$, $v$) by shifting $x$ in place. To be used as follows

RgX_shift_inplace_init($v$);
    av = avma;
    ... 
    x = gerepileupto(av, ...); /* a t_POL */
    return RgX_shift_inplace(x, $v$);

long RgX_valrem(GEN P, GEN *pz) returns the valuation $v$ of the t_POL $P$ with respect to its main variable $X$. Check whether coefficients are 0 using isexactzero. Set *pz to RgX_shift_shallow($P$, $-v$).

long RgX_val(GEN P) returns the valuation $v$ of the t_POL $P$ with respect to its main variable $X$. Check whether coefficients are 0 using isexactzero.

long RgX_valrem_inexact(GEN P, GEN *z) as RgX_valrem, using gequal0 instead of isexactzero.
7.6.14.4 Basic arithmetic.

GEN RgX_add(GEN x, GEN y) adds x and y.
GEN RgX_sub(GEN x, GEN y) subtracts x and y.
GEN RgX_neg(GEN x) returns \(-x\).
GEN RgX_Rg_add(GEN y, GEN x) returns \(x + y\).
GEN RgX_Rg_add_shallow(GEN y, GEN x) returns \(x + y\); shallow function.
GEN RgX_sub(GEN x, GEN y) returns \(x - y\).
GEN RgX_mul(GEN y, GEN x) multiplies the RgX y by the scalar x.
GEN RgX_div(GEN y, GEN x) divides the RgX y by the scalar x.
GEN RgX_divs(GEN y, long s) divides the RgX y by the long s.
GEN RgX_divexact(GEN x, GEN y) exact division of the RgX y by the scalar x.
GEN RgX_eval_bk(GEN f, GEN x) returns \(f(x)\) using Brent and Kung algorithm. (Use poleval for Horner algorithm.)
GEN RgXV_eval(GEN f, GEN V) as RgX_RgV_eval_bk(f, x), assuming V was output by gpowers(x, n) for some \(n \geq 1\).
GEN RgXV_RgV_eval(GEN f, GEN V) apply RgX_RgV_eval_bk(, V) to all the components of the vector f.
GEN RgX_normalize(GEN x) divides x by its leading coefficient. If the latter is 1, x itself is returned, not a copy. Leading coefficients equal to 0 are stripped, e.g.

\[0.\ast t^3 + \text{Mod}(0,3)\ast t^2 + 2\ast t\]

is normalized to \(t\).
GEN RgX_mul(GEN x, GEN y) multiplies the two t_POL (in the same variable) x and y. Detect the coefficient ring and use an appropriate algorithm.
GEN RgX_mul_i(GEN x, GEN y) multiplies the two t_POL (in the same variable) x and y. Do not detect the coefficient ring. Use a generic Karatsuba algorithm.
GEN RgX_mul_normalized(GEN A, long a, GEN B, long b) returns \((X^a + A)(X^b + B) - X^{(a+b)}\), where we assume that \(\text{deg}A < a\) and \(\text{deg}B < b\) are polynomials in the same variable X.
GEN RgX_sqr(GEN x) squares the t_POL x. Detect the coefficient ring and use an appropriate algorithm.
GEN RgX_sqr_i(GEN x) squares the t_POL x. Do not detect the coefficient ring. Use a generic Karatsuba algorithm.
GEN RgX_divrem(GEN x, GEN y, GEN \(*r\)) by default, returns the Euclidean quotient and store the remainder in \(r\). Three special values of \(r\) change that behavior • NULL: do not store the remainder, used to implement RgX_div,

• ONLY_REM: return the remainder, used to implement RgX_rem,
• ONLY_DIVIDES: return the quotient if the division is exact, and NULL otherwise.

GEN RgX_div(GEN x, GEN y)
GEN RgX_div_by_X_x(GEN A, GEN a, GEN *r) returns the quotient of the RgX A by \((X - a)\), and sets r to the remainder A(a).

GEN RgX_rem(GEN x, GEN y)
GEN RgX_pseudodivrem(GEN x, GEN y, GEN *ptr) compute a pseudo-quotient q and pseudo-remainder r such that \(\text{lc}(y)^\deg(x) - \deg(y) + 1 x = qy + r\). Return q and set *ptr to r.

GEN RgX_pseudorem(GEN x, GEN y) return the remainder in the pseudo-division of x by y.

GEN RgXQX_pseudorem(GEN x, GEN y, GEN T) return the remainder in the pseudo-division of x by y over \(R[X]/(T)\).

GEN RgXQX_pseudodivrem(GEN x, GEN y, GEN T, GEN *ptr) compute a pseudo-quotient q and pseudo-remainder r such that \(\text{lc}(y)^\deg(x) - \deg(y) + 1 x = qy + r\) in \(R[X]/(T)\). Return q and set *ptr to r.

GEN RgX_mulXn(GEN a, long n) returns \(a \times X^n\). This may be a \(t_{\text{FRAC}}\) if \(n < 0\) and the valuation of a is not large enough.

GEN RgX_addmulXn(GEN a, GEN b, long n) returns \(a + b \times X^n\), assuming that \(n > 0\).

GEN RgX_addmulXn_shallow(GEN a, GEN b, long n) shallow variant of RgX_addmulXn.

GEN RgX_digits(GEN x, GEN B) returns a vector of \(RgX\ [c_0, \ldots, c_n]\) of degree less than the degree of B and such that \(x = \sum_{i=0}^n c_i B^i\).

7.6.14.5 Internal routines working on coefficient arrays.

These routines operate on coefficient blocks which are invalid GENs A GEN argument \(a\) or \(b\) in routines below is actually a coefficient arrays representing the polynomials \(\sum_{i=0}^{na-1} a[i] X^i\) and \(\sum_{i=0}^{nb-1} b[i] X^i\). Note that \(a[0]\) and \(b[0]\) contain coefficients and not the mandatory GEN codeword. This allows to implement divide-and-conquer methods directly, without needing to allocate wrappers around coefficient blocks.

GEN RgX_mulspec(GEN a, GEN b, long na, long nb). Internal routine: given two coefficient arrays representing polynomials, return their product (as a true GEN) in variable 0.

GEN RgX_sqrspec(GEN a, long na). Internal routine: given a coefficient array representing a polynomial r return its square (as a true GEN) in variable 0.

GEN RgX_addspec(GEN x, GEN y, long nx, long ny) given two coefficient arrays representing polynomials, return their sum (as a true GEN) in variable 0.

GEN RgX_addspec_shallow(GEN x, GEN y, long nx, long ny) shallow variant of RgX_addspec.
7.6.14.6 GCD, Resultant.

GEN \texttt{RgX\_gcd}\((\texttt{GEN } x, \texttt{GEN } y)\) returns the GCD of \(x\) and \(y\), assumed to be \texttt{t\_POL}s in the same variable.

GEN \texttt{RgX\_gcd\_simple}\((\texttt{GEN } x, \texttt{GEN } y)\) as \texttt{RgX\_gcd} using a standard extended Euclidean algorithm. Usually slower than \texttt{RgX\_gcd}.

GEN \texttt{RgX\_extgcd}\((\texttt{GEN } x, \texttt{GEN } y, \texttt{GEN } *u, \texttt{GEN } *v)\) returns \(d = \text{GCD}(x,y)\), and sets \(*u, *v\) to the Bezout coefficients such that \(*ux + *vy = d\). Uses a generic subresultant algorithm.

GEN \texttt{RgX\_extgcd\_simple}\((\texttt{GEN } x, \texttt{GEN } y, \texttt{GEN } *u, \texttt{GEN } *v)\) as \texttt{RgX\_extgcd} using a standard extended Euclidean algorithm. Usually slower than \texttt{RgX\_extgcd}.

GEN \texttt{RgX\_disc}\((\texttt{GEN } x)\) returns the discriminant of the \texttt{t\_POL} \(x\) with respect to its main variable.

GEN \texttt{RgX\_resultant\_all}\((\texttt{GEN } x, \texttt{GEN } y, \texttt{GEN } *sol)\) returns \(\text{resultant}(x,y)\). If \(\texttt{sol}\) is not \texttt{NULL}, sets it to the last non-constant remainder in the polynomial remainder sequence if it exists and to \texttt{gen} 0 otherwise (e.g. one polynomial has degree 0).

7.6.14.7 Other operations.

GEN \texttt{RgX\_gtofp}\((\texttt{GEN } x, \texttt{GEN } prec)\) returns the polynomial obtained by applying \(\text{gtofp}(\text{gel}(x,i), \text{prec})\) to all coefficients of \(x\).

GEN \texttt{RgX\_fpnorml2}\((\texttt{GEN } x, \text{long } \text{prec})\) returns (a stack-clean variant of) \(\text{gnorml2}(\text{RgX\_gtofp}(x, \text{prec}))\)

GEN \texttt{RgX\_deriv}\((\texttt{GEN } x)\) returns the derivative of \(x\) with respect to its main variable.

GEN \texttt{RgX\_integ}\((\texttt{GEN } x)\) returns the primitive of \(x\) vanishing at 0, with respect to its main variable.

GEN \texttt{RgX\_rescale}\((\texttt{GEN } P, \texttt{GEN } h)\) returns \(h^{\deg(P)} P(x/h)\). \(P\) is an \texttt{RgX} and \(h\) is non-zero. (Leaves small objects on the stack. Suitable but inefficient for \texttt{gerepileupto}.)

GEN \texttt{RgX\_unscale}\((\texttt{GEN } P, \texttt{GEN } h)\) returns \(P(hx)\). (Leaves small objects on the stack. Suitable but inefficient for \texttt{gerepileupto}.)

GEN \texttt{RgXV\_unscale}\((\texttt{GEN } v, \texttt{GEN } h)\) apply \texttt{RgX\_unscale} to a vector of \texttt{RgX}.

GEN \texttt{RgX\_translate}\((\texttt{GEN } P, \texttt{GEN } c)\) assume \(c\) is a scalar or a polynomials whose main variable has lower priority than the main variable \(X\) of \(P\). Returns \(P(X + c)\) (optimized for \(c = \pm 1\)).

7.6.14.8 Function related to modular forms.

GEN \texttt{RgX\_act\_GL2Q}\((\texttt{GEN } g, \text{long } k)\) let \(R\) be a commutative ring and \(g = [a,b;c,d]\) be in \(\text{GL}_2(\mathbb{Q})\), \(g\) acts (on the left) on homogeneous polynomials of degree \(k - 2\) in \(V := \text{R}[X,Y]_{k-2}\) via

\[
g \cdot P := P(dX - cY, -bX + aY) = (\det g)^{k-2} P((X, Y) \cdot g^{-1}).
\]

This function returns the matrix in \(M_{k-1}(R)\) of \(P \mapsto g \cdot P\) in the basis \(\{X^{k-2}, \ldots, Y^{k-2}\}\) of \(V\).

GEN \texttt{RgX\_act\_ZGL2Q}\((\texttt{GEN } z, \text{long } k)\) let \(G := \text{GL}_2(\mathbb{Q})\), acting on \(\text{R}[X,Y]_{k-2}\) and \(z \in \mathbb{Z}[G]\). Return the matrix giving \(P \mapsto z \cdot P\) in the basis \(\{X^{k-2}, \ldots, Y^{k-2}\}\).
7.6.15 \textbf{RgXn}.

\texttt{GEN RgXn\_red\_shallow(GEN x, long n)} return \(x \% t^n\), where \(n \geq 0\). Shallow function.

\texttt{GEN RgXn\_recip\_shallow(GEN P)} returns \(X^n P(1/X)\). Shallow function.

\texttt{GEN RgXn\_mul(GEN a, GEN b, long n)} returns \(ab\) modulo \(X^n\), where \(a, b\) are two \texttt{t\_POL} in the same variable \(X\) and \(n \geq 0\). Uses Karatsuba algorithm (Mulders, Hanrot-Zimmermann variant).

\texttt{GEN RgXn\_sqr(GEN a, long n)} returns \(a^2\) modulo \(X^n\), where \(a\) is a \texttt{t\_POL} in the variable \(X\) and \(n \geq 0\). Uses Karatsuba algorithm (Mulders, Hanrot-Zimmermann variant).

\texttt{GEN RgXn\_mulhigh\_i(GEN f, GEN g, long n)} return the Euclidean quotient of \(f(x) \ast g(x)\) by \(x^n\) (high product). Uses \texttt{RgXn\_mul} applied to the reciprocal polynomials of \(f\) and \(g\). Not suitable for \texttt{gerepile}.

\texttt{GEN RgXn\_sqrhigh\_i(GEN f, long n)} return the Euclidean quotient of \(f(x)^2\) by \(x^n\) (high product). Uses \texttt{RgXn\_sqr} applied to the reciprocal polynomial of \(f\). Not suitable for \texttt{gerepile}.

\texttt{GEN RgXn\_inv(GEN a, long n)} returns \(a^{-1}\) modulo \(X^n\), where \(a\) is a \texttt{t\_POL} in the variable \(X\) and \(n \geq 0\). Uses Newton-Raphson algorithm.

\texttt{GEN RgXn\_inv\_i(GEN a, long n)} as \texttt{RgXn\_inv} without final garbage collection (suitable for \texttt{gerepileupto}).

\texttt{GEN RgXn\_powers(GEN x, long m, long n)} returns \([x^0, \ldots, x^m]\) modulo \(X^n\) as a \texttt{t\_VEC} of \texttt{RgXn}s.

\texttt{GEN RgXn\_powu(GEN x, ulong m, long n)} returns \(x^m\) modulo \(X^n\).

\texttt{GEN RgXn\_powu\_i(GEN x, ulong m, long n)} as \texttt{RgXn\_powu}, not memory clean.

\texttt{GEN RgXn\_sqrt(GEN a, long n)} returns \(a^{1/2}\) modulo \(X^n\), where \(a\) is a \texttt{t\_POL} in the variable \(X\) and \(n \geq 0\). Assume that \(a = 1 \mod X\). Uses Newton algorithm.

\texttt{GEN RgXn\_exp(GEN a, long n)} returns \(exp(a)\) modulo \(X^n\), assuming \(a = 0 \mod X\). Uses Hanrot-Zimmermann algorithm.

\texttt{GEN RgXn\_eval(GEN Q, GEN x, long n)} special case of \texttt{RgX\_RgXQ\_eval}, when the modulus is a monomial: returns \(Q(x)\) modulo \(t^n\), where \(x \in R[t]\).

\texttt{GEN RgX\_RgXn\_eval(GEN f, GEN x, long n)} returns \(f(x)\) modulo \(X^n\).

\texttt{GEN RgX\_RgXnV\_eval(GEN f, GEN V, long n)} as \texttt{RgX\_RgXn\_eval(f, x, n)}, assuming \(V\) was output by \texttt{RgXn\_powers(x, m, n)} for some \(m \geq 1\).

\texttt{GEN RgXn\_reverse(GEN f, long n)} assuming that \(f = ax \mod x^2\) with \(a\) invertible, returns a \texttt{t\_POL} \(g\) of degree < \(n\) such that \((g \circ f)(x) = x \mod x^n\).

7.6.16 \textbf{RgXnV}.

\texttt{GEN RgXnV\_red\_shallow(GEN x, long n)} apply \texttt{RgXn\_red\_shallow} to all the components of the vector \(x\).
7.6.17 RgXQ.

GEN RgXQ_mul(GEN y, GEN x, GEN T) computes $xy \mod T$

GEN RgXQ_sqr(GEN x, GEN T) computes $x^2 \mod T$

GEN RgXQ_inv(GEN x, GEN T) return the inverse of $x \mod T$.

GEN RgXQ_pow(GEN x, GEN n, GEN T) computes $x^n \mod T$

GEN RgXQ_powu(GEN x, ulong n, GEN T) computes $x^n \mod T$, $n$ being an ulong.

GEN RgXQ_powers(GEN x, long n, GEN T) returns $\left[x^0, \ldots, x^n\right]$ as a t_VEC of RgXQs.

GEN RgXQ_matrix_pow(GEN y, long n, long m, GEN P) returns RgXQ_powers(y, m-1, P), as a matrix of dimension $n \geq \deg P$.

GEN RgXQ_norm(GEN x, GEN T) returns the norm of Mod($x$, T).

GEN RgXQ_charpoly(GEN x, GEN T, long v) returns the characteristic polynomial of Mod($x$, T), in variable $v$.

GEN RgX_RgXQ_eval(GEN f, GEN x, GEN T) returns $f(x) \mod T$.

GEN RgX_RgXQV_eval(GEN f, GEN V, GEN T) as RgX_RgXQ_eval(f, x, T), assuming $V$ was output by RgXQ_powers(x, n, T) for some $n \geq 1$.

int RgXQ_ratlift(GEN x, GEN T, long amax, long bmax, GEN *P, GEN *Q) Assuming that $amax + bmax < \deg T$, attempts to recognize $x$ as a rational function $a/b$, i.e. to find t_POLs $P$ and $Q$ such that

- $P = Qx \mod T$,
- $\deg P \leq amax$, $\deg Q \leq bmax$,
- $\gcd(T, P) = \gcd(P, Q)$.

If unsuccessful, the routine returns 0 and leaves $P, Q$ unchanged; otherwise it returns 1 and sets $P$ and $Q$.

GEN RgXQ_reverse(GEN f, GEN T) returns a t_POL $g$ of degree $< n = \deg T$ such that $T(x)$ divides $(g \circ f)(x) - x$, by solving a linear system. Low-level function underlying modreverse: it returns a lift of $[\text{modreverse}(f, T)]$; faster than the high-level function since it needs not compute the characteristic polynomial of $f \mod T$ (often already known in applications). In the trivial case where $n \leq 1$, returns a scalar, not a constant t_POL.

7.6.18 RgXQV, RgXQC.

GEN RgXQC_red(GEN z, GEN T) z a vector whose coefficients are RgXs (arbitrary GENs in fact), reduce them to RgXQs (applying grem coefficientwise) in a t_COL.

GEN RgXQV_red(GEN z, GEN T) z a vector whose coefficients are RgXs (arbitrary GENs in fact), reduce them to RgXQs (applying grem coefficientwise) in a t_VEC.

GEN RgXQV_RgXQ_mul(GEN z, GEN x, GEN T) z multiplies the RgXQV z by the scalar (RgXQ) x.
7.6.19 RgXQM.

GEN RgXQM_red(GEN z, GEN T) z a matrix whose coefficients are RgXs (arbitrary GENs in fact), reduce them to RgXQs (applying grem coefficientwise).

GEN RgXQM_mul(GEN x, GEN y, GEN T)

7.6.20 RgXQX.

GEN RgXQX_red(GEN z, GEN T) z a matrix whose coefficients are RgXs (arbitrary GENs in fact), reduce them to RgXQs (applying grem coefficientwise).

GEN RgXQX_mul(GEN x, GEN y, GEN T) multiplies the RgXQX y by the scalar (RgX) x.

GEN RgXQX_sqr(GEN x, GEN T)

GEN RgXQX_powers(GEN x, long n, GEN T)

GEN RgXQX_divrem(GEN x, GEN y, GEN T, GEN *pr)

GEN RgXQX_div(GEN x, GEN y, GEN T, GEN *r)

GEN RgXQX_rem(GEN x, GEN y, GEN T, GEN *r)

GEN RgXQX_translate(GEN P, GEN c, GEN T) assume the main variable X of P has higher priority than the main variable Y of T and c. Return a lift of \( P(X + \text{Mod}(c(Y), T(Y))) \).

GEN Kronecker_to_mod(GEN z, GEN T) z ∈ \( R[X] \) represents an element \( P(X,Y) \) in \( R[X,Y] \mod T(Y) \) in Kronecker form, i.e. \( z = P(X, X^{2n-1}) \).

Let \( R \) be some commutative ring, \( n = \text{deg} T \) and let \( P(X,Y) \in R[X,Y] \) lift a polynomial in \( K[Y] \), where \( K := R[X]/(T) \) and \( \text{deg}_X P < 2n - 1 \) — such as would result from multiplying minimal degree lifts of two polynomials in \( K[Y] \). Let \( z = P(t, t^{2n-1}) \) be a Kronecker form of \( P \), this function returns the image of \( P(X,t) \) in \( K[t] \), with t_POLMOD coefficients. Not stack-clean. Note that \( t \) need not be the same variable as \( Y \)!
Chapter 8: Black box algebraic structures

The generic routines like `gmul` or `gadd` allow handling objects belonging to a fixed list of basic types, with some natural polymorphism (you can mix rational numbers and polynomials, etc.), at the expense of efficiency and sometimes of clarity when the recursive structure becomes complicated, e.g. a few levels of t_POLMODs attached to different polynomials and variable numbers for quotient structures. This is the only possibility in GP.

On the other hand, the Level 2 Kernel allows dedicated routines to handle efficiently objects of a very specific type, e.g. polynomials with coefficients in the same finite field. This is more efficient, but involves a lot of code duplication since polymorphism is no longer possible.

A third and final option, still restricted to library programming, is to define an arbitrary algebraic structure (currently groups, fields, rings, algebras and $\mathbb{Z}_p$-modules) by providing suitable methods, then using generic algorithms. For instance naive Gaussian pivoting applies over all base fields and need only be implemented once. The difference with the first solution is that we no longer depend on the way functions like `gmul` or `gadd` will guess what the user is trying to do. We can then implement independently various groups / fields / algebras in a clean way.

8.1 Black box groups.

A black box group is defined by a `bb_group` struct, describing methods available to handle group elements:

```c
struct bb_group
{
 GEN (*mul)(void*, GEN, GEN);
 GEN (*pow)(void*, GEN, GEN);
 GEN (*rand)(void*);
 ulong (*hash)(GEN);
 int (*equal)(GEN, GEN);
 int (*equal1)(GEN);
 GEN (*easylog)(void *E, GEN, GEN, GEN);
};
```

`mul(E,x,y)` returns the product $xy$.

`pow(E,x,n)` returns $x^n$ (n integer, possibly negative or zero).

`rand(E)` returns a random element in the group.

`hash(x)` returns a hash value for $x$ (hash_GEN is suitable for this field).

`equal(x,y)` returns one if $x = y$ and zero otherwise.

`equal1(x)` returns one if $x$ is the neutral element in the group, and zero otherwise.

`easylog(E,a,g,o)` (optional) returns either NULL or the discrete logarithm $n$ such that $g^n = a$, the element $g$ being of order $o$. This provides a short-cut in situation where a better algorithm than the generic one is known.
A group is thus described by a `struct bb_group` as above and auxiliary data typecast to `void*`. The following functions operate on black box groups:

```c
GEN gen_Shanks_log(GEN x, GEN g, GEN N, void *E, const struct bb_group *grp)
```

Generic baby-step/giant-step algorithm (Shanks’s method). Assuming that $g$ has order $N$, compute an integer $k$ such that $g^k = x$. Return `cgetg(1, t_VEC)` if there are no solutions. This requires $O(\sqrt{N})$ group operations and uses an auxiliary table containing $O(\sqrt{N})$ group elements.

The above is useful for a one-shot computation. If many discrete logs are desired:

```c
GEN gen_Shanks_init(GEN g, long n, void *E, const struct bb_group *grp)
```

return an auxiliary data structure $T$ required to compute a discrete log in base $g$. Compute and store all powers $g^i$, $i < n$.

```c
GEN gen_Shanks(GEN T, GEN x, ulong N, void *E, const struct bb_group *grp)
```

Let $T$ be computed by `gen_Shanks_init(g,n,...)`. Return $k < nN$ such that $g^k = x$ or `NULL` if no such index exist. It uses $O(N)$ operation in the group and fast table lookups (in time $O(\log n)$). The interface is such that the function may be used when the order of the base $g$ is unknown, and hence compute it given only an upper bound $B$ for it: e.g. choose $n,N$ such that $nN \geq B$ and compute the discrete log $l$ of $g^{-1}$ in base $g$, then use `gen_order` with multiple $N = l + 1$.

```c
GEN gen_Pollard_log(GEN x, GEN g, GEN N, void *E, const struct bb_group *grp)
```

Generic Pollard rho algorithm. Assuming that $g$ has order $N$, compute an integer $k$ such that $g^k = x$. This requires $O(\sqrt{N})$ group operations in average and $O(1)$ storage. Will enter an infinite loop if there are no solutions.

```c
GEN gen_plog(GEN x, GEN g, GEN N, void *E, const struct bb_group)
```

Assuming that $g$ has prime order $N$, compute an integer $k$ such that $g^k = x$, using either `gen_Shanks_log` or `gen_Shanks_sqrtn`. Return `cgetg(1, t_VEC)` if there are no solutions.

```c
GEN gen_Shanks_sqrtn(GEN a, GEN n, GEN N, GEN *zetan, void *E, const struct bb_group *grp)
```

returns one solution of $x^n = a$ in a black box cyclic group of order $N$. Return `NULL` if no solution exists. If `zetan` is not `NULL` it is set to an element of exact order $n$. This function uses `gen_plog` for all prime divisors of $\gcd(n,N)$.

```c
GEN gen_PH_log(GEN a, GEN g, GEN N, void *E, const struct bb_group *grp)
```

returns an integer $k$ such that $g^k = x$, assuming that $g$ has order $N$, by Pohlig-Hellman algorithm. Return `cgetg(1, t_VEC)` if there are no solutions. This calls `gen_plog` repeatedly for all prime divisors $p$ of $N$.

In the following functions the integer parameter `ord` can be given in all the formats recognized for the argument of arithmetic functions, i.e. either as a positive `t_INT N`, or as its factorization matrix $faN$, or (preferred) as a pair $[N,faN]$.

```c
GEN gen_order(GEN x, GEN ord, void *E, const struct bb_group *grp)
```

computes the order of $x$; `ord` is a multiple of the order, for instance the group order.

```c
GEN gen_factored_order(GEN x, GEN ord, void *E, const struct bb_group *grp)
```

returns a pair $[o,F]$, where $o$ is the order of $x$ and $F$ is the factorization of $o$; `ord` is as in `gen_order`.

```c
GEN gen_gener(GEN ord, void *E, const struct bb_group *grp)
```

returns a random generator of the group, assuming it is of order exactly `ord`.

```c
GEN get_arith_Z(GEN ord)
```

given `ord` as above in one of the formats recognized for arithmetic functions, i.e. a positive `t_INT N`, its factorization $faN$, or the pair $[N,faN]$, return $N$. 

192
GEN get_arith_ZZM(GEN ord) given ord as above, return the pair \([N,faN]\). This may require factoring \(N\).

GEN gen_select_order(GEN v, void *E, const struct bb_group *grp) Let \(v\) be a vector of possible orders for the group; try to find the true order by checking orders of random points. This will not terminate if there is an ambiguity.

8.1.1 Black box groups with pairing.

These functions handle groups of rank at most 2 equipped with a family of bilinear pairings which behave like the Weil pairing on elliptic curves over finite field. In the descriptions below, the function pairorder(E, P, Q, m, F) must return the order of the \(m\)-pairing of \(P\) and \(Q\), both of order dividing \(m\), where \(F\) is the factorization matrix of a multiple of \(m\).

GEN gen_ellgroup(GEN o, GEN d, GEN *pt_m, void *E, const struct bb_group *grp, GEN pairorder(void *E, GEN P, GEN Q, GEN m, GEN F)) returns the elementary divisors \([d_1,d_2]\) of the group, assuming it is of order exactly \(o > 1\), and that \(d_2\) divides \(d\). If \(d_2 = 1\) then \([o]\) is returned, otherwise \(m=\text{pt_m}\) is set to the order of the pairing required to verify a generating set which is to be used with gen_ellgens. For the parameter \(o\), all formats recognized by arithmetic functions are allowed, preferably a factorization matrix or a pair \([n,\text{factor}(n)]\).

GEN gen_ellgens(GEN d1, GEN d2, GEN m, void *E, const struct bb_group *grp, GEN pairorder(void *E, GEN P, GEN Q, GEN m, GEN F)) the parameters \(d_1, d_2, m\) being as returned by gen_ellgroup, returns a pair of generators \([P,Q]\) such that \(P\) is of order \(d_1\) and the \(m\)-pairing of \(P\) and \(Q\) is of order \(m\). (Note: \(Q\) needs not be of order \(d_2\)). For the parameter \(d_1\), all formats recognized by arithmetic functions are allowed, preferably a factorization matrix or a pair \([n,\text{factor}(n)]\).

8.1.2 Functions returning black box groups.

const struct bb_group * get_Flxq_star(void **E, GEN T, ulong p)

const struct bb_group * get_FpXQ_star(void **E, GEN T, GEN p)

returns a pointer to the black box group \((\mathbb{F}_p[x]/(T))^*\).

const struct bb_group * get_FpE_group(void **pE, GEN a4, GEN a6, GEN p)

returns a pointer to a black box group and set \(*pE\) to the necessary data for computing in the group \(E(\mathbb{F}_p)\) where \(E\) is the elliptic curve \(E : y^2 = x^3 + a_4x + a_6\), with \(a_4\) and \(a_6\) in \(\mathbb{F}_p\).

const struct bb_group * get_FpXQE_group(void **pE, GEN a4, GEN a6, GEN T, GEN p)

returns a pointer to a black box group and set \(*pE\) to the necessary data for computing in the group \(E(\mathbb{F}_p[X]/(T))\) where \(E\) is the elliptic curve \(E : y^2 = x^3 + a_4x + a_6\), with \(a_4\) and \(a_6\) in \(\mathbb{F}_p[X]/(T)\).

const struct bb_group * get_FlxqE_group(void **pE, GEN a4, GEN a6, GEN T, ulong p)

idem for small \(p\).

const struct bb_group * get_F2xqE_group(void **pE, GEN a2, GEN a6, GEN T)

idem for \(p = 2\).
### 8.2 Black box fields.

A black box field is defined by a `bb_field` struct, describing methods available to handle field elements:

```c
struct bb_field
{
 GEN (*red)(void *E, GEN);
 GEN (*add)(void *E, GEN, GEN);
 GEN (*mul)(void *E, GEN, GEN);
 GEN (*neg)(void *E, GEN);
 GEN (*inv)(void *E, GEN);
 int (*equal0)(GEN);
 GEN (*s)(void *E, long);
};
```

In contrast of black box group, elements can have non canonical forms, and only `red` is required to return a canonical form. For instance a black box implementation of finite fields, all methods except `red` may return arbitrary representatives in \( \mathbb{Z}[X] \) of the correct congruence class modulo \((p,T(X))\).

- `red(E,x)` returns the canonical form of \( x \).
- `add(E,x,y)` returns the sum \( x + y \).
- `mul(E,x,y)` returns the product \( xy \).
- `neg(E,x)` returns \(-x\).
- `inv(E,x)` returns the inverse of \( x \).
- `equal0(x)` \( x \) being in canonical form, returns one if \( x = 0 \) and zero otherwise.
- `s(n)` \( n \) being a small signed integer, returns \( n \) times the unit element.

A field is thus described by a `struct bb_field` as above and auxiliary data typecast to `void*`.

The following functions operate on black box fields:

- `GEN gen_Gauss(GEN a, GEN b, void *E, const struct bb_field *ff)`
- `GEN gen_Gauss_pivot(GEN x, long *rr, void *E, const struct bb_field *ff)`
- `GEN gen_det(GEN a, void *E, const struct bb_field *ff)`
- `GEN gen_ker(GEN x, long deplin, void *E, const struct bb_field *ff)`
- `GEN gen_matcolinvimage(GEN a, GEN b, void *E, const struct bb_field *ff)`
- `GEN gen_matcolmul(GEN a, GEN b, void *E, const struct bb_field *ff)`
- `GEN gen_matid(long n, void *E, const struct bb_field *ff)`
- `GEN gen_matinvimage(GEN a, GEN b, void *E, const struct bb_field *ff)`
- `GEN gen_matmul(GEN a, GEN b, void *E, const struct bb_field *ff)`

8.2.1 Functions returning black box fields.

const struct bb_field * get_Fp_field(void **pE, GEN p)
const struct bb_field * get_Fq_field(void **pE, GEN T, GEN p)
const struct bb_field * get_Flxq_field(void **pE, GEN T, ulong p)
const struct bb_field * get_F2xq_field(void **pE, GEN T)
const struct bb_field * get_nf_field(void **pE, GEN nf)

8.3 Black box algebra.

A black box algebra is defined by a bb_algebra struct, describing methods available to handle algebra elements:

```c
struct bb_algebra
{
 GEN (*red)(void *E, GEN x);
 GEN (*add)(void *E, GEN x, GEN y);
 GEN (*sub)(void *E, GEN x, GEN y);
 GEN (*mul)(void *E, GEN x, GEN y);
 GEN (*sqr)(void *E, GEN x);
 GEN (*one)(void *E);
 GEN (*zero)(void *E);
};
```

In contrast with black box groups, elements can have non canonical forms, but only add is allowed to return a non canonical form.

- `red(E, x)` returns the canonical form of `x`.
- `add(E, x, y)` returns the sum `x + y`.
- `sub(E, x, y)` returns the difference `x - y`.
- `mul(E, x, y)` returns the product `xy`.
- `sqr(E, x)` returns the square `x^2`.
- `one(E)` returns the unit element.
- `zero(E)` returns the zero element.

An algebra is thus described by a struct `bb_algebra` as above and auxiliary data typecast to void*. The following functions operate on black box algebra:

```c
GEN gen_bkeval(GEN P, long d, GEN x, int use_sqr, void *E, const struct bb_algebra *ff, GEN cmul(void *E, GEN P, long a, GEN x))
```

`x` being an element of the black box algebra, and `P` some black box polynomial of degree `d` over the base field, returns `P(x)`. The function `cmul(E, P, a, y)` must return the coefficient of degree `a` of `P` multiplied by `y`. `cmul` is allowed to return a non canonical form; it is also allowed to return NULL instead of an exact 0.

The flag `use_sqr` has the same meaning as for `gen_powers`. This implements an algorithm of Brent and Kung (1978).
GEN gen_bkeval_powers(GEN P, long d, GEN V, void *E, const struct bb_algebra *ff, GEN cmul(void *E, GEN P, long a, GEN x)) as gen_RgX_bkeval assuming V was output by gen_powers(x, l, E, ff) for some l ≥ 1. For optimal performance, l should be computed by brent_kung_optpow.

long brent_kung_optpow(long d, long n, long m) returns the optimal parameter l for the evaluation of n/m polynomials of degree d. Fractional values can be used if the evaluations are done with different accuracies, and thus have different weights.

8.3.1 Functions returning black box algebras.

const struct bb_algebra * get_FpX_algebra(void **E, GEN p, long v) return the algebra of polynomials over \( \mathbb{F}_p \) in variable v.

const struct bb_algebra * get_FpXQ_algebra(void **E, GEN T, GEN p) return the algebra \( \mathbb{F}_p[X] / (T(X)) \).

const struct bb_algebra * get_FpXQX_algebra(void **E, GEN T, GEN p, long v) return the algebra of polynomials over \( \mathbb{F}_p[X] / (T(X)) \) in variable v.

const struct bb_algebra * get_FlxqXQ_algebra(void **E, GEN S, GEN T, ulong p) return the algebra \( \mathbb{F}_p[X,Y] / (S(X,Y),T(X)) \) (for ulong p).

const struct bb_algebra * get_FpXQXQ_algebra(void **E, GEN S, GEN T, GEN p) return the algebra \( \mathbb{F}_p[X,Y] / (S(X,Y),T(X)) \).

const struct bb_algebra * get_Rg_algebra(void) return the generic algebra.

8.4 Black box ring.

A black box ring is defined by a bb_ring struct, describing methods available to handle ring elements:

```c
struct bb_ring {
 GEN (*add)(void *E, GEN x, GEN y);
 GEN (*mul)(void *E, GEN x, GEN y);
 GEN (*sqr)(void *E, GEN x);
};
```

add(E,x,y) returns the sum \( x + y \).

mul(E,x,y) returns the product \( xy \).

sqr(E,x) returns the square \( x^2 \).

GEN gen_fromdigits(GEN v, GEN B, void *E, struct bb_ring *r) where B is a ring element and \( v = [c_0, \ldots, c_{n-1}] \) a vector of ring elements, return \( \sum_{i=0}^{n} c_i B^i \) using binary splitting.

GEN gen_digits(GEN x, GEN B, long n, void *E, struct bb_ring *r, GEN (*div)(void *E, GEN x, GEN y, GEN *))

(Require the ring to be Euclidean)

div(E,x,y,&r) performs the Euclidean division of \( x \) by \( y \) in the ring \( R \), returning the quotient \( q \) and setting \( r \) to the residue so that \( x = qy + r \) holds. The residue must belong to a fixed set of representatives of \( R/(y) \).
The argument \( x \) being a ring element, \texttt{gen_digits} returns a vector of ring elements \([c_0, \ldots, c_{n-1}]\) such that \( x = \sum_{i=0}^{n-1} c_i B^i \). Furthermore for all \( i \neq n - 1 \), the elements \( c_i \) belonging to the fixed set of representatives of \( R/(B) \).

### 8.5 Black box free \( \mathbb{Z}_p \)-modules.

(Very experimental)

\[
\text{GEN gen_ZpX_Dixon(GEN F, GEN V, GEN q, GEN p, long N, void *E, GEN \text{lin}(void *E, GEN F, GEN z, GEN q), GEN \text{invl}(void *E, GEN z))}
\]

Let \( F \) be a \( \mathbb{Z}_p \text{X} \) representing the coefficients of some abstract linear mapping \( f \) over \( \mathbb{Z}_p[\text{X}] \) seen as a free \( \mathbb{Z}_p \)-module, let \( V \) be an element of \( \mathbb{Z}_p[\text{X}] \) and let \( q = p^N \). Return \( y \in \mathbb{Z}_p[\text{X}] \) such that \( f(y) = V \pmod{p^N} \) assuming the following holds for \( n \leq N \):

- \( \text{lin}(E, FpX\text{\_red}(F, p^n), z, p^n) \equiv f(z) \pmod{p^n} \)
- \( f(\text{invl}(E, z)) \equiv z \pmod{p} \)

The rationale for the argument \( F \) being that it allows \texttt{gen_ZpX_Dixon} to reduce it to the required \( p \)-adic precision.

\[
\text{GEN gen_ZpX_Newton(GEN x, GEN p, long n, void *E, GEN \text{eval}(void *E, GEN a, GEN q), GEN \text{invd}(void *E, GEN b, GEN v, GEN q, long N))}
\]

Let \( x \) be an element of \( \mathbb{Z}_p[\text{X}] \) seen as a free \( \mathbb{Z}_p \)-module, and \( f \) some differentiable function over \( \mathbb{Z}_p[\text{X}] \) such that \( f(x) \equiv 0 \pmod{p} \). Return \( y \) such that \( f(y) \equiv 0 \pmod{p^n} \), assuming the following holds for all \( a, b \in \mathbb{Z}_p[\text{X}] \) and \( M \leq N \):

- \( v = \text{eval}(E, a, p^N) \) is a vector of elements of \( \mathbb{Z}_p[\text{X}] \),
- \( w = \text{invd}(E, b, v, p^M, M) \) is an element in \( \mathbb{Z}_p[\text{X}] \),
- \( v[1] \equiv f(a) \pmod{p^N \mathbb{Z}_p[\text{X}]} \),
- \( df_a(w) \equiv b \pmod{p^M \mathbb{Z}_p[\text{X}]} \)

and \( df_a \) denotes the differential of \( f \) at \( a \). Motivation: \texttt{eval} allows to evaluate \( f \) and \texttt{invd} allows to invert its differential. Frequently, data useful to compute the differential appear as a subproduct of computing the function. The vector \( v \) allows \texttt{eval} to provide these to \texttt{invd}. The implementation of \texttt{invd} will generally involves the use of the function \texttt{gen_ZpX_Dixon}.
Chapter 9:
Operations on general PARI objects

9.1 Assignment.

It is in general easier to use a direct conversion, e.g. \( y = \text{stoi}(s) \), than to allocate a target of correct type and sufficient size, then assign to it:

\[
\text{GEN } y = \text{cgeti}(3); \text{affsi}(s, y);
\]

These functions can still be moderately useful in complicated garbage collecting scenarios but you will be better off not using them.

\[
\text{void gaffsg(long } s, \text{ GEN } x) \text{ assigns the long } s \text{ into the object } x.
\]

\[
\text{void gaffect(GEN } x, \text{ GEN } y) \text{ assigns the object } x \text{ into the object } y. \text{ Both } x \text{ and } y \text{ must be scalar types. Type conversions (e.g. from } t\text{\textunderscore INT to } t\text{\textunderscore REAL or } t\text{\textunderscore INTMOD} \text{) occur if legitimate.}
\]

\[
\text{int is\textunderscore universal\textunderscore constant(GEN } x) \text{ returns 1 if } x \text{ is a global PARI constant you should never assign to (such as } \text{gen}\_1), \text{ and 0 otherwise.}
\]

9.2 Conversions.

9.2.1 Scalars.

\[
\text{double rtodbl(GEN } x) \text{ applied to a } t\text{\textunderscore REAL } x, \text{ converts } x \text{ into a double if possible.}
\]

\[
\text{GEN dbltor(double } x) \text{ converts the double } x \text{ into a t\textunderscore REAL.}
\]

\[
\text{long dblexpo(double } x) \text{ returns } \text{expo(dbltor}(x))\text{, but faster and without cluttering the stack.}
\]

\[
\text{ulong dblmantissa(double } x) \text{ returns the most significant word in the mantissa of } \text{dbltor}(x).
\]

\[
\text{double gtodouble(GEN } x) \text{ if } x \text{ is a real number (not necessarily a } t\text{\textunderscore REAL), converts } x \text{ into a double if possible.}
\]

\[
\text{long gtos(GEN } x) \text{ converts the } t\text{\textunderscore INT } x \text{ to a small integer if possible, otherwise raise an exception.}
\]

\[
\text{This function is similar to } \text{itos, slightly slower since it checks the type of } x.
\]

\[
\text{double dbllog2r(GEN } x) \text{ assuming that } x \text{ is a non-zero } t\text{\textunderscore REAL, returns an approximation to } \log2(|x|).
\]

\[
\text{double dbllmodule(GEN } x) \text{ return an approximation to } |x|.
\]

\[
\text{long gtolong(GEN } x) \text{ if } x \text{ is an integer (not necessarily a } t\text{\textunderscore INT), converts } x \text{ into a long if possible.}
\]

\[
\text{GEN fractor(GEN } x, \text{ long } l) \text{ applied to a } t\text{\textunderscore FRAC } x, \text{ converts } x \text{ into a } t\text{\textunderscore REAL of length prec.}
\]

\[
\text{GEN quadtofp(GEN } x, \text{ long } l) \text{ applied to a } t\text{\textunderscore QUAD } x, \text{ converts } x \text{ into a } t\text{\textunderscore REAL or } t\text{\textunderscore COMPLEX depending on the sign of the discriminant of } x, \text{ to precision } l \text{ BITS\_IN\_LONG-bit words.}
\]
GEN upper_to_cx(GEN x, long *prec) valid for a t_COMPLEX or t_QUAD belonging to the upper half-plane. If a t_QUAD, convert it to t_COMPLEX using accuracy *prec. If x is inexact, sets *prec to the precision of x.

GEN cxtostp(GEN x, long prec) converts the t_COMPLEX x to a a complex whose real and imaginary parts are t_REAL of length prec (special case of gtofp).

GEN cxcompotor(GEN x, long prec) converts the t_INT, t_REAL or t_FRAC x to a t_REAL of length prec. These are all the real types which may occur as components of a t_COMPLEX; special case of gtofp (introduced so that the latter is not recursive and can thus be inlined).

GEN cxtoreal(GEN x) converts the complex (t_INT, t_REAL, t_FRAC or t_COMPLEX) x to a real number if its imaginary part is 0. Shallow function.

GEN gtofp(GEN x, long prec) converts the complex number x (t_INT, t_REAL, t_FRAC, t_QUAD or t_COMPLEX) to either a t_REAL or t_COMPLEX whose components are t_REAL of precision prec; not necessarily of length prec: a real 0 may be given as real_0(...). If the result is a t_COMPLEX extra care is taken so that its modulus really has accuracy prec: there is a problem if the real part of the input is an exact 0: indeed, converting it to real_0(prec) would be wrong if the imaginary part is tiny, since the modulus would then become equal to 0, as in 1.E−100+0.E−28 = 0.E−28.

GEN gtomp(GEN x, long prec) converts the real number x (t_INT, t_REAL, t_FRAC, real t_QUAD) to either a t_INT or a t_REAL of precision prec. Not memory clean if x is a t_INT: we return x itself and not a copy.

GEN gcvtop(GEN x, GEN p, long l) converts x into a t_PADIC of precision l. Works componentwise on recursive objects, e.g. t_POL or t_VEC. Converting 0 yields O(p^l); converting a non-zero number yield a result well defined modulo p^v_p(x)+l.

GEN cvtop(GEN x, GEN p, long l) as gcvtop, assuming that x is a scalar.

GEN cvtop2(GEN x, GEN y) y being a p-adic, converts the scalar x to a p-adic of the same accuracy. Shallow function.

GEN cvstop2(long s, GEN y) y being a p-adic, converts the scalar s to a p-adic of the same accuracy. Shallow function.

GEN gprec(GEN x, long l) returns a copy of x whose precision is changed to l digits. The precision change is done recursively on all components of x. Digits means decimal, p-adic and X-adic digits for t_REAL, t_SER, t_PADIC components, respectively.

GEN gprec_w(GEN x, long l) returns a shallow copy of x whose t_REAL components have their precision changed to l words. This is often more useful than gprec.

GEN gprec_wtrunc(GEN x, long l) returns a shallow copy of x whose t_REAL components have their precision truncated to l words. Contrary to gprec_w, this function may never increase the precision of x.

GEN gprec_wensure(GEN x, long l) returns a shallow copy of x whose t_REAL components have their precision increased to at least l words. Contrary to gprec_w, this function may never decrease the precision of x.
9.2.2 Modular objects / lifts.

GEN gmodulo(GEN x, GEN y) creates the object \( \text{Mod}(x,y) \) on the PARI stack, where \( x \) and \( y \) are either both \( \text{t_INTs} \), and the result is a \( \text{t_INTMOD} \), or \( x \) is a scalar or a \( \text{t_POL} \) and \( y \) a \( \text{t_POL} \), and the result is a \( \text{t_POLMOD} \).

GEN gmodulgs(GEN x, long y) same as \( \text{gmodulo} \) except \( y \) is a \( \text{long} \).

GEN gmodulsg(long x, GEN y) same as \( \text{gmodulo} \) except \( x \) is a \( \text{long} \).

GEN gmodulss(long x, long y) same as \( \text{gmodulo} \) except both \( x \) and \( y \) are \( \text{longs} \).

GEN lift_shallow(GEN x) shallow version of \( \text{lift} \).

GEN liftall_shallow(GEN x) shallow version of \( \text{liftall} \).

GEN liftint_shallow(GEN x) shallow version of \( \text{liftint} \).

GEN liftpol_shallow(GEN x) shallow version of \( \text{liftpol} \).

GEN centerlift0(GEN x, long v) DEPRECATED, kept for backward compatibility only: use either \( \text{lift0}(x,v) \) or \( \text{centerlift}(x) \).

9.2.3 Between polynomials and coefficient arrays.

GEN gtopoly(GEN x, long v) converts or truncates the object \( x \) into a \( \text{t_POL} \) with main variable number \( v \). A common application would be the conversion of coefficient vectors (coefficients are given by decreasing degree). E.g. \([2,3]\) goes to \( 2v + 3 \).

GEN gtopolyrev(GEN x, long v) converts or truncates the object \( x \) into a \( \text{t_POL} \) with main variable number \( v \), but vectors are converted in reverse order compared to \( \text{gtopoly} \) (coefficients are given by increasing degree). E.g. \([2,3]\) goes to \( 3v + 2 \). In other words the vector represents a polynomial in the basis \( (1,v,v^2,v^3,...) \).

GEN normalizepol(GEN x) applied to an unnormalized \( \text{t_POL} \) \( x \) (with all coefficients correctly set except that \( \text{leading}\_\text{term}(x) \) might be zero), normalizes \( x \) correctly in place and returns \( x \). For internal use. Normalizing means deleting all leading exact zeroes (as per \( \text{isexactzero} \)), except if the polynomial turns out to be 0, in which case we try to find a coefficient \( c \) which is a non-rational zero, and return the constant polynomial \( c \). (We do this so that information about the base ring is not lost.)

GEN normalizepol_lg(GEN x, long l) applies \( \text{normalizepol} \) to \( x \), pretending that \( \text{lg}(x) \) is \( l \), which must be less than or equal to \( \text{lg}(x) \). If equal, the function is equivalent to \( \text{normalizepol}(x) \).

GEN normalizepol_approx(GEN x, long lx) as \( \text{normalizepol\_lg} \), with the difference that we just delete all leading zeroes (as per \( \text{gequal0} \)). This rougher normalization is used when we have no other choice, for instance before attempting a Euclidean division by \( x \).

The following routines do not copy coefficients on the stack (they only move pointers around), hence are very fast but not suitable for \( \text{gerepile} \) calls. Recall that an \( \text{RgV} \) (resp. an \( \text{RgX} \), resp. an \( \text{RgM} \)) is a \( \text{tVEC} \) or \( \text{tCOL} \) (resp. a \( \text{tPOL} \), resp. a \( \text{tMAT} \)) with arbitrary components. Similarly, an \( \text{RgXV} \) is a \( \text{tVEC} \) or \( \text{tCOL} \) with \( \text{RgX} \) components, etc.

GEN RgV\_to\_RgX(GEN x, long v) converts the \( \text{RgV} \) \( x \) to a (normalized) polynomial in variable \( v \) (as \( \text{gtopolyrev} \), without copy).

GEN RgV\_to\_RgX\_reverse(GEN x, long v) converts the \( \text{RgV} \) \( x \) to a (normalized) polynomial in variable \( v \) (as \( \text{gtopoly} \), without copy).
GEN RgX_to_RgC(GEN x, long N) converts the t_POL x to a t_COL v with N components. Coefficients of x are listed by increasing degree, so that y[i] is the coefficient of the term of degree i − 1 in x.

GEN Rg_to_RgC(GEN x, long N) as RgX_to_RgV, except that other types than t_POL are allowed for x, which is then considered as a constant polynomial.

GEN RgM_to_RgXV(GEN x, long v) converts the RgM x to a t_VEC of RgX, by repeated calls to RgX_to_RgV.

GEN RgV_to_RgM(GEN v, long N) converts the vector v to a t_MAT with N rows, by repeated calls to Rg_to_RgV.

GEN RgXV_to_RgM(GEN v, long N) converts the vector of RgX v to a t_MAT with N rows, by repeated calls to RgX_to_RgV.

GEN RgM_to_RgXX(GEN x, long v, long w) converts the RgM x into a t_POL in variable v, whose coefficients are t_POLs in variable w. This is a shortcut for

RgV_to_RgX( RgM_to_RgXV(x, w), v );

There are no consistency checks with respect to variable priorities: the above is an invalid object if varncmp(v, w) ≥ 0.

GEN RgXX_to_RgM(GEN x, long N) converts the t_POL x with RgX (or constant) coefficients to a matrix with N rows.

long RgXY_degreeex(GEN P) return the degree of P with respect to the secondary variable.

GEN RgXY_swap(GEN P, long n, long w) converts the bivariate polynomial P(u, v) (a t_POL with t_POL or scalar coefficients) to P(pol_x[w], u), assuming n is an upper bound for deg_v(P).

GEN RgXY_swapspec(GEN C, long n, long w, long lP) as RgXY_swap where the coefficients of P are given by gel(C,0),...gel(C,lP-1).

GEN RgX_to_ser(GEN x, long l) convert the t_POL x to a shallow t_SER of length l ≥ 2. Unless the polynomial is an exact zero, the coefficient of lowest degree Td of the result is not an exact zero (as per isexactzero). The remainder is O(T^d+l−2).

GEN RgX_to_ser_inexact(GEN x, long l) convert the t_POL x to a shallow t_SER of length l ≥ 2. Unless the polynomial is zero, the coefficient of lowest degree Td of the result is not zero (as per gequal0). The remainder is O(T^d+l−2).

GEN RgV_to_ser(GEN x, long v, long l) convert the t_VEC x, to a shallow t_SER of length l ≥ 2.

GEN rfrac_to_ser(GEN F, long l) applied to a t_RFRAC F, creates a t_SER of length l ≥ 2 congruent to F. Not memory-clean but suitable for gerepileupto.

GEN rfracrecip_to_ser_absolute(GEN F, long d) applied to a t_RFRAC F, creates the t_SER F(1/t) + O(t^d). Note that we use absolute and not relative precision here.

GEN gtoser(GEN s, long v, long d). This function is deprecated, kept for backward compatibility: it follows the semantic of Ser(s,v), with d = seriesprecision implied and is hard to use as a general conversion function. Use gtoser_prec instead.

It converts the object s into a t_SER with main variable number v and d > 0 significant terms, but the argument d is sometimes ignored. More precisely
• if \( s \) is a scalar (with respect to variable \( v \)), we return a constant power series with \( d \) significant terms;
• if \( s \) is a \( \text{t}_\text{POL} \) in variable \( v \), it is truncated to \( d \) terms if needed;
• if \( s \) is a vector, the coefficients of the vector are understood to be the coefficients of the power series starting from the constant term (as in \( \text{Polrev} \)), and the precision \( d \) is ignored;
• if \( s \) is already a power series in \( v \), we return a copy, and the precision \( d \) is again ignored.

\[
\text{GEN \( \text{gtoser\_prec} \)(GEN \( s \), long \( v \), long \( d \)) this function is a variant of \( \text{gtoser} \) following the semantic of \( \text{Ser}(s,v,d) \): the precision \( d \) is always taken into account.}
\]

\[
\text{GEN \( \text{gtocol}(x) \) converts the object \( x \) into a \( \text{t}_\text{COL} \).}
\]

\[
\text{GEN \( \text{gtomat}(x) \) converts the object \( x \) into a \( \text{t}_\text{MAT} \).}
\]

\[
\text{GEN \( \text{gtovc}(x) \) converts the object \( x \) into a \( \text{t}_\text{VEC} \).}
\]

\[
\text{GEN \( \text{gtovcsm}(x) \) converts the object \( x \) into a \( \text{t}_\text{VECSM} \).}
\]

\[
\text{GEN \( \text{normalize}(x) \) applied to an unnormalized \( \text{t}_\text{SER} \) \( x \) (i.e. type \( \text{t}_\text{SER} \) with all coefficients correctly set except that \( x[2] \) might be zero), normalizes \( x \) correctly in place. Returns \( x \). For internal use.}
\]

\[
\text{GEN \( \text{serchop0}(s) \) given a \( \text{t}_\text{SER} \) of the form \( x^v s(x) \), with \( s(0) \neq 0 \), return \( x^v (s-s(0)) \). Shallow function.}
\]

\[
\text{GEN \( \text{serchop\_i}(x, \text{long} \ n) \) returns a shallow chopy of \( \text{t}_\text{SER} \) \( x \) with all terms of degree strictly less than \( n \) removed. Shallow version of \( \text{serchop} \).}
\]

### 9.3 Constructors.

#### 9.3.1 Clean constructors.

\[
\text{GEN \( \text{zeropadic}(\text{GEN} \ p, \ \text{long} \ n) \) creates a 0 \( \text{t}_\text{PADIC} \) equal to \( O(p^n) \).}
\]

\[
\text{GEN \( \text{zeroser}(\text{long} \ v, \ \text{long} \ n) \) creates a 0 \( \text{t}_\text{SER} \) in variable \( v \) equal to \( O(X^n) \).}
\]

\[
\text{GEN \( \text{scalarser}(\text{GEN} \ x, \ \text{long} \ v, \ \text{long} \ \text{prec}) \) creates a constant \( \text{t}_\text{SER} \) in variable \( v \) and precision \( \text{prec} \), whose constant coefficient is (a copy of) \( x \), in other words \( x + O(v^{\text{prec}}) \). Assumes that \( \text{prec} \geq 0 \).}
\]

\[
\text{GEN \( \text{pol\_0}(\text{long} \ v) \) Returns the constant polynomial 0 in variable \( v \).}
\]

\[
\text{GEN \( \text{pol\_1}(\text{long} \ v) \) Returns the constant polynomial 1 in variable \( v \).}
\]

\[
\text{GEN \( \text{pol\_x}(\text{long} \ v) \) Returns the monomial of degree 1 in variable \( v \).}
\]

\[
\text{GEN \( \text{pol\_xn}(\text{long} \ n, \ \text{long} \ v) \) Returns the monomial of degree \( n \) in variable \( v \); assume that \( n \geq 0 \).}
\]

\[
\text{GEN \( \text{pol\_xall}(\text{long} \ n, \ \text{long} \ v) \) Returns the Laurent monomial of degree \( n \) in variable \( v \); \( n < 0 \) is allowed.}
\]

\[
\text{GEN \( \text{pol\_x\_powers}(\text{long} \ N, \ \text{long} \ v) \) returns the powers of \( \text{pol\_x}(v) \), of degree 0 to \( N - 1 \), in a vector with \( N \) components.}
\]

\[
\text{GEN \( \text{scalarpol}(\text{GEN} \ x, \ \text{long} \ v) \) creates a constant \( \text{t}_\text{POL} \) in variable \( v \), whose constant coefficient is (a copy of) \( x \).}
\]

203
GEN deg1pol(GEN a, GEN b, long v) creates the degree 1 \( t\_POL \) \( a(v) + b \).

GEN zeropol(long v) is identical \( pol_0 \).

GEN zerocol(long n) creates a \( t\_COL \) with \( n \) components set to \( gen_0 \).

GEN zerovec(long n) creates a \( t\_VEC \) with \( n \) components set to \( gen_0 \).

GEN zerovec_block(long n) as zerovec but return a clone.

GEN col_ei(long n, long i) creates a \( t\_COL \) with \( n \) components set to \( gen_0 \), but for the \( i \)-th one which is set to \( gen_1 \) (\( i \)-th vector in the canonical basis).

GEN vec_ei(long n, long i) creates a \( t\_VEC \) with \( n \) components set to \( gen_0 \), but for the \( i \)-th one which is set to \( gen_1 \) (\( i \)-th vector in the canonical basis).

GEN trivial_fact(void) returns the trivial (empty) factorization \( Mat([\text{\_}],[\text{\_}]) \).

GEN prime_fact(GEN x) returns the factorization \( Mat([x],[1]) \).

GEN Rg_col_ei(GEN x, long n, long i) creates a \( t\_COL \) with \( n \) components set to \( gen_0 \), but for the \( i \)-th one which is set to \( x \).

GEN vecsmall_ei(long n, long i) creates a \( t\_VECSMALL \) with \( n \) components set to \( 0 \), but for the \( i \)-th one which is set to \( 1 \) (\( i \)-th vector in the canonical basis).

GEN scalarcol(GEN x, long n) creates a \( t\_COL \) with \( n \) components set to \( gen_0 \), but the first one which is set to a copy of \( x \). (The name comes from \( RgV\_isscalar \).)

GEN mkintmodu(ulong x, ulong y) creates the \( t\_INTMOD \) \( Mod(x, y) \). The inputs must satisfy \( x<y \).

GEN zeromat(long m, long n) creates a \( t\_MAT \) with \( m \times n \) components set to \( gen_0 \). Note that the result allocates a single column, so modifying an entry in one column modifies it in all columns. To fully allocate a matrix initialized with zero entries, use \( zeromatcopy \).

GEN zeromatcopy(long m, long n) creates a \( t\_MAT \) with \( m \times n \) components set to \( gen_0 \).

GEN matid(long n) identity matrix in dimension \( n \) (with components \( gen_1 \) and \( gen_0 \)).

GEN scalarmat(GEN x, long n) scalar matrix, \( x \) times the identity.

GEN scalarmat_s(long x, long n) scalar matrix, \( stoi(x) \) times the identity.

GEN vecrange(GEN a, GEN b) returns the \( t\_VEC \) \( [a..b] \).

GEN vecrangess(long a, long b) returns the \( t\_VEC \) \( [a..b] \).

See also next section for analogs of the following functions:

GEN mkfracss(long x, long y) creates the \( t\_FRAC \) \( x/y \). Assumes that \( y > 1 \) and \( (x, y) = 1 \).

GEN sstoQ(long x, long y) returns the \( t\_INT \) or \( t\_FRAC \) \( x/y \); no assumptions.

void Qtoss(GEN q, long *n, long *d) given a \( t\_INT \) or \( t\_FRAC \) \( q \), set \( n \) and \( d \) such that \( q = n/d \) with \( d \geq 1 \) and \( (n, d) = 1 \). Overflow error if numerator or denominator do not fit into a long integer.

GEN mkfraccopy(GEN x, GEN y) creates the \( t\_FRAC \) \( x/y \). Assumes that \( y > 1 \) and \( (x, y) = 1 \).

GEN mkfraccopy(GEN x, GEN y) creates the \( t\_RFRAC \) \( x/y \). Assumes that \( y > 1 \) and \( (x, y) = 1 \).
GEN mkcolcopy(GEN x) creates a 1-dimensional t.COL containing x.

GEN mkmatcopy(GEN x) creates a 1-by-1 t.MAT wrapping the t.COL x.

GEN mkveccopy(GEN x) creates a 1-dimensional t.VEC containing x.

GEN mkvec2copy(GEN x, GEN y) creates a 2-dimensional t.VEC equal to [x,y].

GEN mkcols(long x) creates a 1-dimensional t.COL containing stoi(x).

GEN mkcol2s(long x, long y) creates a 2-dimensional t.COL containing [stoi(x), stoi(y)].

GEN mkcol3s(long x, long y, long z) creates a 3-dimensional t.COL containing [stoi(x), stoi(y), stoi(z)].

GEN mkcol4s(long x, long y, long z, long t) creates a 4-dimensional t.COL containing [stoi(x), stoi(y), stoi(z), stoi(t)].

GEN mkvecs(long x) creates a 1-dimensional t.VEC containing stoi(x).

GEN mkvec2s(long x, long y) creates a 2-dimensional t.VEC containing [stoi(x), stoi(y)].

GEN mkmat22s(long a, long b, long c, long d) creates the 2 by 2 t.MAT with successive rows [stoi(a), stoi(b)] and [stoi(c), stoi(d)].

GEN mkvec3s(long x, long y, long z) creates a 3-dimensional t.VEC containing [stoi(x), stoi(y), stoi(z)].

GEN mkvec4s(long x, long y, long z, long t) creates a 4-dimensional t.VEC containing [stoi(x), stoi(y), stoi(z), stoi(t)].

GEN mkvecsmall(long x) creates a 1-dimensional t.VECSMALL containing x.

GEN mkvecsmall2(long x, long y) creates a 2-dimensional t.VECSMALL containing [x, y].

GEN mkvecsmall3(long x, long y, long z) creates a 3-dimensional t.VECSMALL containing [x, y, z].

GEN mkvecsmall4(long x, long y, long z, long t) creates a 4-dimensional t.VECSMALL containing [x, y, z, t].

GEN mkvecsmalln(long n, ...) returns the t.VECSMALL whose n coefficients (long) follow. Warning: since this is a variadic function, C type promotion is not performed on the arguments by the compiler, thus you have to make sure that all the arguments are of type long, in particular integer constants need to be written with the L suffix: mkvecsmalln(2, 1L, 2L) is correct, but mkvecsmalln(2, 1, 2) is not.
9.3.2 Unclean constructors.

Contrary to the policy of general PARI functions, the functions in this subsection do not copy their arguments, nor do they produce an object a priori suitable for gerepileupto. In particular, they are faster than their clean equivalent (which may not exist). If you restrict their arguments to universal objects (e.g gen_0), then the above warning does not apply.

GEN mkcomplex(GEN x, GEN y) creates the t_COMPLEX \( x + iy \).

GEN mulcxI(GEN x) creates the t_COMPLEX \( ix \). The result in general contains data pointing back to the original \( x \). Use gcop if this is a problem. But in most cases, the result is to be used immediately, before \( x \) is subject to garbage collection.

GEN mulcxmI(GEN x), as mulcxI, but returns \(-ix\).

GEN mulcxpowIs(GEN x, long k), as mulcxI, but returns \(x \cdot i^k\).

GEN mkquad(GEN n, GEN x, GEN y) creates the t_QUAD \( x + yw \), where \( w \) is a root of \( n \), which is of the form quadpoly(D).

GEN mkfrac(GEN x, GEN y) creates the t_FRAC \( x/y \). Assumes that \( y > 1 \) and \( (x,y) = 1 \).

GEN mkrfrac(GEN x, GEN y) creates the t_RFRAC \( x/y \). Assumes that \( y \) is a t_POL, \( x \) a compatible type whose variable has lower or same priority, with \( (x,y) = 1 \).

GEN mkcol(GEN x) creates a 1-dimensional t_COL containing \( x \).

GEN mkcol2(GEN x, GEN y) creates a 2-dimensional t_COL equal to \([x,y]\).

GEN mkcol3(GEN x, GEN y, GEN z) creates a 3-dimensional t_COL equal to \([x,y,z]\).

GEN mkcol4(GEN x, GEN y, GEN z, GEN t) creates a 4-dimensional t_COL equal to \([x,y,z,t]\).

GEN mkcol5(GEN a1, GEN a2, GEN a3, GEN a4, GEN a5) creates the 5-dimensional t_COL equal to \([a1,a2,a3,a4,a5]\).

GEN mkcol6(GEN x, GEN y, GEN z, GEN t, GEN u, GEN v) creates the 6-dimensional column vector \([x,y,z,t,u,v]\).

GEN mkintmod(GEN x, GEN y) creates the t_INTMOD \( \text{Mod}(x, y) \). The inputs must be t_INTs satisfying \( 0 \leq x < y \).

GEN mpolmod(GEN x, GEN y) creates the t_POLMOD \( \text{Mod}(x, y) \). The input must satisfy \( \deg x < \deg y \) with respect to the main variable of the t_POL \( y \). \( x \) may be a scalar.

GEN mkmat(GEN x) creates a 1-column t_MAT with column \( x \) (a t_COL).

GEN mkmat2(GEN x, GEN y) creates a 2-column t_MAT with columns \( x, y \) (t_COLS of the same length).

GEN mkmat22(GEN a, GEN b, GEN c, GEN d) creates the 2 by 2 t_MAT with successive rows \([a,b]\) and \([c,d]\).

GEN mkmat3(GEN x, GEN y, GEN z) creates a 3-column t_MAT with columns \( x, y, z \) (t_COLS of the same length).

GEN mkmat4(GEN x, GEN y, GEN z, GEN t) creates a 4-column t_MAT with columns \( x, y, z, t \) (t_COLS of the same length).

GEN mkmat5(GEN x, GEN y, GEN z, GEN t, GEN u) creates a 5-column t_MAT with columns \( x, y, z, t, u \) (t_COLS of the same length).
GEN mkvec(GEN x) creates a 1-dimensional t_VEC containing x.

GEN mkvec2(GEN x, GEN y) creates a 2-dimensional t_VEC equal to [x,y].

GEN mkvec3(GEN x, GEN y, GEN z) creates a 3-dimensional t_VEC equal to [x,y,z].

GEN mkvec4(GEN x, GEN y, GEN z, GEN t) creates a 4-dimensional t_VEC equal to [x,y,z,t].

GEN mkvec5(GEN a1, GEN a2, GEN a3, GEN a4, GEN a5) creates the 5-dimensional t_VEC equal to [a1,a2,a3,a4,a5].

GEN mkqfi(GEN x, GEN y, GEN z) creates t_QFI equal to Qfb(x,y,z), assuming that $y^2 - 4xz < 0$.

GEN mkerr(long n) returns a t_ERROR with error code n (enum err_list).

It is sometimes useful to return such a container whose entries are not universal objects, but nonetheless suitable for gerepil eupto. If the entries can be computed at the time the result is returned, the following macros achieve this effect:

GEN retmkvec(GEN x) returns a vector containing the single entry x, where the vector root is created just before the function argument x is evaluated. Expands to

```
{
 GEN res = cgetg(2, t_VEC);
 gel(res, 1) = x; /* or rather, the expansion of x */
 return res;
}
```

For instance, the retmkvec(gcopy(x)) returns a clean object, just like return mkveccopy(x) would.

GEN retmkvec2(GEN x, GEN y) returns the 2-dimensional t_VEC [x,y].

GEN retmkvec3(GEN x, GEN y, GEN z) returns the 3-dimensional t_VEC [x,y,z].

GEN retmkvec4(GEN x, GEN y, GEN z, GEN t) returns the 4-dimensional t_VEC [x,y,z,t].

GEN retmkvec5(GEN x, GEN y, GEN z, GEN t, GEN u) returns the 5-dimensional row vector [x,y,z,t,u].

GEN retconst_vec(long n, GEN x) returns the n-dimensional t_VEC whose entries are constant and all equal to x.

GEN retmkcol(GEN x) returns the 1-dimensional t_COL [x]  .

GEN retmkcol2(GEN x, GEN y) returns the 2-dimensional t_COL [x,y]  .

GEN retmkcol3(GEN x, GEN y, GEN z) returns the 3-dimensional t_COL [x,y,z]  .

GEN retmkcol4(GEN x, GEN y, GEN z, GEN t) returns the 4-dimensional t_COL [x,y,z,t]  .

GEN retmkcol5(GEN x, GEN y, GEN z, GEN t, GEN u) returns the 5-dimensional column vector [x,y,z,t,u]  .

GEN retmkcol6(GEN x, GEN y, GEN z, GEN t, GEN u, GEN v) returns the 6-dimensional column vector [x,y,z,t,u,v]  .

GEN retconst_col(long n, GEN x) returns the n-dimensional t_COL whose entries are constant and all equal to x.
GEN retmkmat(GEN x) returns the 1-column t_MAT with column x.
GEN retmkmat2(GEN x, GEN y) returns the 2-column t_MAT with columns x, y.
GEN retmkmat3(GEN x, GEN y, GEN z) returns the 3-dimensional t_MAT with columns x, y, z.
GEN retmkmat4(GEN x, GEN y, GEN z, GEN t) returns the 4-dimensional t_MAT with columns x, y, z, t.
GEN retmkmat5(GEN x, GEN y, GEN z, GEN t, GEN u) returns the 5-dimensional t_MAT with columns x, y, z, t, u.
GEN retmkcomplex(GEN x, GEN y) returns the t_COMPLEX x + I*y.
GEN retmkfrac(GEN x, GEN y) returns the t_FRAC x / y. Assume x and y are coprime and y > 1.
GEN retmkfracr(GEN x, GEN y) returns the t_RFRAC x / y. Assume x and y are coprime and more generally that the rational function cannot be simplified.
GEN retmkintmod(GEN x, GEN y) returns the t_INTMOD Mod(x, y).
GEN retmkqfi(GEN a, GEN b, GEN c).
GEN retmkqfr(GEN a, GEN b, GEN c, GEN d).
GEN retmkquad(GEN n, GEN a, GEN b).
GEN retmkpolmod(GEN x, GEN y) returns the t_POLMOD Mod(x, y).

GEN mkintn(long n, ...) returns the non-negative t_INT whose development in base 2^{32} is given by the following n 32bit-words (unsigned int).

mkintn(3, a2, a1, a0);
returns a2 2^{64} + a1 2^{32} + a0.
GEN mkpoln(long n, ...) Returns the t_POL whose n coefficients (GEN) follow, in order of decreasing degree.

mkpoln(3, gen_1, gen_2, gen_0);
returns the polynomial X^2 + 2X (in variable 0, use setvarn if you want other variable numbers). Beware that n is the number of coefficients, hence one more than the degree.
GEN mkvecn(long n, ...) returns the t_VEC whose n coefficients (GEN) follow.
GEN mkcoln(long n, ...) returns the t_COL whose n coefficients (GEN) follow.
GEN scalarmat_shallow(GEN x, long n) creates a t_COL with n components set to gen_0, but the first one which is set to a shallow copy of x. (The name comes from RgV_isscalar.)
GEN scalarmat_shallow(GEN x, long n) creates an n x n scalar matrix whose diagonal is set to shallow copies of the scalar x.
GEN RgX_sylvestermatrix(GEN f, GEN g) return the Sylvester matrix attached to the two t_POL in the same variable f and g.
GEN diagonal_shallow(GEN x) returns a diagonal matrix whose diagonal is given by the vector x. Shallow function.
GEN scalarpol_shallow(GEN a, long v) returns the degree 0 t_POL a pol x(v)^0.
GEN deg1pol_shallow(GEN a, GEN b, long v) returns the degree 1 \( \text{t\_POL} \) \( a \text{pol}_x(v) + b \)

GEN deg2pol_shallow(GEN a, GEN b, GEN c, long v) returns the degree 2 \( \text{t\_POL} \) \( ax^2 + bx + c \) where \( x = \text{pol}_x(v) \).

GEN zeropadic_shallow(GEN p, long n) returns a (shallow) 0 \( \text{t\_PADIC} \) equal to \( O(p^n) \).

9.3.3 From roots to polynomials.

GEN deg1_from_roots(GEN L, long v) given a vector \( L \) of scalars, returns the vector of monic linear polynomials in variable \( v \) whose roots are the \( L[i] \), i.e. the \( x - L[i] \).

GEN roots_from_deg1(GEN L) given a vector \( L \) of monic linear polynomials, return their roots, i.e. the \( -L[i](0) \).

GEN roots_to_pol(GEN L, long v) given a vector of scalars \( L \), returns the monic polynomial in variable \( v \) whose roots are the \( L[i] \). Leaves some garbage on stack, but suitable for gerepileupto.

GEN roots_to_pol_r1(GEN L, long v, long r1) as roots_to_pol assuming the first \( r1 \) roots are “real”, and the following ones are representatives of conjugate pairs of “complex” roots. So if \( L \) has \( r1 + r2 \) elements, we obtain a polynomial of degree \( r1 + 2r2 \). In most applications, the roots are indeed real and complex, but the implementation assumes only that each “complex” root \( z \) introduces a quadratic factor \( X^2 - \text{trace}(z)X + \text{norm}(z) \). Leaves some garbage on stack, but suitable for gerepileupto.

9.4 Integer parts.

GEN gfloor(GEN x) creates the floor of \( x \), i.e. the (true) integral part.

GEN gfrac(GEN x) creates the fractional part of \( x \), i.e. \( x \) minus the floor of \( x \).

GEN gceil(GEN x) creates the ceiling of \( x \).

GEN ground(GEN x) rounds towards \( +\infty \) the components of \( x \) to the nearest integers.

GEN grndtoi(GEN x, long *e) same as ground, but in addition sets *e to the binary exponent of \( x - \text{ground}(x) \). If this is positive, all significant bits are lost. This kind of situation raises an error message in ground but not in grndtoi.

GEN gtrunc(GEN x) truncates \( x \). This is the false integer part if \( x \) is a real number (i.e. the unique integer closest to \( x \) among those between 0 and \( x \)). If \( x \) is a t\_SER, it is truncated to a t\_POL; if \( x \) is a t\_RFrac, this takes the polynomial part.

GEN gtrunc2n(GEN x, long n) creates the floor of \( 2^n x \), this is only implemented for t\_INT, t\_REAL, t\_FRAC and t\_COMPLEX of those.

GEN gcvttoi(GEN x, long *e) analogous to grndtoi for t\_REAL inputs except that rounding is replaced by truncation. Also applies componentwise for vector or matrix inputs; otherwise, sets *e to -HIGHEXPOBIT (infinite real accuracy) and return gtrunc(x).
9.5 Valuation and shift.

**GEN gshift[z](GEN x, long n[, GEN z])** yields the result of shifting (the components of) x left by n (if n is non-negative) or right by −n (if n is negative). Applies only to t_INT and vectors/matrices of such. For other types, it is simply multiplication by $2^n$.

**GEN gmul2n[z](GEN x, long n[, GEN z])** yields the product of x and $2^n$. This is different from gshift when n is negative and x is a t_INT: gshift truncates, while gmul2n creates a fraction if necessary.

**long gvaluation(GEN x, GEN p)** returns the greatest exponent e such that $p^e$ divides x, when this makes sense.

**long gval(GEN x, long v)** returns the highest power of the variable number v dividing the t_POL x.

9.6 Comparison operators.

9.6.1 Generic.

**long gcmp(GEN x, GEN y)** comparison of x with y: returns 1 ($x > y$), 0 ($x = y$) or −1 ($x < y$).

Two t_STR are compared using the standard lexicographic ordering; a t_STR cannot be compared to any non-string type. If neither x nor y is a t_STR, their allowed types are t_INT, t_REAL, t_FRAC, t_QUAD with positive discriminant (use the canonical embedding $w \rightarrow \sqrt{D}/2$ or $w \rightarrow (1 + \sqrt{D})/2$) or t_INFINITY. Use cmp_universal to compare arbitrary GENs.

**long lexcmp(GEN x, GEN y)** comparison of x with y for the lexicographic ordering; when comparing objects of different lengths whose components are all equal up to the smallest of their length, consider that the longest is largest. Consider scalars as 1-component vectors. Return gcmp($x, y$) if both arguments are scalars.

**int gequalX(GEN x)** return 1 (true) if x is a variable (monomial of degree 1 with t_INT coefficients equal to 1 and 0), and 0 otherwise

**long gequal(GEN x, GEN y)** returns 1 (true) if x is equal to y, 0 otherwise. A priori, this makes sense only if x and y have the same type, in which case they are recursively compared componentwise. When the types are different, a true result means that $x - y$ was successfully computed and that gequal0 found it equal to 0. In particular

gequal(cgetg(1, t_VEC), gen_0)

is true, and the relation is not transitive. E.g. an empty t_COL and an empty t_VEC are not equal but are both equal to gen_0.

**long gidentical(GEN x, GEN y)** returns 1 (true) if x is identical to y, 0 otherwise. In particular, the types and length of x and y must be equal. This test is much stricter than gequal, in particular, t_REAL with different accuracies are tested different. This relation is transitive.

**GEN gmax(GEN x, GEN y)** returns a copy of the maximum of x and y, compared using gcmp.

**GEN gmin(GEN x, GEN y)** returns a copy of the minimum of x and y, compared using gcmp.

**GEN gmax_shallow(GEN x, GEN y)** shallow version of gmax.

**GEN gmin_shallow(GEN x, GEN y)** shallow version of gmin.
9.6.2 Comparison with a small integer.

int isexactzero(GEN x) returns 1 (true) if x is exactly equal to 0 (including t_INTMODs like Mod(0,2)), and 0 (false) otherwise. This includes recursive objects, for instance vectors, whose components are 0.

GEN gisexactzero(GEN x) returns NULL unless x is exactly equal to 0 (as per isexactzero). When x is an exact zero return the attached scalar zero as a t_INT (gen_0), a t_INTMOD (Mod(0,N) for the largest possible N) or a t_FFELT.

int isrationalzero(GEN x) returns 1 (true) if x is equal to an integer 0 (excluding t_INTMODs like Mod(0,2)), and 0 (false) otherwise. Contrary to isintzero, this includes recursive objects, for instance vectors, whose components are 0.

int ismpzero(GEN x) returns 1 (true) if x is a t_INT or a t_REAL equal to 0.

int isintzero(GEN x) returns 1 (true) if x is a t_INT equal to 0.

int isint1(GEN x) returns 1 (true) if x is a t_INT equal to 1.

int isintm1(GEN x) returns 1 (true) if x is a t_INT equal to −1.

int equali1(GEN n) Assuming that x is a t_INT, return 1 (true) if x is equal to 1, and return 0 (false) otherwise.

int equalim1(GEN n) Assuming that x is a t_INT, return 1 (true) if x is equal to −1, and return 0 (false) otherwise.

int is_pm1(GEN x). Assuming that x is a non-zero t_INT, return 1 (true) if x is equal to −1 or 1, and return 0 (false) otherwise.

int gequal0(GEN x) returns 1 (true) if x is equal to 0, 0 (false) otherwise.

int gequal1(GEN x) returns 1 (true) if x is equal to 1, 0 (false) otherwise.

int gequalm1(GEN x) returns 1 (true) if x is equal to −1, 0 (false) otherwise.

long gcmpsg(long s, GEN x)

long gcmpgs(GEN x, long s) comparison of x with the long s.

GEN gmaxsg(long s, GEN x)

GEN gmaxgs(GEN x, long s) returns the largest of x and the long s (converted to GEN)

GEN gminsg(long s, GEN x)

GEN gmings(GEN x, long s) returns the smallest of x and the long s (converted to GEN)

long gequalsg(long s, GEN x)

long gequalgs(GEN x, long s) returns 1 (true) if x is equal to the long s, 0 otherwise.
9.7 Miscellaneous Boolean functions.

```c
int isrationalzeroscalar(GEN x) equivalent to, but faster than,
 is_scalar_t(typ(x)) && isrationalzero(x)
int isinexact(GEN x) returns 1 (true) if x has an inexact component, and 0 (false) otherwise.
int isinexactreal(GEN x) return 1 if x has an inexact t_REAL component, and 0 otherwise.
int isrealappr(GEN x, long e) applies (recursively) to complex inputs; returns 1 if x is approximately real to the bit accuracy e, and 0 otherwise. This means that any t_COMPLEX component must have imaginary part t satisfying gexpo(t) < e.
int isint(GEN x, GEN *n) returns 0 (false) if x does not round to an integer. Otherwise, returns 1 (true) and set n to the rounded value.
int issmall(GEN x, long *n) returns 0 (false) if x does not round to a small integer (suitable for itos). Otherwise, returns 1 (true) and set n to the rounded value.
long iscomplex(GEN x) returns 1 (true) if x is a complex number (of component types embeddable into the reals) but is not itself real, 0 if x is a real (not necessarily of type t_REAL), or raises an error if x is not embeddable into the complex numbers.
```

9.7.1 Obsolete.

The following less convenient comparison functions and Boolean operators were used by the historical GP interpreter. They are provided for backward compatibility only and should not be used:

```c
GEN gle(GEN x, GEN y)
GEN glt(GEN x, GEN y)
GEN gge(GEN x, GEN y)
GEN ggt(GEN x, GEN y)
GEN geq(GEN x, GEN y)
GEN gne(GEN x, GEN y)
GEN gor(GEN x, GEN y)
GEN gand(GEN x, GEN y)
GEN gnot(GEN x, GEN y)
```

212
9.8 Sorting.

9.8.1 Basic sort.

GEN sort(GEN x) sorts the vector x in ascending order using a mergesort algorithm, and gcmp as the underlying comparison routine (returns the sorted vector). This routine copies all components of x, use gen_sort_inplace for a more memory-efficient function.

GEN lexsort(GEN x), as sort, using lexcmp instead of gcmp as the underlying comparison routine.

GEN vecsort(GEN x, GEN k), as sort, but sorts the vector x in ascending lexicographic order, according to the entries of the t_VECSMALL k. For example, if k = [2, 1, 3], sorting will be done with respect to the second component, and when these are equal, with respect to the first, and when these are equal, with respect to the third.

9.8.2 Indirect sorting.

GEN indexsort(GEN x) as sort, but only returns the permutation which, applied to x, would sort the vector. The result is a t_VECSMALL.

GEN indexlexsort(GEN x), as indexsort, using lexcmp instead of gcmp as the underlying comparison routine.

GEN indexvecsort(GEN x, GEN k), as vecsort, but only returns the permutation that would sort the vector x.

long vecindexmin(GEN x) returns the index for a maximal element of x (t_VEC, t_COL or t_VECSMALL).

long vecindexmax(GEN x) returns the index for a maximal element of x (t_VEC, t_COL or t_VECSMALL).

long vecindexmax(GEN x)

9.8.3 Generic sort and search. The following routines allow to use an arbitrary comparison function int (*cmp)(void* data, GEN x, GEN y), such that cmp(data,x,y) returns a negative result if x<y, a positive one if x>y and 0 if x=y. The data argument is there in case your cmp requires additional context.

GEN gen_sort(GEN x, void *data, int (*cmp)(void *, GEN, GEN)), as sort, with an explicit comparison routine.

GEN gen_sort_uniq(GEN x, void *data, int (*cmp)(void *, GEN, GEN)), as gen_sort, removing duplicate entries.

GEN gen_indexsort(GEN x, void *data, int (*cmp)(void*, GEN, GEN)), as indexsort.

GEN gen_indexsort_uniq(GEN x, void *data, int (*cmp)(void*, GEN, GEN)), as indexsort, removing duplicate entries.

void gen_sort_inplace(GEN x, void *data, int (*cmp)(void*, GEN, GEN), GEN *perm) sort x in place, without copying its components. If perm is non-NULL, it is set to the permutation that would sort the original x.

GEN gen_setminus(GEN A, GEN B, int (*cmp)(GEN, GEN)) given two sorted vectors A and B, returns the vector of elements of A not belonging to B.
GEN sort_factor(GEN y, void *data, int (*cmp)(void *, GEN, GEN)) assuming y is a factorization matrix, sorts its rows in place (no copy is made) according to the comparison function cmp applied to its first column.

GEN merge_sort_uniq(GEN x, GEN y, void *data, int (*cmp)(void *, GEN, GEN)) assuming x and y are sorted vectors, with respect to the cmp comparison function, return a sorted concatenation, with duplicates removed.

GEN merge_factor(GEN fx, GEN fy, void *data, int (*cmp)(void *, GEN, GEN)) let fx and fy be factorization matrices for X and Y sorted with respect to the comparison function cmp (see sort_factor), returns the factorization of X * Y.

long gen_search(GEN v, GEN y, long flag, void *data, int (*cmp)(void*, GEN, GEN))
Let v be a vector sorted according to cmp(data,a,b); look for an index i such that v[i] is equal to y. flag has the same meaning as in setsearch: if flag is 0, return i if it exists and 0 otherwise; if flag is non-zero, return 0 if i exists and the index where y should be inserted otherwise.

long tablesearch(GEN T, GEN x, int (*cmp)(GEN, GEN)) is a faster implementation for the common case gen_search(T,x,0,cmp,cmp_nodata).

9.8.4 Further useful comparison functions.

int cmp_universal(GEN x, GEN y) a somewhat arbitrary universal comparison function, devoid of sensible mathematical meaning. It is transitive, and returns 0 if and only if gidentical(x,y) is true. Useful to sort and search vectors of arbitrary data.

int cmp_nodata(void *data, GEN x, GEN y). This function is a hack used to pass an existing basic comparison function lacking the data argument, i.e. with prototype int (*cmp)(GEN x, GEN y). Instead of gen_sort(x, NULL, cmp) which may or may not work depending on how your compiler handles typecasts between incompatible function pointers, one should use gen_sort(x, (void*)cmp, cmp_nodata).

Here are a few basic comparison functions, to be used with cmp_nodata:

int ZV_cmp(GEN x, GEN y) compare two ZV, which we assume have the same length (lexicographic order).

int cmp_Flx(GEN x, GEN y) compare two Flx, which we assume have the same main variable (lexicographic order).

int cmp_RgX(GEN x, GEN y) compare two polynomials, which we assume have the same main variable (lexicographic order). The coefficients are compared using gcmp.

int cmp_prime_over_p(GEN x, GEN y) compare two prime ideals, which we assume divide the same prime number. The comparison is ad hoc but orders according to increasing residue degrees.

int cmp_prime_ideal(GEN x, GEN y) compare two prime ideals in the same nf. Orders by increasing primes, breaking ties using cmp_prime_over_p.

int cmp_padic(GEN x, GEN y) compare two t_PADIC (for the same prime p).

Finally a more elaborate comparison function:

int gen_cmp_RgX(void *data, GEN x, GEN y) compare two polynomials, ordering first by increasing degree, then according to the coefficient comparison function:

int (*cmp_coeff)(GEN,GEN) = (int(*)(GEN,GEN)) data;
9.9 Divisibility, Euclidean division.

**GEN gdivexact(GEN x, GEN y)** returns the quotient \(x/y\), assuming \(y\) divides \(x\). Not stack clean if \(y = 1\) (we return \(x\), not a copy).

**int gdvd(GEN x, GEN y)** returns 1 (true) if \(y\) divides \(x\), 0 otherwise.

**GEN gdiventres(GEN x, GEN y)** creates a 2-component vertical vector whose components are the true Euclidean quotient and remainder of \(x\) and \(y\).

**GEN gdiventz(GEN x, GEN y[, GEN z])** yields the true Euclidean quotient of \(x\) and the \(t\_INT\) or \(t\_POL\) \(y\), as per the \(\backslash\) GP operator.

**GEN gdiventsg(long s, GEN y[, GEN z])** as \(gdivent\) except that \(x\) is a \(long\).

**GEN gdiventgs(GEN x, long s[, GEN z])** as \(gdivent\) except that \(y\) is a \(long\).

**GEN gmodz(GEN x, GEN y[, GEN z])** yields the remainder of \(x\) modulo the \(t\_INT\) or \(t\_POL\) \(y\), as per the \(\%\) GP operator. A \(t\_REAL\) or \(t\_FRAC\) \(y\) is also allowed, in which case the remainder is the unique real \(r\) such that \(0 \leq r < |y|\) and \(y = qx + r\) for some (in fact unique) integer \(q\).

**GEN gmodsg(long s, GEN y[, GEN z])** as \(gmod\), except \(x\) is a \(long\).

**GEN gmodgs(GEN x, long s[, GEN z])** as \(gmod\), except \(y\) is a \(long\).

**GEN gdivmod(GEN x, GEN y, GEN *r)** If \(r\) is not equal to \(NULL\) or \(ONLY\_REM\), creates the (false) Euclidean quotient of \(x\) and \(y\), and puts (the address of) the remainder into \(*r\). If \(r\) is equal to \(NULL\), do not create the remainder, and if \(r\) is equal to \(ONLY\_REM\), create and output only the remainder. The remainder is created after the quotient and can be disposed of individually with a \(cgiv(r)\).

**GEN poldivrem(GEN x, GEN y, GEN *r)** same as \(gdivmod\) but specifically for \(t\_POLs\) \(x\) and \(y\), not necessarily in the same variable. Either of \(x\) and \(y\) may also be scalars, treated as polynomials of degree 0.

**GEN gdeuc(GEN x, GEN y)** creates the Euclidean quotient of the \(t\_POLs\) \(x\) and \(y\). Either of \(x\) and \(y\) may also be scalars, treated as polynomials of degree 0.

**GEN grem(GEN x, GEN y)** creates the Euclidean remainder of the \(t\_POL\) \(x\) divided by the \(t\_POL\) \(y\). Either of \(x\) and \(y\) may also be scalars, treated as polynomials of degree 0.

**GEN gdivround(GEN x, GEN y)** if \(x\) and \(y\) are real (\(t\_INT\), \(t\_REAL\), \(t\_FRAC\)), return the rounded (\(t\_INT\), \(t\_REAL\), \(t\_FRAC\)) \(x\) as per the \(\backslash/\) GP operator. Operate componentwise if \(x\) is a \(t\_COL\), \(t\_VEC\) or \(t\_MAT\). Otherwise as \(gdivent\).

**GEN centermod_i(GEN x, GEN y, GEN y2)**, as \(centermod\), componentwise.

**GEN centermod(GEN x, GEN y)**, as \(centermod\), except that \(y2\) is computed (and left on the stack for efficiency).

**GEN ginvmad(GEN x, GEN y)** creates the inverse of \(x\) modulo \(y\) when it exists. \(y\) must be of type \(t\_INT\) (in which case \(x\) is of type \(t\_INT\)) or \(t\_POL\) (in which case \(x\) is either a scalar type or a \(t\_POL\)).
9.10 GCD, content and primitive part.

9.10.1 Generic.

GEN resultant(GEN x, GEN y) creates the resultant of the t_POLs x and y computed using Sylvester’s matrix (inexact inputs), a modular algorithm (inputs in \( \mathbb{Q}[X] \)) or the subresultant algorithm, as optimized by Lazard and Ducos. Either of x and y may also be scalars (treated as polynomials of degree 0).

GEN ggcd(GEN x, GEN y) creates the GCD of x and y.

GEN glcm(GEN x, GEN y) creates the LCM of x and y.

GEN gbezout(GEN x, GEN y, GEN *u, GEN *v) returns the GCD of x and y, and puts (the addresses of) objects u and v such that \( ux + vy = \text{gcd}(x, y) \) into *u and *v.

GEN subresext(GEN x, GEN y, GEN *U, GEN *V) returns the resultant of x and y, and puts (the addresses of) polynomials u and v such that \( ux + vy = \text{Res}(x, y) \) into *U and *V.

GEN content(GEN x) returns the GCD of all the components of x.

GEN primitive_part(GEN x, GEN *c) sets c to content(x) and returns the primitive part \( x / c \). A trivial content is set to NULL.

GEN primpart(GEN x) as above but the content is lost. (For efficiency, the content remains on the stack.)

GEN denom_i(GEN x) shallow version of denom.

GEN numer_i(GEN x) shallow version of numer.

9.10.2 Over the rationals.

long Q_pval(GEN x, GEN p) valuation at the t_INT p of the t_INT or t_FRAC x.

long Q_pvalrem(GEN x, GEN p, GEN *r) returns the valuation e at the t_INT p of the t_INT or t_FRAC x. The quotient \( x / p^e \) is returned in *r.

GEN Q_abs(GEN x) absolute value of the t_INT or t_FRAC x.

GEN Qdivii(GEN x, GEN y), assuming x and y are both of type t_INT, return the quotient \( x / y \) as a t_INT or t_FRAC: marginally faster than gdiv.

GEN Q_abs_shallow(GEN x) x being a t_INT or a t_FRAC, returns a shallow copy of \(|x|\), in particular returns x itself when \( x \geq 0 \), and \( \text{gneg}(x) \) otherwise.

GEN Q_gcd(GEN x, GEN y) gcd of the t_INT or t_FRAC x and y.

In the following functions, arguments belong to a \( M \otimes \mathbb{Z} \mathbb{Q} \) for some natural \( \mathbb{Z} \)-module M, e.g. multivariate polynomials with integer coefficients (or vectors/matrices recursively built from such objects), and an element of M is said to be integral. We are interested in contents, denominators, etc. with respect to this canonical integral structure; in particular, contents belong to \( \mathbb{Q} \), denominators to \( \mathbb{Z} \). For instance the \( \mathbb{Q} \)-content of \((1/2)xy\) is \((1/2)\), and its \( \mathbb{Q} \)-denominator is 2, whereas content would return \( y/2 \) and denom 1.

GEN Q_content(GEN x) the \( \mathbb{Q} \)-content of x.

GEN Z_content(GEN x) as Q_content but assume that all rationals are in fact t_INTs and return NULL when the content is 1. This function returns as soon as the content is found to equal 1.
GEN Q_content_safe(GEN x) as Q_content, returning NULL when the Q-content is not defined (e.g. for a t_REAL or t_INTMOD component).

GEN Q_denom(GEN x) the Q-denominator of x. Shallow function. Raises en e_TYPE error out when the notion is meaningless, e.g. for a t_REAL or t_INTMOD component.

GEN Q_denom_safe(GEN x) the Q-denominator of x. Shallow function. Return NULL when the notion is meaningless.

GEN Q_primitive_part(GEN x, GEN *c) sets c to the Q-content of x and returns x / c, which is integral.

GEN Q_primpart(GEN x) as above but the content is lost. (For efficiency, the content remains on the stack.)

GEN vec_Q_primpart(GEN x) as above component-wise.

GEN Q_remove_denom(GEN x, GEN *ptd) sets d to the Q-denominator of x and returns x * d, which is integral. Shallow function.

GEN Q_div_to_int(GEN x, GEN c) returns x / c, assuming c is a rational number (t_INT or t_FRAC) and the result is integral.

GEN Q_mul_to_int(GEN x, GEN c) returns x * c, assuming c is a rational number (t_INT or t_FRAC) and the result is integral.

GEN Q_muli_to_int(GEN x, GEN d) returns x * c, assuming c is a t_INT and the result is integral.

GEN mul_content(GEN cx, GEN cy) cx and cy are as set by primitive_part: either a GEN or NULL representing the trivial content 1. Returns their product (either a GEN or NULL).

GEN inv_content(GEN c) c is as set by primitive_part: either a GEN or NULL representing the trivial content 1. Returns its inverse (either a GEN or NULL).

GEN mul_denom(GEN dx, GEN dy) dx and dy are as set by Q_remove_denom: either a t_INT or NULL representing the trivial denominator 1. Returns their product (either a t_INT or NULL).

9.11 Generic arithmetic operators.

9.11.1 Unary operators.

GEN gneg[z](GEN x[, GEN z]) yields \(-x\).

GEN gneg_i(GEN x) shallow function yielding \(-x\).

GEN gabs[z](GEN x[, GEN z]) yields \(|x|\).

GEN gsqr(GEN x) creates the square of x.

GEN ginv(GEN x) creates the inverse of x.

217
9.11.2 Binary operators.

Let \( \text{"op"} \) be a binary operation among

- \( \text{op=}\text{add:} \) addition \( (x + y) \).
- \( \text{op=}\text{sub:} \) subtraction \( (x - y) \).
- \( \text{op=}\text{mul:} \) multiplication \( (x \times y) \).
- \( \text{op=}\text{div:} \) division \( (x \div y) \).

The names and prototypes of the functions corresponding to \( \text{op} \) are as follows:

\[
\text{GEN } \text{gop}(\text{GEN } x, \text{GEN } y) \\
\text{GEN } \text{gopgs}(\text{GEN } x, \text{long } s) \\
\text{GEN } \text{gopsg}(\text{long } s, \text{GEN } y)
\]

Explicitly

\[
\text{GEN } \text{gadd}(\text{GEN } x, \text{GEN } y), \text{GEN } \text{gaddgs}(\text{GEN } x, \text{long } s), \text{GEN } \text{gaddsg}(\text{long } s, \text{GEN } x) \\
\text{GEN } \text{gmul}(\text{GEN } x, \text{GEN } y), \text{GEN } \text{gmulgs}(\text{GEN } x, \text{long } s), \text{GEN } \text{gmulsg}(\text{long } s, \text{GEN } x) \\
\text{GEN } \text{gsub}(\text{GEN } x, \text{GEN } y), \text{GEN } \text{gsubgs}(\text{GEN } x, \text{long } s), \text{GEN } \text{gsubsg}(\text{long } s, \text{GEN } x) \\
\text{GEN } \text{gdiv}(\text{GEN } x, \text{GEN } y), \text{GEN } \text{gdivgs}(\text{GEN } x, \text{long } s), \text{GEN } \text{gdivsg}(\text{long } s, \text{GEN } x)
\]

\[
\text{GEN } \text{gpow}(\text{GEN } x, \text{GEN } y, \text{long } l) \text{ creates } x^y. \text{ If } y \text{ is a } \text{t_INT}, \text{ return } \text{powgi}(x, y) \text{ (the precision } l \text{ is not taken into account). Otherwise, the result is } \exp(y \times \log(x)) \text{ where exact arguments are converted to floats of precision } l \text{ in case of need; if there is no need, for instance if } x \text{ is a } \text{t_REAL}, \text{ } l \text{ is ignored. Indeed, if } x \text{ is a } \text{t_REAL}, \text{ the accuracy of } \log x \text{ is determined from the accuracy of } x, \text{ it is no problem to multiply by } y, \text{ even if it is an exact type, and the accuracy of the exponential is determined, exactly as in the case of the initial } \log x.
\]

\[
\text{GEN } \text{gpowgs}(\text{GEN } x, \text{long } n) \text{ creates } x^n \text{ using binary powering. To treat the special case } n = 0, \text{ we consider } \text{gpowgs} \text{ as a series of } \text{gmul}, \text{ so we follow the rule of returning result which is as exact as possible given the input. More precisely, we return}
\]

- \( \text{gen}_1 \) if \( x \) has type \( \text{t_INT}, \text{t_REAL}, \text{t_FRAC}, \text{ or t_PADIC} \)
- \( \text{Mod}(1, N) \) if \( x \) is a \( \text{t_INTMOD} \) modulo \( N \).
- \( \text{gen}_1 \) for \( \text{t_COMPLEX}, \text{t_QUAD} \) unless one component is a \( \text{t_INTMOD} \), in which case we return \( \text{Mod}(1, N) \) for a suitable \( N \) (the gcd of the moduli that appear).
- \( FF_1(x) \) for a \( \text{t_FFELT} \).
- \( qfi_1(x) \) and \( qfr_1(x) \) for \( \text{t_QFI} \) and \( \text{t_QFR} \).
- the identity permutation for \( \text{t_VECSMALL} \).
- \( \text{Rg_get}_1(x) \) otherwise

Of course, the only practical use of this routine for \( n = 0 \) is to obtain the multiplicative neutral element in the base ring (or to treat marginal cases that should be special cased anyway if there is the slightest doubt about what the result should be).

\[
\text{GEN } \text{powgi}(\text{GEN } x, \text{GEN } y) \text{ creates } x^y, \text{ where } y \text{ is a } \text{t_INT}, \text{ using left-shift binary powering. The case where } y = 0 \text{ (as all cases where } y \text{ is small) is handled by } \text{gpowgs}(x, 0).
\]
GEN gpowers(GEN x, long n) returns the vector \([1, x, \ldots, x^n]\).

GEN grootsof1(long n, long prec) returns the vector \([1, x, \ldots, x^{n-1}]\), where \(x\) is the \(n\)-th root of unity \(\exp(2i\pi/n)\).

GEN gsqrpowers(GEN x, long n) returns the vector \([x, x^4, \ldots, x^{n^2}]\).

In addition we also have the obsolete forms:

void gaddz(GEN x, GEN y, GEN z)
void gsubz(GEN x, GEN y, GEN z)
void gmulz(GEN x, GEN y, GEN z)
void gdivz(GEN x, GEN y, GEN z)

9.12 Generic operators: product, powering, factorback.

To describe the following functions, we use the following private typedefs to simplify the description:

```c
typedef (*F0)(void *);
typedef (*F1)(void *, GEN);
typedef (*F2)(void *, GEN, GEN);
```

They correspond to generic functions with one and two arguments respectively (the void* argument provides some arbitrary evaluation context).

GEN gen_product(GEN v, void *D, F2 op) Given two objects \(x, y\), assume that \(op(D, x, y)\) implements an associative binary operator. If \(v\) has \(k\) entries, return \(v[1] \text{ op } v[2] \text{ op } \ldots \text{ op } v[k]\);

returns \text{gen\_1} if \(k = 0\) and a copy of \(v[1]\) if \(k = 1\). Use divide and conquer strategy. Leave some garbage on stack, but suitable for \text{gerepileupto} if \text{mul} is.

GEN gen_pow(GEN x, GEN n, void *D, F1 sqr, F2 mul) \(n \geq 0\) a t_INT, returns \(x^n\); \(mul(D, x, y)\) implements the multiplication in the underlying monoid; \(sqr\) is a (presumably optimized) shortcut for \(mul(D, x, x)\).

GEN gen_powu(GEN x, ulong n, void *D, F1 sqr, F2 mul) \(n > 0\), returns \(x^n\). See gen_pow.

GEN gen_pow_i(GEN x, GEN n, void *E, F1 sqr, F2 mul) internal variant of gen_pow, not memory-clean.

GEN gen_powu_i(GEN x, ulong n, void *E, F1 sqr, F2 mul) internal variant of gen_powu, not memory-clean.

GEN gen_pow_fold(GEN x, GEN n, void *D, F1 sqr, F1 msqr) variant of gen_pow, where \(mul\) is replaced by \(msqr\) with \(msqr(D, y)\) returning \(xy^2\). In particular \(D\) must implicitly contain \(x\).

GEN gen_pow_fold_i(GEN x, GEN n, void *E, F1 sqr, F1 msqr) internal variant of the function gen_pow_fold, not memory-clean.

GEN gen_powu_fold(GEN x, ulong n, void *D, F1 sqr, F1 msqr), see gen_pow_fold.

GEN gen_powu_fold_i(GEN x, ulong n, void *E, F1 sqr, F1 msqr) see gen_pow_fold_i.
GEN gen_pow_init(GEN x, GEN n, long k, void *E, GEN (*sqr)(void*, GEN), GEN (*mul)(void*, GEN, GEN)) Return a table $R$ that can be used with gen_pow_table to compute the powers of $x$ up to $n$. The table is of size $2^k \log_2(n)$.

GEN gen_pow_table(GEN R, GEN n, void *E, GEN (*one)(void*), GEN (*mul)(void*, GEN, GEN)) Return $x^n$, where $R$ is as given by gen_pow_init($x$, $m$, $k$, $E$, $sqr$, $mul$) for some integer $m \geq n$.

GEN gen_powers(GEN x, long n, long usesqr, void *D, F1 sqr, F2 mul, F0 one) returns $[x^0, \ldots, x^n]$ as a t_VEC; $mul(D, x, y)$ implements the multiplication in the underlying monoid; $sqr$ is a (presumably optimized) shortcut for $mul(D, x, x)$; $one$ returns the monoid unit. The flag usesqr should be set to 1 if squaring are faster than multiplication by $x$.

GEN gen_factorback(GEN L, GEN e, F2 mul, F2 pow, void *D) generic form of factorback. The pair $[L, e]$ is of the form
• $[fa, NULL]$, $fa$ a two-column factorization matrix: expand it.
• $[v, NULL]$, $v$ a vector of objects: return their product.
• or $[v, e]$, $v$ a vector of objects, $e$ a vector of integral exponents: return the product of the $v[i]^{e[i]}$.

mul($D, x, y$) and pow($D, x, n$) return $xy$ and $x^n$ respectively.

9.13 Matrix and polynomial norms.

This section concerns only standard norms of $\mathbf{R}$ and $\mathbf{C}$ vector spaces, not algebraic norms given by the determinant of some multiplication operator. We have already seen type-specific functions like ZM_supnorm or RgM_fpnorml2 and limit ourselves to generic functions assuming nothing about their GEN argument; these functions allow the following scalar types: t_INT, t_FRAC, t_REAL, t_COMPLEX, t_QUAD and are defined recursively (in terms of norms of their components) for the following “container” types: t_POL, t_VEC, t_COL and t_MAT. They raise an error if some other type appears in the argument.

GEN gnorml2(GEN x) The norm of a scalar is the square of its complex modulus, the norm of a recursive type is the sum of the norms of its components. For polynomials, vectors or matrices of complex numbers one recovers the square of the usual $L^2$ norm. In most applications, the missing square root computation can be skipped.

GEN gnorml1(GEN x, long prec) The norm of a scalar is its complex modulus, the norm of a recursive type is the sum of the norms of its components. For polynomials, vectors or matrices of complex numbers one recovers the usual $L^1$ norm. One must include a real precision prec in case the inputs include t_COMPLEX or t_QUAD with exact rational components: a square root must be computed and we must choose an accuracy.

GEN gnorml1_fake(GEN x) as gnorml1, except that the norm of a t_QUAD $x + wy$ or t_COMPLEX $x + iy$ is defined as $|x| + |y|$, where we use the ordinary real absolute value. This is still a norm of $\mathbf{R}$ vector spaces, which is easier to compute than gnorml1 and can often be used in its place.

GEN gsupnorm(GEN x, long prec) The norm of a scalar is its complex modulus, the norm of a recursive type is the max of the norms of its components. A precision prec must be included for the same reason as in gnorml1.
void gsupnorm_aux(GEN x, GEN *m, GEN *m2, long prec) is the low-level function underlying gsupnorm, used as follows:

    GEN m = NULL, m2 = NULL;
    gsupnorm_aux(x, &m, &m2);

After the call, the sup norm of x is the min of m and the square root of m2; one or both of m, m2 may be NULL, in which case it must be omitted. You may initially set m and m2 to non-NULL values, in which case, the above procedure yields the max of (the initial) m, the square root of (the initial) m2, and the sup norm of x.

The strange interface is due to the fact that \(|z|^2\) is easier to compute than |z| for a t_QUAD or t_COMPLEX z: m2 is the max of those \(|z|^2\), and m is the max of the other |z|.

9.14 Substitution and evaluation.

GEN gsubst(GEN x, long v, GEN y) substitutes the object y into x for the variable number v.

GEN poleval(GEN q, GEN x) evaluates the t_POL or t_RFRAC q at x. For convenience, a t_VEC or t_COL is also recognized as the t_POL gtovecrev(q).

GEN RgX_cxeval(GEN T, GEN x, GEN xi) evaluate the t_POL T at x via Horner’s scheme. If xi is not NULL it must be equal to 1/x and we evaluate \(x^{\deg(T)}T(1/x)\) instead. This is useful when \(|x| > 1\) is a t_REAL or an inexact t_COMPLEX and T has “balanced” coefficients, since the evaluation becomes numerically stable.

GEN RgX_RgM_eval(GEN q, GEN x) evaluates the t_POL q at the square matrix x.

GEN RgX_RgMV_eval(GEN f, GEN V) returns the evaluation f(x), assuming that V was computed by FpXQ_powers(x, n) for some n > 1.

GEN qfeval(GEN q, GEN x) evaluates the quadratic form q (symmetric matrix) at x (column vector of compatible dimensions).

GEN qfevalb(GEN q, GEN x, GEN y) evaluates the polar bilinear form attached to the quadratic form q (symmetric matrix) at x, y (column vectors of compatible dimensions).

GEN hqfeval(GEN q, GEN x) evaluates the Hermitian form q (a Hermitian complex matrix) at x.

GEN qf_apply_RgM(GEN q, GEN M) q is a symmetric n × n matrix, M an n × k matrix, return \(M'qM\).

GEN qf_apply_ZM(GEN q, GEN M) as above assuming that both q and M have integer entries.
Chapter 10:
Miscellaneous mathematical functions

10.1 Fractions.

GEN absfrac(GEN x) returns the absolute value of the t_FRAC x.

GEN absfrac_shallow(GEN x) x being a t_FRAC, returns a shallow copy of $|x|$, in particular returns x itself when $x \geq 0$, and gneg($x$) otherwise.

GEN sqrfrac(GEN x) returns the square of the t_FRAC x.

10.2 Binomials.

GEN binomial(GEN x, long k)
GEN binomialuu(ulong n, ulong k)
GEN vecbinomial(long n), which returns a vector $v$ with $n + 1$ t_INT components such that $v[k + 1] = \text{binomial}(n,k)$ for $k$ from 0 up to $n$.

10.3 Real numbers.

GEN R_abs(GEN x) x being a t_INT, a t_REAL or a t_FRAC, returns $|x|$.

GEN R_abs_shallow(GEN x) x being a t_INT, a t_REAL or a t_FRAC, returns a shallow copy of $|x|$, in particular returns x itself when $x \geq 0$, and gneg($x$) otherwise.

GEN modRr_safe(GEN x, GEN y) let $x$ be a t_INT, a t_REAL or t_FRAC and let $y$ be a t_REAL. Return $x \% y$ unless the input accuracy is unsufficient to compute the floor or $x/y$ in which case we return NULL.
10.4 Complex numbers.

GEN gimag(GEN x) returns a copy of the imaginary part of x.

GEN greal(GEN x) returns a copy of the real part of x. If x is a t_QUAD, returns the coefficient of 1 in the “canonical” integral basis $(1, \omega)$.

GEN gconj(GEN x) returns $greal(x) - 2gimag(x)$, which is the ordinary complex conjugate except for a real t_QUAD.

GEN imag_i(GEN x), shallow variant of gimag.

GEN real_i(GEN x), shallow variant of greal.

GEN conj_i(GEN x), shallow variant of gconj.

GEN mulreal(GEN x, GEN) returns the real part of $xy$; $x, y$ have type t_INT, t_FRAC, t_REAL or t_COMPLEX. See also RgM_mulreal.

GEN cxnorm(GEN x) norm of the t_COMPLEX x (modulus squared).

GEN cxexpm1(GEN x) returns $\exp(x) - 1$, for a t_COMPLEX x.

int cx_approx_equal(GEN a, GEN b) test whether (t_INT, t_FRAC, t_REAL, or t_COMPLEX of those) $a$ and $b$ are approximately equal. This returns 1 if and only if the division by $a - b$ would produce a division by 0 (which is a less stringent test than testing wether $a - b$ evaluates to 0).

10.5 Quadratic numbers and binary quadratic forms.

GEN quad_disc(GEN x) returns the discriminant of the t_QUAD x.

GEN quadnorm(GEN x) norm of the t_QUAD x.

GEN qfb_disc(GEN x) returns the discriminant of the t_QFI or t_QFR x.

GEN qfb_disc3(GEN x, GEN y, GEN z) returns $y^2 - 4xz$ assuming all inputs are t_INTs. Not stack-clean.

GEN qfb_apply_ZM(GEN q, GEN g) returns $q \circ g$.

GEN qfbforms(GEN D) given a discriminant $D < 0$, return the list of reduced forms of discriminant $D$ as t_VECSMALL with 3 components. The primitive forms in the list enumerate the class group of the quadratic order of discriminant $D$; if $D$ is fundamental, all returned forms are automatically primitive.
10.6 Polynomials.

GEN truecoef(GEN x, long n) returns polcoef(x,n, -1), i.e. the coefficient of the term of degree n in the main variable. This is a safe but expensive function that must copy its return value so that it be gerepile-safe. Use polcoef_i for a fast internal variant.

GEN polcoef_i(GEN x, long n, long v) internal shallow function. Rewrite x as a Laurent polynomial in the variable v and returns its coefficient of degree n (gen_0 if this falls outside the coefficient array). Allow t_POL, t_SER, t_RFRAC and scalars.

long degree(GEN x) returns poldegree(x, -1), the degree of x with respect to its main variable, with the usual meaning if the leading coefficient of x is non-zero. If the sign of x is 0, this function always returns −1. Otherwise, we return the index of the leading coefficient of x, i.e. the coefficient of largest index stored in x. For instance the “degrees” of

\[ 0. \text{E-38} * x^4 + 0.\text{E-19} * x + 1 \text{ Mod}(0,2) * x^0 \] \quad \text{\ll sign is 0 !}

are 4 and −1 respectively.

long degpol(GEN x) is a simple macro returning lg(x) - 3. This is the degree of the t_POL x with respect to its main variable, if its leading coefficient is non-zero (a rational 0 is impossible, but an inexact 0 is allowed, as well as an exact modular 0, e.g. Mod(0,2)). If x has no coefficients (rational 0 polynomial), its length is 2 and we return the expected −1.

GEN characteristic(GEN x) returns the characteristic of the base ring over which the polynomial is defined (as defined by t_INTMOD and t_FFELT components). The function raises an exception if incompatible primes arise from t_FFELT and t_PADIC components. Shallow function.

GEN residual_characteristic(GEN x) returns a kind of “residual characteristic” of the base ring over which the polynomial is defined. This is defined as the gcd of all moduli t_INTMODs occurring in the structure, as well as primes p arising from t_PADICs or t_FFELTs. The function raises an exception if incompatible primes arise from t_FFELT and t_PADIC components. Shallow function.

GEN resultant(GEN x, GEN y) resultant of x and y, with respect to the main variable of highest priority. Uses either the subresultant algorithm (generic case), a modular algorithm (inputs in \( \mathbb{Q}[X] \)) or Sylvester’s matrix (inexact inputs).

GEN resultant2(GEN x, GEN y) resultant of x and y, with respect to the main variable of highest priority. Computes the determinant of Sylvester’s matrix.

GEN cleanroots(GEN x, long prec) returns the complex roots of the complex polynomial x (with coefficients t_INT, t_FRAC, t_REAL or t_COMPLEX of the above). The roots are returned as t_REAL or t_COMPLEX of t_REALs of precision prec (guaranteeing a non-0 imaginary part). See QX_complex_roots.

double fujiwara_bound(GEN x) return a quick upper bound for the logarithm in base 2 of the modulus of the largest complex root of the polynomial x (complex coefficients).

double fujiwara_bound_real(GEN x, long sign) return a quick upper bound for the logarithm in base 2 of the absolute value of the largest real root of sign sign (1 or −1), for the polynomial x (real coefficients).

GEN polmod_to_embed(GEN x, long prec) return the vector of complex embeddings of the t_POLMOD x (with complex coefficients). Shallow function, simple complex variant of conjvec.
10.7 Power series.

GEN sertoser(GEN x, long prec) return the t_SER x truncated or extended (with zeros) to prec terms. Shallow function, assume that prec ≥ 0.

GEN derivser(GEN x) returns the derivative of the t_SER x with respect to its main variable.

GEN integser(GEN x) returns the primitive of the t_SER x with respect to its main variable.

GEN truecoef(GEN x, long n) returns polcoef(x,n,-1), i.e. the coefficient of the term of degree n in the main variable. This is a safe but expensive function that must copy its return value so that it be gerepile-safe. Use polcoef_i for a fast internal variant.

GEN ser_unscale(GEN P, GEN h) return P(hx), not memory clean.

GEN ser_normalize(GEN x) divide x by its “leading term” so that the series is either 0 or equal to t^n(1 + O(t)). Shallow function if the “leading term” is 1.

int ser_isexactzero(GEN x) return 1 if x is a zero series, all of whose known coefficients are exact zeroes; this implies that sign(x) = 0 and lg(x) ≤ 3.

GEN ser_inv(GEN x) return the inverse of the t_SER x using Newton iteration. This is in general slower than ginv unless the precision is huge (hundreds of terms, where the threshold depends strongly on the base field).

10.8 Functions to handle t_FFELT.

These functions define the public interface of the t_FFELT type to use in generic functions. However, in specific functions, it is better to use the functions class FpXQ and/or Flxq as appropriate.

GEN FF_p(GEN a) returns the characteristic of the definition field of the t_FFELT element a.

long FF_f(GEN a) returns the dimension of the definition field over its prime field; the cardinality of the dimension field is thus p^f.

GEN FF_p_i(GEN a) shallow version of FF_p.

GEN FF_q(GEN a) returns the cardinality of the definition field of the t_FFELT element a.

GEN FF_mod(GEN a) returns the polynomial (with reduced t_INT coefficients) defining the finite field, in the variable used to display a.

GEN FF_gen(GEN a) returns the standard generator of the definition field of the t_FFELT element a, see ffgen, that is x (mod T) where T is the polynomial over the prime field that define the finite field.

GEN FF_to_FpXQ(GEN a) converts the t_FFELT a to a polynomial P with reduced t_INT coefficients such that a = P(g) where g is the generator of the finite field returned by ffgen, in the variable used to display g.

GEN FF_to_FpXQ_i(GEN a) shallow version of FF_to_FpXQ.

GEN FF_to_F2xq(GEN a) converts the t_FFELT a to a F2x P such that a = P(g) where g is the generator of the finite field returned by ffgen, in the variable used to display g. This only work if the characteristic is 2.

GEN FF_to_F2xq_i(GEN a) shallow version of FF_to_F2xq.
GEN FF_to_Flxq(GEN a) converts the t_FFELT a to a Flx P such that \( a = P(g) \) where g is the generator of the finite field returned by \texttt{ffgen}, in the variable used to display g. This only work if the characteristic is small enough.

GEN FF_to_Flxq_i(GEN a) shallow version of FF to Flxq.

GEN p_to_FF(GEN p, long v) returns a t_FFELT equal to 1 in the finite field \( \mathbb{Z}/p\mathbb{Z} \). Useful for generic code that wants to handle (inefficiently) \( \mathbb{Z}/p\mathbb{Z} \) as if it were not a prime field.

GEN Tp_to_FF(GEN T, GEN p) returns a t_FFELT equal to 1 in the finite field \( \mathbb{F}_p/(T) \), where T is a ZX, assumed to be irreducible modulo p, or NULL in which case the routine acts as p_to_FF(p,0). No checks.

GEN Fq_to_FF(GEN x, GEN ff) returns a t_FFELT equal to \( x \) in the finite field defined by the t_FFELT ff, where \( x \) is an Fq (either a t_INT or a ZX: a t_POL with t_INT coefficients). No checks.

GEN FqX_to_FFX(GEN x, GEN ff) given an FqX x, return the polynomial with t_FFELT coefficients obtained by applying Fq_to_FF coefficientwise. No checks, and no normalization if the leading coefficient maps to 0.

GEN FF_1(GEN a) returns the unity in the definition field of the t_FFELT element a.

GEN FF_zero(GEN a) returns the zero element of the definition field of the t_FFELT element a.

int FF_equal0(GEN a) returns 1 if the t_FFELT a is equal to 0 else returns 0.

int FF_equal1(GEN a) returns 1 if the t_FFELT a is equal to 1 else returns 0.

int FF_equalm1(GEN a) returns \(-1\) if the t_FFELT a is equal to 1 else returns 0.

int FF_equal(GEN a, GEN b) return 1 if the t_FFELT a and b have the same definition field and are equal, else 0.

int FF_samefield(GEN a, GEN b) return 1 if the t_FFELT a and b have the same definition field, else 0.

int Rg_is_FF(GEN c, GEN *ff) to be called successively on many objects, setting *ff = NULL (unset) initially. Returns 1 as long as c is a t_FFELT defined over the same field as *ff (setting *ff = c if unset), and 0 otherwise.

int RgC_is_FFC(GEN x, GEN *ff) apply Rg_is_FF successively to all components of the t_VEC or t_COL x. Return 0 if one call fails, and 1 otherwise.

int RgM_is_FFM(GEN x, GEN *ff) apply Rg_is_FF to all components of the t_MAT. Return 0 if one call fails, and 1 otherwise.

GEN FF_add(GEN a, GEN b) returns \( a + b \) where a and b are t_FFELT having the same definition field.

GEN FF_Z_add(GEN a, GEN x) returns \( a + x \), where a is a t_FFELT, and x is a t_INT, the computation being performed in the definition field of a.

GEN FF_Q_add(GEN a, GEN x) returns \( a + x \), where a is a t_FFELT, and x is a t_RFRAC, the computation being performed in the definition field of a.

GEN FF_sub(GEN a, GEN b) returns \( a - b \) where a and b are t_FFELT having the same definition field.

GEN FF_mul(GEN a, GEN b) returns \( ab \) where a and b are t_FFELT having the same definition field.
GEN FF_Z_mul(GEN a, GEN b) returns \(ab\), where \(a\) is a t_FFELT, and \(b\) is a t_INT, the computation being performed in the definition field of \(a\).

GEN FF_div(GEN a, GEN b) returns \(a/b\) where \(a\) and \(b\) are t_FFELT having the same definition field.

GEN FF_neg(GEN a) returns \(-a\) where \(a\) is a t_FFELT.

GEN FF_neg_i(GEN a) shallow function returning \(-a\) where \(a\) is a t_FFELT.

GEN FF_inv(GEN a) returns \(a^{-1}\) where \(a\) is a t_FFELT.

GEN FF_square(GEN a) returns \(a^2\) where \(a\) is a t_FFELT.

GEN FF_mul2n(GEN a, long n) returns \(a^{2^n}\) where \(a\) is a t_FFELT.

GEN FF_pow(GEN a, GEN n) returns \(a^n\) where \(a\) is a t_FFELT and \(n\) is a t_INT.

GEN FF_Frobenius(GEN a, GEN n) returns \(a^{p^n}\) where \(a\) is a t_FFELT \(n\) a t_INT, and \(p\) is the characteristic of the definition field of \(a\).

GEN FF_Z_muldiv(GEN a, GEN x, GEN y) returns \(ay/z\), where \(a\) is a t_FFELT, and \(x\) and \(y\) are t_INT, the computation being performed in the definition field of \(a\).

GEN Z_FF_div(GEN x, GEN a) return \(x/a\) where \(a\) is a t_FFELT, and \(x\) is a t_INT, the computation being performed in the definition field of \(a\).

GEN FF_norm(GEN a) returns the norm of the t_FFELT \(a\) with respect to its definition field.

GEN FF_trace(GEN a) returns the trace of the t_FFELT \(a\) with respect to its definition field.

GEN FF_conjvec(GEN a) returns the vector of conjugates \([a, a^p, a^{p^2}, \ldots, a^{p^{n-1}}]\) where the t_FFELT \(a\) belong to a field with \(p^n\) elements.

GEN FF_charpoly(GEN a) returns the characteristic polynomial) of the t_FFELT \(a\) with respect to its definition field.

GEN FF_minpoly(GEN a) returns the minimal polynomial of the t_FFELT \(a\).

GEN FF_sqrt(GEN a) returns an t_FFELT \(b\) such that \(a = b^2\) if it exist, where \(a\) is a t_FFELT.

long FF_issquareall(GEN x, GEN *pt) returns 1 if \(x\) is a square, and 0 otherwise. If \(x\) is indeed a square, set \(pt\) to its square root.

long FF_issquare(GEN x) returns 1 if \(x\) is a square and 0 otherwise.

long FF_ispower(GEN x, GEN K, GEN *pt) Given \(K\) a positive integer, returns 1 if \(x\) is a \(K\)-th power, and 0 otherwise. If \(x\) is indeed a \(K\)-th power, set \(pt\) to its \(K\)-th root.

GEN FF_sqrtn(GEN a, GEN n, GEN *zn) returns an \(n\)-th root of \(a\) if it exist. If \(zn\) is non-NULL set it to a primitive \(n\)-th root of the unity.

GEN FF_log(GEN a, GEN g, GEN o) the t_FFELT \(g\) being a generator for the definition field of the t_FFELT \(a\), returns a t_INT \(e\) such that \(a^e = g\). If \(e\) does not exists, the result is currently undefined. If \(o\) is not NULL it is assumed to be a factorization of the multiplicative order of \(g\) (as set by FF_primroot)

GEN FF_order(GEN a, GEN o) returns the order of the t_FFELT \(a\). If \(o\) is non-NULL, it is assumed that \(o\) is a multiple of the order of \(a\).
GEN FF_primroot(GEN a, GEN *o) returns a generator of the multiplicative group of the definition field of the t_FFELT a. If o is not NULL, set it to the factorization of the order of the primitive root (to speed up FF_log).

GEN FF_map(GEN m, GEN a) returns $A(m)$ where $A=a$.pol assuming $a$ and $m$ belongs to fields having the same characteristic.

10.8.1 FFX.

The functions in this sections take polynomial arguments and a t_FFELT $a$. The coefficients of the polynomials must be of type t_INT, t_INTMOD or t_FFELT and compatible with $a$.

GEN FFX_mul(GEN P, GEN Q, GEN a) returns the product of the polynomials $P$ and $Q$ defined over the definition field of the t_FFELT $a$.

GEN FFX_sqr(GEN P, GEN a) returns the square of the polynomial $P$ defined over the definition field of the t_FFELT $a$.

GEN FFX_rem(GEN P, GEN Q, GEN a) returns the remainder of the polynomial $P$ modulo the polynomial $Q$, where $P$ and $Q$ are defined over the definition field of the t_FFELT $a$.

GEN FFX_ispower(GEN P, ulong k, GEN a, GEN *py) return 1 if the FFX $P$ is a $k$-th power, 0 otherwise, where $P$ is defined over the definition field of the t_FFELT $a$. If py is not NULL, set it to $g$ such that $g^k = f$.

GEN FFX_factor(GEN f, GEN a) returns the factorization of the univariate polynomial $f$ over the definition field of the t_FFELT $a$. The coefficients of $f$ must be of type t_INT, t_INTMOD or t_FFELT and compatible with $a$.

GEN FFX_factor_squarefree(GEN f, GEN a) returns the squarefree factorization of the univariate polynomial $f$ over the definition field of the t_FFELT $a$. This is a vector $[u_1, \ldots, u_k]$ of pairwise coprime FFX such that $u_k \neq 1$ and $f = \prod u_i^i$.

GEN FFX_ddf(GEN f, GEN a) assuming that $f$ is squarefree, returns the distinct degree factorization of $f$ modulo $p$. The returned value $v$ is a t_VEC with two components: $F=v[1]$ is a vector of (FFX) factors, and $E=v[2]$ is a t_VECSMALL, such that $f$ is equal to the product of the $F[i]$ and each $F[i]$ is a product of irreducible factors of degree $E[i]$.

GEN FFX_degfact(GEN f, GEN a), as FFX_factor, but the degrees of the irreducible factors are returned instead of the factors themselves (as a t_VECSMALL).

GEN FFX_roots(GEN f, GEN a) returns the roots (t_FFELT) of the univariate polynomial $f$ over the definition field of the t_FFELT $a$. The coefficients of $f$ must be of type t_INT, t_INTMOD or t_FFELT and compatible with $a$.

GEN FFX_preimage(GEN F, GEN x, GEN a) returns $P\%F$ where $P=x$.pol assuming $a$ and $x$ belongs to fields having the same characteristic, and that the coefficients of $F$ belong to the definition field of $a$.  

229
10.8.2 FFM.

**GEN FFM_FFC_gauss(GEN M, GEN C, GEN ff)** given a matrix $M$ (t_MAT) and a column vector $C$ (t_COL) over the finite field given by $ff$ (t_FFELT) such that $M$ is invertible, return the unique column vector $X$ such that $MX = C$.

**GEN FFM_FFC_invimage(GEN M, GEN C, GEN ff)** given a matrix $M$ (t_MAT) and a column vector $C$ (t_COL) over the finite field given by $ff$ (t_FFELT), return a column vector $X$ such that $MX = C$, or NULL if no such vector exists.

**GEN FFM_FFC_mul(GEN M, GEN C, GEN ff)** returns the product of the matrix $M$ (t_MAT) and the column vector $C$ (t_COL) over the finite field given by $ff$ (t_FFELT).

**GEN FFM_deplin(GEN M, GEN ff)** returns a non-zero vector (t_COL) in the kernel of the matrix $M$ over the finite field given by $ff$, or NULL if no such vector exists.

**GEN FFM_det(GEN M, GEN ff)** returns the determinant of the matrix $M$ over the finite field given by $ff$.

**GEN FFM_gauss(GEN M, GEN N, GEN ff)** given two matrices $M$ and $N$ (t_MAT) over the finite field given by $ff$ (t_FFELT) such that $M$ is invertible, return the unique matrix $X$ such that $MX = N$.

**GEN FFM_image(GEN M, GEN ff)** returns a matrix whose columns span the image of the matrix $M$ over the finite field given by $ff$.

**GEN FFM_indexrank(GEN M, GEN ff)** given a matrix $M$ of rank $r$ over the finite field given by $ff$, returns a vector with two t_VECSMALL components $y$ and $z$ containing $r$ row and column indices, respectively, such that the $r \times r$-matrix formed by the $M[i,j]$ for $i$ in $y$ and $j$ in $z$ is invertible.

**GEN FFM_inv(GEN M, GEN ff)** returns the inverse of the square matrix $M$ over the finite field given by $ff$, or NULL if $M$ is not invertible.

**GEN FFM_invimage(GEN M, GEN N, GEN ff)** given two matrices $M$ and $N$ (t_MAT) over the finite field given by $ff$ (t_FFELT), return a matrix $X$ such that $MX = N$, or NULL if no such matrix exists.

**GEN FFM_ker(GEN M, GEN ff)** returns the kernel of the t_MAT $M$ over the finite field given by the t_FFELT $ff$.

**GEN FFM_mul(GEN M, GEN N, GEN ff)** returns the product of the matrices $M$ and $N$ (t_MAT) over the finite field given by $ff$ (t_FFELT).

**long FFM_rank(GEN M, GEN ff)** returns the rank of the matrix $M$ over the finite field given by $ff$.

**GEN FFM_suppl(GEN M, GEN ff)** given a matrix $M$ over the finite field given by $ff$ whose columns are linearly independent, returns a square invertible matrix whose first columns are those of $M$.

10.8.3 FFXQ.

**GEN FFXQ_mul(GEN P, GEN Q, GEN T, GEN a)** returns the product of the polynomials $P$ and $Q$ modulo the polynomial $T$, where $P$, $Q$ and $T$ are defined over the definition field of the t_FFELT $a$.

**GEN FFXQ_sqr(GEN P, GEN T, GEN a)** returns the square of the polynomial $P$ modulo the polynomial $T$, where $P$ and $T$ are defined over the definition field of the t_FFELT $a$.

**GEN FFXQ_inv(GEN P, GEN Q, GEN a)** returns the inverse of the polynomial $P$ modulo the polynomial $Q$, where $P$ and $Q$ are defined over the definition field of the t_FFELT $a$.
The following two functions are only useful when interacting with gp, to manipulate its internal default precision (expressed as a number of decimal digits, not in words as used everywhere else):

```c
long getrealprecision(void) returns realprecision.
long setrealprecision(long n, long *prec) sets the new realprecision to n, which is returned. As a side effect, set prec to the corresponding number of words ndec2prec(n).
```

### 10.9.1 Transcendental functions with t_REAL arguments.

In the following routines, \( x \) is assumed to be a t_REAL and the result is a t_REAL (sometimes a t_COMPLEX with t_REAL components), with the largest accuracy which can be deduced from the input. The naming scheme is inconsistent here, since we sometimes use the prefix mp even though t_INT inputs are forbidden:

- `GEN sqrtr(GEN x)` returns the square root of \( x \).
- `GEN cbrtr(GEN x)` returns the real cube root of \( x \).
- `GEN sqrttnr(GEN x, long n)` returns the \( n \)-th root of \( x \), assuming \( n \geq 1 \) and \( x \geq 0 \).
- `GEN sqrttnr_abs(GEN x, long n)` returns the \( n \)-th root of \(|x|\), assuming \( n \geq 1 \) and \( x \neq 0 \).
- `GEN mpcos[z](GEN x[, GEN z])` returns cos(\( x \)).
- `GEN mpsin[z](GEN x[, GEN z])` returns sin(\( x \)).
- `GEN mplog[z](GEN x[, GEN z])` returns log(\( x \)). We must have \( x > 0 \) since the result must be a t_REAL. Use glog for the general case, where you want such computations as log\((-1) = I\).
- `GEN mpexp[z](GEN x[, GEN z])` returns exp(\( x \)).
- `GEN mpexpm1(GEN x)` returns exp(\( x \)) − 1, but is more accurate than subrs(mpexp(x), 1), which suffers from catastrophic cancellation if \(|x|\) is very small.
- `void mpsincosm1(GEN x, GEN *s, GEN *c)` sets \( s \) and \( c \) to sin(\( x \)) and cos(\( x \)) − 1 respectively, where \( x \) is a t_REAL; the latter is more accurate than subrs(mpcos(y), 1), which suffers from catastrophic cancellation if \(|x|\) is very small.
- `GEN mveceint1(GEN C, GEN eC, long n)` as veceint1; assumes that \( C > 0 \) is a t_REAL and that eC is NULL or mpexp(C).
- `GEN mpeint1(GEN x, GEN expx)` returns eint1(\( x \)), for a t_REAL \( x \geq 0 \), assuming that expx is mpexp(\( x \)).
- `GEN mplambertW(GEN y)` solution \( x \) of the implicit equation \( x \exp(x) = y \), for \( y > 0 \) a t_REAL.

Useful low-level functions which disregard the sign of \( x \):

- `GEN sqrtr_abs(GEN x)` returns \( \sqrt{|x|} \) assuming \( x \neq 0 \).
- `GEN cbrtr_abs(GEN x)` returns \( |x|^{1/3} \) assuming \( x \neq 0 \).
- `GEN explr_abs(GEN x)` returns \( \exp(|x|) − 1 \), assuming \( x \neq 0 \).
- `GEN logr_abs(GEN x)` returns \( \log(|x|) \), assuming \( x \neq 0 \).
10.9.2 Other complex transcendental functions.

GEN szeta(long s, long prec) returns the value of Riemann’s zeta function at the (possibly negative) integer \( s \neq 1 \), in relative accuracy \( \text{prec} \).

GEN veczeta(GEN a, GEN b, long N, long prec) returns in a vector all the \( \zeta(aj + b) \), where \( j = 0, 1, \ldots, N - 1 \), where \( a \) and \( b \) are real numbers (of arbitrary type, although \text{t\_INT} is treated more efficiently) and \( b > 1 \). Assumes that \( N \geq 1 \).

GEN ggamma1m1(GEN x, long prec) return \( \Gamma(1 + x) - 1 \) assuming \( |x| < 1 \). Guard against cancellation when \( x \) is small.

A few variants on sin and cos:

void mpsincos(GEN x, GEN *s, GEN *c) sets \( s \) and \( c \) to \( \sin(x) \) and \( \cos(x) \) respectively, where \( x \) is a \text{t\_REAL}.

GEN expIr(GEN x) returns \( \exp(ix) \), where \( x \) is a \text{t\_REAL}. The return type is \text{t\_COMPLEX} unless the imaginary part is equal to 0 to the current accuracy (its sign is 0).

GEN expIxy(GEN x, GEN y, long prec) returns \( \exp(ixy) \). Efficient when \( x \) is real and \( y \) pure imaginary.

void gsincos(GEN x, GEN *s, GEN *c, long prec) general case.

GEN rootsof1_cx(GEN d, long prec) return \( e^{(1/d)} \) at precision \( \text{prec} \), \( e(x) = \exp(2i\pi x) \).

GEN rootsof1u_cx(ulong d, long prec) return \( e^{(1/d)} \) at precision \( \text{prec} \).

GEN rootsof1powinit(long a, long b, long prec) precompute \( b \)-th roots of 1 for rootsof1pow, i.e. to later compute \( e^{(ac/b)} \) for varying \( c \).

GEN rootsof1pow(GEN T, long c) given \( T = \text{rootsof1powinit}(a, b, \text{prec}) \), return \( e^{(ac/b)} \).

A generalization of \text{affrr\_fixlg}

GEN affc\_fixlg(GEN x, GEN res) assume \text{res} was allocated using \text{cgetc}, and that \( x \) is either a \text{t\_REAL} or a \text{t\_COMPLEX} with \text{t\_REAL} components. Assign \( x \) to \text{res}, first shortening the components of \text{res} if needed (in a \text{gerepile}-safe way). Further convert \text{res} to a \text{t\_REAL} if \( x \) is a \text{t\_REAL}.

GEN trans\_eval(const char *fun, GEN (*f) (GEN, long), GEN x, long prec) evaluate the transcendental function \( f \) (named "fun" at the argument \( x \) and precision \( \text{prec} \)). This is a quick way to implement a transcendental function to be made available under GP, starting from a \( C \) function handling only \text{t\_REAL} and \text{t\_COMPLEX} arguments. This routine first converts \( x \) to a suitable type:

- \text{t\_INT}/\text{t\_FRAC} to \text{t\_REAL} of precision \( \text{prec} \), \text{t\_QUAD} to \text{t\_REAL} or \text{t\_COMPLEX} of precision \( \text{prec} \).
- \text{t\_POLMOD} to a \text{t\_COL} of complex embeddings (as in \text{conjvec})

Then evaluates the function at \text{t\_VEC}, \text{t\_COL}, \text{t\_MAT} arguments coefficientwise.
10.9.3 Modular functions.

GEN cxredsl2(GEN z, GEN *g) given t a t_COMPLEX belonging to the upper half-plane, find \( \gamma \in \text{SL}_2(\mathbb{Z}) \) such that \( \gamma \cdot z \) belongs to the standard fundamental domain and set *g to \( \gamma \).

GEN cxredsl2_i(GEN z, GEN g, GEN *czd) as cxredsl2; also sets *czd to \( cz+d \), if \( \gamma = [a,b;c,d] \).

GEN cxEx(GEN tau, long k, long prec) returns \( E_k(\tau) \) by direct evaluation of \( 1 + 2/\zeta(1-k) \sum_n n^{k-1}q^n/(1-q^n) \), \( q = e(\tau) \). Assume that \( 3\tau > 0 \) and \( k \) even. Very slow unless \( \tau \) is already reduced modulo \( \text{SL}_2(\mathbb{Z}) \). Not gerepile-clean but suitable for gerepileupto.

10.9.4 Transcendental functions with t_PADIC arguments.

GEN Qp_exp(GEN x) shortcut for \( \exp(x, /*\text{ignored}*/\text{prec}) \)

GEN Qp_gamma(GEN x) shortcut for \( \Gamma(x, /*\text{ignored}*/\text{prec}) \)

GEN Qp_log(GEN x) shortcut for \( \log(x, /*\text{ignored}*/\text{prec}) \)

GEN Qp_sqrt(GEN x) shortcut for \( \Gamma(x, /*\text{ignored}*/\text{prec}) \)

GEN Qp_sqrtn(GEN x, GEN n, GEN *z) shortcut for \( \sqrt[n]{x} \)

GEN Qp_agm2_sequence(GEN a1, GEN b1) assume \( a_1/b_1 = 1 \mod p \) if \( p \) odd and \( 2^4 \mod 2 \) if \( p = 2 \).

Let \( A_1 = a_1/p^v \) and \( B_1 = b_1/p^v \) with \( v = v_p(a_1) = v_p(b_1) \); let further \( A_{n+1} = (A_n + B_n + 2B_{n+1})/4 \), \( B_{n+1} = B_n\sqrt{A_n/B_n} \) (the square root of \( A_nB_n \)) congruent to \( B_n \mod p \) and \( R_n = p^v(A_n - B_n) \).

We stop when \( R_n \) is 0 at the given \( p \)-adic accuracy. This function returns in a triplet t_VEC the three sequences \( (A_n)/(B_n) \) and \( (R_n) \), corresponding to a sequence of 2-isogenies on the Tate curve \( y^2 = x(x-a_1)(x+a_1-b_1) \). The common limit of \( A_n \) and \( B_n \) is the \( M_2(a_1, b_1) \), the square of the \( p \)-adic AGM of \( \sqrt{a_1} \) and \( \sqrt{b_1} \). This is given by \( \text{ellQp} \_Ei \) and is used by corresponding ascending and descending \( p \)-adic Landen transforms:

void Qp_ascending_Landen(GEN ABR, GEN *ptx, GEN *pty)
void Qp_descending_Landen(GEN ABR, GEN *ptx, GEN *pty)

10.9.5 Cached constants.

The cached constant is returned at its current precision, which may be larger than \text{prec}. One should always use the \text{mp}xxx variant: \text{mppi}, \text{mpeuler}, or \text{mplog2}.

GEN consteuler(long prec) precomputes Euler-Mascheroni’s constant at precision \text{prec}.

GEN constcatalan(long prec) precomputes Catalan’s constant at precision \text{prec}.

GEN constpi(long prec) precomputes \( \pi \) at precision \text{prec}.

GEN constlog2(long prec) precomputes \( \log(2) \) at precision \text{prec}.

void mpbern(long n, long prec) precomputes the \( n \) even Bernoulli numbers \( B_2, \ldots, B_{2n} \) as t_FRAC or t_REALs of precision \text{prec}. For any \( 2 \leq k \leq 2n \), if a floating point approximation of \( B_k \) to accuracy \text{prec} is enough to reconstruct it exactly, a t_FRAC is stored; otherwise a t_REAL at the requested accuracy. No more than \( n \) Bernoulli numbers will ever be stored (by \text{bernfrac} or \text{bemreal}), unless a subsequent call to mpbern increases the cache. If \text{prec} is 0, the \( B_k \) are computed exactly.

233
The following functions use cached data if \( \text{prec} \) is smaller than the precision of the cached value; otherwise the newly computed data replaces the old cache.

\begin{align*}
\text{GEN mppi}(\text{long prec}) & \text{ returns } \pi \text{ at precision } \text{prec}. \\
\text{GEN Pi2n}(\text{long } n, \text{ long prec}) & \text{ returns } 2^n\pi \text{ at precision } \text{prec}. \\
\text{GEN PiI2}(\text{long } n, \text{ long prec}) & \text{ returns } 2n\pi i \text{ at precision } \text{prec}. \\
\text{GEN PiI2n}(\text{long } n, \text{ long prec}) & \text{ returns } 2^n\pi i \text{ at precision } \text{prec}. \\
\text{GEN mpeuler}(\text{long prec}) & \text{ returns Euler-Mascheroni’s constant at precision } \text{prec}. \\
\text{GEN mpeuler}(\text{long prec}) & \text{ returns Catalan’s number at precision } \text{prec}. \\
\text{GEN mplog2}(\text{long prec}) & \text{ returns } \log 2 \text{ at precision } \text{prec}. \\
\text{GEN bernreal}(\text{long } i, \text{ long prec}) & \text{ returns the Bernoulli number } B_i \text{ as a } \text{t_REAL} \text{ at precision } \text{prec}. \text{ If } \text{mpbern}(n, p) \text{ was called previously with } n \geq i \text{ and } p \geq \text{prec}, \text{ then the cached value is (converted to a } \text{t_REAL} \text{ of accuracy } \text{prec} \text{ then) returned. Otherwise, the missing value is computed. In the latter case, if } n \geq i, \text{ the cached table is updated.} \\
\text{GEN bernfrac}(\text{long i}) & \text{ returns the Bernoulli number } B_i \text{ as a rational number } (\text{t_FRAC or t_INT}). \text{ If a cached table includes } B_i \text{ as a rational number, the latter is returned. Otherwise, the missing value is computed. In the latter case, the cached Bernoulli table may be updated.}
\end{align*}

10.10 Permutations

Permutations are represented in two different ways:

- \((\text{perm})\) a \text{t_VECSMALL } p \text{ representing the bijection } i \mapsto p[i]; \text{ unless mentioned otherwise, this is the form used in the functions below for both input and output,}

- \((\text{cyc})\) a \text{t_VEC} of \text{t_VECSMALL}s representing a product of disjoint cycles.

\begin{align*}
\text{GEN identity_perm}(\text{long } n) & \text{ return the identity permutation on } n \text{ symbols.} \\
\text{GEN cyclic_perm}(\text{long } n, \text{ long } d) & \text{ return the cyclic permutation mapping } i \text{ to } i + d \text{ (mod } n) \text{ in } S_n. \text{ Assume that } d \leq n. \\
\text{GEN perm_mul(GEN s, GEN t)} & \text{ multiply } s \text{ and } t \text{ (composition } s \circ t) \\
\text{GEN perm_conj(GEN s, GEN t)} & \text{ return } st^{-1}. \\
\text{int perm_commute(GEN p, GEN q)} & \text{ return 1 if } p \text{ and } q \text{ commute, 0 otherwise.} \\
\text{GEN perm_inv(GEN p)} & \text{ returns the inverse of } p. \\
\text{GEN perm_pow(GEN p, long } n) & \text{ returns } p^n \\
\text{GEN cyc_pow_perm(GEN p, long } n) & \text{ the permutation } p \text{ is given as a product of disjoint cycles (cyc); return } p^n \text{ (as a perm).} \\
\text{GEN cyc_pow(GEN p, long } n) & \text{ the permutation } p \text{ is given as a product of disjoint cycles (cyc); return } p^n \text{ (as a cyc).} \\
\text{GEN perm_cycles(GEN p)} & \text{ return the cyclic decomposition of } p. \\
\text{long perm_order(GEN p)} & \text{ returns the order of the permutation } p \text{ (as the lcm of its cycle lengths).}
\end{align*}
long perm_sign(GEN p) returns the sign of the permutation $p$.

GEN vecperm_orbits(GEN p, long n) the permutation $p \in S_n$ being given as a product of disjoint cycles, return the orbits of the subgroup generated by $p$ on $\{1, 2, \ldots, n\}$.

GEN Z_to_perm(long n, GEN x) as numtoperm, returning a t_VECSMALL.

GEN perm_to_Z(GEN v) as permtonum for a t_VECSMALL input.

10.11 Small groups.

The small (finite) groups facility is meant to deal with subgroups of Galois groups obtained by galoisinit and thus is currently limited to weakly super-solvable groups.

A group $grp$ of order $n$ is represented by its regular representation (for an arbitrary ordering of its element) in $S_n$. A subgroup of such group is represented by the restriction of the representation to the subgroup. A small group can be either a group or a subgroup. Thus it is embedded in some $S_n$, where $n$ is the multiple of the order. Such an $n$ is called the domain of the small group. The domain of a trivial subgroup cannot be derived from the subgroup data, so some functions require the subgroup domain as argument.

The small group $grp$ is represented by a t_VEC with two components:

$grp[1]$ is a generating subset $[s_1, \ldots, s_g]$ of $grp$ expressed as a vector of permutations of length $n$.

$grp[2]$ contains the relative orders $[o_1, \ldots, o_g]$ of the generators $grp[1]$.

See galoisinit for the technical details.

GEN checkgroup(GEN gal, GEN *elts) check whether $gal$ is a small group or a Galois group. Returns the underlying small group and set elts to the list of elements or to NULL if it is not known.

GEN checkgrouplet(GEN gal) check whether $gal$ is a small group or a Galois group, or a vector of permutations listing the group elements. Returns the list of group elements as permutations.

GEN galois_group(GEN gal) return the underlying small group of the Galois group $gal$.

GEN cyclicgroup(GEN g, long s) return the cyclic group with generator $g$ of order $s$.

GEN trivialgroup(void) return the trivial group.

GEN dicyclicgroup(GEN g1, GEN g2, long s1, long s2) returns the group with generators $g1$, $g2$ with respecting relative orders $s1$, $s2$.

GEN abelian_group(GEN v) let $v$ be a t_VECSMALL seen as the SNF of a small abelian group, return its regular representation.

long group_domain(GEN grp) returns the domain of the non-trivial small group $grp$. Return an error if $grp$ is trivial.

GEN group_elts(GEN grp, long n) returns the list of elements of the small group $grp$ of domain $n$ as permutations.

GEN group_set(GEN grp, long n) returns a $F_2\times v$ $b$ such that $b[i]$ is set if and only if the small group $grp$ of domain $n$ contains a permutation sending $1$ to $i$.

GEN groupelts_set(GEN elts, long n), where $elts$ is the list of elements of a small group of domain $n$, returns a $F_2\times v$ $b$ such that $b[i]$ is set if and only if the small group contains a permutation sending $1$ to $i$. 

235
**GEN groupelts_conjclasses(GEN elts, long *pn)**, where *elts* is the list of elements of a small group (sorted with respect to vecsmall_lexcmp), return a t_VECSMALL *conj* of the same length such that *conj*[i] is the index in \( \{1, \ldots, n\} \) of the conjugacy class of *elts*[i] for some unspecified but deterministic ordering of the classes, where *n* is the number of conjugacy classes. If *pn* is non NULL, *pn* is set to *n*.

**GEN conjclasses_repr(GEN conj, long nb)**, where *conj* and *nb* are as returned by the call groupelts_conjclasses(*elts*), return t_VECSMALL of length *nb* which gives the indices in *elts* of a representative of each conjugacy class.

**GEN group_to_cc(GENV G)**, where *G* is a small group or a Galois group, returns a cc (conjclasses) structure [elts,conj,rep,flag], as obtained by alggroupcenter, where *conj* is groupelts_conjclasses(*elts*) and *rep* is the attached conjclasses_repr. *flag* is 1 if the permutation representation is transitive (in which case an element *g* of *G* is characterized by *g*[1]), and 0 otherwise. Shallow function.

**long group_order(GEN grp)** returns the order of the small group *grp* (which is the product of the relative orders).

**long group_isabelian(GEN grp)** returns 1 if the small group *grp* is Abelian, else 0.

**GEN group_abelianHNF(GEN grp, GEN elts)** if *grp* is not Abelian, returns NULL, else returns the HNF matrix of *grp* with respect to the generating family *grp*[1]. If *elts* is no NULL, it must be the list of elements of *grp*.

**GEN group_abelianSNF(GEN grp, GEN elts)** if *grp* is not Abelian, returns NULL, else returns its cyclic decomposition. If *elts* is no NULL, it must be the list of elements of *grp*.

**long group_subgroup_isnormal(GEN G, GEN H)**, *H* being a subgroup of the small group *G*, returns 1 if *H* is normal in *G*, else 0.

**long group_isA4S4(GEN grp)** returns 1 if the small group *grp* is isomorphic to *A*_4, 2 if it is isomorphic to *S*_4 and 0 else. This is mainly to deal with the idiosyncrasy of the format.

**GEN group_leftcoset(GEN G, GEN g)** where *G* is a small group and *g* a permutation of the same domain, the left coset *gG* as a vector of permutations.

**GEN group_rightcoset(GEN G, GEN g)** where *G* is a small group and *g* a permutation of the same domain, the right coset *Gg* as a vector of permutations.

**long group_perm_normalize(GEN G, GEN g)** where *G* is a small group and *g* a permutation of the same domain, return 1 if *gGg*^{-1} = *G*, else 0.

**GEN group_quotient(GEN G, GEN H)**, where *G* is a small group and *H* is a subgroup of *G*, returns the quotient map *G* \to *G/H* as an abstract data structure.

**GEN quotient_perm(GEN C, GEN g)** where *C* is the quotient map *G* \to *G/H* for some subgroup *H* of *G* and *g* an element of *G*, return the image of *g* by *C* (i.e. the coset *gH*).

**GEN quotient_group(GEN C, GEN G)** where *C* is the quotient map *G* \to *G/H* for some normal subgroup *H* of *G*, return the quotient group *G/H* as a small group.

**GEN quotient_subgroup_lift(GEN C, GEN H, GEN S)** where *C* is the quotient map *G* \to *G/H* for some group *G* normalizing *H* and *S* is a subgroup of *G/H*, return the inverse image of *S* by *C*.

**GEN group_subgroups(GEN grp)** returns the list of subgroups of the small group *grp* as a t_VEC.
GEN subgroups_tableset(GEN S, long n) where $S$ is a vector of subgroups of domain $n$, returns a table which matches the set of elements of the subgroups against the index of the subgroups.

long tableset_find_index(GEN tbl, GEN set) searches the set $set$ in the table $tbl$ and returns its attached index, or 0 if not found.

GEN groupelts_abelian_group(GEN elts) where $elts$ is the list of elements of an Abelian small group, returns the corresponding small group.

long groupelts_exponent(GEN elts) where $elts$ is the list of elements of a small group, returns the exponent the group (the LCM of the order of the elements of the group).

GEN groupelts_center(GEN elts) where $elts$ is the list of elements of a small group, returns the list of elements of the center of the group.

GEN group_export(GEN grp, long format) convert a small group to another format, as a t_STR describing the group for the given syntax, see galoisexport.

GEN group_export_GAP(GEN G) export a small group to GAP format.

GEN group_export_MAGMA(GEN G) export a small group to MAGMA format.

long group_ident(GEN grp, GEN elts) returns the index of the small group $grp$ in the GAP4 Small Group library, see galoisidentify. If $elts$ is not NULL, it must be the list of elements of $grp$.

long group_ident_trans(GEN grp, GEN elts) returns the index of the regular representation of the small group $grp$ in the GAP4 Transitive Group library, see polgalois. If $elts$ is no NULL, it must be the list of elements of $grp$. 

Chapter 11:
Standard data structures

11.1 Character strings.

11.1.1 Functions returning a char *.

char* pari_strdup(const char *s) returns a malloc’ed copy of s (uses pari_malloc).

char* pari_strndup(const char *s, long n) returns a malloc’ed copy of at most n chars from s (uses pari_malloc). If s is longer than n, only n characters are copied and a terminal null byte is added.

char* stack_strdup(const char *s) returns a copy of s, allocated on the PARI stack (uses stack_malloc).

char* stack_strcat(const char *s, const char *t) returns the concatenation of s and t, allocated on the PARI stack (uses stack_malloc).

char* stack_sprintf(const char *fmt, ...) runs pari_sprintf on the given arguments, returning a string allocated on the PARI stack.

char* uordinal(ulong x) return the ordinal number attached to x (i.e. 1st, 2nd, etc.) as a stack_malloc’ed string.

char* itostr(GEN x) writes the t_INT x to a stack_malloc’ed string.

char* GENtostr(GEN x), using the current default output format (GP_DATA->fmt, which contains the output style and the number of significant digits to print), converts x to a malloc’ed string. Simple variant of pari_sprintf.

char* GENtostr_raw(GEN x) as GENtostr with the following differences: 1) the output format is f_RAW; 2) the result is allocated on the stack and must not be freed.

char* GENtostr_unquoted(GEN x) as GENtostr_raw with the following additional difference: a t_STR x is printed without enclosing quotes (to be used by print.

char* GENtoTeXstr(GEN x), as GENtostr, except that f_TEX overrides the output format from GP_DATA->fmt.

char* RgV_to_str(GEN g, long flag) g being a vector of GENs, returns a malloc’ed string, the concatenation of the GENtostr applied to its elements, except that t_STR are printed without enclosing quotes. flag determines the output format: f_RAW, f_PRETTYMAT or f_TEX.
11.1.2 Functions returning a t_STR.

GEN strtoGENstr(const char *s) returns a t_STR with content s.

GEN strntoGENstr(const char *s, long n) returns a t_STR containing the first n characters of s.

GEN chartoGENstr(char c) returns a t_STR containing the character c.

GEN GENtoGENstr(GEN x) returns a t_STR containing the printed form of x (in raw format). This is often easier to use that GENtostr (which returns a malloc-ed char*) since there is no need to free the string after use.

GEN GENtoGENstr_nospace(GEN x) as GENtoGENstr, removing all spaces from the output.

GEN Str(GEN g) as RgV_to_str with output format f_RAW, but returns a t_STR, not a malloc’ed string.

GEN Strtex(GEN g) as RgV_to_str with output format f_TEX, but returns a t_STR, not a malloc’ed string.

GEN Strexpand(GEN g) as RgV_to_str with output format f_RAW, performing tilde and environment expansion on the result. Returns a t_STR, not a malloc’ed string.

GEN gsprintf(const char *fmt, ...) equivalent to pari_sprintf(fmt,...), followed by strtoGENstr. Returns a t_STR, not a malloc’ed string.

GEN gvsprintf(const char *fmt, va_list ap) variadic version of gsprintf

11.1.3 Dynamic strings.

A pari_str is a dynamic string which grows dynamically as needed. This structure contains private data and two public members char *string, which is the string itself and use_stack which tells whether the string lives

• on the PARI stack (value 1), meaning that it will be destroyed by any manipulation of the stack, e.g. a gerepile call or resetting avma;

• in malloc’ed memory (value 0), in which case it is impervious to stack manipulation but will need to be explicitly freed by the user after use, via pari_free(s.string).

void str_init(pari_str *S, int use_stack) initializes a dynamic string; if use_stack is 0, then the string is malloc’ed, else it lives on the PARI stack.

void str_printf(pari_str *S, const char *fmt, ...) write to the end of S the remaining arguments according to PARI format fmt.

void strputc(pari_str *S, char c) write the character c to the end of S.

void strputs(pari_str *S, const char *s) write the string s to the end of S.
11.2 Output.

11.2.1 Output contexts.

An output context, of type PariOUT, is a struct that models a stream and contains the following function pointers:

```c
void (*putc)(char); /* fputc()-alike */
void (*puts)(const char*); /* fputs()-alike */
void (*flush)(void); /* fflush()-alike */
```

The methods putc and puts are used to print a character or a string respectively. The method flush is called to finalize a message.

The generic functions pari_putc, pari_puts, pari_flush and pari_printf print according to a default output context, which should be sufficient for most purposes. Lower level functions are available, which take an explicit output context as first argument:

```c
void out_putc(PariOUT *out, char c) essentially equivalent to out->putc(c). In addition, registers whether the last character printed was a \n.

void out_puts(PariOUT *out, const char *s) essentially equivalent to out->puts(s). In addition, registers whether the last character printed was a \n.

void out_printf(PariOUT *out, const char *fmt, ...)
void out_vprintf(PariOUT *out, const char *fmt, va_list ap)
```

N.B. The function out_flush does not exist since it would be identical to out->flush()

```c
int pari_last_was_newline(void) returns a non-zero value if the last character printed via out_putc or out_puts was \n, and 0 otherwise.

void pari_set_last_newline(int last) sets the boolean value to be returned by the function pari_last_was_newline to last.
```

11.2.2 Default output context. They are defined by the global variables pariOut and pariErr for normal outputs and warnings/errors, and you probably do not want to change them. If you do change them, diverting output in non-trivial ways, this probably means that you are rewriting gp. For completeness, we document in this section what the default output contexts do.

**pariOut.** writes output to the FILE* pari_outfile, initialized to stdout. The low-level methods are actually the standard putc / fputs, plus some magic to handle a log file if one is open.

**pariErr.** prints to the FILE* pari_errfile, initialized to stderr. The low-level methods are as above.

You can stick with the default pariOut output context and change PARI’s standard output, redirecting pari_outfile to another file, using

```c
void switchout(const char *name) where name is a character string giving the name of the file you want to write to; the output is appended at the end of the file. To close the file and revert to outputting to stdout, call switchout(NULL).
```
11.2.3 PARI colors. In this section we describe the low-level functions used to implement GP’s color scheme, attached to the colors default. The following symbolic names are attached to gp’s output strings:

- c_ERR an error message
- c_HIST a history number (as in %1 = ...)
- c_PROMPT a prompt
- c_INPUT an input line (minus the prompt part)
- c_OUTPUT an output
- c_HELP a help message
- c_TIME a timer
- c_NONE everything else

If the colors default is set to a non-empty value, before gp outputs a string, it first outputs an ANSI colors escape sequence — understood by most terminals —, according to the colors specifications. As long as this is in effect, the following strings are rendered in color, possibly in bold or underlined.

```c
void term_color(long c) prints (as if using pari_puts) the ANSI color escape sequence attached to output object c. If c is c_NONE, revert to default printing style.

void out_term_color(PariOUT *out, long c) as term_color, using output context out.

char* term_get_color(char *s, long c) returns as a character string the ANSI color escape sequence attached to output object c. If c is c_NONE, the value used to revert to default printing style is returned. The argument s is either NULL (string allocated on the PARI stack), or preallocated storage (in which case, it must be able to hold at least 16 chars, including the final \0).
```

11.2.4 Obsolete output functions.

These variants of void output(GEN x), which prints x, followed by a newline and a buffer flush are complicated to use and less flexible than what we saw above, or than the pari_printf variants. They are provided for backward compatibility and are scheduled to disappear.

```c
void brute(GEN x, char format, long dec)
void matbrute(GEN x, char format, long dec)
void texe(GEN x, char format, long dec)
```
11.3 Files.

The following routines are trivial wrappers around system functions (possibly around one of several functions depending on availability). They are usually integrated within PARI’s diagnostics system, printing messages if DEBUGFILES is high enough.

```c
int pari_is_dir(const char *name) returns 1 if name points to a directory, 0 otherwise.
int pari_is_file(const char *name) returns 1 if name points to a directory, 0 otherwise.
int file_is_binary(FILE *f) returns 1 if the file f is a binary file (in the writebin sense), 0 otherwise.
void pari_unlink(const char *s) deletes the file named s. Warn if the operation fails.
void pari_fread_chars(void *b, size_t n, FILE *f) read n chars from stream f, storing the result in pre-allocated buffer b (assumed to be large enough).
char* path_expand(const char *s) perform tilde and environment expansion on s. Returns a malloc'ed buffer.
void strftime_expand(const char *s, char *buf, long max) perform time expansion on s, storing the result (at most max chars) in buffer buf. Trivial wrapper around
time_t t = time(NULL);
strftime(buf, max, s, localtime(&t));
char* pari_get_homedir(const char *user) expands ~user constructs, returning the home directory of user user, or NULL if it could not be determined (in particular if the operating system has no such concept). The return value may point to static area and may be overwritten by subsequent system calls: use immediately or strdup it.
int pari_stdin_isatty(void) returns 1 if our standard input stdin is attached to a terminal. Trivial wrapper around isatty.
```

11.3.1 pariFILE.

PARI maintains a linked list of open files, to reclaim resources (file descriptors) on error or interrupts. The corresponding data structure is a pariFILE, which is a wrapper around a standard FILE*, containing further the file name, its type (regular file, pipe, input or output file, etc.). The following functions create and manipulate this structure; they are integrated within PARI’s diagnostics system, printing messages if DEBUGFILES is high enough.

```c
pariFILE* pari_fopen(const char *s, const char *mode) wrapper around fopen(s, mode), return NULL on failure.
pariFILE* pari_fopen_or_fail(const char *s, const char *mode) simple wrapper around fopen(s, mode); error on failure.
pariFILE* pari_fopengz(const char *s) opens the file whose name is s, and associates a (read-only) pariFILE with it. If s is a compressed file (.gz suffix), it is uncompressed on the fly. If s cannot be opened, also try to open s.gz. Returns NULL on failure.
void pari_fclose(pariFILE *f) closes the underlying file descriptor and deletes the pariFILE struct.
pariFILE* pari_safefopen(const char *s, const char *mode) creates a new file s (a priori for writing) with 600 permissions. Error if the file already exists. To avoid symlink attacks, a symbolic link exists, regardless of where it points to.
```
11.3.2 Temporary files.

PARI has its own idea of the system temp directory derived from an environment variable ($GPTMPDIR, else $TMPDIR), or the first writable directory among /tmp, /var/tmp and ..

char* pari_unique_dir(const char *s) creates a “unique directory” and return its name built from the string s, the user id and process pid (on Unix systems). This directory is itself located in the temp directory mentioned above. The name returned is malloc’ed.

char* pari_unique_filename(const char *s) creates a new empty file in the temp directory, whose name contains the id-string s (truncated to its first 8 chars), followed by a system-dependent suffix (incorporating the ids of both the user and the running process, for instance). The function returns the tempfile name and creates an empty file with that name. The name returned is malloc’ed.

char* pari_unique_filename_suffix(const char *s, const char *suf) analogous to above pari_unique_filename, creating a (previously non-existent) tempfile whose name ends with suffix suf.

11.4 Errors.

This section documents the various error classes, and the corresponding arguments to pari_err. The general syntax is

void pari_err(numerr, ...)

In the sequel, we mostly use sequences of arguments of the form

    const char *s
    const char *fmt, ...

where fmt is a PARI format, producing a string s from the remaining arguments. Since providing the correct arguments to pari_err is quite error-prone, we also provide specialized routines pari_err_ERRORCLASS(...) instead of pari_err(e_ERRORCLASS, ...) so that the C compiler can check their arguments.

We now inspect the list of valid keywords (error classes) for numerr, and the corresponding required arguments.

11.4.1 Internal errors, “system” errors.

11.4.1.1 e_ARCH. A requested feature s is not available on this architecture or operating system.

    pari_err(e_ARCH)

prints the error message: sorry, ’s’ not available on this system.

11.4.1.2 e_BUG. A bug in the PARI library, in function s.

    pari_err(e_BUG, const char *s)
    pari_err_BUG(const char *s)

prints the error message: Bug in s, please report.
11.4.1.3 e_FILE. Error while trying to open a file.

```
pari_err(e_FILE, const char *what, const char *name)
pari_err_FILE(const char *what, const char *name)
```

prints the error message: error opening *what*: ‘*name’.

11.4.1.4 e_FILEDESC. Error while handling a file descriptor.

```
pari_err(e_FILEDESC, const char *where, long n)
pari_err_FILEDESC(const char *where, long n)
```

prints the error message: invalid file descriptor in *where*: ‘*name’.

11.4.1.5 e_IMPL. A requested feature *s* is not implemented.

```
pari_err(e_IMPL, const char *s)
pari_err_IMPL(const char *s)
```

prints the error message: sorry, *s* is not yet implemented.

11.4.1.6 e_PACKAGE. Missing optional package *s*.

```
pari_err(e_PACKAGE, const char *s)
pari_err_PACKAGE(const char *s)
```

prints the error message: package *s* is required, please install it.

11.4.2 Syntax errors, type errors.

11.4.2.1 e_DIM. Arguments submitted to function *s* have inconsistent dimensions. E.g., when solving a linear system, or trying to compute the determinant of a non-square matrix.

```
pari_err(e_DIM, const char *s)
pari_err_DIM(const char *s)
```

prints the error message: inconsistent dimensions in *s*.

11.4.2.2 e_FLAG. A flag argument is out of bounds in function *s*.

```
pari_err(e_FLAG, const char *s)
pari_err_FLAG(const char *s)
```

prints the error message: invalid flag in *s*.

11.4.2.3 e_NOTFUNC. Generated by the PARI evaluator; tried to use a GEN which is not a t_CLOSURE in a function call syntax (as in `f = 1; f(2);`).

```
pari_err(e_NOTFUNC, GEN fun)
```

prints the error message: not a function in a function call.

11.4.2.4 e_OP. Impossible operation between two objects than cannot be typecast to a sensible common domain for deeper reasons than a type mismatch, usually for arithmetic reasons. As in `O(2) + O(3)`: it is valid to add two t_PADICs, provided the underlying prime is the same; so the addition is not forbidden a priori for type reasons, it only becomes so when inspecting the objects and trying to perform the operation.

```
pari_err(e_OP, const char *op, GEN x, GEN y)
pari_err_OP(const char *op, GEN x, GEN y)
```

As e_TYPE2, replacing forbidden by inconsistent.
11.4.2.5 e_PRIORITY. object o in function s contains variables whose priority is incompatible with the expected operation. E.g., `Pol([x,1], 'y')`: this raises an error because it’s not possible to create a polynomial whose coefficients involve variables with higher priority than the main variable.

```
pari_err(e_PRIORITY, const char *s, GEN o, const char *op, long v)
pari_err_PRIORITY(const char *s, GEN o, const char *op, long v)
```

prints the error message: incorrect priority in s, variable v, op v, were v is gvar(o).

11.4.2.6 e_SYNTAX. Syntax error, generated by the PARI parser.

```
pari_err(e_SYNTAX, const char *msg, const char *e, const char *entry)
```

where msg is a complete error message, and e and entry point into the same character string, which is the input that was incorrectly parsed: e points to the character where the parser failed, and entry ≤ e points somewhat before.

Prints the error message: msg, followed by a colon, then a part of the input character string (in general entry itself, but an initial segment may be truncated if e − entry is large); a caret points at e, indicating where the error took place.

11.4.2.7 e_TYPE. An argument x of function s had an unexpected type. (As in `factor("blah")`.)

```
pari_err(e_TYPE, const char *s, GEN x)
pari_err_TYPE(const char *s, GEN x)
```

prints the error message: incorrect type in s (t_x), where t_x is the type of x.

11.4.2.8 e_TYPE2. Forbidden operation between two objects than cannot be typecast to a sensible common domain, because their types do not match up. (As in `Mod(1,2) + Pi`.)

```
pari_err(e_TYPE2, const char *op, GEN x, GEN y)
pari_err_TYPE2(const char *op, GEN x, GEN y)
```

prints the error message: forbidden t_x op t_y, where t_z denotes the type of z. Here, s denotes the spelled out name of the operator op ∈ {+, ∗, /, %, =}, e.g. addition for "+" or assignment for "=". If op is not in the above operator, list, it is taken to be the already spelled out name of a function, e.g. "gcd", and the error message becomes forbidden op t_x, t_y.

11.4.2.9 e_VAR. polynomials x and y submitted to function s have inconsistent variables. E.g., considering the algebraic number `Mod(t,t^2+1)` in `nfinit(x^2+1)`.

```
pari_err(e_VAR, const char *s, GEN x, GEN y)
pari_err_VAR(const char *s, GEN x, GEN y)
```

prints the error message: inconsistent variables in s X != Y, where X and Y are the names of the variables of x and y, respectively.

11.4.3 Overflows.

11.4.3.1 e_COMPONENT. Trying to access an inexistent component of a vector/matrix/list: the index is less than 1 or greater than the allowed length.

```
pari_err(e_COMPONENT, const char *f, const char *op, GEN lim, GEN x)
pari_err_COMPONENT(const char *f, const char *op, GEN lim, GEN x)
```

prints the error message: non-existent component in f: index op lim. Special case: if f is the empty string (no meaningful public function name can be used), we ignore it and print the message: non-existent component: index op lim.
11.4.3.2 e_DOMAIN. An argument \( x \) is not in the function’s domain (as in \( \text{moebius}(0) \) or \( \text{zeta}(1) \)).

\[
\text{pari_err(e_DOMAIN, char } *f, \text{ char } *v, \text{ char } *\text{op, GEN lim, GEN } x) \\
\text{pari_err\_DOMAIN(char } *f, \text{ char } *v, \text{ char } *\text{op, GEN lim, GEN } x) 
\]

prints the error message: domain error in \( f \): \( v \) \( \text{op lim} \). Special case: if \( \text{op} \) is the empty string, we ignore \( \text{lim} \) and print the error message: domain error in \( f \): \( v \) out of range.

11.4.3.3 e_MAXPRIME. A function using the precomputed list of prime numbers ran out of primes.

\[
\text{pari_err(e_MAXPRIME, ulong } c) \\
\text{pari_err\_MAXPRIME(ulong } c) 
\]

prints the error message: not enough precomputed primes, need primelimit \(-c\) if \( c \) is non-zero. And simply not enough precomputed primes otherwise.

11.4.3.4 e_MEM. A call to \text{pari\_malloc} or \text{pari\_realloc} failed.

\[
\text{pari_err(e_MEM)} 
\]

prints the error message: not enough memory.

11.4.3.5 e_OVERFLOW. An object in function \( s \) becomes too large to be represented within PARI’s hardcoded limits. (As in \( 2^{-2^2} - 10 \) or \( \exp(1e100) \), which overflow in \( \text{lg} \) and \( \text{expo} \)).

\[
\text{pari_err(e_OVERFLOW, const char } *s) \\
\text{pari_err\_OVERFLOW(const char } *s) 
\]

prints the error message: overflow in \( s \).

11.4.3.6 e_PREC. Function \( s \) fails because input accuracy is too low. (As in \text{floor}(1e100) at default accuracy.)

\[
\text{pari_err(e_PREC, const char } *s) \\
\text{pari_err\_PREC(const char } *s) 
\]

prints the error message: precision too low in \( s \).

11.4.3.7 e_STACK. The PARI stack overflows.

\[
\text{pari_err(e_STACK)} 
\]

prints the error message: the PARI stack overflows! as well as some statistics concerning stack usage.

11.4.4 Errors triggered intentionally.

11.4.4.1 e_ALARM. A timeout, generated by the \text{alarm} function.

\[
\text{pari_err(e_ALARM, const char } *\text{fmt, } \ldots) 
\]

prints the error message: \( s \).

11.4.4.2 e_USER. A user error, as triggered by \text{error}(g_1, \ldots, g_n) in GP.

\[
\text{pari_err(e_USER, GEN } g) 
\]

prints the error message: user error; then the entries of the vector \( g \).
11.4.5 Mathematical errors.

11.4.5.1 e_CONSTPOL. An argument of function \(s\) is a constant polynomial, which does not make sense. (As in \(\text{galoisinit}(\text{Pol}(1))\).)

\[
\begin{align*}
\text{pari_err}(\text{eCONSTPOL}, \text{const char } *s) \\
\text{pari_err_CONSTPOL}(& \text{const char } *s)
\end{align*}
\]

prints the error message: constant polynomial in \(s\).

11.4.5.2 e_COPRIME. Function \(s\) expected two coprime arguments, and did receive \(x, y\) which were not.

\[
\begin{align*}
\text{pari_err}(\text{eCOPRIME}, \text{const char } *s, \text{GEN } x, \text{GEN } y) \\
\text{pari_err_COPRIME}(& \text{const char } *s, \text{GEN } x, \text{GEN } y)
\end{align*}
\]

prints the error message: elements not coprime in \(s\): \(x, y\).

11.4.5.3 e_INV. Tried to invert a non-invertible object \(x\).

\[
\begin{align*}
\text{pari_err}(\text{eINV}, \text{const char } *s, \text{GEN } x) \\
\text{pari_err_INV}(& \text{const char } *s, \text{GEN } x)
\end{align*}
\]

prints the error message: impossible inverse in \(s\): \(x\). If \(x = \text{Mod}(a, b)\) is a \text{t_INTMOD} and \(a\) is not \(0 \mod b\), this allows to factor the modulus, as \(\text{gcd}(a, b)\) is a non-trivial divisor of \(b\).

11.4.5.4 e_IRREDPOL. Function \(s\) expected an irreducible polynomial, and did not receive one. (As in \(\text{nfinits}(x^2-1)\).)

\[
\begin{align*}
\text{pari_err}(\text{eIRREDPOL}, \text{const char } *s, \text{GEN } x) \\
\text{pari_err_IRREDPOL}(& \text{const char } *s, \text{GEN } x)
\end{align*}
\]

prints the error message: not an irreducible polynomial in \(s\): \(x\).

11.4.5.5 e_MISC. Generic uncategorized error.

\[
\begin{align*}
\text{pari_err}(\text{e_MISC}, \text{const char } *fmt, \ldots)
\end{align*}
\]

prints the error message: \(s\).

11.4.5.6 e_MODULUS. moduli \(x\) and \(y\) submitted to function \(s\) are inconsistent. E.g., considering the algebraic number \(\text{Mod}(t, t^2+1)\) in \(\text{nfinits}(t^3-2)\).

\[
\begin{align*}
\text{pari_err}(\text{eMODULUS}, \text{const char } *s, \text{GEN } x, \text{GEN } y) \\
\text{pari_err_MODULUS}(& \text{const char } *s, \text{GEN } x, \text{GEN } y)
\end{align*}
\]

prints the error message: inconsistent moduli in \(s\), then the moduli.

11.4.5.7 e_PRIME. Function \(s\) expected a prime number, and did receive \(p\), which was not. (As in \(\text{idealprimedec}(nf, 4)\).)

\[
\begin{align*}
\text{pari_err}(\text{ePRIME}, \text{const char } *s, \text{GEN } x) \\
\text{pari_err_PRIME}(& \text{const char } *s, \text{GEN } x)
\end{align*}
\]

prints the error message: not a prime in \(s\): \(x\).
11.4.5.8 \texttt{e\_ROOTS0}. An argument of function \emph{s} is a zero polynomial, and we need to consider its roots. (As in \texttt{polroots(0)}.)

\begin{verbatim}
pari_err(e_ROOTS0, const char *s)
pari_err_ROOTS0(const char *s)
\end{verbatim}

prints the error message: \texttt{zero polynomial in s}.

11.4.5.9 \texttt{e\_SQRTN}. Tried to compute an \emph{n}-th root of \emph{x}, which does not exist, in function \emph{s}. (As in \texttt{sqrt(Mod(-1,3))}.)

\begin{verbatim}
pari_err(e_SQRTN, GEN x)
pari_err_SQRTN(GEN x)
\end{verbatim}

prints the error message: \texttt{not an n-th power residue in s: x}.

11.4.6 Miscellaneous functions.

\begin{verbatim}
long name_numerr(const char *s) return the error number corresponding to an error name. E.g. name_numerr("e\_DIM") returns \texttt{e\_DIM}.
const char* numerr_name(long errnum) returns the error name corresponding to an error number. E.g. name_numerr(e\_DIM) returns "e\_DIM".
char* pari_err2str(GEN err) returns the error message that would be printed on \texttt{t\_ERROR err}. The name is allocated on the PARI stack and must not be freed.
\end{verbatim}

11.5 Hashtables.

A hashtable, or associative array, is a set of pairs \((k, v)\) of keys and values. PARI implements general extensible hashtables for fast data retrieval: when creating a table, we may either choose to use the PARI stack, or \texttt{malloc} so as to be stack-independent. A hashtable is implemented as a table of linked lists, each list containing all entries sharing the same hash value. The table length is a prime number, which roughly doubles as the table overflows by gaining new entries; both the current number of entries and the threshold before the table grows are stored in the table. Finally the table remembers the functions used to hash the entries’s keys and to test for equality two entries hashed to the same value.

An entry, or \texttt{hashentry}, contains

- a key/value pair \((k, v)\), both of type \texttt{void*} for maximal flexibility,
- the hash value of the key, for the table hash function. This hash is mapped to a table index (by reduction modulo the table length), but it contains more information, and is used to bypass costly general equality tests if possible,
- a link pointer to the next entry sharing the same table cell.

\begin{verbatim}
typedef struct {
    void *key, *val;
    ulong hash; /* hash(key) */
    struct hashentry *next;
} hashentry;
typedef struct {
    ulong len; /* table length */
} hashtable;
\end{verbatim}
hashentry **table; /* the table */
ulong nb, maxnb; /* number of entries stored and max nb before enlarging */
ulong pindex; /* prime index */
ulong (*hash) (void *k); /* hash function */
int (*eq) (void *k1, void *k2); /* equality test */
int use_stack; /* use the PARI stack, resp. malloc */
}
hashtable;

hashtable* hash_create(size, hash, eq, use_stack)
ulong size;
ulong (*hash)(void*);
int (*eq)(void*,void*);
int use_stack;
creates a hashtable with enough room to contain size entries. The functions hash and eq compute
the hash value of keys and test keys for equality, respectively. If use_stack is non zero, the resulting
table will use the PARI stack; otherwise, we use malloc.

hashtable* hash_create_ulong(ulong size, long stack) special case when the keys are
ulongs with ordinary equality test.

hashtable* hash_create_str(ulong size, long stack) special case when the keys are char-
acter strings with string equality test (and hash_str hash function).

void hash_init_GEN(hashtable *h, ulong size, int (*eq)(GEN, GEN), use_stack) Initialize
h for an hashtable with enough room to contain size entries of type GEN. The functions eq test
keys for equality. If use_stack is non zero, the resulting table will use the PARI stack; otherwise,
we use malloc. The hash used is hash_GEN.

void hash_insert(hashtable *h, void *k, void *v) inserts (k,v) in hashtable h. No copy
is made: k and v themselves are stored. The implementation does not prevent one to insert two
entries with equal keys k, but which of the two is affected by later commands is undefined.

void hash_insert2(hashtable *h, void *k, void *v, ulong hash) as hash_insert, assuming
h->hash(k) is hash.

void hash_insert_long(hashtable *h, void *k, long v) as hash_insert but v is a long.

hashentry* hash_search(hashtable *h, void *k) look for an entry with key k in h. Return it
if it one exists, and NULL if not.

hashentry* hash_search2(hashtable *h, void *k, ulong hash) as hash_search assuming
h->hash(k) is hash.

int hash_haskey_long(hashtable *h, void *k, long *v) returns 1 if the key k belongs to the
hash and set v to its value, otherwise returns 0.

hashentry * hash_select(hashtable *h, void *k, void *E, int (*select)(void *,
hashentry *)) variant of hash_search, useful when entries with identical keys are inserted: among
the entries attached to key k, return one satisfying the selection criterion (such that select(E,e)
is non-zero), or NULL if none exist.

hashentry* hash_remove(hashtable *h, void *k) deletes an entry (k,v) with key k from h
and return it. (Return NULL if none was found.) Only the linking structures are freed, memory
attached to k and v is not reclaimed.

250
hash_entry* hash_remove_select(hashtable *h, void *k, void *E, int(*select)(void*, hash_entry *)) a variant of hash_remove, useful when entries with identical keys are inserted: among the entries attached to key k, return one satisfying the selection criterion (such that select(E,e) is non-zero) and delete it, or NULL if none exist. Only the linking structures are freed, memory attached to k and v is not reclaimed.

GEN hash_keys(hashtable *h) return in a t_VECSMALL the keys stored in hashtable h.

GEN hash_values(hashtable *h) return in a t_VECSMALL the values stored in hashtable h.

void hash_destroy(hashtable *h) return in a t_VECSMALL the values stored in hashtable h.

void hash_dbg(hashtable *h) print statistics for hashtable h, allows to evaluate the attached hash function performance on actual data.

Some interesting hash functions are available:

ulong hash_str(const char *s)

ulong hash_str2(const char *s) is the historical PARI string hashing function and seems to be generally inferior to hash_str.

ulong hash_GEN(GEN x)

11.6 Dynamic arrays.

A dynamic array is a generic way to manage stacks of data that need to grow dynamically. It allocates memory using pari_malloc, and is independent of the PARI stack; it even works before the pari_init call.

11.6.1 Initialization.

To create a stack of objects of type foo, we proceed as follows:

foo *t_foo;
pari_stack s_foo;
pari_stack_init(&s_foo, sizeof(*t_foo), (void**)&t_foo);

Think of s_foo as the controlling interface, and t_foo as the (dynamic) array tied to it. The value of t_foo may be changed as you add more elements.

11.6.2 Adding elements. The following function pushes an element on the stack.

/* access globals t_foo and s_foo */
void push_foo(foo x)
{
    long n = pari_stack_new(&s_foo);
    t_foo[n] = x;
}
11.6.3 Accessing elements.

Elements are accessed naturally through the $t_{\text{foo}}$ pointer. For example this function swaps two elements:

```c
void swapfoo(long a, long b)
{
 foo x;
 if (a > s_foo.n || b > s_foo.n) pari_err_BUG("swapfoo");
 x = t_foo[a];
 t_foo[a] = t_foo[b];
 t_foo[b] = x;
}
```

11.6.4 Stack of stacks. Changing the address of $t_{\text{foo}}$ is not supported in general. In particular realloc()-ed array of stacks and stack of stacks are not supported.

11.6.5 Public interface. Let $s$ be a pari_stack and $data$ the data linked to it. The following public fields are defined:

- $s\.alloc$ is the number of elements allocated for $data$.
- $s\.n$ is the number of elements in the stack and $data[s\.n-1]$ is the topmost element of the stack. $s\.n$ can be changed as long as $0 \leq s\.n \leq s\.alloc$ holds.

```c
void pari_stack_init(pari_stack *s, size_t size, void **data)
links *s to the data pointer *data, where size is the size of data element. The pointer *data is set to NULL, s->n and s->alloc are set to 0: the array is empty.

void pari_stack_alloc(pari_stack *s, long nb) makes room for nb more elements, i.e. makes sure that s.alloc ≥ s.n + nb, possibly reallocating data.

long pari_stack_new(pari_stack *s) increases s.n by one unit, possibly reallocating data, and returns s.n − 1.
```

Caveat. The following construction is incorrect because stack_new can change the value of $t_{\text{foo}}$:

```c
t_foo[pari_stack_new(&s_foo)] = x;
```

```c
void pari_stack_delete(pari_stack *s) frees data and resets the stack to the state immediately following stack_init (s->n and s->alloc are set to 0).

void * pari_stack_pushp(pari_stack *s, void *u) This function assumes that *data is of pointer type. Pushes the element u on the stack s.

void ** pari_stack_base(pari_stack *s) returns the address of data, typecast to a void **.
11.7 Vectors and Matrices.

11.7.1 Access and extract. See Section 9.3.1 and Section 9.3.2 for various useful constructors. Coefficients are accessed and set using **gel**, **gcoeff**, see Section 5.2.7. There are many internal functions to extract or manipulate subvectors or submatrices but, like the accessors above, none of them are suitable for **gerepileupto**. Worse, there are no type verification, nor bound checking, so use at your own risk.

GEN shallowcopy(GEN x) returns a **GEN** whose components are the components of *x* (no copy is made). The result may now be used to compute in place without destroying *x*. This is essentially equivalent to

```plaintext
GEN y = cgetg(lg(x), typ(x));
for (i = 1; i < lg(x); i++) y[i] = x[i];
return y;
```

except that **t_MAT** is treated specially since shallow copies of all columns are made. The function also works for non-recursive types, but is useless in that case since it makes a deep copy. If *x* is known to be a **t_MAT**, you may call **RgM_shallowcopy** directly; if *x* is known not to be a **t_MAT**, you may call **leafcopy** directly.

GEN RgM_shallowcopy(GEN x) returns **shallowcopy(x)**, where *x* is a **t_MAT**.

GEN shallowtrans(GEN x) returns the transpose of *x*, **without** copying its components, i. e., it returns a **GEN** whose components are (physically) the components of *x*. This is the internal function underlying **gtrans**.

GEN shallowconcat(GEN x, GEN y) concatenate *x* and *y*, **without** copying components, i. e., it returns a **GEN** whose components are (physically) the components of *x* and *y*.

GEN shallowconcat1(GEN x) *x* must be **t_VEC** or **t_LIST**, concatenate its elements from left to right. Shallow version of **gconcat1**.

GEN shallowmatconcat(GEN v) shallow version of **matconcat**.

GEN shallowextract(GEN x, GEN y) extract components of the vector or matrix *x* according to the selection parameter *y*. This is the shallow analog of **extract0(x, y, NULL)**, see **vecextract**.

GEN shallowmatextract(GEN M, GEN 11, GEN 12) extract components of the matrix *M* according to the **t_VECSMALL** 11 (list of lines indices) and 12 (list of columns indices). This is the shallow analog of **extract0(x, 11, 12)**, see **vecextract**.

GEN RgM_minor(GEN A, long i, long j) given a square **t_MAT** A, return the matrix with *i*-th row and *j*-th column removed.

GEN vconcat(GEN A, GEN B) concatenate vertically the two **t_MAT** *A* and *B* of compatible dimensions. A **NULL** pointer is accepted for an empty matrix. See **shallowconcat**.

GEN matslice(GEN A, long a, long b, long c, long d) returns the submatrix *A*[a..b,c..d]. Assume *a* ≤ *b* and *c* ≤ *d*.

GEN row(GEN A, long i) return *A*[i,], the *i*-th row of the **t_MAT** *A*.

GEN row_i(GEN A, long i, long j1, long j2) return part of the *i*-th row of **t_MAT** *A*: *A*[i,*j1], *A*[i,*j1 + 1]...,*A*[i,*j2]. Assume *j1* ≤ *j2*.

253
GEN rowcopy(GEN A, long i) return the row $A[i,]$ of the t_MAT A. This function is memory clean and suitable for gerepiluppto. See row for the shallow equivalent.

GEN rowslice(GEN A, long i1, long i2) return the t_MAT formed by the i_1-th through i_2-th rows of t_MAT A. Assume $i_1 \leq i_2$.

GEN rowsplice(GEN A, long i) return the t_MAT formed from the coefficients of t_MAT A with j-th row removed.

GEN rowpermute(GEN A, GEN p), p being a t_VECSMALL representing a list $[p_1, \ldots, p_n]$ of rows of t_MAT A, returns the matrix whose rows are $A[p_1], \ldots, A[p_n]$.

GEN rowslicepermute(GEN A, GEN p, long x1, long x2), short for rowslice(rowpermute(A,p), x1, x2) (more efficient).

GEN vecslice(GEN A, long j1, long j2), return $A[j_1], \ldots, A[j_2]$. If A is a t_MAT, these correspond to columns of A. The object returned has the same type as A (t_VEC, t_COL or t_MAT). Assume $j_1 \leq j_2$.

GEN vecsplice(GEN A, long j) return A with j-th entry removed (t_VEC, t_COL) or j-th column removed (t_MAT).

GEN vecreverse(GEN A). Returns a GEN which has the same type as A (t_VEC, t_COL or t_MAT), and whose components are the $A[n], \ldots, A[1]$. If A is a t_MAT, these are the columns of A.

void vecreverse_inplace(GEN A) as vecreverse, but reverse A in place.

GEN vecpermute(GEN A, GEN p) p is a t_VECSMALL representing a list $[p_1, \ldots, p_n]$ of indices. Returns a GEN which has the same type as A (t_VEC, t_COL or t_MAT), and whose components are $A[p_1], \ldots, A[p_n]$. If A is a t_MAT, these are the columns of A.

GEN vecsmallpermute(GEN A, GEN p) as vecpermute when A is a t_VECSMALL.

GEN vecslicepermute(GEN A, GEN p, long y1, long y2) short for vecslice(vecpermute(A,p), y1, y2) (more efficient).

11.7.2 Componentwise operations.

The following convenience routines automate trivial loops of the form

for ($i = 1; i < \lg(a); i++$) gel(v,i) = f(gel(a,i), gel(b,i))

for suitable f:

GEN vecinv(GEN a). Given a vector a, returns the vector whose i-th component is $\text{ginv}(a[i])$.

GEN vecmul(GEN a, GEN b). Given a and b two vectors of the same length, returns the vector whose i-th component is $\text{gmul}(a[i], b[i])$.

GEN vecdiv(GEN a, GEN b). Given a and b two vectors of the same length, returns the vector whose i-th component is $\text{gdiv}(a[i], b[i])$.

GEN vecpow(GEN a, GEN n). Given a a t_INT, returns the vector whose i-th component is $a[i]^n$. 254
GEN vecmodii(GEN a, GEN b). Assuming \(a\) and \(b\) are two ZV of the same length, returns the vector whose \(i\)-th component is modii\((a[i], b[i])\).

GEN vecmoduu(GEN a, GEN b). Assuming \(a\) and \(b\) are two t_VECSMALL of the same length, returns the vector whose \(i\)-th component is \(a[i] \mod b[i]\).

Note that vecadd or vecsub do not exist since gadd and gsub have the expected behavior. On the other hand, ginv does not accept vector types, hence vecinv.

11.7.3 Low-level vectors and columns functions.

These functions handle t_VEC as an abstract container type of GENs. No specific meaning is attached to the content. They accept both t_VEC and t_COL as input, but col functions always return t_COL and vec functions always return t_VEC.

Note. All the functions below are shallow.

GEN const_col(long n, GEN x) returns a t_COL of \(n\) components equal to \(x\).

GEN const_vec(long n, GEN x) returns a t_VEC of \(n\) components equal to \(x\).

int vec_isconst(GEN v) Returns 1 if all the components of \(v\) are equal, else returns 0.

void vec_setconst(GEN v, GEN x) \(v\) a pre-existing vector. Set all its components to \(x\).

int vec_is1to1(GEN v) Returns 1 if the components of \(v\) are pair-wise distinct, i.e. if \(i \mapsto v[i]\) is a 1-to-1 mapping, else returns 0.

GEN vec_append(GEN V, GEN s) append \(s\) to the vector \(V\).

GEN vec_prepend(GEN V, GEN s) prepend \(s\) to the vector \(V\).

GEN vec_shorten(GEN v, long n) shortens the vector \(v\) to \(n\) components.

GEN vec_lengthen(GEN v, long n) lengthens the vector \(v\) to \(n\) components. The extra components are not initialized.

GEN vec_insert(GEN v, long n, GEN x) inserts \(x\) at position \(n\) in the vector \(v\).

11.8 Vectors of small integers.

11.8.1 t_VECSMALL.

These functions handle t_VECSMALL as an abstract container type of small signed integers. No specific meaning is attached to the content.

GEN const_vecsmall(long n, long c) returns a t_VECSMALL of \(n\) components equal to \(c\).

GEN vec_to_vecsmall(GEN z) identical to ZV_to_zv\((z)\).

GEN vecsmall_to_vec(GEN z) identical to zv_to_ZV\((z)\).

GEN vecsmall_to_col(GEN z) identical to zv_to_ZC\((z)\).

GEN vecsmall_to_vec_inplace(GEN z) apply stoi to all entries of \(z\) and set its type to t_VEC.

GEN vecsmall_copy(GEN x) makes a copy of \(x\) on the stack.

GEN vecsmall_shorten(GEN v, long n) shortens the t_VECSMALL \(v\) to \(n\) components.
GEN vecsmall_lengthen(GEN v, long n) lengthens the t_VECSMALL v to n components. The extra components are not initialized.

GEN vecsmall_indexsort(GEN x) performs an indirect sort of the components of the t_VECSMALL x and return a permutation stored in a t_VECSMALL.

void vecsmall_sort(GEN v) sorts the t_VECSMALL v in place.

void vecsmall_reverse(GEN v) as vecreverse for a t_VECSMALL v.

long vecsmall_max(GEN v) returns the maximum of the elements of t_VECSMALL v, assumed non-empty.

long vecsmall_indexmax(GEN v) returns the index of the largest element of t_VECSMALL v, assumed non-empty.

long vecsmall_min(GEN v) returns the minimum of the elements of t_VECSMALL v, assumed non-empty.

long vecsmall_indexmin(GEN v) returns the index of the smallest element of t_VECSMALL v, assumed non-empty.

long vecsmall_isin(GEN v, long x) returns the first index i such that v[i] is equal to x. Naive search in linear time, does not assume that v is sorted.

GEN vecsmall_uniq(GEN v) given a t_VECSMALL v, return the vector of unique occurrences.

GEN vecsmall_uniq_sorted(GEN v) same as vecsmall_uniq, but assumes v sorted.

long vecsmall_duplicate_sorted(GEN v) same as vecsmall_duplicate, but assume v sorted.

int vecsmall_lexcmp(GEN x, GEN y) compares two t_VECSMALL lexically.

int vecsmall_prefixcmp(GEN x, GEN y) truncate the longest t_VECSMALL to the length of the shortest and compares them lexicographically.

GEN vecsmall_prepend(GEN V, long s) prepend s to the t_VECSMALL V.

GEN vecsmall_append(GEN V, long s) append s to the t_VECSMALL V.

GEN vecsmall_concat(GEN u, GEN v) concat the t_VECSMALL u and v.

long vecsmall_coincidence(GEN u, GEN v) returns the numbers of indices where u and v agree.

long vecsmall_pack(GEN v, long base, long mod) handles the t_VECSMALL v as the digit of a number in base base and return this number modulo mod. This can be used as an hash function.

GEN vecsmall_prod(GEN v) given a t_VECSMALL v, return the product of its entries.
11.8.2 Vectors of t_VECSMALL. These functions manipulate vectors of t_VECSMALL (vecvecsmall).

GEN vecvecsmall_sort(GEN x) sorts lexicographically the components of the vector x.

GEN vecvecsmall_sort_uniq(GEN x) sorts lexicographically the components of the vector x, removing duplicates entries.

GEN vecvecsmall_indexsort(GEN x) performs an indirect lexicographic sorting of the components of the vector x and return a permutation stored in a t_VECSMALL.

long vecvecsmall_search(GEN x, GEN y, long flag) x being a sorted vecvecsmall and y a t_VECSMALL, search y inside x. flag has the same meaning as for setsearch.

GEN vecvecsmall_max(GEN x) returns the largest entry in all x[i], assumed non-empty.
12.1 Handling closures.

12.1.1 Functions to evaluate \texttt{t_CLOSURE}.

\texttt{void closure_disassemble(GEN C)} print the \texttt{t_CLOSURE C} in GP assembly format.

\texttt{GEN closure_callgenall(GEN C, long n, \ldots)} evaluate the \texttt{t_CLOSURE C} with the \texttt{n} arguments (of type \texttt{GEN}) following \texttt{n} in the function call. Assumes \texttt{C} has arity $\geq n$.

\texttt{GEN closure_callgenvec(GEN C, GEN args)} evaluate the \texttt{t_CLOSURE C} with the arguments supplied in the vector \texttt{args}. Assumes \texttt{C} has arity $\geq \log_2(\texttt{args}) - 1$.

\texttt{GEN closure_callgenvecprec(GEN C, GEN args, long prec)} as \texttt{closure_callgenvec} but set the precision locally to \texttt{prec}.

\texttt{GEN closure_callgen1(GEN C, GEN x)} evaluate the \texttt{t_CLOSURE C} with argument \texttt{x}. Assumes \texttt{C} has arity ≥ 1.

\texttt{GEN closure_callgen1prec(GEN C, GEN x, long prec)} as \texttt{closure_callgen1}, but set the precision locally to \texttt{prec}.

\texttt{GEN closure_callgen2(GEN C, GEN x, GEN y)} evaluate the \texttt{t_CLOSURE C} with argument \texttt{x, y}. Assumes \texttt{C} has arity ≥ 2.

\texttt{void closure_callvoid1(GEN C, GEN x)} evaluate the \texttt{t_CLOSURE C} with argument \texttt{x} and discard the result. Assumes \texttt{C} has arity ≥ 1.

The following technical functions are used to evaluate \textit{inline} closures and closures of arity 0.

The control flow statements (break, next and return) will cause the evaluation of the closure to be interrupted; this is called below a \textit{flow change}. When that occurs, the functions below generally return \texttt{NULL}. The caller can then adopt three positions:

- raises an exception (\texttt{closure_evalnobrk}).
- passes through (by returning \texttt{NULL} itself).
- handles the flow change.

\texttt{GEN closure_evalgen(GEN code)} evaluates a closure and returns the result, or \texttt{NULL} if a flow change occurred.

\texttt{GEN closure_evalnobrk(GEN code)} as \texttt{closure_evalgen} but raise an exception if a flow change occurs. Meant for iterators where interrupting the closure is meaningless, e.g. \texttt{intnum} or \texttt{sumnum}.

\texttt{void closure_evalvoid(GEN code)} evaluates a closure whose return value is ignored. The caller has to deal with eventual flow changes by calling \texttt{loop_break}.

The remaining functions below are for exceptional situations:
GEN closure_evalres(GEN code) evaluates a closure and returns the result. The difference with closure_evalgen being that, if the flow end by a return statement, the result will be the returned value instead of NULL. Used by the main GP loop.

GEN closure_evalbrk(GEN code, long *status) as closure_evalres but set status to a non-zero value if a flow change occurred. This variant is not stack clean. Used by the break loop.

GEN closure_trapgen(long numerr, GEN code) evaluates closure, while trapping error numerr. Return (GEN)1L if error trapped, and the result otherwise, or NULL if a flow change occurred. Used by trap.

12.1.2 Functions to handle control flow changes.

long loop_break(void) processes an eventual flow changes inside an iterator. If this function return 1, the iterator should stop.

12.1.3 Functions to deal with lexical local variables.

Function using the prototype code `V` need to manually create and delete a lexical variable for each code `V`, which will be given a number −1, −2,

void push_lex(GEN a, GEN code) creates a new lexical variable whose initial value is a on the top of the stack. This variable get the number −1, and the number of the other variables is decreased by one unit. When the first variable of a closure is created, the argument code must be the closure that references this lexical variable. The argument code must be NULL for all subsequent variables (if any). (The closure contains the debugging data for the variable).

void pop_lex(long n) deletes the n topmost lexical variables, increasing the number of other variables by n. The argument n must match the number of variables allocated through push_lex.

GEN get_lex(long vn) get the value of the variable with number vn.

void set_lex(long vn, GEN x) set the value of the variable with number vn.

12.1.4 Functions returning new closures.

GEN compile_str(const char *s) returns the closure corresponding to the GP expression s.

GEN closure_deriv(GEN code) returns a closure corresponding to the numerical derivative of the closure code.

GEN smm_closure(entree *ep, GEN data) Let data be a vector of length m, ep be an entree pointing to a C function f of arity n + m, returns a t_CLOSURE object g of arity n such that \(g(x_1, ..., x_n) = f(x_1, ..., x_n, gel(data, 1), ..., gel(data, m)) \). If data is NULL, then \(m = 0 \) is assumed. This function has a low overhead since it does not copy data.

GEN strtofunction(char *str) returns a closure corresponding to the built-in or install’ed function named str.

GEN strtoclosure(char *str, long n, ...) returns a closure corresponding to the built-in or install’ed function named str with the n last parameters set to the n GENs following n, see smm_closure. This function has an higher overhead since it copies the parameters and does more input validation.

In the example code below, agm1 is set to the function \(x \rightarrow agm(x, 1) \) and res is set to \(agm(2, 1) \).

```c
GEN agm1 = strtoclosure("agm", 1, gen_1);
GEN res = closure_callgen1(agm1, gen_2);
```
12.1.5 Functions used by the gp debugger (break loop). long closure_context(long s) restores the compilation context starting at frame s+1, and returns the index of the topmost frame. This allow to compile expressions in the topmost lexical scope.

void closure_err(long level) prints a backtrace of the last 20 stack frames, starting at frame level, the numbering starting at 0.

12.1.6 Standard wrappers for iterators. Two families of standard wrappers are provided to interface iterators like intnum or sumnum with GP.

12.1.6.1 Standard wrappers for inline closures. Theses wrappers are used to implement GP functions taking inline closures as input. The object (GEN)E must be an inline closure which is evaluated with the lexical variable number –1 set to x.

GEN gp_eval(void *E, GEN x) is used for the prototype code ‘E’.

GEN gp_evalprec(void *E, GEN x, long prec) as gp_eval, but set the precision locally to prec.

long gp_evalvoid(void *E, GEN x) is used for the prototype code ‘I’. The resulting value is discarded. Return a non-zero value if a control-flow instruction request the iterator to terminate immediately.

long gp_evalbool(void *E, GEN x) returns the boolean gp_eval(E, x) evaluates to (i.e. true iff the value is non-zero).

GEN gp_evalupto(void *E, GEN x) memory-safe version of gp_eval, gcopy-ing the result, when the evaluator returns components of previously allocated objects (e.g. member functions).

12.1.6.2 Standard wrappers for true closures. These wrappers are used to implement GP functions taking true closures as input.

GEN gp_call(void *E, GEN x) evaluates the closure (GEN)E on x.

GEN gp_callprec(void *E, GEN x, long prec) as gp_call, but set the precision locally to prec.

GEN gp_call2(void *E, GEN x, GEN y) evaluates the closure (GEN)E on (x,y).

long gp_callbool(void *E, GEN x) evaluates the closure (GEN)E on x, returns 1 if its result is non-zero, and 0 otherwise.

long gp_callvoid(void *E, GEN x) evaluates the closure (GEN)E on x, discarding the result. Return a non-zero value if a control-flow instruction request the iterator to terminate immediately.
12.2 Defaults.

`entree* pari_is_default(const char *s)` return the `entree` structure attached to `s` if it is the name of a default, `NULL` otherwise.

`GEN setdefault(const char *s, const char *v, long flag)` is the low-level function underlying `default0`. If `s` is `NULL`, call all default setting functions with string argument `NULL` and flag `d_ACKNOWLEDGE`. Otherwise, check whether `s` corresponds to a default and call the corresponding default setting function with arguments `v` and `flag`.

We shall describe these functions below: if `v` is `NULL`, we only look at the default value (and possibly print or return it, depending on `flag`); otherwise the value of the default to `v`, possibly after some translation work. The flag is one of

- `d_INITRC` called while reading the `gprc`: print and return `gnil`, possibly defer until `gp` actually starts.
- `d_RETURN` return the current value, as a `t_INT` if possible, as a `t_STR` otherwise.
- `d_ACKNOWLEDGE` print the current value, return `gnil`.
- `d_SILENT` print nothing, return `gnil`.

Low-level functions called by `setdefault`:

- `GEN sd_TeXstyle(const char *v, long flag)`
- `GEN sd_breakloop(const char *v, long flag)`
- `GEN sd_colors(const char *v, long flag)`
- `GEN sd_compatible(const char *v, long flag)`
- `GEN sd_datadir(const char *v, long flag)`
- `GEN sd_debug(const char *v, long flag)`
- `GEN sd_debugfiles(const char *v, long flag)`
- `GEN sd_debugmem(const char *v, long flag)`
- `GEN sd_echo(const char *v, long flag)`
- `GEN sd_factor_add_primes(const char *v, long flag)`
- `GEN sd_factor_proven(const char *v, long flag)`
- `GEN sd_format(const char *v, long flag)`
- `GEN sd_graphcolormap(const char *v, long flag)`
- `GEN sd_graphcolors(const char *v, long flag)`
- `GEN sd_help(const char *v, long flag)`
- `GEN sd_histfile(const char *v, long flag)`
- `GEN sd_histsize(const char *v, long flag)`
- `GEN sd_lines(const char *v, long flag)`
- `GEN sd_linewrap(const char *v, long flag)`

262
GEN sd_log(const char *v, long flag)
GEN sd_logfile(const char *v, long flag)
GEN sd_nbthreads(const char *v, long flag)
GEN sd_new_galois_format(const char *v, long flag)
GEN sd_output(const char *v, long flag)
GEN sd_parisize(const char *v, long flag)
GEN sd_parisizemax(const char *v, long flag)
GEN sd_path(const char *v, long flag)
GEN sd_plothsizes(const char *v, long flag)
GEN sd_prettyprinter(const char *v, long flag)
GEN sd_primelimit(const char *v, long flag)
GEN sd_prompt(const char *v, long flag)
GEN sd_prompt_cont(const char *v, long flag)
GEN sd_psfile(const char *v, long flag) The psfile default is obsolete, don’t use this function.
GEN sd_readline(const char *v, long flag)
GEN sd_realbitprecision(const char *v, long flag)
GEN sd_realprecision(const char *v, long flag)
GEN sd_recover(const char *v, long flag)
GEN sd_secure(const char *v, long flag)
GEN sd_seriesprecision(const char *v, long flag)
GEN sd_simplify(const char *v, long flag)
GEN sd_sopath(const char *v, int flag)
GEN sd_strictargs(const char *v, long flag)
GEN sd_strictmatch(const char *v, long flag)
GEN sd_timer(const char *v, long flag)
GEN sd_threadsize(const char *v, long flag)
GEN sd_threadsizemax(const char *v, long flag)

Generic functions used to implement defaults: most of the above routines are implemented in terms of the following generic ones. In all routines below

- **v** and **flag** are the arguments passed to default: v is a new value (or the empty string: no change), and flag is one of d_INITRC, d_RETURN, etc.

- **s** is the name of the default being changed, used to display error messages or acknowledgments.
GEN sd_toggle(const char *v, long flag, const char *s, int *ptn)

• if v is neither "0" nor "1", an error is raised using pari_err.
• ptn points to the current numerical value of the toggle (1 or 0), and is set to the new value (when v is non-empty).

For instance, here is how the timer default is implemented internally:

GEN
sd_timer(const char *v, long flag)
{ return sd_toggle(v,flag,"timer", &(GP_DATA->chrono)); }

The exact behavior and return value depends on flag:

• d_RETURN: returns the new toggle value, as a GEN.
• d_ACKNOWLEDGE: prints a message indicating the new toggle value and return gnil.
• other cases: print nothing and return gnil.

GEN sd_ulong(const char *v, long flag, const char *s, ulong *ptn, ulong Min, ulong Max, const char **msg)

• ptn points to the current numerical value of the toggle, and is set to the new value (when v is non-empty).
• Min and Max point to the minimum and maximum values allowed for the default.
• v must translate to an integer in the allowed ranger, a suffix among $k/K \times 10^3$, $m/M \times 10^6$, or $g/G \times 10^9$ is allowed, but no arithmetic expression.
• msg is a [NULL]-terminated array of messages or NULL (ignored). If msg is not NULL, msg[i] contains a message attached to the value i of the default. The last entry in the msg array is used as a message attached to all subsequent ones.

The exact behavior and return value depends on flag:

• d_RETURN: returns the new value, as a GEN.
• d_ACKNOWLEDGE: prints a message indicating the new value, possibly a message attached to it via the msg argument, and return gnil.
• other cases: print nothing and return gnil.

GEN sd_intarray(const char *v, long flag, const char *s, GEN *pz)

• records a t_VECSMALL array of non-negative integers.
• pz points to the current t_VECSMALL value, and is set to the new value (when v is non-empty).

The exact return value depends on flag:

• d_RETURN: returns the new value, as a t_VEC (converted via zv_to_ZV)
• d_ACKNOWLEDGE: prints a message indicating the new value, (as a t_VEC) and return gnil.
• other cases: print nothing and return gnil.

GEN sd_string(const char *v, long flag, const char *s, char **pstr)

• v is subject to environment expansion, then time expansion.
• pstr points to the current string value, and is set to the new value (when v is non-empty).
12.3 Records and Lazy vectors.

The functions in this section are used to implement ell structures and analogous objects, which are vectors some of whose components are initialized to dummy values, later computed on demand. We start by initializing the structure:

\[
\text{GEN obj_init(long } d, \text{ long } n) \text{ returns an obj } S, \text{ a } \text{t_VEC} \text{ with } d \text{ regular components, accessed as } \text{gel}(S,1), \ldots, \text{gel}(S,d); \text{ together with a record of } n \text{ members, all initialized to 0. The arguments } d \text{ and } n \text{ must be non-negative.}
\]

After \(S = \text{obj_init}(d, n) \), the prototype of our other functions are of the form

\[
\text{GEN obj_do(GEN } S, \text{ long } tag, \ldots)
\]

The first argument \(S \) holds the structure to be managed. The second argument \(tag \) is the index of the struct member (from 1 to \(n \)) we operate on. We recommend to define an \textbf{enum} and use descriptive names instead of hardcoded numbers. For instance, if \(n = 3 \), after defining

\[
\text{enum } \{ \text{TAG_p = 1, TAG_list, TAG_data } \};
\]

one may use \textbf{TAG_list} or 2 indifferently as a tag. The former being preferred, of course.

Technical note. In the current implementation, \(S \) is a \textbf{t_VEC} with \(d + 1 \) entries. The first \(d \) components are ordinary \textbf{t_GEN} entries, which you can read or assign to in the customary way. But the last component \(\text{gel}(S,d+1) \), a \textbf{t_VEC} of length \(n \) initialized to \textbf{zerovec}(n), must be handled in a special way: you should never access or modify its components directly, only through the API we are about to describe. Indeed, its entries are meant to contain dynamic data, which will be stored, retrieved and replaced (for instance by a value computed to a higher accuracy), while interacting safely with intermediate \textbf{gerepile} calls. This mechanism allows to simulate C structs, in a simpler way than with general hashtables, while remaining compatible with the GP language, which knows neither structs nor hashtables. It also serialize the structure in an ordinary \textbf{GEN}, which facilitates copies and garbage collection (use \textbf{gcory} or \textbf{gerepile}), rather than having to deal with individual components of actual C structs.

\[
\text{GEN obj_reinit(GEN } S) \text{ make a shallow copy of } S, \text{ re-initializing all dynamic components. This allows “forking” a lazy vector while avoiding both a memory leak, and storing pointers to the same data in different objects (with risks of a double free later).}
\]

\[
\text{GEN obj_check(GEN } S, \text{ long } tag) \text{ if the } tag\text{-component in } S \text{ is non empty, return it. Otherwise return NULL. The } \textbf{t_INT} 0 \text{ (initial value) is used as a sentinel to indicated an empty component.}
\]

\[
\text{GEN obj_insert(GEN } S, \text{ long } tag, \text{ GEN } O) \text{ insert (a clone of) } O \text{ as } tag\text{-component of } S. \text{ Any previous value is deleted, and data pointing to it become invalid.}
\]

\[
\text{GEN obj_insert_shallow(GEN } S, \text{ long } K, \text{ GEN } O) \text{ as obj_insert, inserting } O \text{ as-is, not via a clone.}
\]

\[
\text{GEN obj_checkbuild(GEN } S, \text{ long } tag, \text{ GEN } (*\text{build})(\text{GEN})) \text{ if the } tag\text{-component of } S \text{ is non empty, return it. Otherwise insert (a clone of) } \text{build}(S) \text{ as } tag\text{-component in } S, \text{ and return it.}
\]

\[
\text{GEN obj_checkbuild_padicprec(GEN } S, \text{ long } tag, \text{ GEN } (*\text{build})(\text{GEN, long}), \text{ long } prec) \text{ if the } tag\text{-component of } S \text{ is non empty and has relative p-adic precision } \geq \text{ prec, return it. Otherwise insert (a clone of) } \text{build}(S, \text{ prec}) \text{ as } tag\text{-component in } S, \text{ and return it.}
\]

\[
\text{GEN obj_checkbuild_realprec(GEN } S, \text{ long } tag, \text{ GEN } (*\text{build})(\text{GEN, long}), \text{ long } prec) \text{ if the } tag\text{-component of } S \text{ is non empty and satisfies } \text{gprecision} \geq \text{ prec, return it. Otherwise insert (a clone of) } \text{build}(S, \text{ prec}) \text{ as } tag\text{-component in } S, \text{ and return it.}
\]

265
GEN obj_checkbuild_prec(GEN S, long tag, GEN (*build)(GEN, long), GEN (*gpr)(GEN), long prec) if the tag-component of S is non empty and has precision gpr(x) ≥ prec, return it. Otherwise insert (a clone of) build(S, prec) as tag-component in S, and return it.

void obj_free(GEN S) destroys all clones stored in the n tagged components, and replace them by the initial value 0. The regular entries of S are unaffected, and S remains a valid object. This is used to avoid memory leaks.
Chapter 13:
Algebraic Number Theory

13.1 General Number Fields.

13.1.1 Number field types.

None of the following routines thoroughly check their input: they distinguish between *bona fide* structures as output by PARI routines, but designing perverse data will easily fool them. To give an example, a square matrix will be interpreted as an ideal even though the \mathbb{Z}-module generated by its columns may not be an \mathbb{Z}_K-module (i.e. the expensive nfisideal routine will *not* be called).

long nftyp(GEN x). Returns the type of number field structure stored in x, typ_NF, typ_BNF, or typ_BNR. Other answers are possible, meaning x is not a number field structure.

GEN get_nf(GEN x, long *t). Extract an nf structure from x if possible and return it, otherwise return NULL. Sets t to the $nftyp$ of x in any case.

GEN get_bnf(GEN x, long *t). Extract a bnf structure from x if possible and return it, otherwise return NULL. Sets t to the $nftyp$ of x in any case.

GEN get_nfpol(GEN x, GEN *nf) try to extract an nf structure from x, and sets *nf to NULL (failure) or to the nf. Returns the (monic, integral) polynomial defining the field.

GEN get_bnfpol(GEN x, GEN *bnf, GEN *nf) try to extract a bnf and an nf structure from x, and sets *bnf and *nf to NULL (failure) or to the corresponding structure. Returns the (monic, integral) polynomial defining the field.

GEN checknf(GEN x) if an nf structure can be extracted from x, return it; otherwise raise an exception. The more general get_nf is often more flexible.

GEN checkbnf(GEN x) if an bnf structure can be extracted from x, return it; otherwise raise an exception. The more general get_bnf is often more flexible.

GEN checkbnf_i(GEN bnf) same as checkbnf but return NULL instead of raising an exception.

void checkbnr(GEN bnr) Raise an exception if the argument is not a bnr structure.

GEN checknf_i(GEN nf) same as checknf but return NULL instead of raising an exception.

void checkbnrgen(GEN bnr) Raise an exception if the argument is not a bnr structure, complete with explicit generators for the ray class group. This is normally useless and checkbnr should be instead, unless you are absolutely certain that the generators will be needed at a later point, and you are about to embark in a costly intermediate computation. PARI functions do check that generators are present in bnr before accessing them: they will raise an error themselves; many functions that may require them, e.g. bnrconductor, often do not actually need them.

void checkrnf(GEN rnf) Raise an exception if the argument is not an rnf structure.

int checkrnf_i(GEN rnf) same as checkrnf but return 0 on failure and 1 on success.
void checkbid(GEN bid) Raise an exception if the argument is not a bid structure.

GEN checkbid_i(GEN bid) same as checkbid but return NULL instead of raising an exception and return bid on success.

GEN checkznstar_i(GEN G) return G if it is a znstar; else return NULL on failure.

GEN checkgal(GEN x) if a galoisinit structure can be extracted from x, return it; otherwise raise an exception.

void checksqmat(GEN x, long N) check whether x is a square matrix of dimension N. May be used to check for ideals if N is the field degree.

void checkprid(GEN pr) Raise an exception if the argument is not a prime ideal structure.

int checkprid_i(GEN pr) same as checkprid but return 0 instead of raising an exception and return 1 on success.

int is_nf_factor(GEN F) return 1 if F is an ideal factorization and 0 otherwise.

int is_nf_extfactor(GEN F) return 1 if F is an extended ideal factorization (allowing 0 or negative exponents) and 0 otherwise.

GEN get_prid(GEN ideal) return the underlying prime ideal structure if one can be extracted from ideal (ideal or extended ideal), and return NULL otherwise.

GEN abgrp_get_no(GEN x) extract the cardinality N from an abelian group structure.

GEN abgrp_get_cyc(GEN x) extract the elementary divisors cyc from an abelian group structure.

GEN abgrp_get_gen(GEN x) extract the generators gen from an abelian group structure.

void checkmodpr(GEN modpr) Raise an exception if the argument is not a modpr structure (from nfmodprinit).

GEN get_modpr(GEN x) return x if it is a modpr structure and NULL otherwise.

GEN checknfelt_mod(GEN nf, GEN x, const char *s) given an nf structure nf and a t_POLMOD x, return the attached polynomial representative (shallow) if x and nf are compatible. Raise an exception otherwise. Set s to the name of the caller for a meaningful error message.

long idealtyp(GEN *ideal, GEN *fa) The input is ideal, a pointer to an ideal (or extended ideal), which is usually modified, fa being set as a side-effect. Returns the type of the underlying ideal among id_PRINCIPAL (a number field element), id_PRIME (a prime ideal) id_MAT (an ideal in matrix form).

If ideal pointed to an ideal, set fa to NULL, and possibly simplify ideal (for instance the zero ideal is replaced by gen_0). If it pointed to an extended ideal, replace ideal by the underlying ideal and set fa to the factorization matrix component.
13.1.2 Extracting info from a nf structure.

These functions expect a true nf argument attached to a number field \(K = \mathbb{Q}[x]/(T) \), e.g. a bnf will not work. Let \(n = [K : \mathbb{Q}] \) be the field degree.

- \(\text{GEN \ nf_get_pol(GEN \ nf)} \) returns the polynomial \(T \) (monic, in \(\mathbb{Z}[x] \)).
- \(\text{long \ nf_get_varn(GEN \ nf)} \) returns the variable number of the number field defining polynomial.
- \(\text{long \ nf_get_r1(GEN \ nf)} \) returns the number of real places \(r_1 \).
- \(\text{long \ nf_get_r2(GEN \ nf)} \) returns the number of complex places \(r_2 \).
- \(\text{void \ nf_get_sign(GEN \ nf, long \ *r1, long \ *r2)} \) sets \(r_1 \) and \(r_2 \) to the number of real and complex places respectively. Note that \(r_1 + 2r_2 \) is the field degree.
- \(\text{long \ nf_get_degree(GEN \ nf)} \) returns the number field degree, \(n = r_1 + 2r_2 \).
- \(\text{GEN \ nf_get_disc(GEN \ nf)} \) returns the field discriminant.
- \(\text{GEN \ nf_get_index(GEN \ nf)} \) returns the index of \(T \), i.e. the index of the order generated by the power basis \((1, x, \ldots, x^{n-1}) \) in the maximal order of \(K \).
- \(\text{GEN \ nf_get_zk(GEN \ nf)} \) returns a basis \((w_1, w_2, \ldots, w_n)\) for the maximal order of \(K \). Those are polynomials in \(\mathbb{Q}[x] \) of degree < \(n \); it is guaranteed that \(w_1 = 1 \).
- \(\text{GEN \ nf_get_zkden(GEN \ nf)} \) returns the denominator of \(\text{nf_get_zk} \), as a positive \text{t_INT}.
- \(\text{GEN \ nf_get_zkprimpart(GEN \ nf)} \) returns \(\text{nf_get_zk} \) times its denominator.
- \(\text{GEN \ nf_get_invzk(GEN \ nf)} \) returns the matrix \((m_{i,j}) \in M_n(\mathbb{Z})\) giving the power basis \((x^i)\) in terms of the \((w_j)\), i.e such that \(x^{j-1} = \sum_{i=1}^{n} m_{i,j} w_i \) for all \(1 \leq j \leq n \); since \(w_1 = 1 = x^0 \), we have \(m_{i,1} = \delta_{i,1} \) for all \(i \). The conversion functions in the \text{algtobasis} family essentially amount to a left multiplication by this matrix.
- \(\text{GEN \ nf_get_roots(GEN \ nf)} \) returns the \(r_1 \) real roots of the polynomial defining the number fields: first the \(r_1 \) real roots (as \text{t_REALs}), then the \(r_2 \) representatives of the pairs of complex conjugates.
- \(\text{GEN \ nf_get_allroots(GEN \ nf)} \) returns all the complex roots of \(T \): first the \(r_1 \) real roots (as \text{t_REALs}), then the \(r_2 \) pairs of complex conjugates.
- \(\text{GEN \ nf_get_M(GEN \ nf)} \) returns the \((r_1 + r_2) \times n\) matrix \(M \) giving the embeddings of \(K \): \(M[i,j] \) contains \(w_j(\alpha_i) \), where \(\alpha_i \) is the \(i \)-th element of \(\text{nf_get_roots(nf)} \). In particular, if \(v \) is an \(n \)-th dimensional \text{t_COL} representing the element \(\sum_{i=1}^{n} v[i] w_i \) of \(K \), then \(\text{RgM} \cdot \text{RgC} \cdot \text{mul}(M,v) \) represents the embeddings of \(v \).
- \(\text{GEN \ nf_get_G(GEN \ nf)} \) returns a \(n \times n \) real matrix \(G \) such that \(Gv \cdot Gv = T_2(v) \), where \(v \) is an \(n \)-th dimensional \text{t_COL} representing the element \(\sum_{i=1}^{n} v[i] w_i \) of \(K \) and \(T_2 \) is the standard Euclidean form on \(K \otimes \mathbb{R} \), i.e. \(T_2(v) = \sum_{\sigma} |\sigma(v)|^2 \), where \(\sigma \) runs through all \(n \) complex embeddings of \(K \).
- \(\text{GEN \ nf_get_roundG(GEN \ nf)} \) returns a rescaled version of \(G \), rounded to nearest integers, specifically \(\text{RM} \cdot \text{round_maxrank}(G) \).
- \(\text{GEN \ nf_get_ramified_primes(GEN \ nf)} \) returns the vector of ramified primes.
- \(\text{GEN \ nf_get_Tr(GEN \ nf)} \) returns the matrix of the Trace quadratic form on the basis \((w_1, \ldots, w_n)\): its \((i,j)\) entry is \(\text{Tr} w_i w_j \).
- \(\text{GEN \ nf_get_diff(GEN \ nf)} \) returns the primitive part of the inverse of the above Trace matrix.
- \(\text{long \ nf_get_prec(GEN \ nf)} \) returns the precision (in words) to which the \(nf \) was computed.
13.1.3 Extracting info from a bnf structure.

These functions expect a true bnf argument, e.g. a bnr will not work.

GEN bnf_get_nf(GEN bnf) returns the underlying nf.

GEN bnf_get_clgp(GEN bnf) returns the class group in bnf, which is a 3-component vector [h, cyc, gen].

GEN bnf_get_cyc(GEN bnf) returns the elementary divisors of the class group (cyclic components) [d_1, ..., d_k], where d_k | ... | d_1.

GEN bnf_get_gen(GEN bnf) returns the generators [g_1, ..., g_k] of the class group. Each g_i has order d_i, and the full module of relations between the g_i is generated by the d_i g_i = 0.

GEN bnf_get_no(GEN bnf) returns the class number.

GEN bnf_get_reg(GEN bnf) returns the regulator.

GEN bnf_get_logfu(GEN bnf) returns (complex floating point approximations to) the logarithms of the complex embeddings of our system of fundamental units.

GEN bnf_get_fu(GEN bnf) returns the fundamental units. Raise an error if the bnf does not contain units in algebraic form.

GEN bnf_get_fu_nocheck(GEN bnf) as bnf_get_fu without checking whether units are present. Do not use this unless you initialize the bnf yourself!

GEN bnf_get_tuU(GEN bnf) returns a generator of the torsion part of \(\mathbb{Z}_K^* \).

GEN bnr_get_bnf(GEN bnr) returns the underlying bnf.

GEN bnr_get_nf(GEN bnr) returns the underlying nf.

GEN bnr_get_clgp(GEN bnr) returns the ray class group.

GEN bnr_get_no(GEN bnr) returns the ray class number.

GEN bnr_get_cyc(GEN bnr) returns the elementary divisors of the ray class group (cyclic components) [d_1, ..., d_k], where d_k | ... | d_1.

GEN bnr_get_gen(GEN bnr) returns the generators [g_1, ..., g_k] of the ray class group. Each g_i has order d_i, and the full module of relations between the g_i is generated by the d_i g_i = 0. Raise a generic error if the bnr does not contain the ray class group generators.

GEN bnr_get_gen_nocheck(GEN bnr) as bnr_get_gen without checking whether generators are present. Do not use this unless you initialize the bnr yourself!

GEN bnr_get_bid(GEN bnr) returns the bid attached to the bnr modulus.

GEN bnr_get_mod(GEN bnr) returns the modulus attached to the bnr.
13.1.5 Extracting info from an rnf structure.

These functions expect a true rnf argument, attached to an extension \(L/K, K = \mathbb{Q}[y]/(T) \), \(L = K[x]/(P) \).

- `long rnf_get_degree(GEN rnf)` returns the relative degree \([L : K]\).
- `long rnf_get_ab degree(GEN rnf)` returns the absolute degree \([L : \mathbb{Q}]\).
- `long rnf_get_nfdegree(GEN rnf)` returns the degree of the base field \([K : \mathbb{Q}]\).
- `GEN rnf_get_nf(GEN rnf)` returns the base field \(K \), an nf structure.
- `GEN rnf_get_nfpol(GEN rnf)` returns the polynomial \(T \) defining the base field \(K \).
- `long rnf_get_nfvarn(GEN rnf)` returns the variable \(y \) attached to the base field \(K \).
- `GEN rnf_get_nfzk(GEN rnf)` returns the integer basis of the base field \(K \).
- `GEN rnf_get_pol(GEN rnf)` returns the relative polynomial defining \(L/K \).
- `long rnf_get_varn(GEN rnf)` returns the variable \(x \) attached to \(L \).
- `GEN rnf_get_zk(GEN nf)` returns the relative integer basis generating \(\mathbb{Z}_L \) as a \(\mathbb{Z}_K \)-module, as a pseudo-matrix \((A, I)\) in HNF.
- `GEN rnf_get_disc(GEN rnf)` is the output \([d, s]\) of `rnfdisc`.
- `GEN rnf_get_idealdisc(GEN rnf)` is the ideal discriminant \(\mathfrak{d} \) from `rnfdisc`.
- `GEN rnf_get_index(GEN rnf)` is the index ideal \(\mathfrak{f} \)
- `GEN rnf_get_polabs(GEN rnf)` returns an absolute polynomial defining \(L/\mathbb{Q} \).
- `GEN rnf_get_alpha(GEN rnf)` a root \(\alpha \) of the polynomial defining the base field, modulo `polabs` (cf. `rnfequation`)
- `GEN rnf_get_k(GEN rnf)` a small integer \(k \) such that \(\theta = \beta + k\alpha \) is a root of `polabs`, where \(\beta \) is a root of `pol` and \(\alpha \) a root of the polynomial defining the base field, as in `rnf_get_alpha` (cf. also `rnfequation`).
- `GEN rnf_get_invzk(GEN rnf)` contains \(A^{-1} \), where \((A, I)\) is the chosen pseudo-basis for \(\mathbb{Z}_L \) over \(\mathbb{Z}_K \).
- `GEN rnf_get_map(GEN rnf)` returns technical data attached to the map \(K \rightarrow L \). Currently, this contains data from `rnfequation`, as well as the polynomials \(T \) and \(P \).

13.1.6 Extracting info from a bid structure.

These functions expect a true bid argument, attached to a modulus \(I = I_0I_\infty \) in a number field \(K \).

- `GEN bid_get_mod(GEN bid)` returns the modulus attached to the bid.
- `GEN bid_get_grp(GEN bid)` returns the Abelian group attached to \((\mathbb{Z}_K/I)^*\).
- `GEN bid_get_ideal(GEN bid)` return the finite part \(I_0 \) of the bid modulus (an integer ideal).
- `GEN bid_get_arch(GEN bid)` return the Archimedean part \(I_\infty \) of the bid modulus as a vector of real places in vec01 format, see Section 13.1.17.
GEN bid_get_archp(GEN bid) return the Archimedean part I_∞ of the bid modulus, as a vector of real places in indices format see Section 13.1.17.

GEN bid_get_fact(GEN bid) returns the ideal factorization $I_0 = \prod_i p_i^{e_i}$.

bid_get_ideal(bid), via idealfactor.

GEN bid_get_no(GEN bid) returns the cardinality of the group $(\mathbb{Z}/I)^*$.

GEN bid_get_cyc(GEN bid) returns the elementary divisors of the group $(\mathbb{Z}/I)^*$ (cyclic components) $[d_1, \ldots, d_k]$, where $d_k | \ldots | d_1$.

GEN bid_get_gen(GEN bid) returns the generators of $(\mathbb{Z}/I)^*$ contained in bid. Raise a generic error if bid does not contain generators.

GEN bid_get_gen_nocheck(GEN bid) as bid_get_gen without checking whether generators are present. Do not use this unless you initialize the bid yourself!

GEN bid_get_sprk(GEN bid) return a list of structures attached to the $(\mathbb{Z}/p^r)^*$ where p^r divides I_0 exactly.

GEN bid_get_sarch(GEN bid) return the structure attached to $(\mathbb{Z}/I_\infty)^*$, by nfarchstar.

GEN bid_get_U(GEN bid) return the matrix with integral coefficients relating the local generators (from chinese remainders) to the global SNF generators (bid.gen).

13.1.7 Extracting info from a znstar structure.

These functions expect an argument G as returned by znstar0(N, 1), attached to a positive N and the abelian group $(\mathbb{Z}/N\mathbb{Z})^*$. Let (g_i) be the SNF generators, where g_i has order d_i; we call (g'_i) the (canonical) Conrey generators, where g'_i has order d'_i. Both sets of generators have the same cardinality.

GEN znstar_get_N(GEN bid) return N.

GEN znstar_get_faN(GEN G) return the factorization factor(N), $N = \prod_j p_j^{e_j}$.

GEN znstar_get_pe(GEN G) return the vector of primary factors $(p_j^{e_j})$.

GEN znstar_get_no(GEN G) the cardinality $\phi(N)$ of G.

GEN znstar_get_cyc(GEN G) elementary divisors (d_i) of $(\mathbb{Z}/N\mathbb{Z})^*$.

GEN znstar_get_gen(GEN G) SNF generators divisors (g_i) of $(\mathbb{Z}/N\mathbb{Z})^*$.

GEN znstar_get_conreycyc(GEN G) orders (d'_i) of Conrey generators.

GEN znstar_get_conreycyc(GEN G) Conrey generators (g'_i).

GEN znstar_get_U(GEN G) a square matrix U such that $(g_i) = U(g'_i)$.

GEN znstar_get.Ui(GEN G) a square matrix U' such that $U'(g_i) = (g'_i)$. In general, UU' will not be the identity.
13.1.8 Inserting info in a number field structure.

If the required data is not part of the structure, it is computed then inserted, and the new value is returned.

These functions expect a \texttt{bnf} argument:

\begin{verbatim}
GEN bnf_build_cycgen(GEN bnf) the \texttt{bnf} contains generators \([g_1,\ldots,g_k]\) of the class group, each with order \(d_i\). Then \(g_i^{d_i} = (x_i)\) is a principal ideal. This function returns the \(x_i\) as a factorization matrix (\texttt{famat}) giving the element in factored form as a product of \(S\)-units.
\end{verbatim}

\begin{verbatim}
GEN bnf_build_matalpha(GEN bnf) the class group was computed using a factorbase \(S\) of prime ideals \(p_i, i \leq r\). They satisfy relations of the form \(\prod_j p_i^{e_{i,j}} = (\alpha_j)\), where the \(e_{i,j}\) are given by the matrices \(bnf[1]\) (\(W\), singling out a minimal set of generators in \(S\)) and \(bnf[2]\) (\(B\), expressing the rest of \(S\) in terms of the singled out generators). This function returns the \(\alpha_j\) in factored form as a product of \(S\)-units.
\end{verbatim}

\begin{verbatim}
GEN bnf_build_units(GEN bnf) returns a minimal set of generators for the unit group. The first element is a torsion unit, the others have infinite order.
\end{verbatim}

These functions expect a \texttt{rnf} argument:

\begin{verbatim}
GEN rnf_build_nfabs(GEN rnf, long prec) given a \texttt{rnf} structure attached to \(L/K\), (compute and) return an \texttt{nf} structure attached to \(L\) at precision \(prec\).
\end{verbatim}

\begin{verbatim}
void rnfcomplete(GEN rnf) as \texttt{rnf_build_nfabs} using the precision of \(K\) for \(prec\).
\end{verbatim}

\begin{verbatim}
GEN rnf_zkabs(GEN rnf) returns a \(\mathbb{Z}\)-basis in HNF for \(\mathbb{Z}_L\) as a pair \([T,v]\), where \(T\) is \texttt{rnf_get_polabs(rnf)} and \(v\) a vector of elements lifted from \(\mathbb{Q}[X]/(T)\). Note that the function \texttt{rnf_build_nfabs} essentially applies \texttt{nfinit} to the output of this function.
\end{verbatim}

13.1.9 Increasing accuracy.

\begin{verbatim}
GEN nfnewprec(GEN x, long prec). Raise an exception if \(x\) is not a number field structure (\texttt{nf}, \texttt{bnf} or \texttt{bnr}). Otherwise, sets its accuracy to \(prec\) and return the new structure. This is mostly useful with \(prec\) larger than the accuracy to which \(x\) was computed, but it is also possible to decrease the accuracy of \(x\) (truncating relevant components, which may speed up later computations). This routine may modify the original \(x\) (see below).

This routine is straightforward for \texttt{nf} structures, but for the other ones, it requires all principal ideals corresponding to the \texttt{bnf} relations in algebraic form (they are originally only available via floating point approximations). This in turn requires many calls to \texttt{bnfisprincipal10}, which is often slow, and may fail if the initial accuracy was too low. In this case, the routine will not actually fail but recomputes a \texttt{bnf} from scratch!

Since this process may be very expensive, the corresponding data is cached (as a \texttt{clone}) in the original \(x\) so that later precision increases become very fast. In particular, the copy returned by \texttt{nfnewprec} also contains this additional data.
\end{verbatim}

\begin{verbatim}
GEN bnfnewprec(GEN x, long prec) As \texttt{nfnewprec}, but extracts a \texttt{bnf} structure form \(x\) before increasing its accuracy, and returns only the latter.
\end{verbatim}

\begin{verbatim}
GEN bnrnewprec(GEN x, long prec) As \texttt{nfnewprec}, but extracts a \texttt{bnr} structure form \(x\) before increasing its accuracy, and returns only the latter.
\end{verbatim}

\begin{verbatim}
GEN nfnewprec_shallow(GEN nf, long prec)
\end{verbatim}
GEN bnfnewprec_shallow(GEN bnf, long prec)
GEN bnrnewprec_shallow(GEN bnr, long prec) Shallow functions underlying the above, except
that the first argument must now have the corresponding number field type. I.e. one cannot call
nfnewprec_shallow(nf, prec) if nf is actually a bnf.

13.1.10 Number field arithmetic. The number field \(K = \mathbb{Q}[X]/(T) \) is represented by an nf (or
bnf or bnr structure). An algebraic number belonging to \(K \) is given as

- a t_INT, t_FRAC or t_POL (implicitly modulo \(T \)), or
- a t_POLMOD (modulo \(T \)), or
- a t_COL \(v \) of dimension \(N = [K : \mathbb{Q}] \), representing the element in terms of the computed
 integral basis \((e_i) \), as

\[
\sum_{i = 1, N} v[i] \ast nf.zk[i]
\]

The preferred forms are t_INT and t.COL of t_INT. Routines can handle denominators but it is
much more efficient to remove denominators first (Q_remove_denom) and take them into account
at the end.

Safe routines. The following routines do not assume that their nf argument is a true nf (it can
be any number field type, e.g. a bnf), and accept number field elements in all the above forms.
They return their result in t.COL form.

GEN nfadd(GEN nf, GEN x, GEN y) returns \(x + y \).
GEN nfsub(GEN nf, GEN x, GEN y) returns \(x - y \).
GEN nfdiv(GEN nf, GEN x, GEN y) returns \(x/y \).
GEN nfinv(GEN nf, GEN x) returns \(x^{-1} \).
GEN nfmul(GEN nf, GEN x, GEN y) returns \(xy \).
GEN npow(GEN nf, GEN x, GEN y) returns \(x^k \), \(k \) is in \(\mathbb{Z} \).
GEN npow_u(GEN nf, GEN x, ulong k) returns \(x^k \), \(k \geq 0 \).
GEN nfsqr(GEN nf, GEN x) returns \(x^2 \).

long nfval(GEN nf, GEN x, GEN pr) returns the valuation of \(x \) at the maximal ideal \(p \) attached
to the prid \(pr \). Returns LONG_MAX if \(x \) is 0.

GEN nfnorm(GEN nf, GEN x) absolute norm of \(x \).
GEN nftrace(GEN nf, GEN x) absolute trace of \(x \).
GEN npolval(GEN nf, GEN pol, GEN a) evaluate the t_POL pol (with coefficients in nf) on
the algebraic number \(a \) (also in nf).
GEN FpX_FpC_npolval(GEN nf, GEN pol, GEN a, GEN p) evaluate the FpX pol on the algebraic
number \(a \) (also in nf).

The following three functions implement trivial functionality akin to Euclidean division for
which we currently have no real use. Of course, even if the number field is actually Euclidean,
these do not in general implement a true Euclidean division.

274
GEN nfdivuc(GEN nf, GEN a, GEN b) returns the algebraic integer closest to \(x/y\). Functionally identical to ground(nfdiv(nf,x,y))

GEN nfdivrem(GEN nf, GEN a, GEN b) returns the vector \([q, r]\), where

\[
q = \text{nfdivuc}(nf, a, b);
\]
\[
r = \text{nfsu}(nf, a, \text{nfmul}(nf, q, b)); \quad \text{or} \quad r = \text{nfmod}(nf,a,b);
\]

GEN nfmod(GEN nf, GEN a, GEN b) returns \(r\) such that

\[
q = \text{nfdivuc}(nf, a, b);
\]
\[
r = \text{nfsu}(nf, a, \text{nfmul}(nf, q, b));
\]

GEN nf_to_scalar_or_basis(GEN nf, GEN x) let \(x\) be a number field element. If it is a rational scalar, i.e. can be represented by a t_INT or t_FRAC, return the latter. Otherwise returns its basis representation (nfalgtobasis). Shallow function.

GEN nf_to_scalar_or_alg(GEN nf, GEN x) let \(x\) be a number field element. If it is a rational scalar, i.e. can be represented by a t_INT or t_FRAC, return the latter. Otherwise returns its lifted t_POLMOD representation (lifted nfbasistoalg). Shallow function.

GEN RgX_to_nfX(GEN nf, GEN x) let \(x\) be a t_POL whose coefficients are number field elements; apply nf_to_scalar_or_basis to each coefficient and return the resulting new polynomial. Shallow function.

GEN RgM_to_nfM(GEN nf, GEN x) let \(x\) be a t_MAT whose coefficients are number field elements; apply nf_to_scalar_or_basis to each coefficient and return the resulting new matrix. Shallow function.

GEN RgC_to_nfC(GEN nf, GEN x) let \(x\) be a t_COL or t_VEC whose coefficients are number field elements; apply nf_to_scalar_or_basis to each coefficient and return the resulting new t_COL. Shallow function.

Unsafe routines. The following routines assume that their nf argument is a true nf (e.g. a bnf is not allowed) and their argument are restricted in various ways, see the precise description below.

GEN nfinvmodideal(GEN nf, GEN x, GEN A) given an algebraic integer \(x\) and a non-zero integral ideal \(A\) in HNF, returns a \(y\) such that \(xy \equiv 1\) modulo \(A\).

GEN npowmodideal(GEN nf, GEN x, GEN n, GEN ideal) given an algebraic integer \(x\), an integer \(n\), and a non-zero integral ideal \(A\) in HNF, returns an algebraic integer congruent to \(x^n\) modulo \(A\).

GEN nfmux(GEN nf, GEN x, GEN y) returns \(x \times y\) assuming that both \(x\) and \(y\) are either t_INTs or ZVs of the correct dimension.

GEN nfsqri(GEN nf, GEN x) returns \(x^2\) assuming that \(x\) is a t_INT or a ZV of the correct dimension.

GEN ncf_mul(GEN nf, GEN v, GEN x) given a t_VEC or t_COL \(v\) of elements of \(K\) in t_INT, t_FRAC or t_COL form, multiply it by the element \(x\) (arbitrary form). This is faster than multiplying coordinatewise since pre-computations related to \(x\) (computing the multiplication table) are done only once. The components of the result are in most cases t_COLS but are allowed to be t_INTs or t_FRACs. Shallow function.

GEN ncf_multable_mul(GEN v, GEN mx) same as ncf_mul, where the argument \(x\) is replaced by its multiplication table \(mx\).

GEN zkC_multable_mul(GEN v, GEN x) same as ncf_multiplic, where \(v\) is a vector of algebraic integers, \(x\) is an algebraic integer, and \(x\) is replaced by \(zk_multable(x)\).
GEN zk_multable(GEN nf, GEN x) given a ZC \(x\) (implicitly representing an algebraic integer), returns the ZM giving the multiplication table by \(x\). Shallow function (the first column of the result points to the same data as \(x\)).

GEN zk_inv(GEN nf, GEN x) given a ZC \(x\) (implicitly representing an algebraic integer), returns the QC giving the inverse \(x^{-1}\). Return NULL if \(x\) is 0. Not memory clean but safe for gerepileupto.

GEN zkmultable_inv(GEN mx) as zk_inv, where the argument given is zk_multable(\(x\)).

GEN zkmultable_capZ(GEN mx) given a non-zero zkmultable \(mx\) attached to \(x \in \mathbb{Z}_K\), return the positive generator of \((x) \cap \mathbb{Z}\).

GEN zk_scalar_or_multable(GEN nf, GEN x) given a t_INT or ZC \(x\), returns a t_INT equal to \(x\) if the latter is a scalar (t_INT or ZV_isscalar(\(x\)) is 1) and zk_multable(\(nf, x\)) otherwise. Shallow function.

The following routines implement multiplication in a commutative \(R\)-algebra, generated by \((e_1 = 1, ..., e_n)\), and given by a multiplication table \(M\): elements in the algebra are \(n\)-dimensional t_COLS, and the matrix \(M\) is such that for all \(1 \leq i, j \leq n\), its column with index \((i - 1)n + j\), say \((c_k)\), gives \(e_i \cdot e_j = \sum c_k e_k\). It is assumed that \(e_1\) is the neutral element for the multiplication (a convenient optimization, true in practice for all multiplications we needed to implement). If \(x\) has any other type than t_COL where an algebra element is expected, it is understood as \(xe_1\).

GEN multable(GEN M, GEN x) given a column vector \(x\), representing the quantity \(\sum_{i=1}^{N} x_i e_i\), returns the multiplication table by \(x\). Shallow function.

GEN ei_multable(GEN M, long i) returns the multiplication table by the \(i\)-th basis element \(e_i\). Shallow function.

GEN tablemul(GEN M, GEN x, GEN y) returns \(x \cdot y\).

GEN tablesqr(GEN M, GEN x) returns \(x^2\).

GEN tablemul_ei(GEN M, GEN x, long i) returns \(x \cdot e_i\).

GEN tablemul_ei_ej(GEN M, long i, long j) returns \(e_i \cdot e_j\).

GEN tablemulvec(GEN M, GEN x, GEN v) given a vector \(v\) of elements in the algebra, returns the \(x \cdot v\) [i].

The following routines implement naive linear algebra using the black box field mechanism:

GEN nfM_det(GEN nf, GEN M)
GEN nfM_inv(GEN nf, GEN M)
GEN nfM_mul(GEN nf, GEN A, GEN B)
GEN nfM_nfc_mul(GEN nf, GEN A, GEN B)

The following routines implement modular algorithms in cyclotomic fields. In the prototypes, \(P\) is the \(n\)-th cyclotomic polynomial \(\Phi_n\) and \(M\) is a t_MAT with t_INT or ZX coefficients, understood modulo \(P\).

GEN ZabM_ker(GEN M, GEN P, long n) returns an integral (primitive) basis of the kernel of \(M\).

GEN ZabM_indexrank(GEN M, GEN P, long n) return a vector with two t_VECSMALL components giving the rank profile of \(M\). Inefficient (but correct) when \(M\) does not have almost full column rank.

276
GEN ZabM_inv(GEN M, GEN P, long n, GEN *pden) assume that M is invertible; return N and sets the algebraic integer $*pden$ (an integer or a ZX, implicitly modulo P) such that $MN = \text{den} \cdot \text{Id}$.

GEN ZabM_pseudoinv(GEN M, GEN P, long n, GEN *pv, GEN *pden) analog of ZM^{-1} pseudoinv. Not gerepile-safe.

GEN ZabM_inv_ratlift(GEN M, GEN P, long n, GEN *pden) return a primitive matrix H such that MH is d times the identity and set $*pden$ to d. Uses a multimodular algorithm, attempting rational reconstruction along the way. To be used when you expect that the denominator of M^{-1} is much smaller than det M else use ZabM_inv.

13.1.11 Elements in factored form.

Computational algebraic theory performs extensively linear algebra on \mathbb{Z}-modules with a natural multiplicative structure (K^*, fractional ideals in K, \mathbb{Z}_K^*, ideal class group), thereby raising elements to horrendously large powers. A seemingly innocuous elementary linear algebra operation like $C_i \leftarrow C_i - 10000C_1$ involves raising entries in C_1 to the 10000-th power. Understandably, it is often more efficient to keep elements in factored form rather than expand every such expression. A factorization matrix (or famat) is a two column matrix, the first column containing elements (arbitrary objects which may be repeated in the column), and the second one contains exponents (t_INTs, allowed to be 0). By abuse of notation, the empty matrix cgetg(1, t_MAT) is recognized as the trivial factorization (no element, no exponent).

Even though we think of a famat with columns g and e as one meaningful object when fully expanded as $\prod g[i]^{e[i]}$, famats are basically about concatenating information to keep track of linear algebra: the objects stored in a famat need not be operation-compatible, they will not even be compared to each other (with one exception: famat_reduce). Multiplying two famats just concatenates their elements and exponents columns. In a context where a famat is expected, an object x which is not of type t_MAT will be treated as the factorization x^1. The following functions all return famats:

GEN famat_mul(GEN f, GEN g) f, g are famat, or objects whose type is not t_MAT (understood as f^1 or g^1). Returns fg. The empty factorization is the neutral element for famat multiplication.

GEN famat_mul_shallow(GEN f, GEN g) shallow version of famat_mul.

GEN famat_pow(GEN f, GEN n) n is a t_INT. If f is a t_MAT, assume it is a famat and return f^n (multiplies the exponent column by n). Otherwise, understand it as an element and returns the 1-line famat f^n.

GEN famat_pow_shallow(GEN f, GEN n) shallow version of famat_pow where n is a small integer.

GEN famat_pows_shallow(GEN f, long n) shallow version of famat_pow where n is a small integer.

GEN famat_mulpow_shallow(GEN f, GEN g, GEN e) famat corresponding to $f \cdot g^e$. Shallow function.

GEN famat_mulpows_shallow(GEN f, GEN g, long e) famat shallow version of famat_mulpow where e is a small integer.

GEN famat_sqr(GEN f) returns f^2.

GEN famat_inv(GEN f) returns f^{-1}.

GEN famat_inv_shallow(GEN f) shallow version of famat_inv.
GEN famat_div_shallow(GEN f, GEN g) return f/g; shallow.
GEN famat_Z_gcd(GEN M, GEN n) restrict the famat M to the prime power dividing n.
GEN to_famat(GEN x, GEN k) given an element x and an exponent k, returns the famat x^k.
GEN to_famat_shallow(GEN x, GEN k) same, as a shallow function.

Note that it is trivial to break up a famat into its two constituent columns: gel(f,1) and gel(f,2) are the elements and exponents respectively. Conversely, mkmat2 builds a (shallow) famat from two t_COLs of the same length.

The last two functions makes an assumption about the elements: they must be regular algebraic numbers (not famats) over a given number field:

GEN famat_reduce(GEN f) given a famat f, returns a famat g without repeated elements or 0 exponents, such that the expanded forms of f and g would be equal. Shallow function.

GEN ZM_famat_limit(GEN f, GEN limit) given a famat f with t_INT entries, returns a famat g with all factors larger than limit multiplied out as the last entry (with exponent 1).

GEN famat_to_nf(GEN nf, GEN f) You normally never want to do this! This is a simplified form of nffactorback, where we do not check the user input for consistency.

The description of famat_to_nf says that you do not want to use this function. Then how do we recover genuine number field elements? Well, in most cases, we do not need to: most of the functions useful in this context accept famats as inputs, for instance nfsign, nfsign_arch, ideallog and bnfisunit. Otherwise, we can generally make good use of a quotient operation (modulo a fixed conductor, modulo ℓ-th powers); see the end of Section 13.1.22.

Caveat. Receiving a famat input, bnfisunit assumes that it is an algebraic integer, since this is expensive to check, and normally easy to ensure from the user’s side; do not feed it ridiculous inputs.

GEN famatsmall_reduce(GEN f) as famat_reduce, but for exponents given by a t_VECSMALL.

13.1.12 Ideal arithmetic.

Conversion to HNF.

GEN idealhnf(GEN nf, GEN x) returns the HNF of the ideal defined by x: x may be an algebraic number (defining a principal ideal), a maximal ideal (as given by idealprimedec or idealfactor), or a matrix whose columns give generators for the ideal. This last format is complicated, but useful to reduce general modules to the canonical form once in a while:

- if strictly less than \(N = [K : \mathbb{Q}] \) generators are given, x is the \(\mathbb{Z}_K \)-module they generate,
- if \(N \) or more are given, it is assumed that they form a \(\mathbb{Z} \)-basis (that the matrix has maximal rank \(N \)). This acts as mathnf since the \(\mathbb{Z}_K \)-module structure is (taken for granted hence) not taken into account in this case.

Extended ideals are also accepted, their principal part being discarded.

GEN idealhnf0(GEN nf, GEN x, GEN y) returns the HNF of the ideal generated by the two algebraic numbers x and y.

The following low-level functions underlie the above two: they all assume that nf is a true nf and perform no type checks:
GEN idealhnf_principal(GEN nf, GEN x) returns the ideal generated by the algebraic number \(x \).

GEN idealhnf_shallow(GEN nf, GEN x) is idealhnf except that the result may not be suitable for gerepile: if \(x \) is already in HNF, we return \(x \), not a copy!

GEN idealhnf_two(GEN nf, GEN v) assuming \(a = v[1] \) is a non-zero \(t_{\text{INT}} \) and \(b = v[2] \) is an algebraic integer, possibly given in regular representation by a \(t_{\text{MAT}} \) (the multiplication table by \(b \), see \texttt{zk_multable}), returns the HNF of \(a\mathbb{Z}_K + b\mathbb{Z}_K \).

Operations.

The basic ideal routines accept all \(\text{nf}s \) (\(\text{nf}, \text{bnf}, \text{bnr} \)) and ideals in any form, including extended ideals, and return ideals in HNF, or an extended ideal when that makes sense:

GEN idealadd(GEN nf, GEN x, GEN y) returns \(x + y \).

GEN idealdiv(GEN nf, GEN x, GEN y) returns \(x/y \). Returns an extended ideal if \(x \) or \(y \) is an extended ideal.

GEN idealmul(GEN nf, GEN x, GEN y) returns \(xy \). Returns an extended ideal if \(x \) or \(y \) is an extended ideal.

GEN idealsq(GEN nf, GEN x) returns \(x^2 \). Returns an extended ideal if \(x \) is an extended ideal.

GEN idealinv(GEN nf, GEN x) returns \(x^{-1} \). Returns an extended ideal if \(x \) is an extended ideal.

GEN idealpow(GEN nf, GEN x, GEN n) returns \(x^n \). Returns an extended ideal if \(x \) is an extended ideal.

GEN idealpows(GEN nf, GEN ideal, long n) returns \(x^n \). Returns an extended ideal if \(x \) is an extended ideal.

GEN idealmulred(GEN nf, GEN x, GEN y) returns an extended ideal equal to \(xy \).

GEN idealpowred(GEN nf, GEN x, GEN n) returns an extended ideal equal to \(x^n \).

More specialized routines suffer from various restrictions:

GEN idealdivexact(GEN nf, GEN x, GEN y) returns \(x/y \), assuming that the quotient is an integral ideal. Much faster than idealdiv when the norm of the quotient is small compared to \(Nx \). Strips the principal parts if either \(x \) or \(y \) is an extended ideal.

GEN idealdivpowprime(GEN nf, GEN x, GEN pr, GEN n) returns \(xp^{-n} \), assuming \(x \) is an ideal in HNF or a rational number, and \(\text{pr} \) a \texttt{prid} attached to \(p \). Not suitable for \texttt{gerepileupto} since it returns \(x \) when \(n = 0 \).

GEN idealmulpowprime(GEN nf, GEN x, GEN pr, GEN n) returns \(xp^n \), assuming \(x \) is an ideal in HNF or a rational number, and \(\text{pr} \) a \texttt{prid} attached to \(p \). Not suitable for \texttt{gerepileupto} since it returns \(x \) when \(n = 0 \).

GEN idealprodprime(GEN nf, GEN v) given a list \(v \) of prime ideals in \texttt{prid} form, return their product. Assume that \(\text{nf} \) is a true \texttt{nf} structure.

GEN idealprod(GEN nf, GEN v) given a list \(v \) of ideals, return their product.

GEN idealprodval(GEN nf, GEN v, GEN pr) given a list \(v \) of ideals return the valuation of their product at the prime ideal \(\text{pr} \).
GEN idealHNF_mul(GEN nf, GEN x, GEN y) returns xy, assuming that nf is a true nf, x is an integral ideal in HNF and y is an integral ideal in HNF or precompiled form (see below). For maximal speed, the second ideal y may be given in precompiled form $y = [a, b]$, where a is a non-zero t_INT and b is an algebraic integer in regular representation (a t_MAT giving the multiplication table by the fixed element): very useful when many ideals x are going to be multiplied by the same ideal y. This essentially reduces each ideal multiplication to an $N \times N$ matrix multiplication followed by a $N \times 2N$ modular HNF reduction (modulo $xy \cap \mathbb{Z}$).

GEN idealHNF_inv(GEN nf, GEN I) returns I^{-1}, assuming that nf is a true nf and x is a fractional ideal in HNF.

GEN idealHNF_inv_Z(GEN nf, GEN I) returns $(I \cap \mathbb{Z}) \cdot I^{-1}$, assuming that nf is a true nf and x is an integral fractional ideal in HNF. The result is an integral ideal in HNF.

Approximation.

GEN idealaddtoone(GEN nf, GEN A, GEN B) given to coprime integer ideals A, B, returns $[a, b]$ with $a \in A$, $b \in B$, such that $a + b = 1$ The result is reduced mod AB, so a, b will be small.

GEN idealaddtoone_i(GEN nf, GEN A, GEN B) as idealaddtoone except that nf must be a true nf, and only a is returned.

GEN idealaddtoone_raw(GEN nf, GEN A, GEN B) as idealaddtoone_i except that the reduction mod AB is only performed modulo the lcm of $A \cap \mathbb{Z}$ and $B \cap \mathbb{Z}$, which will increase the size of a.

GEN zkchineseinit(GEN nf, GEN A, GEN B, GEN AB) given two coprime integral ideals A and B (in any form, preferably HNF) and their product AB (in HNF form), initialize a solution to the Chinese remainder problem modulo AB.

GEN zkchinese(GEN zkc, GEN x, GEN y) given zkc from zkchineseinit, and x, y two integral elements given as t_INT or ZC, return a z modulo AB such that $z \equiv x \mod A$ and $z \equiv y \mod B$.

GEN zkchinese1(GEN zkc, GEN x) as zkchinese for $y = 1$; useful to lift elements in a nice way from $\left(\mathbb{Z}K/A_i\right)^*$ to $\left(\mathbb{Z}K/\prod A_i\right)^*$.

GEN hnfmerge_get_1(GEN A, GEN B) given two square upper HNF integral matrices A, B of the same dimension $n > 0$, return a in the image of A such that $1 - a$ is in the image of B. (By abuse of notation we denote 1 the column vector $[1, 0, \ldots, 0]$.) If such an a does not exist, return NULL. This is the function underlying idealaddtoone.

GEN idealaddmultoone(GEN nf, GEN v) given a list of n (globally) coprime integer ideals $(v[i])$ returns an n-dimensional vector a such that $a[i] \in v[i]$ and $\sum a[i] = 1$. If $[K : \mathbb{Q}] = N$, this routine computes the HNF reduction (with $Gl_n(\mathbb{Z})$ base change) of an $N \times nN$ matrix; so it is well worth pruning "useless" ideals from the list (as long as the ideals remain globally coprime).

GEN idealapprfact(GEN nf, GEN fx) as idealappr, except that x must be given in factored form. (This is unchecked.)

GEN idealcoprime(GEN nf, GEN x, GEN y). Given 2 integral ideals x and y, returns an algebraic number α such that αx is an integral ideal coprime to y.

GEN idealcoprimefact(GEN nf, GEN x, GEN fy) same as idealcoprime, except that y is given in factored form, as from idealfactor.

GEN idealchinese(GEN nf, GEN x, GEN y)

GEN idealchineseinit(GEN nf, GEN x)
13.1.13 Maximal ideals.

The PARI structure attached to maximal ideals is a \texttt{prid} (for \texttt{prime ideal}), usually produced by \texttt{idealprimedec} and \texttt{idealfactor}. In this section, we describe the format; other sections will deal with their daily use.

A \texttt{prid} attached to a maximal ideal \(p \) stores the following data: the underlying rational prime \(p \), the ramification degree \(e \geq 1 \), the residue field degree \(f \geq 1 \), a \(p \)-uniformizer \(\pi \) with valuation 1 at \(p \) and valuation 0 at all other primes dividing \(p \) and a rescaled “anti-uniformizer” \(\tau \) used to compute valuations. This \(\tau \) is an algebraic integer such that \(\tau/p \) has valuation \(-1\) at \(p \) and is integral at all other primes; in particular, the valuation of \(x \in \mathbb{Z}_K \) is positive if and only if the algebraic integer \(x\tau \) is divisible by \(p \) (easy to check for elements in \texttt{t_COL} form).

\begin{align*}
\text{GEN} \hspace{1em} & \text{pr_get_p(GEN pr)} \text{ returns } p. \text{ Shallow function.} \\
\text{GEN} \hspace{1em} & \text{pr_get_gen(GEN pr)} \text{ returns } \pi. \text{ Shallow function.} \\
\text{long} \hspace{1em} & \text{pr_get_e(GEN pr)} \text{ returns } e. \\
\text{long} \hspace{1em} & \text{pr_get_f(GEN pr)} \text{ returns } f. \\
\text{GEN} \hspace{1em} & \text{pr_get_tau(GEN pr)} \text{ returns } \text{zk scalar or multable (nf, } \tau \text{), which is the } \texttt{t_INT} \text{ 1 iff } p \text{ is inert, and a } \texttt{ZM} \text{ otherwise. Shallow function.} \\
\text{int} \hspace{1em} & \text{pr_is_inert(GEN pr)} \text{ returns 1 if } p \text{ is inert, 0 otherwise.} \\
\text{GEN} \hspace{1em} & \text{pr_norm(GEN pr)} \text{ returns the norm } p^f \text{ of the maximal ideal.} \\
\text{ulong} \hspace{1em} & \text{upr_norm(GEN pr)} \text{ returns the norm } p^f \text{ of the maximal ideal, as an } \texttt{ulong}. \text{ Assume that the result does not overflow.} \\
\text{GEN} \hspace{1em} & \text{pr_hnf(GEN pr)} \text{ return the HNF of } p. \\
\text{GEN} \hspace{1em} & \text{pr_inv(GEN pr)} \text{ return the fractional ideal } p^{-1}, \text{ in HNF.} \\
\text{GEN} \hspace{1em} & \text{pr_inv_p(GEN pr)} \text{ return the integral ideal } p^p^{-1}, \text{ in HNF.} \\
\text{GEN} \hspace{1em} & \text{idealprimedec(GEN nf, GEN p)} \text{ list of maximal ideals dividing the prime } p. \\
\text{GEN} \hspace{1em} & \text{idealprimedec_limit_f(GEN nf, GEN p, long f)} \text{ as idealprimedec, limiting the list to primes of residual degree } \leq f \text{ if } f \text{ is non-zero.} \\
\text{GEN} \hspace{1em} & \text{idealprimedec_limit_norm(GEN nf, GEN p, GEN B)} \text{ as idealprimedec, limiting the list to primes of norm } \leq B, \text{ which must be a positive } \texttt{t_INT}. \\
\text{GEN} \hspace{1em} & \text{idealprimedec_galois(GEN nf, GEN p)} \text{ return a single prime ideal above } p. \\
\text{GEN} \hspace{1em} & \text{idealprimedec_degrees(GEN nf, GEN p)} \text{ return a (sorted) } \texttt{t_VECSMALL} \text{ containing the residue degrees } f(p/p). \\
\text{GEN} \hspace{1em} & \text{idealprimedec_kummer(GEN nf, GEN Ti, long ei, GEN p)} \text{ let } nf \text{ (true } nf \text{) correspond to } K = \mathbb{Q}[X]/(T) \text{ (} T \text{ monic } ZX). \text{ Let } T \equiv \prod T_i^{e_i} \pmod{p} \text{ be the factorization of } T \text{ and let } (f, g, h) \text{ be as in Dedekind criterion for prime } p: f = \prod T_i, g = \prod T_i^{e_i-1}, h = (T - fg)/p, \text{ and let } D \text{ be the gcd of } (f, g, h) \text{ in } \mathbb{F}_p[X]. \text{ Let } Ti \text{ (FpX) be one irreducible factor } T_i \text{ not dividing } D, \text{ with } ei = e_i. \text{ This function returns the prime ideal attached to } T_i \text{ by Kummer / Dedekind criterion, namely } p\mathbb{Z}_K + T_i(X)\mathbb{Z}_K, \text{ which has ramification index } e_i \text{ over } p. \text{ Shallow function.} \\
\text{GEN} \hspace{1em} & \text{idealHNF_Z_factor(GEN x, GEN *pvN, GEN *pvZ)} \text{ given an integral (non-0) ideal } x \text{ in HNF, compute both the factorization of } Nx \text{ and of } x\cap\mathbb{Z}. \text{ This returns the vector of prime divisors of both}
\end{align*}
and sets \(pvN \) and \(pvZ \) to the corresponding \texttt{t_VECSMALL} vector of exponents for the factorization for the Norm and intersection with \(Z \) respectively.

\[
\text{GEN idealHNF_Z_factor_i(GEN x, GEN fa, GEN *pvN, GEN *pvZ)}
\]

is an internal variant of \texttt{idealHNF_Z_factor} where \(fa \) is either a partial factorization of \(x \cap Z (= x[1,1]) \) or NULL. Returns the prime divisors of \(x \) above the rational primes in \(fa \) and attached \(vN \) and \(vZ \). If \(fa \) is NULL, use the full factorization, i.e. identical to \texttt{idealHNF_Z_factor}.

\[
\text{GEN nf_pV_to_prV(GEN nf, GEN P)}
\]

returns the vector of all prime ideals above the rational primes in \(P \). Not \texttt{gerepile-safe}.

\[
\text{GEN nf_deg1_prime(GEN nf)}
\]

returns a degree 1 (unramified) prime ideal not dividing \(nf_index \). In fact it returns an ideal above the smallest prime \(p \geq |K : Q| \) satisfying those conditions.

\[
\text{GEN prV_lcm_capZ(GEN L)}
\]

returns the squarefree positive integer generating their lcm intersected with \(Z \). Not \texttt{gerepile-safe}.

\[
\text{GEN pr_uniformizer(GEN pr, GEN F)}
\]

returns an \(F \)-uniformizer for \(pr \), i.e. a \(t \) in \(Z _K \) such that \(v_p(t) = 1 \) and \((t, F/p) = 1 \). Not \texttt{gerepile-safe}.

13.1.14 Decomposition group.

\[
\text{GEN idealramfrobenius(GEN nf, GEN gal, GEN pr, GEN ram)}
\]

returns a permutation of \(gal_group \) which defines an automorphism \(\sigma \) in the decomposition group of \(\mathfrak{p} \) such that if \(p \) is the unique prime number in \(\mathfrak{p} \), then \(\sigma(x) \equiv x^p \text{mod} \mathfrak{P} \) for all \(x \in Z_K \).

\[
\text{GEN idealramfrobenius_aut(GEN nf, GEN gal, GEN pr, GEN ram, GEN aut)}
\]

is \texttt{idealramfrobenius(nf, gal, pr, ram)} faster version of \texttt{idealfrobenius(nf, gal, pr)} where \(aut \) must be equal to \texttt{nfgaloispermtobasis(nf, gal)}.

13.1.15 Reducing modulo maximal ideals.

\[
\text{GEN nfmodprinit(GEN nf, GEN pr)}
\]

returns an abstract \texttt{modpr} structure, attached to reduction modulo the maximal ideal \(pr \), in \texttt{idealprimedec} format. From this data we can quickly project any \(pr_integral \) number field element to the residue field.

\[
\text{GEN modpr_get_pr(GEN x)}
\]

returns the \(pr \) component from a \texttt{modpr} structure.

\[
\text{GEN modpr_get_p(GEN x)}
\]

returns the \(p \) component from a \texttt{modpr} structure (underlying rational prime).

\[
\text{GEN modpr_get_T(GEN x)}
\]

returns the \(T \) component from a \texttt{modpr} structure: either \texttt{NULL} (prime of degree 1) or an irreducible \texttt{FpX} defining the residue field over \(F_p \).

In library mode, it is often easier to use directly
GEN nf_to_Fq_init(GEN nf, GEN *ppr, GEN *pT, GEN *pp) concrete version of nfmodprinit: nf and *ppr are the inputs, the return value is a modpr and *ppr, *pT and *pp are set as side effects.

The input *ppr is either a maximal ideal or already a modpr (in which case it is replaced by the underlying maximal ideal). The residue field is realized as \(\mathbb{F}_p[X]/(T) \) for some monic \(T \in \mathbb{F}_p[X] \), and we set *pT to T and *pp to p. Set \(T = \text{NULL} \) if the prime has degree 1 and the residue field is \(\mathbb{F}_p \).

In short, this receives (or initializes) a modpr structure, and extracts from it \(T, p \) and \(p \).

GEN nf_to_Fq(GEN nf, GEN x, GEN modpr) returns an \(\mathbb{F}_q \) congruent to \(x \) modulo the maximal ideal attached to modpr. The output is canonical: all elements in a given residue class are represented by the same \(\mathbb{F}_q \).

GEN Fq_to_nf(GEN x, GEN modpr) returns an \(\mathbb{N}f \) element lifting the residue field element \(x \), either a t_INT or an algebraic integer in algtobasis format.

GEN modpr_genFq(GEN modpr) Returns an \(\mathbb{N}f \) element whose image by nf_to_Fq is \(X \ (\text{mod} \ T) \), if \(\deg T > 1 \), else 1.

GEN zkmodprinit(GEN nf, GEN pr) as nfmodprinit, but we assume we will only reduce algebraic integers, hence do not initialize data allowing to remove denominators. More precisely, we can in fact still handle an \(x \) whose rational denominator is not 0 in the residue field (i.e. if the valuation of \(x \) is non-negative at all primes dividing \(p \)).

GEN zk_to_Fq_init(GEN nf, GEN *pr, GEN *T, GEN *p) as nf_to_Fq_init, able to reduce only \(p \)-integral elements.

GEN zk_to_Fq(GEN x, GEN modpr) as nf_to_Fq, for a \(p \)-integral \(x \).

GEN nfM_to_FqM(GEN M, GEN nf, GEN modpr) reduces a matrix of \(\mathbb{N}f \) elements to the residue field; returns an \(\mathbb{F}_q \).

GEN FqM_to_nfM(GEN M, GEN modpr) lifts an \(\mathbb{F}_q \) to a matrix of \(\mathbb{N}f \) elements.

GEN nfV_to_FqV(GEN A, GEN nf, GEN modpr) reduces a vector of \(\mathbb{N}f \) elements to the residue field; returns an \(\mathbb{F}_q \) with the same type as \(A \) (t_VEC or t_COL).

GEN FqV_to_nfV(GEN A, GEN modpr) lifts an \(\mathbb{F}_q \) to a vector of \(\mathbb{N}f \) elements (same type as \(A \)).

GEN nfX_to_FqX(GEN Q, GEN nf, GEN modpr) reduces a polynomial with \(\mathbb{N}f \) coefficients to the residue field; returns an \(\mathbb{F}_q \).

GEN FqX_to_nfX(GEN Q, GEN modpr) lifts an \(\mathbb{F}_q \) to a polynomial with coefficients in \(\mathbb{N}f \).

The following functions are technical and avoid computing a true \(\text{nfmodpr} \):

GEN pr_basis_perm(GEN nf, GEN pr) given a true \(\mathbb{N}f \) structure and a prime ideal \(\text{pr} \) above \(p \), return as a t_VECSMALL the \(f(p/p) \) indices \(i \) such that the \(\mathbb{N}f.zk[i] \mod p \) form an \(\mathbb{F}_p \)-basis of the residue field.

GEN QXQV_to_FpM(GEN v, GEN T, GEN p) let \(p \) be a positive integer, \(v \) be a vector of \(n \) polynomials with rational coefficients whose denominators are coprime to \(p \), and \(T \) be a \(\mathbb{Y}x \) (preferably monic) of degree \(d \) whose leading coefficient is coprime to \(p \). Return the \(d \times n \mathbb{F}_p \) whose columns are the \(v[i] \mod T, p \) in the canonical basis \(1, X, \ldots, X^{d-1} \), see \(\text{RgX} \) to \(\text{RgC} \). This is for instance useful when \(v \) contains a \(\mathbb{Z} \)-basis of the maximal order of a number field \(\mathbb{Q}[X]/(P) \), \(p \) is a prime not
dividing the index of P and T is an irreducible factor of $P \mod p$, attached to a maximal ideal p.
left-multiplication by the matrix maps number field elements (in basis form) to the residue field of p.

13.1.16 Valuations.

```c
long nfval(GEN nf, GEN x, GEN P) return \nu_P(x)
```

Unsafe functions. assume that P, Q are prid.

```c
long ZC_nfval(GEN x, GEN P) returns \nu_P(x), assuming $x$ is a ZC, representing a non-zero algebraic integer.
long ZC_nfvalrem(GEN x, GEN P, GEN *newx) returns $v = \nu_P(x)$, assuming $x$ is a ZC, representing a non-zero algebraic integer, and sets *newx to $x\tau^v$ which is an algebraic integer coprime to $p$.

int ZC_prdvd(GEN x, GEN P) returns 1 is $P$ divides $x$ and 0 otherwise. Assumes that $x$ is a ZC, representing an algebraic integer. Faster than computing $\nu_P(x)$.
int pr_equal(GEN P, GEN Q) returns 1 is $P$ and $Q$ represent the same maximal ideal: they must lie above the same $p$ and share the same $e, f$ invariants, but the $p$-uniformizer and $\tau$ element may differ. Returns 0 otherwise.

13.1.17 Signatures.

“Signs” of the real embeddings of number field element are represented in additive notation, using the standard identification $(\mathbb{Z}/2\mathbb{Z}, +) \to ([1, -1], \times)$, $s \mapsto (-1)^s$.

With respect to a fixed nf structure, a selection of real places (a divisor at infinity) is normally given as a t_VECSMALL of indices of the roots nf.roots of the defining polynomial for the number field. For compatibility reasons, in particular under GP, the (obsolete) vec01 form is also accepted: a t_VEC with gen 0 or gen 1 entries.

The following internal functions go back and forth between the two representations for the Archimedean part of divisors (GP: 0/1 vectors, library: list of indices):

```c
GEN vec01_to_indices(GEN v) given a t_VEC v with t_INT entries return as a t_VECSMALL the list of indices i such that $v[i] \neq 0$. (Typically used with 0,1-vectors but not necessarily so.) If v is already a t_VECSMALL, return it: not suitable for gerepile in this case.
GEN vecsmall01_to_indices(GEN v) as vec01_to_indices(zv_to_ZV(v));
GEN indices_to_vec01(GEN p, long n) return the 0/1 vector of length n with ones exactly at the positions $p[1], p[2], \ldots$
GEN nfembed(GEN nf, GEN x, long k) returns a floating point approximation of the k-th embedding of x (attached to the k-th complex root in nf.roots).
GEN nfsign(GEN nf, GEN x) x being a number field element and nf any form of number field, return the 0−1-vector giving the signs of the r_1 real embeddings of x, as a t_VECSMALL. Linear algebra functions like Flv_add_inplace then allow keeping track of signs in series of multiplications.

If x is a t_VEC of number field elements, return the matrix whose columns are the signs of the $x[i]$. 284
GEN nfsign_arch(GEN nf, GEN x, GEN arch) arch being a list of distinct real places, either in vec01 (t_VEC with gen_0 or gen_1 entries) or indices (t_VECSMALL) form (see vec01_to_indices), returns the signs of \(x \) at the corresponding places. This is the low-level function underlying nfsign.

int nfcHECKsigns(GEN nf, GEN x, GEN pl) \(pl \) is a t_VECSMALL with \(|r_1| \) components, all of which are in \([-1,0,1]\). Return 1 if \(\sigma_i(x)pl[i] \geq 0 \) for all \(i \), and 0 otherwise.

GEN nfsign_units(GEN bnf, GEN archp, int add_tu) archp being a divisor at infinity in indices form (or NULL for the divisor including all real places), return the signs at archp of a system of fundamental units for the field, in the same order as bnf.tufu if add_tu is set; and in the same order as bnf.fu otherwise.

GEN nfsign_from_logarch(GEN L, GEN invpi, GEN archp) given \(L \) the vector of the log \(\sigma(x) \), where \(\sigma \) runs through the (real or complex) embeddings of some number field, invpi being a floating point approximation to \(1/\pi \), and archp being a divisor at infinity in indices form, return the signs of \(x \) at the corresponding places. This is the low-level function underlying nfsign_units; the latter is actually a trivial wrapper bnf structures include the log \(\sigma(x) \) for a system of fundamental units of the field.

GEN set_sign_mod_divisor(GEN nf, GEN x, GEN y, GEN sarch) let \(f = f_0f_\infty \) be a divisor, let sarch be the output of nfarchstar(nf, f0, finf), let \(x \) encode a vector of signs at the places of \(f_\infty \) (see below), and let \(y \) be a non-zero number field element. Returns \(z \) congruent to \(y \mod f_0 \) (integral if \(y \) is) such that \(z \) and \(x \) have the same signs at \(f_\infty \).

The following formats are supported for \(x \): a \([0,1]\)-vector of signs as a t_VECSMALL (0 for positive, 1 for negative); NULL for a totally positive element (only 0s); a number field element which is replaced by its signature at \(f_\infty \).

GEN nfarchstar(GEN nf, GEN f0, GEN finf) for a divisor \(f = f_0f_\infty \) represented by the integral ideal \(f_0 \) in HNF and the \(finf \) in indices form, returns \((\mathbb{Z}_K/f_\infty)^* \) in a form suitable for computations mod \(f \). See set_sign_mod_divisor.

GEN idealprincipalunits(GEN nf, GEN pr, long e) returns the multiplicative group \((1 + pr)/(1 + pr^e)\) as an abelian group. Faster than idealstar when the norm of \(pr \) is large, since it avoids (useless) work in the multiplicative group of the residue field.

13.1.18 Maximal order and discriminant, conversion to \(nf \) structure.

A number field \(K = \mathbb{Q}[X]/(T) \) is defined by a monic \(T \in \mathbb{Z}[X] \). The low-level function computing a maximal order is

void nfmaxord(nfmaxord_t *S, GEN T0, long flag), where the polynomial \(T_0 \) is squarefree with integer coefficients. Let \(K \) be the étale algebra \(\mathbb{Q}[X]/(T_0) \) and let \(T = ZX_Q.normalize(T_0) \), i.e. \(T = CT_0(X/L) \) is monic and integral for some \(C,Q \in \mathbb{Q} \).

The structure nfmaxord_t is initialized by the call; it has the following fields:

GEN T0, T, dT, dk; /* T0, T, discriminants of T and K */
GEN unscale; /* the integer L */
GEN index; /* index of power basis in maximal order */
GEN dTP, dTE; /* factorization of |dT|, primes / exponents */
GEN dKP, dKE; /* factorization of |dk|, primes / exponents */
GEN basis; /* Z-basis for maximal order of Q[X]/(T) */
The exponent vectors are \(t_{VECSMALL} \). The primes in \(dTP \) and \(dKP \) are pseudoprimes, not proven primes. We recommend restricting to \(T = T_0 \), i.e. either to pass the input polynomial through \(ZX_Q_normalize \) before the call, or to forget about \(T_0 \) and go on with the polynomial \(T \); otherwise \(\text{unscale} \neq 1 \), all data is expressed in terms of \(T \neq T_0 \), and needs to be converted to \(T_0 \). For instance to convert the basis to \(\mathbb{Q}[X]/(T_0) \):

\[
\text{RgXV_unscale}(S\text{.basis}, S\text{.unscale})
\]

Instead of passing \(T \) (monic \(ZX \)), one can use the format \([T, listP]\) as in \(\text{nfbasis} \) or \(\text{nfiniit} \), which computes an order which is maximal at a set of primes, but need not be the maximal order.

The \textbf{flag} is an or-ed combination of the binary flags, both of them deprecated:

- \textbf{nf_PARTIALFACT}: do not try to fully factor \(dT \) and only look for primes less than \(\text{primelimit} \). In that case, the elements in \(dTP \) and \(dKP \) need not all be primes. But the resulting \(dK \), \text{index} and \text{basis} are correct provided there exists no prime \(p > \text{primelimit} \) such that \(p^2 \) divides the field discriminant \(dK \). This flag is deprecated: the \([T, listP]\) format is safer and more flexible.

- \textbf{nf_ROUND2}: this flag is deprecated and now ignored.

\begin{verbatim}
void nfiniit_basic(nfmaxord_t *S, GEN T0) \text{ a wrapper around nfmaxord} \text{ (without the deprecated flag)} that also accepts number field structures (\text{nf, bnf, ...}) for \(T0 \).

GEN nfmaxord_to_nf(nfmaxord_t *S, GEN ro, long prec) \text{ convert an nfmaxord_t to an nf structure at precision \(prec \), where \text{ro} is \text{NULL}. The argument \text{ro} may also be set to a vector with \(r_1 + r_2 \) components containing the roots of \(S\rightarrow T \) suitably ordered, i.e. first \(r_1 \) \text{t_REAL} roots, then \(r_2 \) \text{t_COMPLEX} representing the conjugate pairs, but this is strongly discouraged: the format is error-prone, and it is hard to compute the roots to the right accuracy in order to achieve \text{prec} accuracy for the \text{nf}. This function uses the integer basis \(S\rightarrow\text{basis} \) as is, without performing LLL-reduction. Unless the basis is already known to be reduced, use rather the following higher-level function:}

GEN nfiniit_complete(nfmaxord_t *S, long flag, long prec) \text{ convert an nfmaxord_t to an nf structure at precision \(prec \). The \text{flag} has the same meaning as in \text{nfiniit_all}. If \(S\rightarrow\text{basis} \) is known to be reduced, it will be faster to use nfmaxord_to_nf.}

GEN indexpartial(GEN T, GEN dT) \text{ a monic separable \(ZX \), \(dT \) is either \text{NULL} (no information) or a multiple of the discriminant of \(T \). Let \(K = \mathbb{Q}[X]/(T) \) and \text{Z}\(\text{K} \) its maximal order. Returns a multiple of the exponent of the quotient group \(\text{Z}\text{K}/(\mathbb{Z}[X]/(T)) \). In other word, a \text{denominator} \(d \) such that \(dx \in \mathbb{Z}[X]/(T) \) for all \(x \in \text{Z}\text{K} \).}

GEN FpX_gcd_check(GEN x, GEN y, GEN D) \text{ let \(x \) and \(y \) be two coprime polynomials with integer coefficients and let \(D \) be a factor of the resultant of \(x \) and \(y \); try to factor \(D \) by running the Euclidean algorithm on \(x \) and \(y \) modulo \(D \). This returns \text{NULL} or a non trivial factor of \(D \). This is the low-level function underlying \text{poldisc_factors} (applied to \(x \), \(ZX_deriv(x) \) and the discriminant of \(x \)). It succeeds when \(D \) has at least two prime divisors \(p \) and \(q \) such that one sub-resultant of \(x \) and \(y \) is divisible by \(p \) but not by \(q \).}
\end{verbatim}

286
13.1.19 Computing in the class group.

We compute with arbitrary ideal representatives (in any of the various formats seen above),
and call

\[\text{GEN bnfisprincipal0(GEN bnf, GEN x, long flag)} \]

The \text{bnf} structure already contains information about the class group in the form \(\oplus_{i=1}^{n} (\mathbb{Z}/d_i\mathbb{Z})g_i \), for canonical integers \(d_i \) (with \(d_n | \ldots | d_1 \) all \(> 1 \)) and essentially random generators \(g_i \), which are ideals in HNF. We normally do not need the value of the \(g_i \), only that they are fixed once and for all and that any (non-zero) fractional ideal \(x \) can be expressed uniquely as \(x = (t) \prod_{i=1}^{n} g_i^{e_i} \), where \(0 \leq e_i < d_i \), and \((t) \) is some principal ideal. Computing \(e \) is straightforward, but \(t \) may be very expensive to obtain explicitly. The routine returns (possibly partial) information about the pair \([e,t]\), depending on \text{flag}, which is an or-ed combination of the following symbolic flags:

- **nf_GEN** tries to compute \(t \). Returns \([e,t]\), with \(t \) an empty vector if the computation failed. This flag is normally useless in non-trivial situations since the next two serve analogous purposes in more efficient ways.

- **nf_GENMAT** tries to compute \(t \) in factored form, which is much more efficient than nf_GEN if the class group is moderately large; imagine a small ideal \(x = (t)g^{10000} \); the norm of \(t \) has 10000 as many digits as the norm of \(g \); do we want to see it as a vector of huge meaningless integers? The idea is to compute \(e \) first, which is easy, then compute \((t) = x \prod g_i^{-e_i} \) using successive \text{idealmulred}, where the ideal reduction extracts small principal ideals along the way, eventually raised to large powers because of the binary exponentiation technique; the point is to keep this principal part in factored \text{unexpanded} form. Returns \([e,t]\), with \(t \) an empty vector if the computation failed; this should be exceedingly rare, unless the initial accuracy to which \text{bnf} was computed was ridiculously low (and then \text{bnfinit} should not have succeeded either). Setting/unsetting \text{nf_GEN} has no effect when this flag is set.

- **nf_GEN_IF_PRINCIPAL** tries to compute \(t \) only if the ideal is principal \((e = 0)\). Returns \text{gen_0} if the ideal is not principal. Setting/unsetting \text{nf_GEN} has no effect when this flag is set, but setting/unsetting \text{nf_GENMAT} is possible.

- **nf_FORCE** in the above, insist on computing \(t \), even if it requires recomputing a \text{bnf} from scratch. This is a last resort, and normally the accuracy of a \text{bnf} can be increased without trouble, but it may be that some algebraic information simply cannot be recovered from what we have: see \text{bnfneuprec}. It should be very rare, though.

In simple cases where you do not care about \(t \), you may use

\[\text{GEN isprincipal(GEN bnf, GEN x)} \]

which is a shortcut for \text{bnfisprincipal0(bnf, x, 0)}.

The following low-level functions are often more useful:

- **GEN isprincipalfact(GEN bnf, GEN C, GEN L, GEN f, long flag)** is about the same as \text{bnfisprincipal0} applied to \(C \prod L[i]/f[i] \), where the \(L[i] \) are ideals, the \(f[i] \) integers and \(C \) is either an ideal or NULL (omitted). Make sure to include \text{nf_GENMAT} in \text{flag}!

- **GEN isprincipalfact_or_fail(GEN bnf, GEN C, GEN L, GEN f)** is for delicate cases, where we must be more clever than nf_FORCE (it is used when trying to increase the accuracy of a \text{bnf}, for instance). If performs

\[\text{isprincipalfact(bnf,C, L, f, nf_GENMAT)} \]

but if it fails to compute \(t \), it just returns a \text{t_INT}, which is the estimated precision (in words, as usual) that would have been sufficient to complete the computation. The point is that nf_FORCE
does exactly this internally, but goes on increasing the accuracy of the bnf, then discarding it, which is a major inefficiency if you intend to compute lots of discrete logs and have selected a precision which is just too low. (It is sometimes not so bad since most of the really expensive data is cached in bnf anyway, if all goes well.) With this function, the caller may decide to increase the accuracy using bnfnewprec (and keep the resulting bnf!), or avoid the computation altogether. In any case the decision can be taken at the place where it is most likely to be correct.

void bnftestprimes(GEN bnf, GEN B) is an ingredient to certify unconditionally a bnf computed assuming GRH, cf. bnf certify. Running this function successfully proves that the classes of all prime ideals of norm ≤ B belong to the subgroup of the class group generated by the factorbase used to compute the bnf (equal to the class group under GRH). If the condition is not true, then (GRH is false and) the function will run forever.

If it is known that primes of norm less than B generate the class group (through variants of Minkowski’s convex body or Zimmert’s twin classes theorems), then the true class group is proven to be a quotient of bnf.clgp.

13.1.20 Floating point embeddings, the T_2 quadratic form.

We assume the nf is a true nf structure, attached to a number field K of degree n and signature (r_1, r_2). We saw that

\[
\text{GEN nf_get_M(GEN nf) returns the $(r_1 + r_2) \times n$ matrix M giving the embeddings of K, so that if v is an n-th dimensional t_COL representing the element $\sum_{i=1}^{n} v[i] w_i$ of K, then $\text{RgM}_\text{RgC}_\text{mul}(M, v)$ represents the embeddings of v. Its first r_1 components are real numbers (t_INT, t_FRAC or t_REAL, usually the latter), and the last r_2 are complex numbers (usually of t_COMPLEX, but not necessarily for embeddings of rational numbers).}
\]

\[
\text{GEN embed_T2(GEN x, long r1) assuming x is the vector of floating point embeddings of some algebraic number v, i.e.}
\]

\[
x = \text{RgM}_\text{RgC}_\text{mul}(\text{nf_get_M(nf)}, \text{algtobasis(nf,v)});
\]

returns $T_2(v)$. If the floating point embeddings themselves are not needed, but only the values of T_2, it is more efficient to restrict to real arithmetic and use

\[
\text{gnorml2(RgM}_\text{RgC}_\text{mul}(\text{nf_get_G(nf)}, \text{algtobasis(nf,v)}));
\]

GEN embednorm_T2(GEN x, long r1) analogous to embed_T2, applied to the gnorm of the floating point embeddings. Assuming that

\[
x = \text{gnorm(RgM}_\text{RgC}_\text{mul}(\text{nf_get_M(nf)}, \text{algtobasis(nf,v)}))
\]

returns $T_2(v)$.

GEN embed_roots(GEN z, long r1) given a vector z of $r_1 + r_2$ complex embeddings of the algebraic number v, return the $r_1 + 2r_2$ roots of its characteristic polynomial. Shallow function.

GEN embed_disc(GEN z, long r1, long prec) given a vector z of $r_1 + r_2$ complex embeddings of the algebraic number v, return a floating point approximation of the discriminant of its characteristic polynomial as a t_REAL of precision prec.

GEN embed_norm(GEN x, long r1) given a vector z of $r_1 + r_2$ complex embeddings of the algebraic number v, return (a floating point approximation of) the norm of v. 288
13.1.21 Ideal reduction, low level.

In the following routines \(nf\) is a true \(nf\), attached to a number field \(K\) of degree \(n\):

\[\text{GEN nf_get_Gtwist(GEN nf, GEN v)} \]
assuming \(v\) is a \text{t_VECSMALL} with \(r_1 + r_2\) entries, let

\[||x||^2_v = \sum_{i=1}^{r_1+r_2} 2^v_i \varepsilon_i |\sigma_i(x)|^2, \]

where as usual the \(\sigma_i\) are the (real and) complex embeddings and \(\varepsilon_i = 1\), resp. 2, for a real, resp. complex place. This is a twisted variant of the \(T_2\) quadratic form, the standard Euclidean form on \(K \otimes \mathbb{R}\). In applications, only the relative size of the \(v_i\) will matter.

Let \(G_v \in M_n(\mathbb{R})\) be a square matrix such that if \(x \in K\) is represented by the column vector \(X\) in terms of the fixed \(\mathbb{Z}\)-basis of \(\mathbb{Z}_K\) in \(nf\), then

\[||x||^2_v = ^t(G_v X) \cdot G_v X. \]

(This is a kind of Cholesky decomposition.) This function returns a rescaled copy of \(G_v\), rounded to nearest integers, specifically \text{RM_round_maxrank}(G_v). Suitable for \text{gerepileupto}, but does not collect garbage. For convenience, also allow \(v = \text{NULL}\) (\text{nf_get_roundG}) and \(v\) a \text{t_MAT} as output from the function itself: in both these cases, shallow function.

\[\text{GEN nf_get_Gtwist1(GEN nf, long i)} \]
Simple special case. Returns the twisted \(G\) matrix attached to the vector \(v\) whose entries are all 0 except the \(i\)-th one, which is equal to 10.

\[\text{GEN idealpseudomin(GEN x, GEN G)} \]
Let \(x, G\) be two \(\mathbb{Z}\)s, such that the product \(Gx\) is well-defined. This returns a “small” integral linear combinations of the columns of \(x\), given by the LLL-algorithm applied to the lattice \(Gx\). Suitable for \text{gerepileupto}, but does not collect garbage.

\[\text{GEN idealpseudomin_nonscalar(GEN x, GEN G)} \]
As \text{idealpseudomin}, but we insist of returning a non-scalar \(a\) (\text{ZV isscalar} is false), if the dimension of \(x\) is \(> 1\).

In the interpretation where \(x\) defines an integral ideal on a fixed \(\mathbb{Z}_K\) basis whose first element is 1, this means that \(a\) is not rational.

\[\text{GEN idealpseudored(GEN x, GEN G)} \]
As \text{idealpseudomin} but we return the full reduced \(\mathbb{Z}\)-basis of \(x\) as a \text{t_MAT} instead of a single vector.

\[\text{GEN idealred_elt(GEN nf, GEN x)} \]
shortcut for \(\text{idealpseudomin}(x, \text{nf_get_roundG(nf)})\)
13.1.22 Ideal reduction, high level.

Given an ideal x this means finding a "simpler" ideal in the same ideal class. The public GP function is of course available

\[\text{GEN idealred0(GEN nf, GEN x, GEN v)} \]

finds an $a \in K^*$ such that $(a)x$ is integral of small norm and returns it, as an ideal in HNF. What "small" means depends on the parameter v, see the GP description. More precisely, a is returned by \text{idealpseudomin}((x_Z)x_Z^v - 1, G)$ divided by x_Z, where $x_Z = (x \cap Z)$ and where G is $nf\text{.GetGtwist}(nf, v)$ for $v \neq \text{NULL}$ and $nf\text{.GetRoundG}(nf)$ otherwise.

Usually one sets $v = \text{NULL}$ to obtain an element of small T_2 norm in x:

\[\text{GEN idealred(GEN nf, GEN x)} \]

is a shortcut for $\text{idealred0(nf, x, NULL)}$.

The function \text{idealred} remains complicated to use: in order not to lose information x must be an extended ideal, otherwise the value of a is lost. There is a subtlety here: the principal ideal (a) is easy to recover, but a itself is an instance of the principal ideal problem which is very difficult given only an nf (once a bnf structure is available, \text{bmfisprincipal0} will recover it).

\[\text{GEN idealmoddivisor(GEN bnr, GEN x)} \]

A proof-of-concept implementation, useless in practice. If bnr is attached to some modulus f, returns a "small" ideal in the same class as x in the ray class group modulo f. The reason why this is useless is that using extended ideals with principal part in a computation, there is a simple way to reduce them: simply reduce the generator of the principal part in $(Z_K/f)^*$.

\[\text{GEN famat_to_nf_moddivisor(GEN nf, GEN g, GEN e, GEN bid)} \]

given a true nf attached to a number field K, a bid structure attached to a modulus f, and an algebraic number in factored form $\prod g[i]^{\nu[i]}$, such that $(g[i], f) = 1$ for all i, returns a small element in Z_K congruent to it mod f. Note that if f contains places at infinity, this includes sign conditions at the specified places.

A simpler case when the conductor has no place at infinity:

\[\text{GEN famat_to_nf_modideal_coprime(GEN nf, GEN g, GEN e, GEN f, GEN expo)} \]

as above except that the ideal f is now integral in HNF (no need for a full bid), and we pass the exponent of the group $(Z_K/f)^*$ as $expo$; any multiple will also do, at the expense of efficiency. Of course if a bid for f is available, if is easy to extract f and the exact value of $expo$ from it (the latter is the first elementary divisor in the group structure). A useful trick: if you set $expo$ to any positive integer, the result is correct up to $expo$-th powers, hence exact if $expo$ is a multiple of the exponent; this is useful when trying to decide whether an element is a square in a residue field for instance! (take $expo = 2$).

\[\text{GEN nf_to_Fp_coprime(GEN nf, GEN x, GEN modpr)} \]

this low-level function is variant of \text{famat_to_nf_modideal_coprime}: nf is a true nf structure, $modpr$ is from \text{zkmodprint} attached to a prime of degree 1 above the prime number p, and x is either a number field element or a \text{famat} factorization matrix. We finally assume that no component of x has a denominator p.

What to do when the $g[i]$ are not coprime to f, but only $\prod g[i]^{\nu[i]}$ is? Then the situation is more complicated, and we advise to solve it one prime divisor of f at a time. Let v the valuation attached to a maximal ideal pr and assume $v(f) = k > 0$:

\[\text{GEN famat_make_coprime(GEN nf, GEN g, GEN e, GEN pr, GEN prk, GEN expo)} \]

returns an element in $(Z_K/pr^k)^*$ congruent to the product $\prod g[i]^{\nu[i]}$, assumed to be globally coprime to f. As above, $expo$ is any positive multiple of the exponent of $(Z_K/pr^k)^*$, for instance $(Nv - 1)p^{k-1}$,
if \(p \) is the underlying rational prime. You may use other values of \(\text{expo} \) (see the useful trick in \texttt{famat_to_nf_modideal_coprime}).

\texttt{GEN Idealstarprk(GEN nf, GEN pr, long k, long flag)} same as \texttt{Idealstar} for \(I = \text{pr}^k \)

13.1.23 Class field theory

Under GP, a class-field theoretic description of a number field is given by a triple \(A, B, C \), where the defining set \([A, B, C]\) can have any of the following forms: \([\text{bnr}], [\text{bnr}, \text{subgroup}], [\text{bnf}, \text{modulus}], [\text{bnf}, \text{modulus}, \text{subgroup}]\). You can still use directly all of (libpari’s routines implementing) GP’s functions as described in Chapter 3, but they are often awkward in the context of libpari programming. In particular, it does not make much sense to always input a triple \(A, B, C \) because of the fringe \([\text{bnf}, \text{modulus}, \text{subgroup}]\). The first routine to call, is thus

\texttt{GEN Buchray(GEN bnf, GEN mod, long flag)} initializes a \texttt{bnr} structure from \texttt{bnf} and modulus \texttt{mod}.

\texttt{flag} is an or-ed combination of \texttt{nf_GEN} (include generators) and \texttt{nf_INIT} (if omitted, do not return a \texttt{bnr}, only the ray class group as an abelian group). In fact, a single value of \texttt{flag} actually makes sense: \texttt{nf_GEN | nf_INIT} to initialize a proper \texttt{bnr}: removing \texttt{nf_GEN} saves very little time, but the corresponding crippled \texttt{bnr} structure will raise errors in most class field theoretic functions. Possibly also 0 to quickly compute the ray class group structure; \texttt{bnrclassno} is faster if we only need the order of the ray class group.

Now we have a proper \texttt{bnr} encoding a \texttt{bnf} and a modulus, we no longer need the \([\text{bnf}, \text{modulus}]\) and \([\text{bnf}, \text{modulus}, \text{subgroup}]\) forms, which would internally call \texttt{Buchray} anyway. Recall that a subgroup \(H \) is given by a matrix in HNF, whose column express generators of \(H \) on the fixed generators of the ray class group that stored in our \texttt{bnr}. You may also code the trivial subgroup by \texttt{NULL}.

\texttt{GEN bnrconductor(GEN bnr, GEN H, long flag)} see the documentation of the GP function.

\texttt{GEN bnrconductor_i(GEN bnr, GEN H, long flag)} shallow variant of \texttt{bnrconductor}. Useful when \texttt{flag} = 2 and the conductor is the \texttt{bnr} modulus: avoids copying the \texttt{bnr} (wasteful).

\texttt{long bnriscconductor(GEN bnr, GEN H)} returns 1 is the class field defined by the subgroup \(H \) (of the ray class group mod \(f \) coded in \texttt{bnr}) has conductor \(f \). Returns 0 otherwise.

\texttt{GEN bnrchar_primitive(GEN bnr, GEN chi, GEN bnrc)} Given a normalized character \(\chi = [d, c] \) on \texttt{bnr.clgp} (see \texttt{char_normalize}) of conductor \texttt{bnrc.mod}, compute the primitive character \(\chi_\text{chic} \) on \texttt{bnrc.clgp} equivalent to \(\chi \), given as a normalized character \([D, C] : \chi_\text{chic}(\texttt{bnr}.\texttt{gen}[i]) = \zeta_D^{|i|} \), where \(D \) is minimal. It is easier to use \texttt{bnrconductor_i(bnr,chi,2)}, but the latter recomputes \texttt{bnrc} for each new character.

\texttt{GEN bnrdisc(GEN bnr, GEN H, long flag)} returns the discriminant and signature of the class field defined by \texttt{bnr} and \(H \). See the description of the GP function for details. \texttt{flag} is an or-ed combination of the flags \texttt{rnf_REL} (output relative data) and \texttt{rnf_COND} (return 0 unless the modulus is the conductor).

\texttt{GEN bnrssurjection(GEN BNR, GEN bnr)} \texttt{BNR} and \texttt{bnr} defined over the same field \(K \), for moduli \(F \) and \(f \) with \(F \mid f \), returns the matrix of the canonical surjection \(\text{Cl}_K(F) \to \text{Cl}_K(f) \) (giving the image of the fixed ray class group generators of \texttt{BNR} in terms of the ones in \texttt{bnr}).

\texttt{GEN ABC_to_bnr(GEN A, GEN B, GEN C, GEN *H, int addgen)} This is a quick conversion function designed to go from the too general (inefficient) \(A, B, C \) form to the preferred \texttt{bnr}, \(H \) form for class fields. Given \(A, B, C \) as explained above (omitted entries coded by \texttt{NULL}), return the attached \texttt{bnr}, and set \(H \) to the attached subgroup. If \texttt{addgen} is 1, make sure that if the \texttt{bnr} needed to be computed, then it contains generators.

291

GEN nfgwkummer(GEN nf, GEN Lpr, GEN Ld, GEN pl, long var) low-level version of nfgrunwaldwang, assuming that nf contains suitable roots of unity, and directly using Kummer theory to construct the extension.

GEN bngwgeneric(GEN bnf, GEN Lpr, GEN Ld, GEN pl, long var) low-level version of nfgrunwaldwang, assuming that bnf is a bnfinf structure, and calling rnfkummer to construct the extension.

13.1.25 Relative equations, Galois conjugates.

GEN nfissquarefree(GEN nf, GEN P) given P a polynomial with coefficients in nf, return 1 is P is squarefree, and 0 otherwise. If is allowed (though less efficient) to replace nf by a monic ZX defining the field.

GEN rnfequationall(GEN A, GEN B, long *pk, GEN *pLPRS) A is either an nf type (corresponding to a number field K) or an irreducible ZX defining a number field K. B is an irreducible polynomial in K[X]. Returns an absolute equation C (over Q) for the number field K[X]/(B). C is the characteristic polynomial of b + ka for some roots a of A and b of B, and k is a small rational integer. Set *pk to k.

If pLPRS is not NULL set it to [h0, h1], hi ∈ Q[X], where h0 + h1 Y is the last non-constant polynomial in the pseudo-Euclidean remainder sequence attached to A(Y) and B(X − kY), leading to C = ResY(A(Y), B(Y − kX)). In particular a := −h0/h1 is a root of A in Q[X]/(C), and X − ka is a root of B.

GEN nf_rnfeq(GEN A, GEN B) wrapper around rnfequationall to allow mapping K → L (eltup) and converting elements of L between absolute and relative form (reltoabs, abstorel), without computing a full rnf structure, which is useful if the relative integral basis is not required. In fact, since A may be a t_POL or an nf, the integral basis of the base field is not needed either. The return value is the same as rnf_get_map. Shallow function.

GEN nf_rnfeqsimple(GEN nf, GEN relpol) as nf_rnfeq except some fields are omitted, so that only the abstorel operation is supported. Shallow function.

GEN eltabstorel(GEN rnfeq, GEN x) rnfeq is as given by rnf_get_map (but in this case nfeltabstorel is more robust), nf_rnfeq or nf_rnfeqsimple, return x as an element of L/K, i.e. as a t_POLMOD with t_POLMOD coefficients. Shallow function.

GEN eltabstorel_lift(GEN rnfeq, GEN x) same as eltabstorel, except that x is returned in partially lifted form, i.e. as a t_POL with t_POLMOD coefficients.

GEN eltreltoabs(GEN rnfeq, GEN x) rnfeq is as given by rnf_get_map (but in this case nfeltreltoabs is more robust) or nf_rnfeq, return x in absolute form.

GEN nf_nfzk(GEN nf, GEN rnfeq) rnfeq as given by nf_rnfeq, nf a true nf structure, return a suitable representation of nf.zk allowing quick computation of the map K → L by the function nfeltup, without computing a full rnf structure, which is useful if the relative integral basis is not required. The computed value is the same as in rnf_get_nfzk. Shallow function.

GEN nfeltup(GEN nf, GEN x, GEN zknf) zknf and is initialized by nf_nfzk or rnf_get_nfzk (but in this case nfeltup is more robust); nf is a true nf structure for K, returns x ∈ K as a (lifted) element of L, in absolute form.

292
GEN rnfdisc_factored(GEN nf, GEN pol, GEN *pd) variant of rnfdisc returning the relative discriminant ideal factorization, and setting *pd to the discriminant as an element in $K^*/(K^*)^2$. Shallow function.

GEN Rg_nffix(const char *f, GEN T, GEN c, int lift) given a ZX T and a “coefficient” c supposedly belonging to $Q[y]/(T)$, check whether this is a the case and return a cleaned up version of c. The string f is the calling function name, used to report errors.

This means that c must be one of t_INT, t_FRAC, t_POL in the variable y with rational coefficients, or t_POLMOD modulo T which lift to a rational t_POL as above. The cleanup consists in the following improvements:

- t_POL coefficients are reduced modulo T.
- t_POL and t_POLMOD belonging to Q are converted to rationals, t_INT or t_FRAC.
- if lift is non-zero, convert t_POLMOD to t_POL, and otherwise convert t_POL to t_POLMODs modulo T.

GEN RgX_nffix(const char *f, GEN T, GEN P, int lift) check whether P is a polynomials with coefficients in the number field defined by the absolute equation $T(y) = 0$, where T is a ZX and returns a cleaned up version of P. This checks whether P is indeed a t_POL with variable compatible with coefficients in $Q[y]/(T)$, i.e.

\[\text{varncmp(varn(P), varn(T)) < 0} \]

and applies Rg_nffix to each coefficient.

GEN RgV_nffix(const char *f, GEN T, GEN P, int lift) as RgX_nffix for a vector of coefficients.

GEN polmod_nffix(const char *f, GEN rnf, GEN x, int lift) given a t_POLMOD x supposedly defining an element of rnf, check this and perform Rg_nffix cleanups.

GEN polmod_nffix2(const char *f, GEN T, GEN P, GEN x, int lift) as in polmod_nffix, where the relative extension is explicitly defined as $L = (Q[y]/(T))[x]/(P)$, instead of by an rnf structure.

long numberofconjugates(GEN T, long pinit) returns a quick multiple for the number of Q-automorphism of the (integral, monic) t_POL T, from modular factorizations, starting from prime pinit (you can set it to 2). This upper bounds often coincides with the actual number of conjugates. Of course, you should use nfgaloisconj to be sure.

GEN nfroots_if_split(GEN *pt, GEN T) let *pt point either to a number field structure or an irreducible ZX, defining a number field K. Given T a monic squarefree polynomial with coefficients in Z_K, return the list of roots of pol in K if the polynomial splits completely, and NULL otherwise. In other words, this checks whether $K[X]/(T)$ is normal over K (hence Galois since T is separable by assumption).

In the case where *pT is a ZX, the function has to compute internally a conditional nf attached to K, whose nf.zk may not define the maximal order Z_K (see nfroots); *pT is then replaced by the conditional nf to avoid losing that information.

293
13.1.26 Cyclotomics units.

GEN nfrootsof1(GEN nf) returns a two-component vector $[w, z]$ where w is the number of roots of unity in the number field nf, and z is a primitive w-th root of unity.

GEN nfcyclotomicunits(GEN nf, GEN zu) where zu is as output by nfrootsof1(nf), return the vector of the cyclotomic units in nf expressed over the integral basis.

13.1.27 Obsolete routines.

Still provided for backward compatibility, but should not be used in new programs. They will eventually disappear.

GEN zidealstar(GEN nf, GEN x) short for Idealstar(nf, x, nf_GEN)
GEN zidealstarinit(GEN nf, GEN x) short for Idealstar(nf, x, nf_INIT)
GEN zidealstarinitgen(GEN nf, GEN x) short for Idealstar(nf, x, nf_GEN|nf_INIT)
GEN buchimag(GEN D, GEN c1, GEN c2, GEN gCO) short for Buchquad(D, gtodouble(c1), gtodouble(c2), /*ignored*/0)
GEN buchreal(GEN D, GEN gsens, GEN c1, GEN c2, GEN RELSUP, long prec) short for Buchquad(D, gtodouble(c1), gtodouble(c2), prec)

The following use a naming scheme which is error-prone and not easily extensible; besides, they compute generators as per nf_GEN and not nf_GENMAT. Don’t use them:

GEN isprincipalforce(GEN bnf, GEN x)
GEN isprincipalgen(GEN bnf, GEN x)
GEN isprincipalgenforce(GEN bnf, GEN x)
GEN isprincipalraygen(GEN bnr, GEN x), use bnrisprincipal.

Variants on polred: use polredbest.

GEN factoredpolred(GEN x, GEN fa)
GEN factoredpolred2(GEN x, GEN fa)
GEN smallpolred(GEN x)
GEN smallpolred2(GEN x), use Polred.
GEN polred0(GEN x, long flag, GEN p)
GEN polredabs(GEN x)
GEN polredabs2(GEN x)
GEN polredabsall(GEN x, long flun)

Superseded by bnrdisclist0:
GEN discrayabslist(GEN bnf, GEN listes)
GEN discrayabslistarch(GEN bnf, GEN arch, long bound)

Superseded by idealappr (flags ignored)
GEN idealappr0(GEN nf, GEN x, long flag)
13.2 Galois extensions of \mathbb{Q}.

This section describes the data structure output by the function `galoisinit`. This will be called a `gal` structure in the following.

13.2.1 Extracting info from a `gal` structure.

The functions below expect a `gal` structure and are shallow. See the documentation of `galoisinit` for the meaning of the member functions.

- `GEN gal_get_pol(GEN gal)` returns `gal.pol`
- `GEN gal_get_p(GEN gal)` returns `gal.p`
- `GEN gal_get_e(GEN gal)` returns the integer e such that $\text{gal.mod} = \text{gal.p}^e$.
- `GEN gal_get_mod(GEN gal)` returns `gal.mod`.
- `GEN gal_get_roots(GEN gal)` returns `gal.roots`.
- `GEN gal_get_group(GEN gal)` returns `gal.group`.
- `GEN gal_get_gen(GEN gal)` returns `gal.gen`.
- `GEN gal_get_orders(GEN gal)` returns `gal.orders`.

13.2.2 Miscellaneous functions.

- `GEN nfgaloispermtobasis(GEN nf, GEN gal)` return the images of the field generator by the automorphisms `gal.orders` expressed on the integral basis `nf.zk`.

- `GEN nfgaloismatrix(GEN nf, GEN s)` returns the \mathbb{Z}-module attached to the automorphism s, seen as a linear operator expressed on the number field integer basis. This allows to use

  ```
  M = nfgaloismatrix(nf, s);
  sx = ZM_ZC_mul(M, x); /* or RgM_RgC_mul(M, x) if x is not integral */
  ```

 instead of

  ```
  sx = nfgaloisapply(nf, s, x);
  ```

for an algebraic integer x.
13.3 Quadratic number fields and quadratic forms.

13.3.1 Checks.

void check_quaddisc(GEN x, long *s, long *mod4, const char *f) checks whether the
GEN x is a quadratic discriminant (t_INT, not a square, congruent to 0, 1 modulo 4), and raise an
exception otherwise. Set *s to the sign of x and *mod4 to x modulo 4 (0 or 1).

void check_quaddisc_real(GEN x, long *mod4, const char *f) as check_quaddisc; check
that signe(x) is positive.

void check_quaddisc_imag(GEN x, long *mod4, const char *f) as check_quaddisc; check
that signe(x) is negative.

13.3.2 Class number.

The function quadclassunit uses index calculus and runs in subexponential time but it as-
sumes the truth of the GRH. For imaginary quadratic orders, it is comparatively slow for small
values, say |D| ≤ 10^{18}. Here are some alternatives:

GEN classno(GEN D) corresponds to qfbclassno(D,0) and is only useful for D < 0, uses a baby-
step giant-step technique and runs in time O(D1/4). The result is guaranteed correct for |D| <
2 · 10^{10} and fastest in that range. For larger values of |D|, the algorithm is no longer rigorous and
may give incorrect results (we know no concrete example); it also becomes relatively less interesting
compared to quadclassunit.

GEN classno2(GEN D) corresponds to qfbclassno(D,1) and runs in time O(D^{1/2}); it is provided
for testing purposes only: it is never competitive.

GEN hclassno(GEN d) returns the Hurwitz-Kronecker class number H(d). These play a central
role in trace fomulas and are usually needed for many consecutive values of d. Thus, the function
uses a cache so that later calls for small consecutive values of d are instantaneous, see getcache.
Large values of d (d > 500000) call quadclassunit individually and are not memoized.

GEN hclassno6(GEN d) assuming d > 0, returns the integer 6H(d). This is a low-level function
behind hclassno.

ulong hclassno6u(ulong d) assuming d > 0, returns the integer 6H(d).

13.3.3 t_QFI, t_QFR.

GEN qfi(GEN x, GEN y, GEN z) creates the t_QFI (x, y, z).

GEN qfr(GEN x, GEN y, GEN z, GEN d) creates the t_QFR (x, y, z) with distance component d.

GEN qfr_1(GEN q) given a t_QFR q, return the unit form q^0.

GEN qfi_1(GEN q) given a t_QFI q, return the unit form q^0.

int qfb_equal1(GEN q) returns 1 if the t_QFI or t_QFR q is the unit form.
13.3.3.1 Composition.

GEN qficomp(GEN x, GEN y) compose the two t_{QFI} x and y, then reduce the result. This is the same as gmul(x,y).

GEN qfrcomp(GEN x, GEN y) compose the two t_{QFR} x and y, then reduce the result. This is the same as gmul(x,y).

GEN qfisqr(GEN x) as qficomp(x,y).
GEN qfrsqr(GEN x) as qfrcomp(x,y).

Same as above, without reducing the result:
GEN qficompraw(GEN x, GEN y)
GEN qfrcompraw(GEN x, GEN y)
GEN qfisqrraw(GEN x)
GEN qfrsqrraw(GEN x)
GEN qfbcompraw(GEN x, GEN y) compose two t_{QFI}s or two t_{QFR}s, without reduce the result.

13.3.3.2 Powering.

GEN powgi(GEN x, GEN n) computes x^n (will work for many more types than t_{QFI} and t_{QFR}, of course). Reduce the result.

GEN qfrpow(GEN x, GEN n) computes x^n for a t_{QFR} x, reducing along the way. If the distance component is initially 0, leave it alone; otherwise update it.

GEN qfbpowraw(GEN x, long n) compute x^n (pure composition, no reduction), for a t_{QFI} or t_{QFR} x.

GEN qfipowraw(GEN x, long n) as qfbpowraw, for a t_{QFI} x.
GEN qfrpowraw(GEN x, long n) as qfbpowraw, for a t_{QFR} x.

13.3.3.3 Order, discrete log.

GEN qfi_order(GEN q, GEN o) assuming that the t_{QFI} q has order dividing o, compute its order in the class group. The order can be given in all formats allowed by generic discrete log functions, the preferred format being \([\text{ord, fa}]\) (t_INT and its factorization).

GEN qfi_log(GEN a, GEN g, GEN o) given a t_{QFI} a and assuming that the t_{QFI} g has order o, compute an integer k such that $a^k = g$. Return cgetg(1, t_VEC) if there are no solutions. Uses a generic Pollig-Hellman algorithm, then either Shanks (small o) or Pollard rho (large o) method. The order can be given in all formats allowed by generic discrete log functions, the preferred format being \([\text{ord, fa}]\) (t_INT and its factorization).

GEN qfi_Shanks(GEN a, GEN g, long n) given a t_{QFI} a and assuming that the t_{QFI} g has (small) order n, compute an integer k such that $a^k = g$. Return cgetg(1, t_VEC) if there are no solutions. Directly uses Shanks algorithm, which is inefficient when n is composite.
13.3.3.4 Solve, Cornacchia.

The following functions underly qfb.solve; \(p \) denotes a prime number.

\[\text{GEN qfisolvep(GEN Q, GEN p)} \]
\[\text{solves } Q(x, y) = p \text{ over the integers, for a } t_{\text{QFI}} Q. \text{ Return gen.0 if there are no solutions.} \]

\[\text{GEN qfrsolvep(GEN Q, GEN p)} \]
\[\text{solves } Q(x, y) = p \text{ over the integers, for a } t_{\text{QFR}} Q. \text{ Return gen.0 if there are no solutions.} \]

\[\text{long cornacchia(GEN d, GEN p, GEN px, GEN py)} \]
\[\text{solves } x^2 + dy^2 = p \text{ over the integers, where } d > 0. \text{ Return 1 if there is a solution (and store it in } *x \text{ and } *y), 0 \text{ otherwise.} \]

\[\text{long cornacchia2(GEN d, GEN p, GEN px, GEN py)} \]
\[\text{as cornacchia, for the equation } x^2 + dy^2 = 4p. \]

\[\text{long cornacchia2_sqrt(GEN d, GEN p, GEN b, GEN px, GEN py)} \]
\[\text{as cornacchia2, where } p > 2 \text{ and } b \text{ is the smallest squareroot of } d \text{ modulo } p. \]

13.3.3.5 Prime forms.

\[\text{GEN primeform_u(GEN x, ulong p)} \]
\[t_{\text{QFI}} \]
\[\text{whose first coefficient is the prime } p. \]

\[\text{GEN primeform(GEN x, GEN p, long prec)} \]

13.3.4 Efficient real quadratic forms. Unfortunately, \(t_{\text{QFR}} \)s are very inefficient, and are only provided for backward compatibility.

- they do not contain needed quantities, which are thus constantly recomputed (the discriminant \(D \), \(\sqrt{D} \) and its integer part),

- the distance component is stored in logarithmic form, which involves computing one extra logarithm per operation. It is much more efficient to store its exponential, computed from ordinary multiplications and divisions (taking exponent overflow into account), and compute its logarithm at the very end.

Internally, we have two representations for real quadratic forms:

- \(\text{qfr3} \), a container \([a, b, c]\) with at least 3 entries: the three coefficients; the idea is to ignore the distance component.

- \(\text{qfr5} \), a container with at least 5 entries \([a, b, c, e, d]\): the three coefficients a \(t_{\text{REAL}} d \) and a \(t_{\text{INT}} e \) coding the distance component \(2^{N_\varepsilon}d \), in exponential form, for some large fixed \(N \).

It is a feature that \(\text{qfr3} \) and \(\text{qfr5} \) have no specified length or type. It implies that a \(\text{qfr5} \) or \(t_{\text{QFR}} \) will do whenever a \(\text{qfr3} \) is expected. Routines using these objects all require a global context, provided by a \textbf{struct qfr.data} *:

\[
\begin{align*}
\text{struct qfr.data} & \{ \\
\text{GEN D;} & /\ast \text{ discriminant, } t_{\text{INT}} \ast/ \\
\text{GEN sqrtD;} & /\ast \text{ sqrt(D), } t_{\text{REAL}} \ast/ \\
\text{GEN isqrtD;} & /\ast \text{ floor(sqrt(D)), } t_{\text{INT}} \ast/ \\
\};
\end{align*}
\]

\text{void qfr.data.init(GEN D, long prec, struct qfr.data *} S \text{) given a discriminant } D > 0, \text{ initialize } S \text{ for computations at precision } prec \text{ (} \sqrt{D} \text{ is computed to that initial accuracy).}

All functions below are shallow, and not stack clean.

298
GEN qfr3_comp(GEN x, GEN y, struct qfr_data *S) compose two qfr3, reducing the result.

GEN qfr3_pow(GEN x, GEN n, struct qfr_data *S) compute \(x^n \), reducing along the way.

GEN qfr3_red(GEN x, struct qfr_data *S) reduce \(x \).

GEN qfr3_rho(GEN x, struct qfr_data *S) perform one reduction step; qfr3_red just performs reduction steps until we hit a reduced form.

GEN qfr3_to_qfr(GEN x, GEN d) recover an ordinary t_QFR from the qfr3 \(x \), adding distance component \(d \).

Before we explain qfr5, recall that it corresponds to an ideal, that reduction corresponds to multiplying by a principal ideal, and that the distance component is a clever way to keep track of these principal ideals. More precisely, reduction consists in a number of reduction steps, going from the form \((a, b, c)\) to \(\rho(a, b, c) = (c, -b \mod 2c, *)\); the distance component is multiplied by (a floating point approximation to) \((b + \sqrt{D})/(b - \sqrt{D})\).

GEN qfr5_comp(GEN x, GEN y, struct qfr_data *S) compose two qfr5, reducing the result, and updating the distance component.

GEN qfr5_pow(GEN x, GEN n, struct qfr_data *S) compute \(x^n \), reducing along the way.

GEN qfr5_red(GEN x, struct qfr_data *S) reduce \(x \).

GEN qfr5_rho(GEN x, struct qfr_data *S) perform one reduction step.

GEN qfr5_dist(GEN e, GEN d, long prec) decode the distance component from exponential (qfr5-specific) to logarithmic form (as in a t_QFR).

GEN qfr_to_qfr5(GEN x, long prec) convert a t_QFR to a qfr5 with initial trivial distance component (= 1).

GEN qfr5_to_qfr(GEN x, GEN d) assume \(x \) is a qfr5 and \(d \) was the original distance component of some t_QFR that we converted using qfr_to_qfr5 to perform efficiently a number of operations. Convert \(x \) to a t_QFR with the correct (logarithmic) distance component.

13.4 Linear algebra over \(\mathbb{Z} \).

13.4.1 Hermite and Smith Normal Forms.

GEN ZM_hnf(GEN x) returns the upper triangular Hermite Normal Form of the \(\mathbb{Z}M \) \(x \) (removing 0 columns), using the ZM_hnfall algorithm. If you want the true HNF, use ZM_hnfall(x, NULL, 0).

GEN ZM_hnfmmod(GEN x, GEN d) returns the HNF of the \(\mathbb{Z}M \) \(x \) (removing 0 columns), assuming the \(\t_{\text{INT}} \) \(d \) is a multiple of the determinant of \(x \). This is usually faster than ZM_hnf (and uses less memory) if the dimension is large, > 50 say.

GEN ZM_hnfmmodid(GEN x, GEN d) returns the HNF of the matrix \((x \mid d\Id)\) (removing 0 columns), for a \(\mathbb{Z}M \) \(x \) and a \(\t_{\text{INT}} \) \(d \).

GEN ZM_hnfmmodprime(GEN x, GEN p) returns the HNF of the matrix \((x \mid p\Id)\) (removing 0 columns), for a \(\mathbb{Z}M \) \(x \) and a prime number \(p \). The algorithm involves only \(\mathbb{F}_p \)-linear algebra and is is faster than ZM_hnfmmodid (which will call it when \(d \) is prime).
GEN ZM_hnffmodall(GEN x, GEN d, long flag) low-level function underlying the ZM_hnffmod variants. If flag is 0, calls ZM_hnffmod(x, d); flag is an or-ed combination of:

- hnf_MODID call ZM_hnffmodid instead of ZM_hnffmod,
- hnf_PART return as soon as we obtain an upper triangular matrix, saving time. The pivots are non-negative and give the diagonal of the true HNF, but the entries to the right of the pivots need not be reduced, i.e. they may be large or negative.
- hnf_CENTER returns the centered HNF, where the entries to the right of a pivot p are centered residues in $[-p/2, p/2]$, hence smallest possible in absolute value, but possibly negative.

GEN ZM_hnffmodall_i(GEN x, GEN d, long flag) as ZM_hnffmodall without final garbage collection. Not gerepile-safe.

GEN ZM_hnfall(GEN x, GEN *U, long remove) returns the upper triangular HNF H of the ZM x; if U is not NULL, set if to the matrix U such that $xU = H$. If remove = 0, H is the true HNF, including 0 columns; if remove = 1, delete the 0 columns from H but do not update U accordingly (so that the integer kernel may still be recovered): we no longer have $xU = H$; if remove = 2, remove 0 columns from H and update U so that $xU = H$. The matrix U is square and invertible unless remove = 2.

This routine uses a naive algorithm which is potentially exponential in the dimension (due to coefficient explosion) but is fast in practice, although it may require lots of memory. The base change matrix U may be very large, when the kernel is large.

GEN ZM_hnfall_i(GEN x, GEN *U, long remove) as ZM_hnfall without final garbage collection. Not gerepile-safe.

GEN ZM_hnfperm(GEN A, GEN *ptU, GEN *ptperm) returns the hnf $H = PAU$ of the matrix PA, where P is a suitable permutation matrix, and $U \in \text{Gl}_n(\mathbb{Z})$. P is chosen so as to (heuristically) minimize the size of U; in this respect it is less efficient than ZM_hnffll but usually faster. Set *ptU to U and *ptperm to a t_VECSMALL representing the row permutation attached to $P = (\delta_{i, \text{perm}[i]}$. If ptU is set to NULL, U is not computed, saving some time; although useless, setting ptperm to NULL is also allowed.

GEN ZM_hnf_knapsack(GEN x) given a ZM x, compute its HNF h. Return h if it has the knapsack property: every column contains only zeroes and ones and each row contains a single 1; return NULL otherwise. Not suitable for gerepile.

GEN ZM_hnflll(GEN x, GEN *U, int remove) returns the HNF H of the ZM x; if U is not NULL, set if to the matrix U such that $xU = H$. The meaning of remove is the same as in ZM_hnfall.

This routine uses the LLL variant of Havas, Majewski and Mathews, which is polynomial time, but rather slow in practice because it uses an exact LLL over the integers instead of a floating point variant; it uses polynomial space but lots of memory is needed for large dimensions, say larger than 300. On the other hand, the base change matrix U is essentially optimally small with respect to the L_2 norm.

GEN ZM_hnfcenter(GEN M). Given a ZM in HNF M, update it in place so that non-diagonal entries belong to a system of centered residues. Not suitable for gerepile.

Some direct applications: the following routines apply to upper triangular integral matrices; in practice, these come from HNF algorithms.

300
GEN hnf_divscale(GEN A, GEN B, GEN t) A an upper triangular ZM, B a ZM, t an integer, such that \(C := tA^{-1}B \) is integral. Return C.

GEN hnf_invscale(GEN A, GEN t) A an upper triangular ZM, t an integer such that \(C := tA^{-1} \) is integral. Return C. Special case of hnf_divscale when B is the identity matrix.

GEN hnf_solve(GEN A, GEN B) A a ZM in upper HNF (not necessarily square), B a ZM or ZC. Return \(A^{-1}B \) if it is integral, and NULL if it is not.

GEN hnf_invimage(GEN A, GEN b) A a ZM in upper HNF (not necessarily square), b a ZC. Return \(gX \) for the group element \(gX \in \mathbb{Z} \); same as hnf_invimage applied to diagonal(d), but faster.

GEN ZM_snf(GEN x) returns the Smith Normal Form (vector of elementary divisors) of the ZM x.

GEN ZM_snfall(GEN x, GEN *U, GEN *V) returns ZM_snf(x) and sets U and V to unimodular matrices such that \(UxV = D \) (diagonal matrix of elementary divisors). Either (or both) \(U \) or \(V \) may be NULL in which case the corresponding matrix is not computed.

GEN ZV_snfall(GEN d, GEN *U, GEN *V) here \(d \) is a ZV; same as ZM_snfall applied to diagonal(d), but faster.

GEN ZM_snfall_i(GEN x, GEN *U, GEN *V, int returnvec) same as ZM_snfall, except that, depending on the value of returnvec, we either return a diagonal matrix (as in ZM_snfall, returnvec is 0) or a vector of elementary divisors (as in ZM_snf, returnvec is 1).

void ZM_snfclean(GEN d, GEN U, GEN V) assuming \(d, U, V \) come from \(d = ZM_snfall(x, \&U, \&V) \), where \(U \) or \(V \) may be NULL, cleans up the output in place. This means that elementary divisors equal to 1 are deleted and \(U, V \) are updated. The output is not suitable for gerepileupto.

void ZV_snf_trunc(GEN D) given a vector \(D \) of elementary divisors (i.e. a ZV such that \(d_i \mid d_{i+1} \)), truncate it in place to leave out the trivial divisors (equal to 1).

GEN ZM_snf_group(GEN H, GEN *U, GEN *Uninv) this function computes data to go back and forth between an abelian group (of finite type) given by generators and relations, and its canonical SNF form. Given an abstract abelian group with generators \(g = (g_1, \ldots, g_n) \) and a vector \(X = (x_i) \in \mathbb{Z}^n \), we write \(gX \) for the group element \(\sum x_i g_i \); analogously if \(M \) is an \(n \times r \) integer matrix \(gM \) is a vector containing \(r \) group elements. The group neutral element is 0; by abuse of notation, we still write 0 for a vector of group elements all equal to the neutral element. The input is a full relation matrix \(H \) among the generators, i.e. a ZM (not necessarily square) such that \(gX = 0 \) for some \(X \in \mathbb{Z}^n \) if and only if \(X \) is in the integer image of \(H \), so that the abelian group is isomorphic to \(\mathbb{Z}^n/\text{Im}H \). The routine assumes that \(H \) is in HNF; replace it by its HNF if it is not the case. (Of course this defines the same group.)

Let \(G \) a minimal system of generators in SNF for our abstract group: if the \(d_i \) are the elementary divisors \(\ldots \mid d_2 \mid d_1 \), each \(G_i \) has either infinite order \((d_i = 0) \) or order \(d_i > 1 \). Let \(D \) the matrix with diagonal \((d_i) \), then \(GD = 0, \quad G = gU_{\text{inv}}, \quad g = GU \), for some integer matrices \(U \) and \(U_{\text{inv}} \). Note that these are not even square in general; even if square, there is no guarantee that these are unimodular: they are chosen to have minimal entries given the known relations in the group and only satisfy \(D \mid (U_{\text{inv}} \cdot \text{Id}) \) and \(H \mid (U_{\text{inv}} \cdot \text{Id}) \).
The function returns the vector of elementary divisors \((d_i)\); if \(U\) is not NULL, it is set to \(U\); if \(Uinv\) is not NULL it is set to \(Uinv\). The function is not memory clean.

\[\text{GEN ZV_snf_group(GEN d, GEN *newU, GEN *newUi)},\] where \(d\) is a ZV; same as \(\text{ZM_snf_group}\) applied to \(\text{diagonal}(d)\), but faster.

The following routines underly the various matrixqz variants. In all case the \(m \times n\) t_MAT \(x\) is assumed to have rational (t_INT and t_FRAC) coefficients.

\[\text{GEN QM_ImQ_hnf(GEN x)}\] returns an HNF basis for \(\text{Im}_Qx \cap \mathbb{Z}^n\).

\[\text{GEN QM_ImZ_hnf(GEN x)}\] returns an HNF basis for \(\text{Im}_Zx \cap \mathbb{Z}^n\).

\[\text{GEN QM_ImQ_hnfall(GEN A, GEN *pB, long remove)}\] as \(\text{QM_ImQ_hnf}\), further returning the transformation matrix as in \(\text{ZM_hnfall}\).

\[\text{GEN QM_ImZ_hnfall(GEN A, GEN *pB, long remove)}\] as \(\text{QM_ImZ_hnf}\), further returning the transformation matrix as in \(\text{ZM_hnfall}\).

\[\text{GEN QM_minors_coprime(GEN x, GEN D)}\], assumes \(m \geq n\), and returns a matrix in \(M_{m,n}(\mathbb{Z})\) with the same \(Q\)-image as \(x\), such that the GCD of all \(n \times n\) minors is coprime to \(D\); if \(D\) is NULL, we want the GCD to be 1.

The following routines are simple wrappers around the above ones and are normally useless in library mode:

\[\text{GEN hnf(GEN x)}\] checks whether \(x\) is a ZM, then calls \(\text{ZM_hnf}\). Normally useless in library mode.

\[\text{GEN hnfmod(GEN x, GEN d)}\] checks whether \(x\) is a ZM, then calls \(\text{ZM_hnfmod}\). Normally useless in library mode.

\[\text{GEN hnfmodid(GEN x, GEN d)}\] checks whether \(x\) is a ZM, then calls \(\text{ZM_hnfmodid}\). Normally useless in library mode.

\[\text{GEN hnfall(GEN x)}\] calls \(\text{ZM_hnfall}(x, &U, 1)\) and returns \([H, U]\). Normally useless in library mode.

\[\text{GEN hnflll(GEN x)}\] calls \(\text{ZM_hnflll}(x, &U, 1)\) and returns \([H, U]\). Normally useless in library mode.

\[\text{GEN hnfperm(GEN x)}\] calls \(\text{ZM_hnfperm}(x, &U, &P)\) and returns \([H, U, P]\). Normally useless in library mode.

\[\text{GEN smith(GEN x)}\] checks whether \(x\) is a ZM, then calls \(\text{ZM_snf}\). Normally useless in library mode.

\[\text{GEN smithall(GEN x)}\] checks whether \(x\) is a ZM, then calls \(\text{ZM_snfall}(x, &U, &V)\) and returns \([U, V, D]\). Normally useless in library mode.

Some related functions over \(K[X]\), \(K\) a field:

\[\text{GEN gsmith(GEN A)}\] the input matrix must be square, returns the elementary divisors.

\[\text{GEN gsmithall(GEN A)}\] the input matrix must be square, returns the \([U, V, D]\), \(D\) diagonal, such that \(UAV = D\).

\[\text{GEN RgM_hnfall(GEN A, GEN *pB, long remove)}\] analogous to \(\text{ZM_hnfall}\).

\[\text{GEN smithclean(GEN z)}\] cleanup the output of \(\text{smithall}\) or \(\text{gsmithall}\) (delete elementary divisors equal to 1, updating base change matrices).
13.4.2 The LLL algorithm.

The basic GP functions and their immediate variants are normally not very useful in library mode. We briefly list them here for completeness, see the documentation of `qflll` and `qflllgram` for details:

- `GEN qflll0(GEN x, long flag)`
- `GEN lll(GEN x)`
 - `flag = 0`
- `GEN lllint(GEN x)`
 - `flag = 1`
- `GEN lllkerim(GEN x)`
 - `flag = 4`
- `GEN lllkerimagen(GEN x)`
 - `flag = 5`
- `GEN lllgen(GEN x)`
 - `flag = 8`
- `GEN qflllgram0(GEN x, long flag)`
- `GEN lllgram(GEN x)`
 - `flag = 0`
- `GEN lllgramint(GEN x)`
 - `flag = 1`
- `GEN lllgramkerim(GEN x)`
 - `flag = 4`
- `GEN lllgramkerimagen(GEN x)`
 - `flag = 5`
- `GEN lllgramgen(GEN x)`
 - `flag = 8`

The basic workhorse underlying all integral and floating point LLLs is

`GEN ZM_lll(GEN x, double D, long flag)`

where `x` is a `ZM`; `D ∈ [1/4, 1]` is the Lovász constant determining the frequency of swaps during the algorithm: a larger values means better guarantees for the basis (in principle smaller basis vectors) but longer running times (suggested value: `D = 0.99`).

Important. This function does not collect garbage and its output is not suitable for either `gerepile` or `gerepileupto`. We expect the caller to do something simple with the output (e.g. matrix multiplication), then collect garbage immediately.

`flag` is an or-ed combination of the following flags:

- **LLL_GRAM.** If set, the input matrix `x` is the Gram matrix `vv` of some lattice vectors `v`.
- **LLL_INPLACE.** If unset, we return the base change matrix `U`, otherwise the transformed matrix `xU` or `UxU` (`LLL_GRAM`). Implies `LLL_IM` (see below).
- **LLL_KEEP_FIRST.** The first vector in the output basis is the same one as was originally input. Provided this is a shortest non-zero vector of the lattice, the output basis is still LLL-reduced. This is used to reduce maximal orders of number fields with respect to the `T_2` quadratic form, to ensure that the first vector in the output basis corresponds to 1 (which is a shortest vector).
- **LLL_COMPATIBLE.** This is a no-op on 64-bit kernels; on 32-bit kernels, restrict to 64-bit-compatible accuracies in the course of LLL algorithms. This is very likely to produce identical results on all kernels, but this is not guaranteed.

The last three flags are mutually exclusive, either 0 or a single one must be set:

- **LLL_KER** If set, only return a kernel basis `K` (not LLL-reduced).
• LLL IM If set, only return an LLL-reduced lattice basis T. (This is implied by LLL INPLACE).
• LLL ALL If set, returns a 2-component vector $[K,T]$ corresponding to both kernel and image.

GEN lllfp(GEN x, double D, long flag) is a variant for matrices with inexact entries: x is a matrix with real coefficients (types t_INT, t_FRAC and t_REAL), D and flag are as in ZM lll. The matrix is rescaled, rounded to nearest integers, then fed to ZM lll. The flag LLL INPLACE is still accepted but less useful (it returns an LLL-reduced basis attached to rounded input, instead of an exact base change matrix).

GEN ZM lll norms(GEN x, double D, long flag, GEN *ptB) slightly more general version of ZM lll, setting *ptB to a vector containing the squared norms of the Gram-Schmidt vectors (b_i^*) attached to the output basis (b_i), $b_i^* = b_i + \sum_{j<i} \mu_{i,j} b_j^*$.

GEN lllintpartial inplace(GEN x) given a ZM x of maximal rank, returns a partially reduced basis (b_i) for the space spanned by the columns of x: $|b_i \pm b_j| \geq |b_i|$ for any two distinct basis vectors b_i, b_j. This is faster than the LLL algorithm, but produces much larger bases.

GEN lllintpartial(GEN x) as lllintpartial inplace, but returns the base change matrix U from the canonical basis to the b_i, i.e. xU is the output of lllintpartial inplace.

GEN RM round maxrank(GEN G) given a matrix G with real floating point entries and independent columns, let G_e be the rescaled matrix 2^eG rounded to nearest integers, for $e \geq 0$. Finds a small e such that the rank of G_e is equal to the rank of G (its number of columns) and return G_e. This is useful as a preconditioning step to speed up LLL reductions, see nf get Gtwist. Suitable for gerepileupto, but does not collect garbage.

13.4.3 Linear dependencies.

The following functions underly the lindep GP function:

GEN lindep(GEN v) real/complex entries, guess that about only the 80% leading bits of the input are correct.

GEN lindep bit(GEN v, long b) real/complex entries, explicit form of the above: multiply the input by 2^b and round to nearest integer before looking for a linear dependency. Truncating dubious bits allows to find better relations.

GEN lindep full bit(GEN v, long b) as lindep bit but return a matrix M with $n = \# v$ columns and r rows, with $r = n + 1$ (if v is real) or $n + 2$ (general case) which is an LLL-reduced basis of the lattice formed by concatenating vertically an identity matrix and the floor of 2^b real(v) and 2^b imag(v) if $r = n + 2$. The first n rows of M potentially correspond to relations: whenever the last $r - n$ entries of a column are small. The function lindep bit essentially returns the first column of M truncated to n components.

GEN lindep padic(GEN v) p-adic entries.

GEN lindep Xadic(GEN v) polynomial entries.

GEN deplin(GEN v) returns a non-zero kernel vector for a t_MAT input.

Deprecated routine:

GEN lindep2(GEN x, long dig) analogous to lindep bit, with dig counting decimal digits.
13.4.4 Reduction modulo matrices.

GEN ZC_hnfremdiv(GEN x, GEN y, GEN *Q) assuming y is an invertible ZM in HNF and x is a ZC, returns the ZC R equal to x mod y (whose i-th entry belongs to \([-y_{i,i}/2, y_{i,i}/2]\)). Stack clean unless x is already reduced (in which case, returns x itself, not a copy). If Q is not NULL, set it to the ZC such that \(x = yQ + R\).

GEN ZM_hnfdivrem(GEN x, GEN y, GEN *Q) reduce each column of the ZM x using ZC_hnfremdiv. If Q is not NULL, set it to the ZM such that \(x = yQ + R\).

GEN ZC_hnfrem(GEN x, GEN y) alias for ZC_hnfremdiv(x, y, NULL).

GEN ZM_hnfrem(GEN x, GEN y) alias for ZM_hnfremdiv(x, y, NULL).

GEN ZC_reducemodmatrix(GEN v, GEN y) Let y be a ZM, not necessarily square, which is assumed to be LLL-reduced (otherwise, very poor reduction is expected). Size-reduces the ZC v modulo the Z-module Y spanned by y : if the columns of y are denoted by \((y_1, \ldots, y_{n-1})\), we return \(y_n \equiv v \mod Y\), such that the Gram-Schmidt coefficients \(\mu_{n,j}\) are less than 1/2 in absolute value for all \(j < n\). In short, \(y_n\) is almost orthogonal to Y.

GEN ZM_reducemodmatrix(GEN v, GEN y) Let y be as in ZC_reducemodmatrix, and v be a ZM. This returns a matrix v which is congruent to v modulo the Z-module spanned by y, whose columns are size-reduced. This is faster than repeatedly calling ZC_reducemodmatrix on the columns since most of the Gram-Schmidt coefficients can be reused.

GEN ZC_reducemodlll(GEN v, GEN y) Let y be an arbitrary ZM, LLL-reduce it then call ZC_reducemodmatrix.

GEN ZM_reducemodlll(GEN v, GEN y) Let y be an arbitrary ZM, LLL-reduce it then call ZM_reducemodmatrix.

Besides the above functions, which were specific to integral input, we also have:

GEN reducemodinvertible(GEN x, GEN y) y is an invertible matrix and x a t_COL or t_MAT of compatible dimension. Returns \(x - y[y^{-1}x]\), which has small entries and differs from x by an integral linear combination of the columns of y. Suitable for gerepileupto, but does not collect garbage.

GEN closemodinvertible(GEN x, GEN y) returns \(x - \text{reducemodinvertible}(x, y)\), i.e. an integral linear combination of the columns of y, which is close to x.

GEN reducemodlll(GEN x, GEN y) LLL-reduce the non-singular ZM y and call reducemodinvertible to find a small representative of x mod y\(Z^n\). Suitable for gerepileupto, but does not collect garbage.
13.5 Finite abelian groups and characters.

13.5.1 Abstract groups.

A finite abelian group G in GP format is given by its Smith Normal Form as a pair $[h,d]$ or triple $[h,d,g]$. Here h is the cardinality of G, (d_i) is the vector of elementary divisors, and (g_i) is a vector of generators. In short, $G = \bigoplus_{i \leq n} (\mathbb{Z}/d_i\mathbb{Z})g_i$, with $d_n | \ldots | d_2 | d_1$ and $\prod d_i = h$.

Let $e(x) := \exp(2i\pi x)$. For ease of exposition, we restrict to complex-valued characters, but everything applies to more general fields K where e denotes a morphism $(\mathbb{Q},+) \to (K^*, \times)$ such that $e(a/b)$ denotes a b-th root of unity.

A character on the abelian group $\bigoplus (\mathbb{Z}/d_j\mathbb{Z})g_j$ is given by a row vector $\chi = [a_1, \ldots, a_n]$ such that $\chi(\prod g_j^{x_j}) = e(\sum_j a_jn_j/d_j)$.

GEN cyc_normalize(GEN d) shallow function. Given a vector $(d_i)_{i \leq n}$ of elementary divisors for a finite group (no d_i vanish), returns the vector $D = [1]$ if $n = 0$ (trivial group) and $[d_1,d_1/d_2, \ldots, d_1/d_n]$ otherwise. This will allow to define characters as $\chi(\prod g_j^{x_j}) = e(\sum_j a_jD_j/D_1)$, see char_normalize.

GEN char_normalize(GEN chi, GEN ncyc) shallow function. Given a character $\chi = (a_j)$ and $ncyc$ from cyc_normalize above, returns the normalized representation $[d,(n_j)]$, such that $\chi(\prod g_j^{x_j}) = \zeta_d \sum_j n_jx_j$, where $\zeta_d = e(1/d)$ and d is minimal. In particular, d is the order of χ. Shallow function.

GEN char_simplify(GEN D, GEN N) given a quasi-normalized character $[D,(N_j)]$ such that $\chi(\prod g_j^{x_j}) = \zeta_D \sum_j N_jx_j$, but where we only assume that D is a multiple of the character order, return a normalized character $[d,(n_j)]$ with d minimal. Shallow function.

GEN char_denormalize(GEN cyc, GEN d, GEN n) given a normalized representation $[d,n]$ (where d need not be minimal) of a character on the abelian group with abelian divisors cyc, return the attached character (where the image of each generator g_i is given in terms of roots of unity of different orders cyc[i]).

GEN charconj(GEN cyc, GEN chi) return the complex conjugate of χ.

GEN charmul(GEN cyc, GEN a, GEN b) return the product character $a \times b$.

GEN chardiv(GEN cyc, GEN a, GEN b) returns the character $a/b = a \times \overline{b}$.

int char_check(GEN cyc, GEN chi) return 1 if χ is a character compatible with cyclic factors cyc, and 0 otherwise.

GEN cyc2elts(GEN d) given a t_VEC $d = (d_1, \ldots, d_n)$ of non-negative integers, return the vector of all t_VECSMALLs of length n whose i-th entry lies in $[0,d_i]$. Assumes that the product of the d_i fits in a long.
13.5.2 Dirichlet characters.

The functions in this section are specific to characters on \((\mathbb{Z}/N\mathbb{Z})^*\). The argument \(G\) is a special \texttt{bid} structure as returned by \texttt{znstar0(N, nf_INIT)}. In this case, there are additional ways to input character via Conrey’s representation. The character \(\chi\) is either a \texttt{t_INT} (Conrey label), a \texttt{t_COL} (a Conrey logarithm) or a \texttt{t_VEC} (generic character on \texttt{bid.gen} as explained in the previous subsection). The following low-level functions are called by GP’s generic character functions.

- \texttt{int zncharcheck(GEN G, GEN chi)} return 1 if \(\chi\) is a valid character and 0 otherwise.
- \texttt{GEN zncharconj(GEN G, GEN chi)} as \texttt{charconj}.
- \texttt{GEN znchardiv(GEN G, GEN a, GEN b)} as \texttt{chardiv}.
- \texttt{GEN zncharker(GEN G, GEN chi)} as \texttt{charker}.
- \texttt{GEN znchareval(GEN G, GEN chi, GEN n, GEN z)} as \texttt{chareval}.
- \texttt{GEN zncharmul(GEN G, GEN a, GEN b)} as \texttt{charmul}.
- \texttt{GEN zncharpow(GEN G, GEN a, GEN n)} as \texttt{charpow}.
- \texttt{GEN zncharorder(GEN G, GEN chi)} as \texttt{charorder}.

The following functions handle characters in Conrey notation (attached to Conrey generators, not \(G\).\texttt{gen}):

- \texttt{int znconrey_check(GEN cyc, GEN chi)} return 1 if \(\chi\) is a valid Conrey logarithm and 0 otherwise.
- \texttt{GEN znconrey_normalized(GEN G, GEN chi)} return normalized character attached to \(\chi\), as in \texttt{char_normalize} but on Conrey generators.
- \texttt{GEN znconreyfromchar(GEN G, GEN chi)} return Conrey logarithm attached to the generic \((\texttt{t_VEC}, \text{on } G\).\texttt{gen})
- \texttt{GEN znconreyfromchar_normalized(GEN G, GEN chi)} return normalized Conrey character attached to the generic \((\texttt{t_VEC}, \text{on } G\).\texttt{gen}) character \(\chi\).
- \texttt{GEN znconreylog_normalize(GEN G, GEN m)} given a Conrey logarithm \(m\) (\texttt{t_COL}), return the attached normalized Conrey character, as in \texttt{char_normalize} but on Conrey generators.
- \texttt{GEN znchar_quad(GEN G, GEN D)} given a non-zero \texttt{t_INT} \(D\) congruent to 0, 1 mod 4, return \(\langle D/\rangle\) as a character modulo \(N\), given by a Conrey logarithm (\texttt{t_COL}). Assume that \(|D|\) divides \(N\).
- \texttt{GEN Zideallog(GEN G, GEN x)} return the \texttt{znconreylog} of \(x\) expressed on \(G\).\texttt{gen}, i.e. the ordinary discrete logarithm from \texttt{ideallog}.
- \texttt{GEN ncharvecexpo(GEN G, GEN nchi)} given \(nchi = [d, n]\) a quasi-normalized character \((d\) may be a multiple of the character order), i.e. \(\chi(g_i) = e(n[i]/d)\) for all Conrey or SNF generators \(g_i\) (as usual, we use SNF generators if \(n\) is a \texttt{t_VEC} and the Conrey generators otherwise). Return a \texttt{t_VECSMALL} \(v\) such that \(v[i] = -1\) if \((i, N) > 1\) else \(\chi(i) = e(v[i]/d), 1 \leq i \leq N\).
13.6 Central simple algebras.

13.6.1 Initialization.

Low-level routines underlying alginit.

 GEN alg_csa_table(GEN nf, GEN mt, long v, long maxord) algebra defined by a multiplication table.

 GEN alg_cyclic(GEN rnf, GEN aut, GEN b, long maxord) cyclic algebra \((L/K,\sigma,b)\).

 GEN alg_hasse(GEN nf, long d, GEN hi, GEN hf, long v, long maxord) algebra defined by local Hasse invariants.

 GEN alg_hilbert(GEN nf, GEN a, GEN b, long v, long maxord) quaternion algebra.

 GEN alg_matrix(GEN nf, long n, long v, GEN L, long maxord) matrix algebra.

 GEN alg_complete(GEN rnf, GEN aut, GEN hi, GEN hf, long maxord) cyclic algebra \((L/K,\sigma,b)\) with \(b\) computed from the Hasse invariants.

13.6.2 Type checks.

 void checkalg(GEN a) raise an exception if \(a\) was not initialized by alginit.

 void checklat(GEN al, GEN lat) raise an exception if \(lat\) is not a valid full lattice in the algebra \(al\).

 void checkhasse(GEN nf, GEN hi, GEN hf, long n) raise an exception if \((hi,hf)\) do not describe valid Hasse invariants of a central simple algebra of degree \(n\) over \(nf\).

 long alg_type(GEN al) internal function called by algtype: assume \(al\) was created by alginit (thereby saving a call to checkalg). Return values are symbolic rather than numeric:

 - al_NULL: not a valid algebra.
 - al_TABLE: table algebra output by algtableinit.
 - al_CSA: central simple algebra output by alginit and represented by a multiplication table over its center.
 - al_CYCLIC: central simple algebra output by alginit and represented by a cyclic algebra.

 long alg_model(GEN al, GEN x) given an element \(x\) in algebra \(al\), check for inconsistencies (raise a type error) and return the representation model used for \(x\):

 - al_ALGEBRAIC: basistoaalg form, algebraic representation.
 - al_BASIS: algtobasis form, column vector on the integral basis.
 - al MATRIX: matrix with coefficients in an algebra.
 - al_TRIVIAL: trivial algebra of degree 1; can be understood as both basis or algebraic form (since \(e_1 = 1\)).

308
13.6.3 Shallow accessors.

All these routines assume their argument was initialized by alginit and provide minor speedups compared to the GP equivalent. The routines returning a GEN are shallow.

`long alg_get_absdim(GEN al)` low-level version of algabsdim.
`long alg_get_dim(GEN al)` low-level version of algdim.
`long alg_get_degree(GEN al)` low-level version of algdegree.
`GEN alg_get_aut(GEN al)` low-level version of algaut.
`GEN alg_get_auts(GEN al)`, given a cyclic algebra \(al = (L/K, \sigma, b) \) of degree \(n \), returns the vector of \(\sigma^i, 1 \leq i < n \).
`GEN alg_get_b(GEN al)` low-level version of algb.
`GEN alg_get_basis(GEN al)` low-level version of albasis.
`GEN alg_get_center(GEN al)` low-level version of algcenter.
`GEN alg_get_char(GEN al)` low-level version of algchar.
`GEN alg_get_hasse_f(GEN al)` low-level version of alghassef.
`GEN alg_get_hasse_i(GEN al)` low-level version of alghassei.
`GEN alg_get_invbasis(GEN al)` low-level version of alginvbasis.
`GEN alg_get_multable(GEN al)` low-level version of algmutable.
`GEN alg_get_relmutable(GEN al)` low-level version of algremlutable.
`GEN alg_get_splittingfield(GEN al)` low-level version of algsplittingfield.
`GEN alg_get_abssplitting(GEN al)` returns the absolute nf structure attached to the rnf returned by algsplittingfield.
`GEN alg_get_splitpol(GEN al)` returns the relative polynomial defining the rnf returned by algsplittingfield.
`GEN alg_get_splittingdata(GEN al)` low-level version of algsplittingdata.
`GEN alg_get_splittingbasis(GEN al)` the matrix \(Lbas \) from algsplittingdata
`GEN alg_get_splittingbasisinv(GEN al)` the matrix \(Lbasinv \) from algsplittingdata.
`GEN alg_get_tracebasis(GEN al)` returns the traces of the basis elements; used by algtrace.
`GEN alglat_get_primbasis(GEN lat)` from the description of lat as \(\lambda L \) with \(L \subset O_0 \) and \(\lambda \in \mathbb{Q} \), returns a basis of \(L \).
`GEN alglat_get_scalar(GEN lat)` from the description of lat as \(\lambda L \) with \(L \subset O_0 \) and \(\lambda \in \mathbb{Q} \), returns \(\lambda \).

13.6.4 Other low-level functions.

`GEN conjclasses_algcenter(GEN cc, GEN p)` low-level function underlying alggroupcenter, where cc is the output of groupelts_to_conjclasses, and p is either NULL or a prime number. Not stack clean.
`GEN algsimpledec_ss(GEN al, long maps)` assuming that al is semisimple, returns the second component of algsimpledec(al,maps).
This chapter is quite short, but is added as a placeholder, since we expect the library to expand in that direction.

14.1 Elliptic curves.

Elliptic curves are represented in the Weierstrass model

\[(E) : y^2z + a_1 xyz + a_3 yz = x^3 + a_2 x^2 z + a_4 x z^2 + a_6 z^3,\]

by the 5-tuple \([a_1, a_2, a_3, a_4, a_6]\). Points in the projective plane are represented as follows: the point at infinity \((0 : 1 : 0)\) is coded as \([0]\), a finite point \((x : y : 1)\) outside the projective line at infinity \(z = 0\) is coded as \([x, y]\). Note that other points at infinity than \((0 : 1 : 0)\) cannot be represented; this is harmless, since they do not belong to any of the elliptic curves \(E\) above.

Points on the curve are just projective points as described above, they are not tied to a curve in any way: the same point may be used in conjunction with different curves, provided it satisfies their equations (if it does not, the result is usually undefined). In particular, the point at infinity belongs to all elliptic curves.

As with factor for polynomial factorization, the 5-tuple \([a_1, a_2, a_3, a_4, a_6]\) implicitly defines a base ring over which the curve is defined. Point coordinates must be operation-compatible with this base ring (\(gadd, gmul, gdiv\) involving them should not give errors).

14.1.1 Types of elliptic curves.

We call a 5-tuble as above an ell5; most functions require an ell structure, as returned by ellinit, which contains additional data (usually dynamically computed as needed), depending on the base field.

GEN ellinit(GEN E, GEN D, long prec), returns an ell structure, attached to the elliptic curve \(E\): either an ell5, a pair \([a_4, a_6]\) or a t_STR in Cremona's notation, e.g. "11a1". The optional \(D\) (NULL to omit) describes the domain over which the curve is defined.

14.1.2 Type checking.

void checkell(GEN e) raise an error unless \(e\) is an ell.

int checkell_i(GEN e) return 1 if \(e\) is an ell and 0 otherwise.

void checkell5(GEN e) raise an error unless \(e\) is an ell or an ell5.

void checkellpt(GEN z) raise an error unless \(z\) is a point (either finite or at infinity).

long ell_get_type(GEN e) returns the domain type over which the curve is defined, one of

\[t_{\text{ELL}_Q}\] the field of rational numbers;

\[t_{\text{ELL}_{\text{NF}}} a\] number field;
the field of p-adic numbers, for some prime p;

t_ELL_Fp a prime finite field, base field elements are represented as F_p, i.e. a t_INT reduced modulo p;

t_ELL_Fq a non-prime finite field (a prime finite field can also be represented by this subtype, but this is inefficient), base field elements are represented as t_FFELT;

t_ELL_Rg none of the above.

void checkell_Fq(GEN e) checks whether e is an ell, defined over a finite field (either prime or non-prime). Otherwise the function raises a pari_err_TYPE exception.

void checkell_Q(GEN e) checks whether e is an ell, defined over \mathbb{Q}. Otherwise the function raises a pari_err_TYPE exception.

void checkell_Qp(GEN e) checks whether e is an ell, defined over some \mathbb{Q}_p. Otherwise the function raises a pari_err_TYPE exception.

void checkellisog(GEN v) raise an error unless v is an isogeny, from ellisogeny.

14.1.3 Extracting info from an ell structure.

These functions expect an ell argument. If the required data is not part of the structure, it is computed then inserted, and the new value is returned.

14.1.3.1 All domains.

GEN ell_get_a1(GEN e)
GEN ell_get_a2(GEN e)
GEN ell_get_a3(GEN e)
GEN ell_get_a4(GEN e)
GEN ell_get_a6(GEN e)
GEN ell_get_b2(GEN e)
GEN ell_get_b4(GEN e)
GEN ell_get_b6(GEN e)
GEN ell_get_b8(GEN e)
GEN ell_get_c4(GEN e)
GEN ell_get_c6(GEN e)
GEN ell_get_disc(GEN e)
GEN ell_get_j(GEN e)
14.1.3.2 Curves over \mathbb{Q}.

GEN `ellQ_get_N(GEN e)` returns the curve conductor.

void `ellQ_get_Nfa(GEN e, GEN *N, GEN *faN)` sets N to the conductor and faN to its factorization.

int `ell_is_integral(GEN e)` return 1 if e is given by an integral model, and 0 otherwise.

long `ellQ_get_CM(GEN e)` if e has CM by a principal imaginary quadratic order, return its discriminant. Else return 0.

long `ellQ_get_CM(GEN e) as ellQ_get_CM, return the trace of Frobenius for E/F_p. This is meant to quickly compute lots of a_p, esp. when e has CM by a principal quadratic order.

long `ellrootno_global(GEN e)` returns the global root number $c \in \{-1,1\}$.

GEN `ellheightoo(GEN E, GEN P, long prec)` given $P = [x,y]$ an affine point on E, return

$$\lambda_\infty(P) + \frac{1}{12} \log |\text{disc}E| = \frac{1}{2} \text{real}(z_\eta(z)) - \log |\sigma(E,z)| \in \mathbb{R},$$

where $\lambda_\infty(P)$ is the canonical local height at infinity and z is `ellpointtoz(E,P)`. This is computed using Mestre's (quadratically convergent) AGM algorithm.

long `ellorder_Q(GEN E, GEN P)` return the order of $P \in E(\mathbb{Q})$, using the impossible value 0 for a point of infinite order. Ultimately called by the generic `ellorder` function.

GEN `point_to_a4a6(GEN E, GEN P, GEN p, GEN *a4)` given E/\mathbb{Q}, $p \neq 2,3$ not dividing the discriminant of E and $P \in E(\mathbb{Q})$ outside the kernel of reduction, return the image of P on the short Weierstrass model $y^2 = x^3 + a_4 x + a_6$ isomorphic to the reduction E_p of E at p. Also set a_4 to the a_4 coefficient in the above model. This function allows quick computations modulo varying primes p, avoiding the overhead of `ellinit(E,p)`, followed by a change of coordinates. It produces data suitable for `FpE` routines.

GEN `point_to_a4a6_Fl(GEN E, GEN P, ulong p, ulong *pa4)` as `point_to_a4a6`, returning a Fl.

GEN `elldatagenerators(GEN E)` returns generators for $E(\mathbb{Q})$ extracted from Cremona’s table.

GEN `ellanal_globalred(GEN e, GEN *v)` takes an ell over \mathbb{Q} and returns a global minimal model E (in `ellinit` form, over \mathbb{Q}) for e suitable for analytic computations related to the curve L series: it contains `ellglobalred` data, as well as global and local root numbers. If v is not NULL, set $*v$ to the needed change of variable: NULL if e was already the standard minimal model, such that $E = ellchangecurve(e,v)$ otherwise. Compared to the direct use of `ellchangecurve` followed by `ellrootno`, this function avoids converting unneeded dynamic data and avoids potential memory leaks (the changed curve would have had to be deleted using `obj_free`). The original curve e is updated as well with the same information.

GEN `ellanal_globalred_all(GEN e, GEN *v, GEN *N, GEN *tam)` as `ellanal_globalred`; further set $*N$ to the curve conductor and $*tam$ to the product of the local Tamagawa numbers, including the factor at infinity (multiply by the number of connected components of $e(R)$).

GEN `ellintegralmodel(GEN e, GEN *pv)` return an integral model for e (in `ellinit` form, over \mathbb{Q}). Set $v = \text{NULL}$ (already integral, we returned e itself), else to the variable change $[u,0,0,0]$ making e integral. We have $u = 1/t$, $t > 1$.

GEN `ellintegralmodel_i(GEN e, GEN *pv)` shallow version of `ellintegralmodel`. 313
14.1.3.3 Curves over a number field nf.

Let K be the number field over which E is defined, given by a nf or bnf structure.

GEN `ellnf_get_nf(GEN E)` returns the underlying nf.

GEN `ellnf_get_bnf(GEN x)` returns NULL if K does not contain a bnf structure, else return the bnf.

GEN `ellnf_vecarea(GEN E)` returns the vector of the period lattices areas of all the complex embeddings of E in the same order as $E.nf.roots$.

GEN `ellnf_veceta(GEN E)` returns the vector of the quasi-periods of all the complex embeddings of E in the same order as $E.nf.roots$.

GEN `ellnf_vecomega(GEN E)` returns the vector of the periods of all the complex embeddings of E in the same order as $E.nf.roots$.

14.1.3.4 Curves over Q_p.

GEN `ellQp_get_p(GEN E)` returns p

long `ellQp_get_prec(GEN E)` returns the default p-adic accuracy to which we must compute approximate results attached to E.

GEN `ellQp_get_zero(GEN x)` returns $O(p^n)$, where n is the default p-adic accuracy as above.

The following functions are only defined when E has multiplicative reduction (Tate curves):

GEN `ellQp_Tate_uniformization(GEN E, long prec)` returns a t_VEC containing $u^2, u, q, [a, b]$, at p-adic precision $prec$.

GEN `ellQp_u(GEN E, long prec)` returns u.

GEN `ellQp_u2(GEN E, long prec)` returns u^2.

GEN `ellQp_q(GEN E, long prec)` returns the Tate period q.

GEN `ellQp_ab(GEN E, long prec)` returns $[a, b]$.

GEN `ellQp_AGM(GEN E, long prec)` returns $[a, b, R, v]$, where v is an integer, a, b, R are vectors describing the sequence of 2-isogenous curves $E_i : y^2 = x(x + A_i)(x + A_i - B_i), i \geq 1$ converging to the singular curve $E_\infty : y^2 = x^2(x + M)$. We have $a[i] = A[i]p^v, b[i] = B[i]p^v, R[i] = A_i - B_i$. These are used in ellpointtoz and ellztopoint.

GEN `ellQp_L(GEN E, long prec)` returns the L-invariant L.

GEN `ellQp_root(GEN E, long prec)` returns e_1.
14.1.3.5 Curves over a finite field \(F_q \).

\(\text{GEN } \text{ellff_get_p}(\text{GEN } E) \) returns the characteristic.

\(\text{GEN } \text{ellff_get_field}(\text{GEN } E) \) returns \(p \) if \(F_q \) is a prime field, and a \(\text{t_FFELT} \) belonging to \(F_q \) otherwise.

\(\text{GEN } \text{ellff_get_card}(\text{GEN } E) \) returns \(\# E(F_q) \).

\(\text{GEN } \text{ellff_get_gens}(\text{GEN } E) \) returns a minimal set of generators for \(E(F_q) \).

\(\text{GEN } \text{ellff_get_group}(\text{GEN } E) \) returns \(\text{ellgroup}(E) \).

\(\text{GEN } \text{ellff_get_m}(\text{GEN } E) \) returns the \(\text{t_INT} \) \(\text{m} \) as needed by the \(\text{gen_ellgroup} \) function (the order of the pairing required to verify a generating set).

\(\text{GEN } \text{ellff_get_o}(\text{GEN } E) \) returns \([d, \text{factord}]\), where \(d \) is the exponent of \(E(F_q) \).

\(\text{GEN } \text{ellff_get_D}(\text{GEN } E) \) returns the elementary divisors for \(E(F_q) \) in a form suitable for \(\text{gen_ellgens} \): either \([d_1] \) or \([d_1, d_2]\), where \(d_1 \) is in \(\text{ellff_get_o} \) format.

\([d, \text{factord}], \) where \(d \) is the exponent of \(E(F_q) \).

\(\text{GEN } \text{ellff_get_a4a6}(\text{GEN } E) \) returns a canonical “short model” for \(E \), and the corresponding change of variable \([u, r, s, t]\). For \(p = 2, 3 \), this is \([A_4, A_6, \{u, r, s, t\}]\), corresponding to \(y^2 = x^3 + A_4x + A_6 \), where \(A_4 = -27c_4, A_6 = -54c_6, \{u, r, s, t\} = [6, 3b_2, 3a_1, 108a_3] \).

- If \(p = 3 \) and the curve is ordinary \((b_2 \neq 0) \), this is \([b_2, A_6, \{1, v, -a_1, -a_3\}]\), corresponding to
 \[y^2 = x^3 + b_2x^2 + A_6, \]
 where \(v = b_4/b_2, A_6 = b_6 - v(b_4 + v^2) \).

- If \(p = 3 \) and the curve is supersingular \((b_2 = 0) \), this is \([-b_4, b_6, \{1, 0, -a_1, -a_3\}]\), corresponding to
 \[y^2 = x^3 + 2b_4x + b_6. \]

- If \(p = 2 \) and the curve is ordinary \((a_1 \neq 0) \), return \([A_2, A_6, \{a_1^{-1}, da_1^{-2}, 0, (a_4 + d^2)a_1^{-1}\}]\), corresponding to
 \[y^2 + xy = x^3 + A_2x^2 + A_6, \]
 where \(d = a_3/a_1, a_1^2A_2 = (a_2 + d) \) and
 \[a_1^3A_6 = d^3 + a_2d^2 + a_4d + a_6 + (a_1^2 + d^4)a_1^{-2}. \]

- If \(p = 2 \) and the curve is supersingular \((a_1 = 0, a_3 \neq 0) \), return \([(a_3, A_4, 1/a_3), A_6, \{1, a_2, 0, 0\}]\), corresponding to
 \[y^2 + a_3y = x^3 + A_4x + A_6, \]
 where \(A_4 = a_3^2 + a_4, A_6 = a_2a_4 + a_6 \). The value \(1/a_3 \) is included in the vector since it is frequently needed in computations.
14.1.3.6 Curves over \mathbb{C}. (This includes curves over \mathbb{Q}!)

long ellR_get_prec(GEN E) return the default accuracy to which we must compute approximate results attached to E.

GEN ellR_ab(GEN E, long prec) return $[a, b]$.

GEN ellR_omega(GEN x, long prec) return periods $[\omega_1, \omega_2]$.

GEN ellR_eta(GEN E, long prec) return quasi-periods $[\eta_1, \eta_2]$.

GEN ellR_area(GEN x, long prec) return the area ($\Im(\omega_1 \omega_2)$).

GEN ellR_roots(GEN E, long prec) return $[e_1, e_2, e_3]$. If E is defined over \mathbb{R}, then e_1 is real. If furthermore $\text{disc}E > 0$, then $e_1 > e_2 > e_3$.

long ellR_get_sign(GEN E) if E is defined over \mathbb{R} returns the sign of its discriminant, otherwise return 0.

14.1.4 Points.

int ell_is_inf(GEN z) tests whether the point z is the point at infinity.

GEN ellinf() returns the point at infinity $[0]$.

14.1.5 Change of variables.

GEN ellchangeinvert(GEN w) given a change of variables $w = [u, r, s, t]$, returns the inverse change of variables w', such that if $E' = \text{ellchangecurve}(E, w)$, then $E = \text{ellchangecurve}(E, w')$.

14.1.6 Generic helper functions.

The naming scheme assumes an affine equation $F(x, y) = f(x) - (y^2 + h(x))y = 0$ in standard Weierstrass form: $f = x^3 + a_2x^2 + a_4x + a_6, h = a_1x + a_3$. Unless mentioned otherwise, these routine assume that all arguments are compatible with generic functions of gadd or gmul type. In particular they do not handle elements in number field in nfalgtobasis format.

GEN ellbasechar(GEN E) returns the characteristic of the base ring over which E is defined.

GEN ec_bmodel(GEN E) returns the polynomial $4x^3 + b_2x^2 + 2b_4x + b_6$.

GEN ec_f_evalx(GEN E, GEN x) returns $f(x)$.

GEN ec_h_evalx(GEN E, GEN x) returns $h(x)$.

GEN ec_dFdx_evalQ(GEN E, GEN Q) returns $3x^2 + 2a_2x + a_4 - a_1y$, where $Q = [x, y]$.

GEN ec_dFdy_evalQ(GEN E, GEN Q) returns $-(2y + a_1x + a_3)$, where $Q = [x, y]$.

GEN ec_dmFdy_evalQ(GEN e, GEN Q) returns $2y + a_1x + a_3$, where $Q = [x, y]$.

GEN ec_2divpol_evalx(GEN E, GEN x) returns $4x^3 + b_2x^2 + 2b_4x + b_6$. This function supports inputs in nfalgtobasis format.

GEN ec_half_deriv_2divpol_evalx(GEN E, GEN x) returns $6x^2 + b_2x + b_4$.

GEN ec_3divpol_evalx(GEN E, GEN x) returns $3x^4 + b_2x^2 + 3b_4x^2 + 3b_6x + b_8$. 316
14.1.7 Functions to handle elliptic curves over finite fields.

14.1.7.1 Tolerant routines.

GEN ellap(GEN E, GEN p) given a prime number p and an elliptic curve defined over \mathbb{Q} or \mathbb{Q}_p (assumed integral and minimal at p), computes the trace of Frobenius $a_p = p + 1 - \#E(\mathbb{F}_p)$. If E is defined over a non-prime finite field \mathbb{F}_q, ignore p and return $q + 1 - \#E(\mathbb{F}_q)$. When p is implied (E defined over \mathbb{Q}_p or a finite field), p can be omitted (set to NULL).

14.1.7.2 Curves defined a non-prime finite field. In this subsection, we assume that ell_get_type(E) is t_ELL_Fq. (As noted above, a curve defined over $\mathbb{Z}/p\mathbb{Z}$ can be represented as a t_ELL_Fq.)

GEN FF_elltwist(GEN E) returns the coefficients $[a_1, a_2, a_3, a_4, a_6]$ of the quadratic twist of E.

GEN FF_ellmul(GEN E, GEN P, GEN n) returns nP where n is an integer and P is a point on the curve E.

GEN FF_ellrandom(GEN E) returns a random point in $E(\mathbb{F}_q)$. This function never returns the point at infinity, unless this is the only point on the curve.

GEN FF_ellorder(GEN E, GEN P, GEN o) returns the order of the point P, where o is a multiple of the order of P, or its factorization.

GEN FF_ellcard(GEN E) returns $\#E(\mathbb{F}_q)$.

GEN FF_ellcard_SEA(GEN E, long s) This function returns $\#E(\mathbb{F}_q)$, using the Schoof-Elkies-Atkin algorithm. Assume $p \neq 2, 3$. The parameter s has the same meaning as in Fp_ellcard_SEA.

GEN FF_ellgens(GEN E) returns the generators of the group $E(\mathbb{F}_q)$.

GEN FF_elllog(GEN E, GEN P, GEN G, GEN o) Let G be a point of order o, return e such that $[e]P = G$. If e does not exists, the result is undefined.

GEN FF_ellgroup(GEN E, GEN *pm) returns the structure of the Abelian group $E(\mathbb{F}_q)$ and set *pm to m (see gen_ellgens).

GEN FF_ellweilpairing(GEN E, GEN P, GEN Q, GEN m) returns the Weil pairing of the points of m-torsion P and Q.

GEN FF_elltatepairing(GEN E, GEN P, GEN Q, GEN m) returns the Tate pairing of P and Q, where $[m]P = 0$.

14.2 Arithmetic on elliptic curve over a finite field in simple form.

The functions in this section no longer operate on elliptic curve structures, as seen up to now. They are used to implement those higher-level functions without using cached information and thus require suitable explicitly enumerated data.

14.2.1 Helper functions.

GEN elltrace_extension(GEN t, long n, GEN q) Let E some elliptic curve over \mathbb{F}_q such that the trace of the Frobenius is t, returns the trace of the Frobenius over \mathbb{F}_q^n.

317
14.2.2 Elliptic curves over \mathbb{F}_p, $p > 3$.

Let p a prime number and E the elliptic curve given by the equation $E : y^2 = x^3 + a_4 x + a_6$, with a_4 and a_6 in \mathbb{F}_p. A \mathbb{F}_p is a point of $E(\mathbb{F}_p)$. Since an affine point and a_4 determine an unique a_6, most functions do not take a_6 as an argument. A \mathbb{F}_p is either the point at infinity ($\text{ellinf}()$) or a \mathbb{F}_p with two components. The parameters a_4 and a_6 are given as t_INTs when required.

GEN $\text{Fp_ellj}(\text{GEN } a4, \text{ GEN } a6, \text{ GEN } p)$ returns the j-invariant of the curve E.

int $\text{Fp_elljissupersingular}(\text{GEN } j, \text{ GEN } p)$ returns 1 if j is the j-invariant of a supersingular curve over \mathbb{F}_p, 0 otherwise.

GEN $\text{Fp_ellcard}(\text{GEN } a4, \text{ GEN } a6, \text{ GEN } p)$ returns the cardinality of the group $E(\mathbb{F}_p)$.

GEN $\text{Fp_ellcard_SEA}(\text{GEN } a4, \text{ GEN } a6, \text{ GEN } p, \text{ long } s)$ This function returns $\#E(\mathbb{F}_p)$, using the Schoof-Elkies-Atkin algorithm. If the seadata package is installed, the function will be faster.

The extra flag s, if set to a non-zero value, causes the computation to return gen 0 (an impossible cardinality) if one of the small primes ℓ divides the curve order but does not divide s.

For cryptographic applications, where one is usually interested in curves of prime order, setting $s = 1$ efficiently weeds out most uninteresting curves; if curves of order a power of 2 times a prime are acceptable, set $s = 2$. If moreover s is negative, similar checks are performed for the twist of the curve.

GEN $\text{Fp_ffellcard}(\text{GEN } a4, \text{ GEN } a6, \text{ GEN } q, \text{ long } n, \text{ GEN } p)$ returns the cardinality of the group $E(\mathbb{F}_q)$ where $q = p^n$.

GEN $\text{Fp_ellgroup}(\text{GEN } a4, \text{ GEN } a6, \text{ GEN } N, \text{ GEN } p, \text{ GEN } *\text{pm})$ returns the group structure D of the group $E(\mathbb{F}_p)$, which is assumed to be of order N and set *pm to m.

GEN $\text{Fp_ellgens}(\text{GEN } a4, \text{ GEN } a6, \text{ GEN } ch, \text{ GEN } D, \text{ GEN } m, \text{ GEN } p)$ returns generators of the group $E(\mathbb{F}_p)$ with the base change ch (see FpE_changepoint), where D and m are as returned by Fp_ellgroup.

GEN $\text{Fp_elldivpol}(\text{GEN } a4, \text{ GEN } a6, \text{ long } n, \text{ GEN } p)$ returns the n-division polynomial of the elliptic curve E.

void $\text{Fp_elltwist}(\text{GEN } a4, \text{ GEN } a6, \text{ GEN } p, \text{ GEN } *\text{pA4}, \text{ GEN } *\text{pA6})$ sets *pA4 and *pA6 to the corresponding parameters for the quadratic twist of E.

14.2.3 \mathbb{F}_p.

GEN $\text{FpE_add}(\text{GEN } P, \text{ GEN } Q, \text{ GEN } a4, \text{ GEN } p)$ returns the sum $P + Q$ in the group $E(\mathbb{F}_p)$, where E is defined by $E : y^2 = x^3 + a_4 x + a_6$, for any value of a_6 compatible with the points given.

GEN $\text{FpE_sub}(\text{GEN } P, \text{ GEN } Q, \text{ GEN } a4, \text{ GEN } p)$ returns $P - Q$.

GEN $\text{FpE_db1}(\text{GEN } P, \text{ GEN } a4, \text{ GEN } p)$ returns $2P$.

GEN $\text{FpE_neg}(\text{GEN } P, \text{ GEN } p)$ returns $-P$.

GEN $\text{FpE_mul}(\text{GEN } P, \text{ GEN } n, \text{ GEN } a4, \text{ GEN } p)$ return nP.

GEN $\text{FpE_changepoint}(\text{GEN } P, \text{ GEN } m, \text{ GEN } a4, \text{ GEN } p)$ returns the image Q of the point P on the curve $E : y^2 = x^3 + a_4 x + a_6$ by the coordinate change m (which is a \mathbb{F}_p).

GEN $\text{FpE_changepointinv}(\text{GEN } P, \text{ GEN } m, \text{ GEN } a4, \text{ GEN } p)$ returns the image Q on the curve $E : y^2 = x^3 + a_4 x + a_6$ of the point P by the inverse of the coordinate change m (which is a \mathbb{F}_p).
GEN random_FpE(GEN a4, GEN a6, GEN p) returns a random point on \(E(\mathbb{F}_p)\), where \(E\) is defined by \(E : y^2 = x^3 + a_4x + a_6\).

GEN FpE_order(GEN P, GEN o, GEN a4, GEN p) returns the order of \(P\) in the group \(E(\mathbb{F}_p)\), where \(o\) is a multiple of the order of \(P\), or its factorization.

GEN FpE_log(GEN P, GEN G, GEN o, GEN a4, GEN p) Let \(G\) be a point of order \(o\), return \(e\) such that \(eP = G\). If \(e\) does not exists, the result is currently undefined.

GEN FpE_tatepairing(GEN P, GEN Q, GEN m, GEN a4, GEN p) returns the Tate pairing of the point of \(m\)-torsion \(P\) and the point \(Q\).

GEN FpE_weilpairing(GEN P, GEN Q, GEN m, GEN a4, GEN p) returns the Weil pairing of the points of \(m\)-torsion \(P\) and \(Q\).

GEN FpE_to_mod(GEN P, GEN p) returns \(P\) as a vector of \(t_\text{INTMOD}\)s.

GEN RgE_to_FpE(GEN P, GEN p) returns the \(FpE\) obtained by applying \(Rg\) to \(Fp\) coefficientwise.

14.2.4 Fle

Let \(p\) be a prime ulong, and \(E\) the elliptic curve given by the equation \(E : y^2 = x^3 + a_4x + a_6\), where \(a_4\) and \(a_6\) are ulong. A Fle is either the point at infinity (\texttt{ellinf()}) or a Flv with two components \([x, y]\).

long Fl_elltrace(ulong a4, ulong a6, ulong p) returns the trace \(t\) of the Frobenius of \(E(\mathbb{F}_p)\). The cardinality of \(E(\mathbb{F}_p)\) is thus \(p + 1 - t\), which might not fit in an ulong.

long Fl_elltrace_CM(long CM, ulong a4, ulong a6, ulong p) as Fl_elltrace. If \(CM\) is 0, use the standard algorithm; otherwise assume the curve has CM by a principal imaginary quadratic order of discriminant \(CM\) and use a faster algorithm. Useful when the curve is the reduction of \(E/\mathbb{Q}\), which has CM by a principal order, and we need the trace of Frobenius for many distinct \(p\), see \texttt{ellQ_get_CM}.

ulong Fl_elldisc(ulong a4, ulong a6, ulong p) returns the discriminant of the curve \(E\).

ulong Fl_elldisc_pre(ulong a4, ulong a6, ulong p, ulong pi) returns the discriminant of the curve \(E\), assuming \(pi\) is the pseudo inverse of \(p\).

ulong Fl_ellj(ulong a4, ulong a6, ulong p) returns the \(j\)-invariant of the curve \(E\).

ulong Fl_ellj_pre(ulong a4, ulong a6, ulong p, ulong pi) returns the \(j\)-invariant of the curve \(E\), assuming \(pi\) is the pseudo inverse of \(p\).

void Fl_ellj_to_a4a6(ulong j, ulong p, ulong *pa4, ulong *pa6) sets \(*pa4\) to \(a_4\) and \(*pa6\) to \(a_6\) where \(a_4\) and \(a_6\) define a fixed elliptic curve with \(j\)-invariant \(j\).

void Fl_elltwist(ulong a4, ulong a6, ulong p, ulong *pA4, ulong *pA6) set \(*pA4\) to \(A_4\) and \(*pA6\) to \(A_6\) where \(A_4\) and \(A_6\) define the twist of \(E\).

void Fl_elltwist_disc(ulong a4, ulong a6, ulong D, ulong p, ulong *pA4, ulong *pA6) sets \(*pA4\) to \(A_4\) and \(*pA6\) to \(A_6\) where \(A_4\) and \(A_6\) define the twist of \(E\) by the discriminant \(D\).

GEN Fle_add(GEN P, GEN Q, ulong a4, ulong p)

GEN Fle_dbl(GEN P, ulong a4, ulong p)

GEN Fle_sub(GEN P, GEN Q, ulong a4, ulong p)

GEN Fle_mul(GEN P, GEN n, ulong a4, ulong p)
Let p be a prime t_{INT}, and E the elliptic curve given by the equation $E : y^2 = x^3 + a_4 x + a_6$, where a_4 and a_6 are t_{INT}. A FpJ is a FpV with three components $[x, y, z]$, representing the affine point $[x/z^2, y/z^3]$ in Jacobian coordinates, the point at infinity being represented by [1, 1, 0]. The following must hold: $y^2 = x^3 + a_4 x z^4 + a_6 z^6$. For all non-zero u, the points $[u^2 x, u^3 y, uz]$ and $[x, y, z]$ are representing the same affine point.

14.2.5 FpJ.

Below, pi is assumed to be the precomputed inverse of p.

14.2.6 Flj.

Below, pi is assumed to be the precomputed inverse of p.

GEN Fle_to_Flj(GEN P) convert a Fle to an equivalent Flj.
GEN Flj_to_Fle_pre(GEN P) convert a Flj to the equivalent Fle.
GEN Flj_add_pre(GEN P, GEN Q, ulong a4, ulong p, ulong pi)
GEN Flj_dbl_pre(GEN P, ulong a4, ulong p, ulong pi)
GEN Flj_neg(GEN P, ulong p) return $-P$.
GEN Flj_mulu_pre(GEN P, ulong n, ulong a4, ulong p, ulong pi)
GEN random_Flj_pre(ulong a4, ulong a6, ulong p, ulong pi)
14.2.7 Elliptic curves over \mathbb{F}_{2^n}. Let T be an irreducible \mathbb{F}_2-polynomial and E the elliptic curve given by either the equation $E : y^2 + x \cdot y = x^3 + a_2 x^2 + a_6$, where a_2, a_6 are \mathbb{F}_2-valued in $\mathbb{F}_2[X]/(T)$ (ordinary case) or $E : y^2 + a_3 \cdot y = x^3 + a_4 x + a_6$, where a_3, a_4, a_6 are \mathbb{F}_2-valued in $\mathbb{F}_2[X]/(T)$ (supersingular case).

A \mathbb{F}_2-valued point P is a point of $E(\mathbb{F}_2[X]/(T))$. In the supersingular case, the parameter a_2 is actually the t-vector $[a_3, a_4, a_3^{-1}]$.

GEN F2xq_ellcard(GEN a2, GEN a6, GEN T) Return the order of the group $E(\mathbb{F}_2[X]/(T))$.

GEN F2xq_ellgroup(GEN a2, GEN a6, GEN N, GEN T, GEN *pm) Return the group structure D of the group $E(\mathbb{F}_2[X]/(T))$, which is assumed to be of order N and set *pm to m.

GEN F2xq_ellgens(GEN a2, GEN a6, GEN ch, GEN D, GEN m, GEN T) Returns generators of the group $E(\mathbb{F}_2[X]/(T))$ with the base change ch (see F2xqE_changepoint), where D and m are as returned by F2xq_ellgroup.

void F2xq_elltwist(GEN a4, GEN a6, GEN T, GEN *a4t, GEN *a6t) sets $*a4t$ and $*a6t$ to the parameters of the quadratic twist of E.

14.2.8 \mathbb{F}_2-valued points.

GEN F2xqE_changepoint(GEN P, GEN m, GEN a2, GEN T) returns the image Q of the point P on the curve $E : y^2 + x \cdot y = x^3 + a_2 x^2 + a_6$ by the coordinate change m (which is a \mathbb{F}_2-valued).

GEN F2xqE_changepointinv(GEN P, GEN m, GEN a2, GEN T) returns the image Q on the curve $E : y^2 = x^3 + a_4 x + a_6$ of the point P by the inverse of the coordinate change m (which is a \mathbb{F}_2-valued).

GEN F2xqE_add(GEN P, GEN Q, GEN a2, GEN T)

GEN F2xqE_sub(GEN P, GEN Q, GEN a2, GEN T)

GEN F2xqE_dbl(GEN P, GEN a2, GEN T)

GEN F2xqE_neg(GEN P, GEN a2, GEN T)

GEN F2xqE_mul(GEN P, GEN n, GEN a2, GEN T)

GEN random_F2xqE(GEN a2, GEN a6, GEN T)

GEN F2xqE_order(GEN P, GEN o, GEN a2, GEN T) returns the order of P in the group $E(\mathbb{F}_2[X]/(T))$, where o is a multiple of the order of P, or its factorization.

GEN F2xqE_log(GEN P, GEN G, GEN o, GEN a2, GEN T) Let G be a point of order o, return e such that $e \cdot P = G$. If e does not exists, the result is currently undefined.

GEN F2xqE_tatepairing(GEN P, GEN Q, GEN m, GEN a2, GEN T) returns the Tate pairing of the point of m-torsion P and the point Q.

GEN F2xqE_weilpairing(GEN Q, GEN Q, GEN m, GEN a2, GEN T) returns the Weil pairing of the points of m-torsion P and Q.

GEN RgE_to_F2xqE(GEN P, GEN T) returns the \mathbb{F}_2-valued point obtained by applying Rg to $F2xq$ coefficients.
14.2.9 Elliptic curves over \(F_q \), small characteristic \(p > 2 \). Let \(p > 2 \) be a prime \texttt{ulong}, \(T \) an irreducible \texttt{Flx} mod \(p \), and \(E \) the elliptic curve given by the equation \(E : y^2 = x^3 + a_4 x + a_6 \), where \(a_4 \) and \(a_6 \) are \texttt{Flx} in \(F_p[X]/(T) \). \(\texttt{FlxE} \) is a point of \(E(F_p[X]/(T)) \).

In the special case \(p = 3 \), ordinary elliptic curves (\(j(E) \neq 0 \)) cannot be represented as above, but admit a model \(E : y^2 = x^3 + a_2 x^2 + a_6 \) with \(a_2 \) and \(a_6 \) being \texttt{Flx} in \(F_3[X]/(T) \). In that case, the parameter \(a_2 \) is actually stored as a \texttt{t_VEC}, \([a_2]\), to avoid ambiguities.

\texttt{GEN Flxq_ellj(GEN a4, GEN a6, GEN T, ulong p)} returns the \(j \)-invariant of the curve \(E \).

\texttt{void Flxq_ellj_to_a4a6(GEN j, GEN T, ulong p, GEN *pa4, GEN *pa6)} sets \(*pa4\) to \(a_4 \) and \(*pa6\) to \(a_6 \) where \(a_4 \) and \(a_6 \) define a fixed elliptic curve with \(j \)-invariant \(j \).

\texttt{GEN Flxq_ellcard(GEN a4, GEN a6, GEN T, ulong p)} returns the order of \(E(F_p[X]/(T)) \).

\texttt{GEN Flxq_ellgroup(GEN a4, GEN a6, GEN N, GEN T, ulong p, GEN *pm)} returns the group structure \(D \) of the group \(E(F_p[X]/(T)) \), which is assumed to be of order \(N \) and sets \(*pm\) to \(m \).

\texttt{GEN Flxq_ellgens(GEN a4, GEN a6, GEN ch, GEN D, GEN m, GEN T, ulong p)} returns generators of the group \(E(F_p[X]/(T)) \) with the base change \(ch \) (see \texttt{Flxq_ellpoint}), where \(D \) and \(m \) are as returned by \texttt{Flxq_ellgroup}.

\texttt{void Flxq_elltwist(GEN a4, GEN a6, GEN T, ulong p, GEN *pA4, GEN *pA6)} sets \(*pA4\) and \(*pA6\) to the corresponding parameters for the quadratic twist of \(E \).

14.2.10 \texttt{FlxqE}.

Let \(p > 2 \) be a prime number.

\texttt{GEN FlxqE_changepoint(GEN P, GEN m, GEN a4, GEN T, ulong p)} returns the image \(Q \) of the point \(P \) on the curve \(E : y^2 = x^3 + a_4 x + a_6 \) by the coordinate change \(m \) (which is a \texttt{FlxqV}).

\texttt{GEN FlxqE_changepointinv(GEN P, GEN m, GEN a4, GEN T, ulong p)} returns the image \(Q \) on the curve \(E : y^2 = x^3 + a_4 x + a_6 \) of the point \(P \) by the inverse of the coordinate change \(m \) (which is a \texttt{FlxqV}).

\texttt{GEN FlxqE_add(GEN P, GEN Q, GEN a4, GEN T, ulong p)}\texttt{GEN FlxqE_sub(GEN P, GEN Q, GEN a4, GEN T, ulong p)}\texttt{GEN FlxqE_dbl(GEN P, GEN a4, GEN T, ulong p)}\texttt{GEN FlxqE_neg(GEN P, GEN T, ulong p)}\texttt{GEN FlxqE_mul(GEN P, GEN n, GEN a4, GEN T, ulong p)}\texttt{GEN random_FlxqE(GEN a4, GEN a6, GEN T, ulong p)}\texttt{GEN FlxqE_order(GEN P, GEN o, GEN a4, GEN T, ulong p)}\texttt{GEN FlxqE_log(GEN P, GEN G, GEN o, GEN a4, GEN T, ulong p)}\texttt{GEN FlxqE_tatepairing(GEN P, GEN Q, GEN m, GEN a4, GEN T, ulong p)}\texttt{GEN FlxqE_weilpairing(GEN P, GEN Q, GEN m, GEN a4, GEN T, ulong p)}\texttt{GEN RgE_to_FlxqE(GEN P, GEN T, ulong p)} returns the \texttt{FlxqE} obtained by applying \texttt{Rg_to_Flxq} coefficientwise.
14.2.11 Elliptic curves over F_q, large characteristic.

Let $p > 3$ be a prime number, T an irreducible polynomial mod p, and E the elliptic curve given by the equation $E : y^2 = x^3 + a_4 x + a_6$ with a_4 and a_6 in $F_p[X]/(T)$. A FpXQE is a point of $E(F_p[X]/(T))$.

GEN FpXQ_e11j(GEN a4, GEN a6, GEN T, GEN p) returns the j-invariant of the curve E.

int FpXQ_e11jissupersingular(GEN j, GEN T, GEN p) returns 1 if j is the j-invariant of a supersingular curve over $F_p[X]/(T)$, 0 otherwise.

GEN FpXQ_e11card(GEN a4, GEN a6, GEN T, GEN p) returns the order of $E(F_p[X]/(T))$.

GEN Fq_e11card_SEA(GEN a4, GEN a6, GEN q, GEN T, GEN p, long s) This function returns $\#E(F_p[X]/(T))$, using the Schoof-Elkies-Atkin algorithm. Assume $p \neq 2, 3$, and q is the cardinality of $F_p[X]/(T)$. The parameter s has the same meaning as in Fp_e11card_SEA. If the seadata package is installed, the function will be faster.

GEN FpXQ_e11group(GEN a4, GEN a6, GEN N, GEN T, GEN p, GEN *pm) Return the group structure D of the group $E(F_p[X]/(T))$, which is assumed to be of order N and set *pm to m.

GEN FpXQ_e11gens(GEN a4, GEN a6, GEN ch, GEN D, GEN m, GEN T, GEN p) Returns generators of the group $E(F_p[X]/(T))$ with the base change ch (see FpXQE_changepoint), where D and m are as returned by FpXQ_e11group.

GEN FpXQ_e11divpol(GEN a4, GEN a6, long n, GEN T, GEN p) returns the n-division polynomial of the elliptic curve E.

GEN FpXQ_e11divpolmod(GEN a4, GEN a6, long n, GEN h, GEN T, GEN p) returns the n-division polynomial of the elliptic curve E modulo the polynomial h.

void FpXQ_e11twist(GEN a4, GEN a6, GEN T, GEN p) sets *pA4 and *pA6 to the corresponding parameters for the quadratic twist of E.

14.2.12 FpXQE.

GEN FpXQE_changepoint(GEN P, GEN m, GEN a4, GEN T, GEN p) returns the image Q of the point P on the curve $E : y^2 = x^3 + a_4 x + a_6$ by the coordinate change m (which is a FpXQV).

GEN FpXQE_changepointinv(GEN P, GEN m, GEN a4, GEN T, GEN p) returns the image Q of the point P on the curve $E : y^2 = x^3 + a_4 x + a_6$ by the inverse of the coordinate change m (which is a FpXQV).

GEN FpXQE_add(GEN P, GEN Q, GEN a4, GEN T, GEN p)
GEN FpXQE_sub(GEN P, GEN Q, GEN a4, GEN T, GEN p)
GEN FpXQE_dbl(GEN P, GEN a4, GEN T, GEN p)
GEN FpXQE_neg(GEN P, GEN T, GEN p)
GEN FpXQE_mul(GEN P, GEN n, GEN a4, GEN T, GEN p)
GEN random_FpXQE(GEN a4, GEN a6, GEN T, GEN p)
GEN FpXQE_log(GEN P, GEN G, GEN o, GEN a4, GEN T, GEN p) Let G be a point of order o, return e such that $e.P = G$. If e does not exists, the result is currently undefined.

GEN FpXQE_order(GEN P, GEN o, GEN a4, GEN T, GEN p) returns the order of P in the group $E(F_p[X]/(T))$, where o is a multiple of the order of P, or its factorization.
GEN FpXQE_tatepairing(GEN P, GEN Q, GEN m, GEN a4, GEN T, GEN p) returns the Tate pairing of the point of m-torsion P and the point Q.

GEN FpXQE_weilpairing(GEN P, GEN Q, GEN m, GEN a4, GEN T, GEN p) returns the Weil pairing of the points of m-torsion P and Q.

GEN RgE_to_FpXQE(GEN P, GEN T, GEN p) returns the FpXQE obtained by applying RgE to FpXQ coefficientwise.

14.3 Functions related to modular polynomials.

Variants of `polmodular`, returning the modular polynomial of prime level L for the invariant coded by `inv` (0: j, 1: Weber-f, see `polclass` for the full list).

GEN polmodular_ZXX(long L, long inv, long xvar, long yvar) returns a bivariate polynomial in variables xvar and yvar.

GEN polmodular_ZM(long L, long inv) returns a matrix of (integral) coefficients.

GEN Fp_polmodular_evalx(long L, long inv, GEN J, GEN p, long v, int derivs) returns the modular polynomial evaluated at J modulo the prime p in the variable v (if `derivs` is non-zero, returns a vector containing the modular polynomial and its first and second derivatives, all evaluated at J modulo p).

14.3.1 Functions related to modular invariants.

void check_modinv(long inv) report an error if `inv` is not a valid code for a modular invariant.

int modinv_good_disc(long inv, long D) test whether the invariant `inv` is defined for the discriminant `D`.

int modinv_good_prime(long inv, long D) test whether the invariant `inv` is defined for the prime `p`.

long modinv_height_factor(long inv) return the height factor of the modular invariant `inv` with respect to the j-invariant. This is an integer n such that the j-invariant is asymptotically of the order of the n-th power of the invariant `inv`.

long modinv_is_Weber(long inv) test whether the invariant `inv` is a power of Weber f.

long modinv_is_double_eta(long inv) test whether the invariant `inv` is a double η quotient.

long disc_best_modinv(long D) the integer D being a negative discriminant, return the modular invariant compatible with D with the highest height factor.

GEN Fp_modinv_to_j(GEN x, long inv, GEN p) Let Φ the modular equation between j and the modular invariant inv, return y such that $\Phi(y, x) = 0 \pmod p$.

324
14.4 Other curves.

The following functions deal with hyperelliptic curves in weighted projective space $\mathbb{P}_{(1,d,1)}$, with coordinates (x, y, z) and a model of the form $y^2 = T(x, z)$, where T is homogeneous of degree $2d$, and squarefree. Thus the curve is nonsingular of genus $d - 1$.

```c
long hyperell_locally_soluble(GEN T, GEN p)
```
assumes that $T \in \mathbb{Z}[X]$ is integral. Returns 1 if the curve is locally soluble over \mathbb{Q}_p, 0 otherwise.

```c
long nf_hyperell_locally_soluble(GEN nf, GEN T, GEN pr)
```
let K be a number field, attached to \mathfrak{p}, $\mathfrak{p}id$ attached to some maximal ideal p; assumes that $T \in \mathbb{Z}_K[X]$ is integral. Returns 1 if the curve is locally soluble over $K_{\mathfrak{p}}$.

325
15.1 Accessors.

long is_linit(GEN data)
GEN ldata_get_an(GEN ldata)
GEN ldata_get_dual(GEN ldata)
long ldata_isreal(GEN ldata)
GEN ldata_get_gammavec(GEN ldata)
long ldata_get_degree(GEN ldata)
long ldata_get_k(GEN ldata)
GEN ldata_get_conductor(GEN ldata)
GEN ldata_get_rootno(GEN ldata)
GEN ldata_get_residue(GEN ldata)
GEN ldata_vecan(GEN ldata, long L, long prec)
long ldata_get_type(GEN ldata)
long linit_get_type(GEN linit)
GEN linit_get_ldata(GEN linit)
GEN linit_get_tech(GEN linit)
GEN lfun_get_domain(GEN tech)
GEN lfun_get_dom(GEN tech)
long lfun_get_bitprec(GEN tech)
GEN lfun_get_factgammavec(GEN tech)
GEN lfun_get_step(GEN tech)
GEN lfun_get_pol(GEN tech)
GEN lfun_get_Residue(GEN tech)
GEN lfun_get_k2(GEN tech)
GEN lfun_get_w2(GEN tech)
GEN lfun_get_expot(GEN tech)
long lfun_get_bitprec(GEN tech)
15.2 Conversions and constructors.

GEN lfunmisc_to_ldata(GEN ldata)
GEN lfunmisc_to_ldata_shallow(GEN ldata)
GEN lfunrtopoles(GEN r)
int sdomain_isincl(GEN dom, GEN dom0)

15.3 Variants of GP functions.

GEN lfun(GEN ldata, GEN s, long bitprec)
GEN lfuninit(GEN ldata, GEN dom, long der, long bitprec)
GEN lfuninit_make(long t, GEN ldata, GEN molin, GEN domain)
GEN lfunlambda(GEN ldata, GEN s, long bitprec)
long lfunthetacost(GEN ldata, GEN tdom, long m, long bitprec): lfunthetacost0 when
the first argument is known to be an Ldata.
GEN lfunthetacheckinit(GEN data, GEN tinf, long m, long bitprec)
GEN lfunrootno(GEN data, long bitprec)
GEN lfunzetakininit(GEN pol, GEN dom, long der, long flag, long bitprec)
GEN lfunellmfpeters(GEN E, long bitprec)
GEN ellanalyticrank(GEN E, long prec) DEPRECATED.
GEN ellL1(GEN E, long prec) DEPRECATED.
15.4 Inverse Mellin transforms of Gamma products.

GEN gammamellininv(GEN Vga, GEN s, long m, long bitprec)
GEN gammamellininvinit(GEN Vga, long m, long bitprec)
GEN gammamellininvrt(GEN K, GEN s, long bitprec)
double dbllambertW0(double a)
double dbllambertW_1(double a)
double dbllemma526(double a, double b, double c, long B)
double dbllcoro526(double a, double c, long B)
Chapter 16:
Modular symbols

void checkms(GEN W) raise an exception if W is not an ms structure from $msinit$.
void checkmspadic(GEN W) raise an exception if W is not an $mspadic$ structure from $mspadicinit$.

Variants of $mfnucusps$:
ulong mfnucuspsu(ulong n)
GEN mfnucusps_fact(GEN fa) where fa is factor(n).
ulong mfnucuspsu_fact(GEN fa) where fa is factoru(n).

Chapter 17:
Modular forms

17.1 Implementation of public data structures.

void checkMF(GEN mf) raise an exception if the argument is not a modular form space.
GEN checkMF_i(GEN mf) return the underlying modular form space if mf is either directly a modular form space from $mfinit$ or a symbol from $mfsymbol$. Return NULL otherwise.
int checkmf_i(GEN mf) return 1 if the argument is a modular form and 0 otherwise.

17.1.1 Accessors for modular form spaces.

Shallow functions; assume that their argument is a modular form space is created by $mfinit$ and checked using $checkMF$.
GEN MF_get_gN(GEN mf) return the level N as a t_INT.
long MF_get_N(GEN mf) return the level N as a long.
GEN MF_get_gk(GEN mf) return the level k as a t_INT.
long MF_get_k(GEN mf) return the level k as a long.
long MF_get_r(GEN mf) assuming the level is a half-integer, return the integer $r = k - (1/2)$.
GEN MF_get_CHI(GEN mf) return the nebentypus χ, which is a special form of character structure attached to Dirichlet characters (see next section). Its values are given as algebraic numbers: either ± 1 or t_POLMOD in t.
long MF_get_space(GEN mf) returns the space type, corresponding to $mfinit$’s $space$ flag. The current list is
mf_NEW, mf_CUSP, mf_OLD, mf_EISEN, mf_FULL

331
GEN MF_get_basis(GEN mf) return the \(\mathbb{Q}\)-basis of the space, concatenation of \(\text{MF}_\text{get}_E\) and \(\text{MF}_\text{get}_S\), in this order; the forms have coefficients in \(\mathbb{Q}(\chi)\). Low-level version of \text{mfbasis}.

long MF_get_dim(GEN mf) returns the dimension \(d\) of the space. It is the cardinality of \(\text{MF}_\text{get}_\text{basis}\).

GEN MF_get_E(GEN mf) returns a \(\mathbb{Q}\)-basis for the subspace spanned by Eisenstein series in the space; the forms have coefficients in \(\mathbb{Q}(\chi)\).

GEN MF_get_S(GEN mf) returns a \(\mathbb{Q}\)-basis for the cuspidal subspace in the space; the forms have coefficients in \(\mathbb{Q}(\chi)\).

GEN MF_get_fields(GEN mf) returns the vector of polynomials defining each Galois orbit of newforms over \(\mathbb{Q}(\chi)\). Uses memoization: a first call splits the space and may be costly; subsequent calls return the cached result.

GEN MF_get_newforms(GEN mf) returns a vector \(v_F\) containing the coordinates of the eigenforms on \(\text{MF}_\text{get}_\text{basis}\) (\text{mf}to\text{basis} form). Low-level version of \text{mfeigenbasis}, whose elements are recovered as \(\text{mfl}\text{inear}(mf, \text{gel}(v_F, i))\). Uses memoization, sharing the same data as \text{MF_get_fields}. Note that it is much more efficient to use \text{mfcoefs}(mf,) then multiply by this vector than to compute the coefficients of eigenforms from \text{mfeigenbasis} individually.

The following accessors are technical,

GEN MF_get_M(GEN mf) the \((1 + m) \times d\) matrix whose \(j\)-th column contain the coefficients of the \(j\)-th entry in \(\text{MF}_\text{get}_\text{basis}\), \(m\) is the optimal “Sturm bound” for the space: the maximum of the \(v_\infty(f)\) over non-zero forms. It has entries in \(\mathbb{Q}(\chi)\).

GEN MF_get_Mindex(GEN mf) a \text{t_VECSMALL} containing \(d\) row indices, the corresponding rows of \(M\) form an invertible matrix \(M_0\).

GEN MF_get_Minv(GEN mf) the inverse of \(M_0\) in a form suitable for fast multiplication.

GEN MFcusp_get_vMjd(GEN mf) valid only for a full \textit{cuspidal} space. Then the functions in \(\text{MF}_\text{get}_\text{S}\) are of the form \(B_dT_jT_{v_M}^{new}\). This returns the vector of triples (\text{t_VECSMALL}) \([M, j, d]\), in the same order.

GEN MFnew_get_vj(GEN mf) valid only for a \textit{new} space. Then the functions in \(\text{MF}_\text{get}_\text{S}\) are of the form \(T_jT_{v_N}^{new}\). This returns a \text{t_VECSMALL} of the Hecke indices \(j\), in the same order.

17.1.2 Accessors for individual modular forms.

GEN mf_get_gN(GEN F) return the level of \(F\), which may be a multiple of the conductor, as a \text{t_INT}

long mf_get_N(GEN F) return the level as a \text{long}.

GEN mf_get_gk(GEN F) return the weight of \(F\) as a \text{t_INT} or a \text{t_FRAC} with denominator 2 (half-integral weight).

long mf_get_k(GEN F) return the weight as a \text{long}; if the weight is not integral, this raises an exception.

long mf_get_r(GEN F) assuming \(F\) is a modular form of half-integral weight \(k = (2r+1)/2\), return \(r = k - (1/2)\).

GEN mf_get_CHI(GEN F) return the nebentypus, which is a special form of character structure attached to Dirichlet characters (see next section). Its values are given as algebraic numbers: either \(\pm 1\) or \text{t_POLMOD} in \(t\).
GEN mf_get_field(GEN F) return the polynomial (in variable y) defining $Q(f)$ over $Q(\chi)$.

GEN mf_get_NK(GEN F) return the tag attached to F: a vector containing gN, gk, CHI, field. Never use its component directly, use individual accessors as above.

long mf_get_type(GEN F) returns a symbolic name for the constructor used to create the form, e.g. t_MF_EISEN for a general Eisenstein series. A form has a recursive structure represented by a tree: its definition may involve other forms, e.g. the tree attached to $T_n f$ contains f as a subtree. Such trees have leaves, forms which do not contain a strict subtree, e.g. t_MF_DELTA is a leaf, attached to Ramanujan’s Δ.

Here is the current list of types; since the names are liable to change, they are not documented at this point. Use mfdescribe to visualize their mathematical structure.

```c
/*leaves*/
 t_MF_CONST, t_MF_EISEN, t_MF_Ek, t_MF_DELTA, t_MF_ETAQUO, t_MF_ELL,
 t_MF_DIHEDRAL, t_MF_THETA, t_MF_TRACE, t_MF_NEWTRACE,
/*recursive*/
 t_MF_MUL, t_MF_POW, t_MF_DIV, t_MF_BRACKET, t_MF_LINEAR, t_MF_LINEAR_BHN,
 t_MF_SHIFT, t_MF_DERIV, t_MF_DERIVE2, t_MF_TWIST, t_MF_HECKE,
 t_MF_BD,
```

17.1.3 Nebentypus. The characters stored in modular forms and modular form spaces have a special structure. One can recover the parameters of an ordinary Dirichlet character by $G = \text{gel}(CHI,1)$ (the underlying \texttt{znstar}) and $chi = \text{gel}(CHI,2)$ (the underlying character in \texttt{znconreylog}) form).

long mfcharmodulus(GEN CHI) the modulus of χ.

long mfcharorder(GEN CHI) the order of χ.

GEN mfcharpol(GEN CHI) the cyclotomic polynomial Φ_n defining $Q(\chi)$, always normalized so that n is not 2 mod 4.

17.1.4 Miscellaneous functions.

long mnewdim(long N, long k, GEN CHI) dimension of the new part of the cuspidal space.

long mcuspsdim(long N, long k, GEN CHI) dimension of the cuspidal space.

long mfolddim(long N, long k, GEN CHI) dimension of the old part of the cuspidal space.

long meisensteinidim(long N, long k, GEN CHI) dimension of the Eisenstein subspace.

long mfullidim(long N, long k, GEN CHI) dimension of the full space.

GEN mfeisensteinspaceinit(GEN NK)

GEN mdiv_val(GEN F, GEN G, long vG)

GEN membed(GEN E, GEN v)

GEN mfmtembed(GEN E, GEN v)

GEN mfvecembed(GEN E, GEN v)

long mfsturmNgk(long N, GEN k)

long mfsturmNk(long N, long k)

333
long mfsturm_mf(GEN mf)
long mfiscuspidal(GEN mf, GEN F)
GEN mftobasisES(GEN mf, GEN F)
GEN mftocol(GEN F, long lim, long d)
GEN mfvectomat(GEN vF, long lim, long d)
Chapter 18: Plots

A PARI_plot canvas is a record of dimensions, with the following fields:

```c
long width; /* window width */
long height; /* window height */
long hunit; /* length of horizontal 'ticks' */
long vunit; /* length of vertical 'ticks' */
long fwidth; /* font width */
long fheight; /* font height */
void (*draw)(PARI_plot *T, GEN w, GEN x, GEN y);
```

The `draw` method performs the actual drawing of a `t_VECSMALL` `w` (rectwindow indices); `x` and `y` are `t_VECSMALL`s of the same length and rectwindow `w[i]` is drawn with its upper left corner at offset `(x[i], y[i])`. No plot engine is available in `libpari` by default, since this would introduce a dependency on extra graphical libraries. See the files `src/graph/plot*` for basic implementations of various plot engines: `plotsvg` is particularly simple (`draw` is a 1-liner).

```c
void pari_set_plot_engine(void (*T)(PARI_plot *)) installs the graphical engine T and initializes the graphical subsystem. No routine in this chapter will work without this initialization.

void pari_kill_plot_engine(void) closes the graphical subsystem and frees the resources it occupies.
```

18.0.5 Highlevel function. Those functions plot \(f(E, x) \) for \(x \in [a, b] \), using \(n \) regularly spaced points (by default).

```c
GEN ploth(void *E, GEN(*f)(void*, GEN), GEN a, GEN b, long flags, long n, long prec) draw physically.
GEN plotrecth(void *E, GEN(*f)(void*, GEN), long w, GEN a, GEN b, ulong flags, long n, long prec) draw in rectwindow `w`.
```

18.0.6 Function.

```c
void plotbox(long ne, GEN gx2, GEN gy2)
void plotclip(long rect)
void plotcolor(long ne, long color)
void plotcopy(long source, long dest, GEN xoff, GEN yoff, long flag)
GEN plotcursor(long ne)
void plotdraw(GEN list, long flag)
GEN plotthraw(GEN listx, GEN listy, long flag)
GEN plotthsizes(long flag)
void plotinit(long ne, GEN x, GEN y, long flag)
void plotkill(long ne)
```
void plotline(long ne, GEN x2, GEN y2)
void plotlines(long ne, GEN listx, GEN listy, long flag)
void plotlinetype(long ne, long t)
void plotmove(long ne, GEN x, GEN y)
void plotpoints(long ne, GEN listx, GEN listy)
void plotpointsize(long ne, GEN size)
void plotpointtype(long ne, long t)
void plotrbox(long ne, GEN x2, GEN y2)
GEN plotrecthraw(long ne, GEN data, long flags)
void plotrline(long ne, GEN x2, GEN y2)
void plotrmove(long ne, GEN x, GEN y)
void plotrpoint(long ne, GEN x, GEN y)
void plotscale(long ne, GEN x1, GEN x2, GEN y1, GEN y2)
void plotstring(long ne, char *x, long dir)

18.0.7 Obsolete functions. These draw directly to a PostScript file specified by a global variable and should no longer be used. Use plotexport and friends instead.

void psdraw(GEN list, long flag)
GEN psplotthraw(GEN listx, GEN listy, long flag)
GEN psploth(void *E, GEN(*f)(void*, GEN), GEN a, GEN b, long flags, long n, long prec) draw to a PostScript file.

18.0.8 Dump rectwindows to a PostScript or SVG file.

\[w, x, y \] are three \$t_{VECSMALL}\$s indicating the rectwindows to dump, at which offsets. If \$T\$ is NULL, rescale with respect to the installed graphic engine dimensions; else with respect to \$T\$.

char* rect2ps(GEN w, GEN x, GEN y, PARI_plot *T)
char* rect2ps_i(GEN w, GEN x, GEN y, PARI_plot *T, int plotps) if plotps is 0, as above; else private version used to implement the plotps graphic engine (do not rescale, rotate to portrait orientation).

char* rect2svg(GEN w, GEN x, GEN y, PARI_plot *T)

18.0.9 Technical functions exported for convenience.

void pari_plot_by_file(const char *env, const char *suf, const char *img) backend used by the plots and plotsvg graphic engines.

void colorname_to_rgb(const char *s, int *r, int *g, int *b) convert an X11 colorname to RGB values.

void color_to_rgb(GEN c, int *r, int *g, int *b) convert a pari color (t_VECSMALL RGB triple or t_STR name) to RGB values.

void long_to_rgb(long c, int *r, int *g, int *b) split a standard hexadecimal color value 0xfd5fe6 to its rgb components (0xfd, 0xf5, 0xe6).

336
Appendix A:
A Sample program and Makefile

We assume that you have installed the PARI library and include files as explained in Appendix A or in the installation guide. If you chose differently any of the directory names, change them accordingly in the Makefiles.

If the program example that we have given is in the file extgcd.c, then a sample Makefile might look as follows. Note that the actual file examples/Makefile is more elaborate and you should have a look at it if you intend to use install() on custom made functions.

```plaintext
CC = cc
INCDIR = /home/kb/PARI/pari/..../GP/include
LIBDIR = /home/kb/PARI/pari/..../GP/lib
CFLAGS = -O -I$(INCDIR) -L$(LIBDIR)
all: extgcd
extgcd: extgcd.c
    $(CC) $(CFLAGS) -o extgcd extgcd.c -lpari -lm
```

We then give the listing of the program examples/extgcd.c seen in detail in Section 4.10.

```plaintext
#include <pari/pari.h>
/*
GP;install("extgcd", "GG&&", "gcdex", "/libextgcd.so");
*/
/* return d = gcd(a,b), sets u, v such that au + bv = gcd(a,b) */
GEN extgcd(GEN A, GEN B, GEN *U, GEN *V)
{
    pari_sp av = avma;
    GEN ux = gen_1, vx = gen_0, a = A, b = B;
    if (typ(a) != t_INT) pari_err_TYPE("extgcd",a);
    if (typ(b) != t_INT) pari_err_TYPE("extgcd",b);
    if (signe(a) < 0) { a = negi(a); ux = negi(ux); }
    while (!gequal0(b))
    {
        GEN r, q = dvmdii(a, b, &r), v = vx;
        vx = subii(ux, mulii(q, vx));
        ux = v; a = b; b = r;
    }
    *U = ux;
    *V = diviiexact( subii(a, mulii(A,ux)), B );
gerepileall(av, 3, &a, U, V); return a;
}
```

337
main()
{
 GEN x, y, d, u, v;
 pari_init(1000000,2);
 printf("x = "); x = gp_read_stream(stdin);
 printf("y = "); y = gp_read_stream(stdin);
 d = extgcd(x, y, &u, &v);
 pari_printf("gcd = %Ps\nu = %Ps\nv = %Ps\n", d, u, v);
 pari_close();
 return 0;
}
Appendix B:
PARI and threads

To use PARI in multi-threaded programs, you must configure it using `Configure --enable-tls`. Your system must implement the `__thread` storage class. As a major side effect, this breaks the libpari ABI: the resulting library is not compatible with the old one, and `-tls` is appended to the PARI library `soname`. On the other hand, this library is now thread-safe.

PARI provides some functions to set up PARI subthreads. In our model, each concurrent thread needs its own PARI stack. The following scheme is used:

Child thread:

```c
void *child_thread(void *arg)
{
    GEN data = pari_thread_start((struct pari_thread*)arg);
    GEN result = ...; /* Compute result from data */
    pari_thread_close();
    return (void*)result;
}
```

Parent thread:

```c
pthread_t th;
struct pari_thread pth;
GEN data, result;
pari_thread_alloc(&pth, s, data);
pari_thread_sync();
pthread_create(&th, NULL, &child_thread, (void*)&pth); /* start child */
... /* do stuff in parent */
pthread_join(th, (void*)&result); /* wait until child terminates */
result = gcopy(result); /* copy result from thread stack to main stack */
pari_thread_free(&pth); /* ... and clean up */
```

`void pari_thread_valloc(struct pari_thread *pth, size_t s, size_t v, GEN arg)` Allocate a PARI stack of size `s` which can grow to at most `v` (as with `parisize` and `parisizemax`) and associate it, together with the argument `arg`, with the PARI thread data `pth`.

`void pari_thread_alloc(struct pari_thread *pth, size_t s, GEN arg)` As above but the stack cannot grow beyond `s`.

`void pari_thread_free(struct pari_thread *pth)` Free the PARI stack attached to the PARI thread data `pth`. This is called after the child thread terminates, i.e. after `pthread_join` in the parent. Any `GEN` objects returned by the child in the thread stack need to be saved before running this command.

`void pari_thread_sync(void)` Record states from the main thread so that they are available to `pari_thread_start()`. Must be called in the main thread before the subthreads starts.
void pari_thread_init(void) Initialize the thread-local PARI data structures. This function is called by pari_thread_start.

GEN pari_thread_start(struct pari_thread *t) Initialize the thread-local PARI data structures and set up the thread stack using the PARI thread data pth. This function returns the thread argument arg that was given to pari_thread_alloc.

void pari_thread_close(void) Free the thread-local PARI data structures, but keeping the thread stack, so that a GEN returned by the thread remains valid.

Under this model, some PARI states are reset in new threads. In particular

- the random number generator is reset to the starting seed;
- the system stack exhaustion checking code, meant to catch infinite recursions, is disabled (use pari_stackcheck_init() to reenable it);
- cached real constants (returned by mppi, mpeuler and mplog2) are not shared between threads and will be recomputed as needed;

The following sample program can be compiled using

```
cc thread.c -o thread.o -lpari -lpthread
```

(Add -I/-L paths as necessary.)

```c
#include <pari/pari.h> /* Include PARI headers */
#include <pthread.h> /* Include POSIX threads headers */

void *
mydet(void *arg)
{
    GEN F, M;
    /* Set up thread stack and get thread parameter */
    M = pari_thread_start((struct pari_thread*) arg);
    F = det(M);
    /* Free memory used by the thread */
    pari_thread_close();
    return (void*)F;
}

void *
myfactor(void *arg) /* same principle */
{
    GEN F, N;
    N = pari_thread_start((struct pari_thread*) arg);
    F = factor(N);
    pari_thread_close();
    return (void*)F;
}

int
main(void)
{
    GEN M,N1,N2, F1,F2,D;
```
pthread_t th1, th2, th3; /* POSIX-thread variables */
struct pari_thread pth1, pth2, pth3; /* pari thread variables */
/* Initialise the main PARI stack and global objects (gen_0, etc.) */
pari_init(4000000,500000);
/* Compute in the main PARI stack */
N1 = addis(int2n(256), 1); /* 2^256 + 1 */
N2 = subis(int2n(193), 1); /* 2^193 - 1 */
M = mathilbert(80);
/* Sync with main thread */
pari_thread_sync();
/* Allocate pari thread structures */
pari_thread_alloc(&pth1,4000000,N1);
pari_thread_alloc(&pth2,4000000,N2);
pari_thread_alloc(&pth3,4000000,M);
/* pthread_create() and pthread_join() are standard POSIX-thread */
/* functions to start and get the result of threads. */
pthread_create(&th1,NULL, &myfactor, (void*)&pth1);
pthread_create(&th2,NULL, &myfactor, (void*)&pth2);
pthread_create(&th3,NULL, &mydet, (void*)&pth3); /* Start 3 threads */
pthread_join(th1,(void*)&F1);
pthread_join(th2,(void*)&F2);
pthread_join(th3,(void*)&D); /* Wait for termination, get the results */
pari_printf("F1=%Ps\nF2=%Ps\nlog(D)=%Ps\n", F1, F2, glog(D,3));
pari_thread_free(&pth1);
pari_thread_free(&pth2);
pari_thread_free(&pth3); /* clean up */
return 0;
}
Index

SomeWord refers to PARI-GP concepts.

SomeWord is a PARI-GP keyword.

SomeWord is a generic index entry.

A

<table>
<thead>
<tr>
<th>Entry</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABC_to_bnr</td>
<td>291</td>
</tr>
<tr>
<td>abelian_group</td>
<td>235</td>
</tr>
<tr>
<td>abgrp_get_cyc</td>
<td>268</td>
</tr>
<tr>
<td>abgrp_get_gen</td>
<td>268</td>
</tr>
<tr>
<td>abgrp_get_no</td>
<td>268</td>
</tr>
<tr>
<td>abscmpi</td>
<td>89</td>
</tr>
<tr>
<td>abscmpiu</td>
<td>89</td>
</tr>
<tr>
<td>abscmprr</td>
<td>89</td>
</tr>
<tr>
<td>absdivi_rem</td>
<td>93</td>
</tr>
<tr>
<td>absequalii</td>
<td>89</td>
</tr>
<tr>
<td>absequaliu</td>
<td>89</td>
</tr>
<tr>
<td>absequalui</td>
<td>89</td>
</tr>
<tr>
<td>absfrac</td>
<td>223</td>
</tr>
<tr>
<td>absfrac_shallow</td>
<td>223</td>
</tr>
<tr>
<td>absi</td>
<td>87</td>
</tr>
<tr>
<td>absi_shallow</td>
<td>87</td>
</tr>
<tr>
<td>absi</td>
<td>87</td>
</tr>
<tr>
<td>absrnz_equal1</td>
<td>89</td>
</tr>
<tr>
<td>absrnz_equal2n</td>
<td>89</td>
</tr>
<tr>
<td>abstorel</td>
<td>292</td>
</tr>
<tr>
<td>absZ_factor</td>
<td>158</td>
</tr>
<tr>
<td>absZ_factor_limit</td>
<td>158</td>
</tr>
<tr>
<td>addhelp</td>
<td>74</td>
</tr>
<tr>
<td>addi</td>
<td>15</td>
</tr>
<tr>
<td>addii_sign</td>
<td>91</td>
</tr>
<tr>
<td>addir</td>
<td>15</td>
</tr>
<tr>
<td>addir_sign</td>
<td>91</td>
</tr>
<tr>
<td>addis</td>
<td>15</td>
</tr>
<tr>
<td>addiu</td>
<td>90</td>
</tr>
<tr>
<td>addl</td>
<td>77</td>
</tr>
<tr>
<td>addlx</td>
<td>77</td>
</tr>
<tr>
<td>addmul</td>
<td>77</td>
</tr>
<tr>
<td>addmulii</td>
<td>91</td>
</tr>
<tr>
<td>addmulii_inplace</td>
<td>91</td>
</tr>
<tr>
<td>addmulii</td>
<td>91</td>
</tr>
<tr>
<td>addmulii_inplace</td>
<td>91</td>
</tr>
<tr>
<td>addri</td>
<td>15</td>
</tr>
<tr>
<td>addrr</td>
<td>15</td>
</tr>
<tr>
<td>addrr_sign</td>
<td>92</td>
</tr>
<tr>
<td>addsi_sign</td>
<td>92</td>
</tr>
<tr>
<td>addui</td>
<td>90</td>
</tr>
<tr>
<td>addui_sign</td>
<td>92</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Entry</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>addumulii</td>
<td>91</td>
</tr>
<tr>
<td>addumului</td>
<td>91</td>
</tr>
<tr>
<td>adduu</td>
<td>90</td>
</tr>
<tr>
<td>affc_fixlg</td>
<td>232</td>
</tr>
<tr>
<td>affectsign</td>
<td>60</td>
</tr>
<tr>
<td>affectsign_safe</td>
<td>60</td>
</tr>
<tr>
<td>affgr</td>
<td>82</td>
</tr>
<tr>
<td>affii</td>
<td>82</td>
</tr>
<tr>
<td>affir</td>
<td>82</td>
</tr>
<tr>
<td>affiz</td>
<td>82</td>
</tr>
<tr>
<td>affrr</td>
<td>82</td>
</tr>
<tr>
<td>affrr_fixlg</td>
<td>82, 232</td>
</tr>
<tr>
<td>affsi</td>
<td>82</td>
</tr>
<tr>
<td>affsr</td>
<td>82</td>
</tr>
<tr>
<td>affsz</td>
<td>82</td>
</tr>
<tr>
<td>affui</td>
<td>82</td>
</tr>
<tr>
<td>affur</td>
<td>82</td>
</tr>
<tr>
<td>alarm</td>
<td>247</td>
</tr>
<tr>
<td>alginit</td>
<td>308</td>
</tr>
<tr>
<td>alglat_get_primbasis</td>
<td>309</td>
</tr>
<tr>
<td>alglat_get_scalar</td>
<td>309</td>
</tr>
<tr>
<td>alg simplesdec ss</td>
<td>309</td>
</tr>
<tr>
<td>algtype</td>
<td>308</td>
</tr>
<tr>
<td>alg_complete</td>
<td>308</td>
</tr>
<tr>
<td>alg_csa_table</td>
<td>307</td>
</tr>
<tr>
<td>alg_cyclic</td>
<td>307</td>
</tr>
<tr>
<td>alg_get_abssplitting</td>
<td>308</td>
</tr>
<tr>
<td>alg_get_absdim</td>
<td>308</td>
</tr>
<tr>
<td>alg_get_absdim</td>
<td>309</td>
</tr>
<tr>
<td>alg_get_aut</td>
<td>308</td>
</tr>
<tr>
<td>alg_get_auts</td>
<td>308</td>
</tr>
<tr>
<td>alg_get_b</td>
<td>309</td>
</tr>
<tr>
<td>alg_get_basis</td>
<td>309</td>
</tr>
<tr>
<td>alg_get_center</td>
<td>309</td>
</tr>
<tr>
<td>alg_get_char</td>
<td>309</td>
</tr>
<tr>
<td>alg_get_degree</td>
<td>308</td>
</tr>
<tr>
<td>alg_get_dim</td>
<td>308</td>
</tr>
<tr>
<td>alg_get_hasse f</td>
<td>309</td>
</tr>
<tr>
<td>alg_get_hasse i</td>
<td>309</td>
</tr>
<tr>
<td>alg_get_invbasis</td>
<td>309</td>
</tr>
<tr>
<td>alg_get_multable</td>
<td>309</td>
</tr>
<tr>
<td>alg_get_relmutable</td>
<td>309</td>
</tr>
<tr>
<td>alg_get_splitpol</td>
<td>309</td>
</tr>
<tr>
<td>alg_get_splittingbasis</td>
<td>309</td>
</tr>
<tr>
<td>alg_get_splittingbasisinv</td>
<td>309</td>
</tr>
<tr>
<td>alg_get_splittingdata</td>
<td>309</td>
</tr>
<tr>
<td>alg_get_splittingfield</td>
<td>309</td>
</tr>
<tr>
<td>alg_get_tracebasis</td>
<td>309</td>
</tr>
<tr>
<td>alg_hasse</td>
<td>307</td>
</tr>
<tr>
<td>alg_hilbert</td>
<td>308</td>
</tr>
<tr>
<td>alg_matrix</td>
<td>308</td>
</tr>
<tr>
<td>Function</td>
<td>Page</td>
</tr>
<tr>
<td>---------------------------</td>
<td>------</td>
</tr>
<tr>
<td>Buchray</td>
<td>291</td>
</tr>
<tr>
<td>buchreal</td>
<td>294</td>
</tr>
<tr>
<td>C</td>
<td></td>
</tr>
<tr>
<td>CATCH_ALL</td>
<td>44</td>
</tr>
<tr>
<td>cbezout</td>
<td>96</td>
</tr>
<tr>
<td>cbtr</td>
<td>231</td>
</tr>
<tr>
<td>cbtr_abs</td>
<td>231</td>
</tr>
<tr>
<td>cb_pari_ask_confirm</td>
<td>53, 54</td>
</tr>
<tr>
<td>cb_pari_break_loop</td>
<td>53</td>
</tr>
<tr>
<td>cb_pari_err_handle</td>
<td>53</td>
</tr>
<tr>
<td>cb_pari_err_recover</td>
<td>53</td>
</tr>
<tr>
<td>cb_pari_handle_exception</td>
<td>53</td>
</tr>
<tr>
<td>cb_pari_init_histfile</td>
<td>53</td>
</tr>
<tr>
<td>cb_pari_is_interactive</td>
<td>53, 55</td>
</tr>
<tr>
<td>cb_pari_pre_recover</td>
<td>53</td>
</tr>
<tr>
<td>cb_pari_quit</td>
<td>53</td>
</tr>
<tr>
<td>cb_pari_simgnt</td>
<td>53</td>
</tr>
<tr>
<td>cb_pari_start_output</td>
<td>53</td>
</tr>
<tr>
<td>cb_pari_whatsnow</td>
<td>53</td>
</tr>
<tr>
<td>ceildivuu</td>
<td>93</td>
</tr>
<tr>
<td>ceilr</td>
<td>84</td>
</tr>
<tr>
<td>cell_safe</td>
<td>84</td>
</tr>
<tr>
<td>centerlift</td>
<td>201</td>
</tr>
<tr>
<td>centerlift0</td>
<td>201</td>
</tr>
<tr>
<td>centermod</td>
<td>215</td>
</tr>
<tr>
<td>centermodii</td>
<td>91</td>
</tr>
<tr>
<td>centermod_i</td>
<td>215</td>
</tr>
<tr>
<td>gcd</td>
<td>95</td>
</tr>
<tr>
<td>cgetalloc</td>
<td>65</td>
</tr>
<tr>
<td>cgetc</td>
<td>24, 55, 64, 81, 232</td>
</tr>
<tr>
<td>cgetg</td>
<td>24, 25, 55, 64</td>
</tr>
<tr>
<td>cgetg_block</td>
<td>69</td>
</tr>
<tr>
<td>cgetg_copy</td>
<td>55</td>
</tr>
<tr>
<td>cgeti</td>
<td>24, 55, 64, 81</td>
</tr>
<tr>
<td>cgetineg</td>
<td>81</td>
</tr>
<tr>
<td>cgetipos</td>
<td>81</td>
</tr>
<tr>
<td>cgetp</td>
<td>64</td>
</tr>
<tr>
<td>cgetr</td>
<td>24, 55, 64, 81</td>
</tr>
<tr>
<td>cgetr_block</td>
<td>69</td>
</tr>
<tr>
<td>cgiv</td>
<td>18, 65</td>
</tr>
<tr>
<td>character</td>
<td>34</td>
</tr>
<tr>
<td>character string</td>
<td>305</td>
</tr>
<tr>
<td>characteristic</td>
<td>225</td>
</tr>
<tr>
<td>charconj</td>
<td>306</td>
</tr>
<tr>
<td>chardiv</td>
<td>306</td>
</tr>
<tr>
<td>charmul</td>
<td>306</td>
</tr>
<tr>
<td>chartoGENstr</td>
<td>239</td>
</tr>
<tr>
<td>char_check</td>
<td>306</td>
</tr>
<tr>
<td>char_denormalize</td>
<td>306</td>
</tr>
<tr>
<td>char_normalize</td>
<td>291, 306</td>
</tr>
<tr>
<td>char_simplify</td>
<td>306</td>
</tr>
<tr>
<td>checkabgrp</td>
<td>268</td>
</tr>
<tr>
<td>checkalg</td>
<td>308</td>
</tr>
<tr>
<td>checkbid</td>
<td>267</td>
</tr>
<tr>
<td>checkbid_i</td>
<td>267</td>
</tr>
<tr>
<td>checkbnf</td>
<td>267</td>
</tr>
<tr>
<td>checkbnpf_i</td>
<td>267</td>
</tr>
<tr>
<td>checkbnr</td>
<td>267</td>
</tr>
<tr>
<td>checkbnpf</td>
<td>267</td>
</tr>
<tr>
<td>checkbnr_gen</td>
<td>267</td>
</tr>
<tr>
<td>checkell</td>
<td>311</td>
</tr>
<tr>
<td>checkell1</td>
<td>311</td>
</tr>
<tr>
<td>checkell15</td>
<td>312</td>
</tr>
<tr>
<td>checkellisog</td>
<td>312</td>
</tr>
<tr>
<td>checkellipt</td>
<td>311</td>
</tr>
<tr>
<td>checkell_Q</td>
<td>312</td>
</tr>
<tr>
<td>checkell_Qf</td>
<td>312</td>
</tr>
<tr>
<td>checkell_Qp</td>
<td>312</td>
</tr>
<tr>
<td>checkgal</td>
<td>268</td>
</tr>
<tr>
<td>checkgroup</td>
<td>235</td>
</tr>
<tr>
<td>checkgroupelts</td>
<td>235</td>
</tr>
<tr>
<td>checkhasse</td>
<td>308</td>
</tr>
<tr>
<td>checklat</td>
<td>308</td>
</tr>
<tr>
<td>checkMF</td>
<td>331</td>
</tr>
<tr>
<td>checkMF_i</td>
<td>331</td>
</tr>
<tr>
<td>checkmf_i</td>
<td>331</td>
</tr>
<tr>
<td>checkmodpr</td>
<td>268</td>
</tr>
<tr>
<td>checkms</td>
<td>331</td>
</tr>
<tr>
<td>checkmspadic</td>
<td>331</td>
</tr>
<tr>
<td>checknf</td>
<td>267</td>
</tr>
<tr>
<td>checknfelt_mod</td>
<td>268</td>
</tr>
<tr>
<td>checknf_i</td>
<td>267</td>
</tr>
<tr>
<td>checkpnr</td>
<td>268</td>
</tr>
<tr>
<td>checkprid</td>
<td>268</td>
</tr>
<tr>
<td>checkprid_i</td>
<td>268</td>
</tr>
<tr>
<td>checkrnf</td>
<td>267</td>
</tr>
<tr>
<td>checkrnf_i</td>
<td>267</td>
</tr>
<tr>
<td>checksqmat</td>
<td>268</td>
</tr>
<tr>
<td>checkznstar_i</td>
<td>267</td>
</tr>
<tr>
<td>check_arith_all</td>
<td>161</td>
</tr>
<tr>
<td>check_arith_non0</td>
<td>161</td>
</tr>
<tr>
<td>check_arith_pos</td>
<td>161</td>
</tr>
<tr>
<td>check_modinv</td>
<td>324</td>
</tr>
<tr>
<td>check_quaddisc</td>
<td>295</td>
</tr>
<tr>
<td>check_quaddisc_imag</td>
<td>295</td>
</tr>
<tr>
<td>check_quaddisc_real</td>
<td>295</td>
</tr>
<tr>
<td>check_ZKmodule</td>
<td>268</td>
</tr>
<tr>
<td>chinesel</td>
<td>146</td>
</tr>
<tr>
<td>Function</td>
<td>Line Number</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>chinese1_coprime_Z</td>
<td>146</td>
</tr>
<tr>
<td>chk_gerepileupto</td>
<td>68</td>
</tr>
<tr>
<td>classno</td>
<td>296</td>
</tr>
<tr>
<td>classno2</td>
<td>296</td>
</tr>
<tr>
<td>clc</td>
<td>96</td>
</tr>
<tr>
<td>cln1</td>
<td>181, 225</td>
</tr>
<tr>
<td>clone</td>
<td>161</td>
</tr>
<tr>
<td>clone</td>
<td>68</td>
</tr>
<tr>
<td>CLONEBIT</td>
<td>14, 27</td>
</tr>
<tr>
<td>close_modinvertible</td>
<td>305</td>
</tr>
<tr>
<td>closure</td>
<td>72</td>
</tr>
<tr>
<td>closure_arity</td>
<td>34</td>
</tr>
<tr>
<td>closure_callgen1</td>
<td>72, 259</td>
</tr>
<tr>
<td>closure_callgen1prec</td>
<td>259</td>
</tr>
<tr>
<td>closure_callgen2</td>
<td>259</td>
</tr>
<tr>
<td>closure_callgenall</td>
<td>259</td>
</tr>
<tr>
<td>closure_callgenvec</td>
<td>259</td>
</tr>
<tr>
<td>closure_callgenvecprec</td>
<td>259</td>
</tr>
<tr>
<td>closure_callvoid1</td>
<td>259</td>
</tr>
<tr>
<td>closure_context</td>
<td>260</td>
</tr>
<tr>
<td>closure_deriv</td>
<td>260</td>
</tr>
<tr>
<td>closure_disassemble</td>
<td>259</td>
</tr>
<tr>
<td>closure_err</td>
<td>261</td>
</tr>
<tr>
<td>closure_evalbrk</td>
<td>259</td>
</tr>
<tr>
<td>closure_evalgen</td>
<td>72, 259</td>
</tr>
<tr>
<td>closure_evalnobrk</td>
<td>259</td>
</tr>
<tr>
<td>closure_evalres</td>
<td>259</td>
</tr>
<tr>
<td>closure_evalvoid</td>
<td>72, 259</td>
</tr>
<tr>
<td>closure_func_err</td>
<td>53</td>
</tr>
<tr>
<td>closure_is_variadic</td>
<td>34</td>
</tr>
<tr>
<td>closure_trapgen</td>
<td>260</td>
</tr>
<tr>
<td>cmpi</td>
<td>88</td>
</tr>
<tr>
<td>cmpir</td>
<td>88</td>
</tr>
<tr>
<td>cmpis</td>
<td>88</td>
</tr>
<tr>
<td>cmpiu</td>
<td>88</td>
</tr>
<tr>
<td>cmpri</td>
<td>88</td>
</tr>
<tr>
<td>cmprr</td>
<td>88</td>
</tr>
<tr>
<td>cmpRs</td>
<td>88</td>
</tr>
<tr>
<td>cmpsi</td>
<td>88</td>
</tr>
<tr>
<td>cmpsr</td>
<td>88</td>
</tr>
<tr>
<td>cmpu</td>
<td>88</td>
</tr>
<tr>
<td>cmp_Flx</td>
<td>214</td>
</tr>
<tr>
<td>cmp_nodata</td>
<td>214</td>
</tr>
<tr>
<td>cmp_padic</td>
<td>214</td>
</tr>
<tr>
<td>cmp_prime_ideal</td>
<td>214</td>
</tr>
<tr>
<td>cmp_prime_over_p</td>
<td>214</td>
</tr>
<tr>
<td>cmp_RgX</td>
<td>214</td>
</tr>
<tr>
<td>Function</td>
<td>Page</td>
</tr>
<tr>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>equalim1</td>
<td>211</td>
</tr>
<tr>
<td>equalii</td>
<td>88</td>
</tr>
<tr>
<td>equaliml</td>
<td>211</td>
</tr>
<tr>
<td>equalsi</td>
<td>88</td>
</tr>
<tr>
<td>equalui</td>
<td>88</td>
</tr>
<tr>
<td>error</td>
<td>34</td>
</tr>
<tr>
<td>error context</td>
<td>39</td>
</tr>
<tr>
<td>error</td>
<td>247</td>
</tr>
<tr>
<td>err_flush</td>
<td>71</td>
</tr>
<tr>
<td>err_get_compo</td>
<td>45</td>
</tr>
<tr>
<td>err_get_num</td>
<td>45</td>
</tr>
<tr>
<td>err_printf</td>
<td>71</td>
</tr>
<tr>
<td>eta_product_ZXn</td>
<td>180</td>
</tr>
<tr>
<td>eta_ZXn</td>
<td>180</td>
</tr>
<tr>
<td>eulerphiu</td>
<td>100</td>
</tr>
<tr>
<td>eulerphiu_fact</td>
<td>100</td>
</tr>
<tr>
<td>evalexpo</td>
<td>59</td>
</tr>
<tr>
<td>evalg</td>
<td>59</td>
</tr>
<tr>
<td>evalgelfint</td>
<td>59</td>
</tr>
<tr>
<td>evalprec</td>
<td>59</td>
</tr>
<tr>
<td>evalsigne</td>
<td>59</td>
</tr>
<tr>
<td>evaltyp</td>
<td>59</td>
</tr>
<tr>
<td>evalvalp</td>
<td>59</td>
</tr>
<tr>
<td>evalvarn</td>
<td>59</td>
</tr>
<tr>
<td>expir_abs</td>
<td>231</td>
</tr>
<tr>
<td>expi</td>
<td>58</td>
</tr>
<tr>
<td>expir</td>
<td>232</td>
</tr>
<tr>
<td>expIxY</td>
<td>232</td>
</tr>
<tr>
<td>expo</td>
<td>30, 33, 58</td>
</tr>
<tr>
<td>EXPOBITS</td>
<td>62</td>
</tr>
<tr>
<td>EXPOnumBITS</td>
<td>62</td>
</tr>
<tr>
<td>expu</td>
<td>90</td>
</tr>
<tr>
<td>extract0</td>
<td>253</td>
</tr>
<tr>
<td>e_ALARM</td>
<td>54</td>
</tr>
<tr>
<td>e_DOMAIN</td>
<td>161</td>
</tr>
<tr>
<td>e_MAXPRIME</td>
<td>63</td>
</tr>
<tr>
<td>e_MISC</td>
<td>39</td>
</tr>
<tr>
<td>e_TYPE</td>
<td>161</td>
</tr>
<tr>
<td>F2m_deplin</td>
<td>113</td>
</tr>
<tr>
<td>F2m_det</td>
<td>113</td>
</tr>
<tr>
<td>F2m_det_sp</td>
<td>113</td>
</tr>
<tr>
<td>F2m_F2c_gauss</td>
<td>112</td>
</tr>
<tr>
<td>F2m_F2c_invimage</td>
<td>112</td>
</tr>
<tr>
<td>F2m_F2c_mul</td>
<td>112</td>
</tr>
<tr>
<td>F2m_flip</td>
<td>112</td>
</tr>
<tr>
<td>F2m_gauss</td>
<td>112</td>
</tr>
<tr>
<td>F2m_image</td>
<td>112</td>
</tr>
<tr>
<td>F2m_indexrank</td>
<td>112</td>
</tr>
<tr>
<td>F2m_inv</td>
<td>113</td>
</tr>
<tr>
<td>F2m_invimage</td>
<td>112</td>
</tr>
<tr>
<td>F2m_ker</td>
<td>113</td>
</tr>
<tr>
<td>F2m_ker_sp</td>
<td>113</td>
</tr>
<tr>
<td>F2m_mul</td>
<td>113</td>
</tr>
<tr>
<td>F2m_powu</td>
<td>113</td>
</tr>
<tr>
<td>F2m_rank</td>
<td>113</td>
</tr>
<tr>
<td>F2m_rowslice</td>
<td>112</td>
</tr>
<tr>
<td>F2m_set</td>
<td>112</td>
</tr>
<tr>
<td>F2m_suppl</td>
<td>113</td>
</tr>
<tr>
<td>F2m_to_Flm</td>
<td>113</td>
</tr>
<tr>
<td>F2m_to_mod</td>
<td>144</td>
</tr>
<tr>
<td>F2m_to_ZM</td>
<td>113</td>
</tr>
<tr>
<td>F2v_add_inplace</td>
<td>113</td>
</tr>
<tr>
<td>F2v_clear</td>
<td>112</td>
</tr>
<tr>
<td>F2v_coeff</td>
<td>112</td>
</tr>
<tr>
<td>F2v_copy</td>
<td>112</td>
</tr>
<tr>
<td>F2v_dotproduct</td>
<td>113</td>
</tr>
<tr>
<td>F2v_ei</td>
<td>113</td>
</tr>
<tr>
<td>F2v_flip</td>
<td>112</td>
</tr>
<tr>
<td>F2v_set</td>
<td>112</td>
</tr>
<tr>
<td>F2v_slice</td>
<td>112</td>
</tr>
<tr>
<td>F2v_to_F2x</td>
<td>139</td>
</tr>
<tr>
<td>F2v_to_Flv</td>
<td>113</td>
</tr>
<tr>
<td>F2xC_to_FlxC</td>
<td>157</td>
</tr>
<tr>
<td>F2xC_to_ZXC</td>
<td>157</td>
</tr>
<tr>
<td>F2xqE_add</td>
<td>321</td>
</tr>
<tr>
<td>F2xqE_changepoint</td>
<td>321</td>
</tr>
<tr>
<td>F2xqE_changepointinv</td>
<td>321</td>
</tr>
<tr>
<td>F2xqE_chgpointinv</td>
<td>321</td>
</tr>
<tr>
<td>F2xqE_chgpointinv</td>
<td>321</td>
</tr>
<tr>
<td>F2xqE_mul</td>
<td>321</td>
</tr>
<tr>
<td>F2xqE_neg</td>
<td>321</td>
</tr>
<tr>
<td>F2xqE_order</td>
<td>321</td>
</tr>
<tr>
<td>F2xqE_sub</td>
<td>321</td>
</tr>
<tr>
<td>F2xqE_tatepairing</td>
<td>321</td>
</tr>
<tr>
<td>F2xqE_weilpairing</td>
<td>321</td>
</tr>
<tr>
<td>F2xqM_deplin</td>
<td>141</td>
</tr>
<tr>
<td>F2xqM_det</td>
<td>141</td>
</tr>
<tr>
<td>F2xqM_F2xqC_gauss</td>
<td>141</td>
</tr>
<tr>
<td>F2xqM_F2xqC_invimage</td>
<td>141</td>
</tr>
<tr>
<td>F2xqM_F2xqC_mul</td>
<td>141</td>
</tr>
<tr>
<td>F2xqM_gauss</td>
<td>141</td>
</tr>
<tr>
<td>F2xqM_image</td>
<td>141</td>
</tr>
<tr>
<td>F2xqM_indexrank</td>
<td>141</td>
</tr>
<tr>
<td>F2xqM_inv</td>
<td>141</td>
</tr>
<tr>
<td>F2xqM_invimage</td>
<td>141</td>
</tr>
<tr>
<td>F2xqM_ker</td>
<td>142</td>
</tr>
<tr>
<td>F2xqM_mul</td>
<td>142</td>
</tr>
<tr>
<td>F2xqM_rank</td>
<td>142</td>
</tr>
<tr>
<td>F2xqM_suppl</td>
<td>142</td>
</tr>
<tr>
<td>F2xqXQV_red</td>
<td>144</td>
</tr>
<tr>
<td>F2xqXQV_autpow</td>
<td>144</td>
</tr>
<tr>
<td>F2xqXQ_auttrace</td>
<td>144</td>
</tr>
<tr>
<td>F2xqXQ_inv</td>
<td>143</td>
</tr>
<tr>
<td>F2xqXQ_invsafe</td>
<td>143</td>
</tr>
<tr>
<td>F2xqXQ_mul</td>
<td>144</td>
</tr>
<tr>
<td>F2xqXQ_pow</td>
<td>144</td>
</tr>
<tr>
<td>F2xqXQ_powers</td>
<td>144</td>
</tr>
<tr>
<td>F2xqXQ_sqr</td>
<td>144</td>
</tr>
<tr>
<td>F2xqX_ddf</td>
<td>144</td>
</tr>
<tr>
<td>F2xqX_degfact</td>
<td>144</td>
</tr>
<tr>
<td>F2xqX_div</td>
<td>143</td>
</tr>
<tr>
<td>F2xqX_divrem</td>
<td>143</td>
</tr>
<tr>
<td>F2xqX_extgcd</td>
<td>143</td>
</tr>
<tr>
<td>F2xqX_F2xqXQV_eval</td>
<td>143</td>
</tr>
<tr>
<td>F2xqX_F2xqXQV_eval</td>
<td>143</td>
</tr>
<tr>
<td>F2xqX_F2xq_mul</td>
<td>143</td>
</tr>
<tr>
<td>F2xqX_F2xq_mul_to_monic</td>
<td>143</td>
</tr>
<tr>
<td>F2xqX_factor</td>
<td>143</td>
</tr>
<tr>
<td>F2xqX_factor_squarefree</td>
<td>143</td>
</tr>
<tr>
<td>F2xqX_gcd</td>
<td>143</td>
</tr>
<tr>
<td>F2xqX_get_red</td>
<td>143</td>
</tr>
<tr>
<td>F2xqX_invBarrett</td>
<td>143</td>
</tr>
<tr>
<td>F2xqX_ispower</td>
<td>143</td>
</tr>
<tr>
<td>F2xqX_mul</td>
<td>143</td>
</tr>
<tr>
<td>F2xqX_normalize</td>
<td>143</td>
</tr>
<tr>
<td>F2xqX_powu</td>
<td>143</td>
</tr>
<tr>
<td>F2xqX_red</td>
<td>143</td>
</tr>
<tr>
<td>F2xqX_rem</td>
<td>143</td>
</tr>
<tr>
<td>F2xqX_roots</td>
<td>143</td>
</tr>
<tr>
<td>F2xqX_sqr</td>
<td>143</td>
</tr>
<tr>
<td>F2xq_Artin_Schreier</td>
<td>141</td>
</tr>
<tr>
<td>F2xq_autpow</td>
<td>141</td>
</tr>
<tr>
<td>F2xq_conjvec</td>
<td>141</td>
</tr>
<tr>
<td>F2xq_div</td>
<td>140</td>
</tr>
<tr>
<td>F2xq_ellcard</td>
<td>320</td>
</tr>
<tr>
<td>F2xq_ellgens</td>
<td>320</td>
</tr>
<tr>
<td>Function</td>
<td>Page</td>
</tr>
<tr>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>F2x_F2xQV_eval</td>
<td>141</td>
</tr>
<tr>
<td>F2x_F2xq_eval</td>
<td>141</td>
</tr>
<tr>
<td>F2x_factor</td>
<td>140</td>
</tr>
<tr>
<td>F2x_factor_squarefree</td>
<td>140</td>
</tr>
<tr>
<td>F2x_flip</td>
<td>139</td>
</tr>
<tr>
<td>F2x_Frobenius</td>
<td>140</td>
</tr>
<tr>
<td>F2x_gcd</td>
<td>140</td>
</tr>
<tr>
<td>F2x_get_red</td>
<td>138</td>
</tr>
<tr>
<td>F2x_halfgcd</td>
<td>140</td>
</tr>
<tr>
<td>F2x_isissquare</td>
<td>140</td>
</tr>
<tr>
<td>F2x_is_irred</td>
<td>140</td>
</tr>
<tr>
<td>F2x_matFrobenius</td>
<td>140</td>
</tr>
<tr>
<td>F2x_mul</td>
<td>139</td>
</tr>
<tr>
<td>F2x_rem</td>
<td>140</td>
</tr>
<tr>
<td>F2x_renormalize</td>
<td>140</td>
</tr>
<tr>
<td>F2x_set</td>
<td>139</td>
</tr>
<tr>
<td>F2x_shift</td>
<td>140</td>
</tr>
<tr>
<td>F2x_sqr</td>
<td>139</td>
</tr>
<tr>
<td>F2x_sqrt</td>
<td>140</td>
</tr>
<tr>
<td>F2x_to_F2v</td>
<td>157</td>
</tr>
<tr>
<td>F2x_to_F2xX</td>
<td>139</td>
</tr>
<tr>
<td>F2x_to_F2xX</td>
<td>139</td>
</tr>
<tr>
<td>F2x_to_ZX</td>
<td>139</td>
</tr>
<tr>
<td>F2x_valrem</td>
<td>140</td>
</tr>
<tr>
<td>factmod</td>
<td>145</td>
</tr>
<tr>
<td>factor</td>
<td>311</td>
</tr>
<tr>
<td>factorback</td>
<td>220</td>
</tr>
<tr>
<td>factoredpolred</td>
<td>294</td>
</tr>
<tr>
<td>factoredpolred2</td>
<td>294</td>
</tr>
<tr>
<td>factorial_lval</td>
<td>87</td>
</tr>
<tr>
<td>factorint</td>
<td>160</td>
</tr>
<tr>
<td>factoru</td>
<td>159</td>
</tr>
<tr>
<td>factoru_pow</td>
<td>159</td>
</tr>
<tr>
<td>factor_Aurifeuille</td>
<td>159</td>
</tr>
<tr>
<td>factor_Aurifeuille_prime</td>
<td>159</td>
</tr>
<tr>
<td>factor_pn_1</td>
<td>158</td>
</tr>
<tr>
<td>factor_pn_1_limit</td>
<td>159</td>
</tr>
<tr>
<td>factor_proven</td>
<td>162</td>
</tr>
<tr>
<td>famat</td>
<td>277</td>
</tr>
<tr>
<td>famatsmall_reduce</td>
<td>278</td>
</tr>
<tr>
<td>famat_div_shallow</td>
<td>277</td>
</tr>
<tr>
<td>famat_inv</td>
<td>277</td>
</tr>
<tr>
<td>famat_inv_shallow</td>
<td>277</td>
</tr>
<tr>
<td>famat_makecoprime</td>
<td>290</td>
</tr>
<tr>
<td>famat_mul</td>
<td>277</td>
</tr>
<tr>
<td>famat_mulpow</td>
<td>277</td>
</tr>
<tr>
<td>famat_mulpows_shallow</td>
<td>277</td>
</tr>
<tr>
<td>famat_mulpow_shallow</td>
<td>277</td>
</tr>
<tr>
<td>famat_mul_shallow</td>
<td>277</td>
</tr>
<tr>
<td>famat_pow</td>
<td>277</td>
</tr>
<tr>
<td>famat_pows_shallow</td>
<td>277</td>
</tr>
<tr>
<td>famat_pow_shallow</td>
<td>277</td>
</tr>
<tr>
<td>famat_reduce</td>
<td>277</td>
</tr>
<tr>
<td>famat_sqr</td>
<td>277</td>
</tr>
<tr>
<td>famat_to_nf</td>
<td>278</td>
</tr>
<tr>
<td>famat_to_nf_moddivisor</td>
<td>290</td>
</tr>
<tr>
<td>famat_to_nf_modideal_coprime</td>
<td>290</td>
</tr>
<tr>
<td>famat_Z_gcd</td>
<td>277</td>
</tr>
<tr>
<td>fetch_user_var</td>
<td>35, 70</td>
</tr>
<tr>
<td>fetch_var</td>
<td>36, 70</td>
</tr>
<tr>
<td>fetch_var_value</td>
<td>36, 70</td>
</tr>
<tr>
<td>FF_ellgroup</td>
<td>317</td>
</tr>
<tr>
<td>FF_ellgens</td>
<td>317</td>
</tr>
<tr>
<td>FF_ellcard_SEA</td>
<td>317</td>
</tr>
<tr>
<td>FF_div</td>
<td>317</td>
</tr>
<tr>
<td>FF_charpoly</td>
<td>317</td>
</tr>
<tr>
<td>FFM_deplin</td>
<td>230</td>
</tr>
<tr>
<td>FFM_det</td>
<td>230</td>
</tr>
<tr>
<td>FFM_FFC_gauss</td>
<td>229</td>
</tr>
<tr>
<td>FFM_FFC_invimage</td>
<td>229</td>
</tr>
<tr>
<td>FFM_FFC_mul</td>
<td>229</td>
</tr>
<tr>
<td>FFM_gauss</td>
<td>230</td>
</tr>
<tr>
<td>FFM_image</td>
<td>230</td>
</tr>
<tr>
<td>FFM_indexrank</td>
<td>230</td>
</tr>
<tr>
<td>FFM_inv</td>
<td>230</td>
</tr>
<tr>
<td>FFM_ker</td>
<td>230</td>
</tr>
<tr>
<td>FFM_mul</td>
<td>230</td>
</tr>
<tr>
<td>FFM_rank</td>
<td>230</td>
</tr>
<tr>
<td>FFM_invimage</td>
<td>229</td>
</tr>
<tr>
<td>FFM_ker</td>
<td>229</td>
</tr>
<tr>
<td>FFX_Q_mul</td>
<td>230</td>
</tr>
<tr>
<td>FFXQ_inv</td>
<td>230</td>
</tr>
<tr>
<td>FFXQ_mul</td>
<td>230</td>
</tr>
<tr>
<td>FFXQ_sqr</td>
<td>230</td>
</tr>
<tr>
<td>FFXQ_degfact</td>
<td>229</td>
</tr>
<tr>
<td>FFXF_factor</td>
<td>229</td>
</tr>
<tr>
<td>FFX_factor_squarefree</td>
<td>229</td>
</tr>
<tr>
<td>FFX_factor</td>
<td>229</td>
</tr>
<tr>
<td>FFX_factor_squarefree</td>
<td>229</td>
</tr>
<tr>
<td>FFX_ispower</td>
<td>229</td>
</tr>
<tr>
<td>FFX_mul</td>
<td>229</td>
</tr>
<tr>
<td>FFX_preimage</td>
<td>229</td>
</tr>
<tr>
<td>FFX_rem</td>
<td>229</td>
</tr>
<tr>
<td>FFX_roots</td>
<td>229</td>
</tr>
<tr>
<td>FFXS_mul</td>
<td>229</td>
</tr>
<tr>
<td>FFXS_div</td>
<td>229</td>
</tr>
<tr>
<td>Function</td>
<td>Page</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>Flm_ker_sp</td>
<td>112</td>
</tr>
<tr>
<td>Flm_mul</td>
<td>111</td>
</tr>
<tr>
<td>Flm_neg</td>
<td>110</td>
</tr>
<tr>
<td>Flm_pow</td>
<td>111</td>
</tr>
<tr>
<td>Flm_row</td>
<td>112</td>
</tr>
<tr>
<td>Flm_sub</td>
<td>111</td>
</tr>
<tr>
<td>Flm_suppl</td>
<td>112</td>
</tr>
<tr>
<td>Flm_to_F2m</td>
<td>113</td>
</tr>
<tr>
<td>Flm_to_FlxV</td>
<td>156</td>
</tr>
<tr>
<td>Flm_to_FlxX</td>
<td>156</td>
</tr>
<tr>
<td>Flm_to_mod</td>
<td>144</td>
</tr>
<tr>
<td>Flm_to_ZM</td>
<td>155</td>
</tr>
<tr>
<td>Flm_to_ZM_inplace</td>
<td>155</td>
</tr>
<tr>
<td>Flm_transpose</td>
<td>112</td>
</tr>
<tr>
<td>floorr</td>
<td>84</td>
</tr>
<tr>
<td>floor_safe</td>
<td>84</td>
</tr>
<tr>
<td>flush</td>
<td>240</td>
</tr>
<tr>
<td>Flv_add</td>
<td>110</td>
</tr>
<tr>
<td>Flv_add_inplace</td>
<td>110, 284</td>
</tr>
<tr>
<td>Flv_center</td>
<td>109</td>
</tr>
<tr>
<td>Flv_copy</td>
<td>109</td>
</tr>
<tr>
<td>Flv_dotproduct</td>
<td>110</td>
</tr>
<tr>
<td>Flv_dotproduct_pre</td>
<td>110</td>
</tr>
<tr>
<td>Flv_Flm_point</td>
<td>133</td>
</tr>
<tr>
<td>Flv_Fl_div</td>
<td>110</td>
</tr>
<tr>
<td>Flv_Fl_div_inplace</td>
<td>110</td>
</tr>
<tr>
<td>Flv_Fl_mul</td>
<td>110</td>
</tr>
<tr>
<td>Flv_Fl_mul_inplace</td>
<td>110</td>
</tr>
<tr>
<td>Flv_Fl_mul_part_inplace</td>
<td>110</td>
</tr>
<tr>
<td>Flv_inv</td>
<td>111</td>
</tr>
<tr>
<td>Flv_invVandermonde</td>
<td>133</td>
</tr>
<tr>
<td>Flv_inv_inplace</td>
<td>111</td>
</tr>
<tr>
<td>Flv_inv_pre</td>
<td>111</td>
</tr>
<tr>
<td>Flv_inv_pre_inplace</td>
<td>111</td>
</tr>
<tr>
<td>Flv_neg</td>
<td>110</td>
</tr>
<tr>
<td>Flv_neg_inplace</td>
<td>110</td>
</tr>
<tr>
<td>Flv_polint</td>
<td>133</td>
</tr>
<tr>
<td>Flv_prod</td>
<td>110</td>
</tr>
<tr>
<td>Flv_prod_pre</td>
<td>111</td>
</tr>
<tr>
<td>Flv_roots_to_pol</td>
<td>133</td>
</tr>
<tr>
<td>Flv_sub</td>
<td>110</td>
</tr>
<tr>
<td>Flv_sub_inplace</td>
<td>110</td>
</tr>
<tr>
<td>Flv_sum</td>
<td>110</td>
</tr>
<tr>
<td>Flv_to_F2v</td>
<td>113</td>
</tr>
<tr>
<td>Flv_to_Flx</td>
<td>156</td>
</tr>
<tr>
<td>Flv_to_Z2</td>
<td>155</td>
</tr>
<tr>
<td>FlxC_eval_powers_pre</td>
<td>133</td>
</tr>
<tr>
<td>FlxC_neg</td>
<td>133</td>
</tr>
<tr>
<td>FlxC_sub</td>
<td>133</td>
</tr>
<tr>
<td>FlxC_to_F2xC</td>
<td>157</td>
</tr>
<tr>
<td>FlxC_to_ZXC</td>
<td>155</td>
</tr>
<tr>
<td>FlxM_eval_powers_pre</td>
<td>133</td>
</tr>
<tr>
<td>FlxM_Flx_add_shallow</td>
<td>113</td>
</tr>
<tr>
<td>FlxM_neg</td>
<td>133</td>
</tr>
<tr>
<td>FlxM_sub</td>
<td>133</td>
</tr>
<tr>
<td>FlxM_to_ZXM</td>
<td>155</td>
</tr>
<tr>
<td>FlxM_to_ZXM_inplace</td>
<td>155</td>
</tr>
<tr>
<td>FlxM_inv</td>
<td>130</td>
</tr>
<tr>
<td>FlxM_mul</td>
<td>130</td>
</tr>
<tr>
<td>FlxqC_Flxq_mul</td>
<td>114</td>
</tr>
<tr>
<td>FlxqE_add</td>
<td>322</td>
</tr>
<tr>
<td>FlxqE_changepoint</td>
<td>322</td>
</tr>
<tr>
<td>FlxqE_changepointinv</td>
<td>322</td>
</tr>
<tr>
<td>FlxqE_db1</td>
<td>322</td>
</tr>
<tr>
<td>FlxqE_log</td>
<td>322</td>
</tr>
<tr>
<td>FlxqE_mul</td>
<td>322</td>
</tr>
<tr>
<td>FlxqM_deplin</td>
<td>114</td>
</tr>
<tr>
<td>FlxqM_det</td>
<td>114</td>
</tr>
<tr>
<td>FlxqM_FlxqC_gauss</td>
<td>114</td>
</tr>
<tr>
<td>FlxqM_FlxqC_invimage</td>
<td>114</td>
</tr>
<tr>
<td>FlxqM_FlxqC_mul</td>
<td>114</td>
</tr>
<tr>
<td>FlxqM_Flxq_mul</td>
<td>114</td>
</tr>
<tr>
<td>FlxqM_gauss</td>
<td>114</td>
</tr>
<tr>
<td>FlxqM_image</td>
<td>114</td>
</tr>
<tr>
<td>FlxqM_indexrank</td>
<td>114</td>
</tr>
<tr>
<td>FlxqM_inv</td>
<td>114</td>
</tr>
<tr>
<td>FlxqM_invimage</td>
<td>114</td>
</tr>
<tr>
<td>FlxqM_ker</td>
<td>114</td>
</tr>
<tr>
<td>FlxqM_mul</td>
<td>114</td>
</tr>
<tr>
<td>FlxqM_rank</td>
<td>114</td>
</tr>
<tr>
<td>FlxqM_supp1</td>
<td>114</td>
</tr>
<tr>
<td>FlxqV_dotproduct</td>
<td>113</td>
</tr>
<tr>
<td>FlxqV_eval_powers_pre</td>
<td>133</td>
</tr>
<tr>
<td>FlxqV_roots_to_pol</td>
<td>134</td>
</tr>
<tr>
<td>FlxqXQ_autpow</td>
<td>138</td>
</tr>
<tr>
<td>FlxqXQ_autsum</td>
<td>138</td>
</tr>
<tr>
<td>FlxqXQ_gauss</td>
<td>138</td>
</tr>
<tr>
<td>FlxqXQ_inv</td>
<td>138</td>
</tr>
<tr>
<td>FlxqXQ_invsafe</td>
<td>138</td>
</tr>
<tr>
<td>FlxqXQ_matrix_pow</td>
<td>138</td>
</tr>
<tr>
<td>FlxqXQ_minpoly</td>
<td>138</td>
</tr>
<tr>
<td>Function</td>
<td>Line</td>
</tr>
<tr>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>FlxX_to_F2xX</td>
<td>142</td>
</tr>
<tr>
<td>FlxX_to_Flm</td>
<td>156</td>
</tr>
<tr>
<td>FlxX_to_Flx</td>
<td>156</td>
</tr>
<tr>
<td>FlxX_to_FlxC</td>
<td>156</td>
</tr>
<tr>
<td>FlxX_to_ZXX</td>
<td>155</td>
</tr>
<tr>
<td>FlxX_triple</td>
<td>135</td>
</tr>
<tr>
<td>FlxY_pow</td>
<td>136</td>
</tr>
<tr>
<td>FlxY_degree</td>
<td>135</td>
</tr>
<tr>
<td>FlxY_eval</td>
<td>135</td>
</tr>
<tr>
<td>FlxY_evalx_powers_pre</td>
<td>135</td>
</tr>
<tr>
<td>FlxY_eval_powers_pre</td>
<td>136</td>
</tr>
<tr>
<td>FlxY_FlxqV_eval</td>
<td>136</td>
</tr>
<tr>
<td>FlxY_FlxqV_evalx</td>
<td>136</td>
</tr>
<tr>
<td>FlxY_Flxq_evalx</td>
<td>136</td>
</tr>
<tr>
<td>FlxY_Flx_div</td>
<td>135</td>
</tr>
<tr>
<td>FlxY_Flx_translate</td>
<td>135</td>
</tr>
<tr>
<td>Flx_add</td>
<td>130</td>
</tr>
<tr>
<td>Flx_constant</td>
<td>130</td>
</tr>
<tr>
<td>Flx_copy</td>
<td>130</td>
</tr>
<tr>
<td>Flx_ddf</td>
<td>131</td>
</tr>
<tr>
<td>Flx_deflate</td>
<td>132</td>
</tr>
<tr>
<td>Flx_degfact</td>
<td>131, 133</td>
</tr>
<tr>
<td>Flx_deriv</td>
<td>130</td>
</tr>
<tr>
<td>Flx_diff1</td>
<td>130</td>
</tr>
<tr>
<td>Flx_digits</td>
<td>130</td>
</tr>
<tr>
<td>Flx_div</td>
<td>130</td>
</tr>
<tr>
<td>Flx_divrem</td>
<td>130</td>
</tr>
<tr>
<td>Flx_div_by_X_x</td>
<td>132</td>
</tr>
<tr>
<td>Flx_dotproduct</td>
<td>132</td>
</tr>
<tr>
<td>Flx_double</td>
<td>130</td>
</tr>
<tr>
<td>Flx_equal</td>
<td>130</td>
</tr>
<tr>
<td>Flx_equal1</td>
<td>130</td>
</tr>
<tr>
<td>Flx_eval</td>
<td>131</td>
</tr>
<tr>
<td>Flx_eval_powers_pre</td>
<td>132</td>
</tr>
<tr>
<td>Flx_eval_pre</td>
<td>132</td>
</tr>
<tr>
<td>Flx_extgcd</td>
<td>131</td>
</tr>
<tr>
<td>Flx_extresultant</td>
<td>132</td>
</tr>
<tr>
<td>Flx_factor</td>
<td>131</td>
</tr>
<tr>
<td>Flx_factorff_irred</td>
<td>131</td>
</tr>
<tr>
<td>Flx_factor_squarefree</td>
<td>131</td>
</tr>
<tr>
<td>Flx_ffintersect</td>
<td>133</td>
</tr>
<tr>
<td>Flx_ffisom</td>
<td>131</td>
</tr>
<tr>
<td>Flx_Flxmultieval</td>
<td>132</td>
</tr>
<tr>
<td>Flx_FlxqV_eval</td>
<td>134</td>
</tr>
<tr>
<td>Flx_Flxq_eval</td>
<td>134</td>
</tr>
<tr>
<td>Flx_FlxY_resultant</td>
<td>136</td>
</tr>
<tr>
<td>Flx_Fl_add</td>
<td>130</td>
</tr>
<tr>
<td>Flx_Fl_mul</td>
<td>130</td>
</tr>
<tr>
<td>Flx_Fl_mul_to_monic</td>
<td>130</td>
</tr>
<tr>
<td>Flx_Frobenius</td>
<td>131</td>
</tr>
<tr>
<td>Flx_gcd</td>
<td>131</td>
</tr>
<tr>
<td>Flx_get_red</td>
<td>129</td>
</tr>
<tr>
<td>Flx_halfgcd</td>
<td>131</td>
</tr>
<tr>
<td>Flx_halve</td>
<td>130</td>
</tr>
<tr>
<td>Flx_inflate</td>
<td>132</td>
</tr>
<tr>
<td>Flx_invBarrett</td>
<td>132</td>
</tr>
<tr>
<td>Flx_ispower</td>
<td>131</td>
</tr>
<tr>
<td>Flx_is_irred</td>
<td>132</td>
</tr>
<tr>
<td>Flx_is_smooth</td>
<td>132</td>
</tr>
<tr>
<td>Flx_is_squarefree</td>
<td>132</td>
</tr>
<tr>
<td>Flx_lead</td>
<td>130</td>
</tr>
<tr>
<td>Flx_matFrobenius</td>
<td>131</td>
</tr>
<tr>
<td>Flx_mod_Xn1</td>
<td>131</td>
</tr>
<tr>
<td>Flx_mod_Xnml</td>
<td>131</td>
</tr>
<tr>
<td>Flx_mul</td>
<td>130</td>
</tr>
<tr>
<td>Flx_mulu</td>
<td>130</td>
</tr>
<tr>
<td>Flx_nbfact</td>
<td>133</td>
</tr>
<tr>
<td>Flx_nbfact_by_degree</td>
<td>133</td>
</tr>
<tr>
<td>Flx_nbroots</td>
<td>133</td>
</tr>
<tr>
<td>Flx_neg</td>
<td>130</td>
</tr>
<tr>
<td>Flx_neg_inplace</td>
<td>130</td>
</tr>
<tr>
<td>Flx_normalize</td>
<td>131</td>
</tr>
<tr>
<td>Flx_oneroot</td>
<td>131</td>
</tr>
<tr>
<td>Flx_oneroot_split</td>
<td>131</td>
</tr>
<tr>
<td>Flx_powu</td>
<td>130</td>
</tr>
<tr>
<td>Flx_recip</td>
<td>132</td>
</tr>
<tr>
<td>Flx_red</td>
<td>130</td>
</tr>
<tr>
<td>Flx_rem</td>
<td>130</td>
</tr>
<tr>
<td>Flx_renormalize</td>
<td>132</td>
</tr>
<tr>
<td>Flx_rescale</td>
<td>131</td>
</tr>
<tr>
<td>Flx_resultant</td>
<td>132</td>
</tr>
<tr>
<td>Flx_roots</td>
<td>131</td>
</tr>
<tr>
<td>Flx_rootsff</td>
<td>131</td>
</tr>
<tr>
<td>Flx_shift</td>
<td>132</td>
</tr>
<tr>
<td>Flx_splitting</td>
<td>132</td>
</tr>
<tr>
<td>Flx_sqr</td>
<td>130</td>
</tr>
<tr>
<td>Flx_sub</td>
<td>130</td>
</tr>
<tr>
<td>Flx_to_F2x</td>
<td>139</td>
</tr>
<tr>
<td>Flx_to_Flv</td>
<td>156</td>
</tr>
<tr>
<td>Flx_to_FlxX</td>
<td>155</td>
</tr>
<tr>
<td>Flx_to_ZX</td>
<td>155</td>
</tr>
<tr>
<td>Flx_to_ZX_inplace</td>
<td>155</td>
</tr>
<tr>
<td>Flx_translate1</td>
<td>130</td>
</tr>
<tr>
<td>Flx_triple</td>
<td>130</td>
</tr>
<tr>
<td>Flx_val</td>
<td>132</td>
</tr>
<tr>
<td>Flx_valrem</td>
<td>132</td>
</tr>
<tr>
<td>Flx_to_FlxY</td>
<td>157</td>
</tr>
<tr>
<td>Fl_2gener_pre</td>
<td>80</td>
</tr>
<tr>
<td>Function</td>
<td>Page</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>FpMs_FpCs_solve</td>
<td>175</td>
</tr>
<tr>
<td>FpMs_FpCs_solve_safe</td>
<td>175</td>
</tr>
<tr>
<td>FpMs_FpC_mul</td>
<td>175</td>
</tr>
<tr>
<td>FpMs_leftkernel_elts</td>
<td>175</td>
</tr>
<tr>
<td>FpM_add</td>
<td>107</td>
</tr>
<tr>
<td>FpM_center</td>
<td>107</td>
</tr>
<tr>
<td>FpM_center_inplace</td>
<td>107</td>
</tr>
<tr>
<td>FpM_charpoly</td>
<td>109</td>
</tr>
<tr>
<td>FpM_deplin</td>
<td>108</td>
</tr>
<tr>
<td>FpM_det</td>
<td>108</td>
</tr>
<tr>
<td>FpM_FpC_gauss</td>
<td>108</td>
</tr>
<tr>
<td>FpM_FpC_invimage</td>
<td>108</td>
</tr>
<tr>
<td>FpM_FpC_mul</td>
<td>108</td>
</tr>
<tr>
<td>FpM_FpC_mul_FpX</td>
<td>108</td>
</tr>
<tr>
<td>FpM_Fp_mul</td>
<td>108</td>
</tr>
<tr>
<td>FpM_gauss</td>
<td>108</td>
</tr>
<tr>
<td>FpM_hess</td>
<td>109</td>
</tr>
<tr>
<td>FpM_image</td>
<td>108</td>
</tr>
<tr>
<td>FpM_indexrank</td>
<td>109</td>
</tr>
<tr>
<td>FpM_intersect</td>
<td>108</td>
</tr>
<tr>
<td>FpM_inv</td>
<td>108</td>
</tr>
<tr>
<td>FpM_invimage</td>
<td>108</td>
</tr>
<tr>
<td>FpM_ker</td>
<td>108</td>
</tr>
<tr>
<td>FpM_mul</td>
<td>108</td>
</tr>
<tr>
<td>FpM_powu</td>
<td>108</td>
</tr>
<tr>
<td>FpM_rank</td>
<td>108</td>
</tr>
<tr>
<td>FpM_ratlift</td>
<td>149</td>
</tr>
<tr>
<td>FpM_red</td>
<td>107</td>
</tr>
<tr>
<td>FpM_sub</td>
<td>107</td>
</tr>
<tr>
<td>FpM_suppl</td>
<td>109</td>
</tr>
<tr>
<td>FpM_to_mod</td>
<td>144</td>
</tr>
<tr>
<td>FpVV_to_mod</td>
<td>144</td>
</tr>
<tr>
<td>FpV_add</td>
<td>107</td>
</tr>
<tr>
<td>FpV_dotproduct</td>
<td>108</td>
</tr>
<tr>
<td>FpV_dotsquare</td>
<td>108</td>
</tr>
<tr>
<td>FpV_factorback</td>
<td>108</td>
</tr>
<tr>
<td>FpV_FpC_mul</td>
<td>108</td>
</tr>
<tr>
<td>FpV_FpMs_mul</td>
<td>175</td>
</tr>
<tr>
<td>FpV_FpM_polint</td>
<td>117</td>
</tr>
<tr>
<td>FpV_inv</td>
<td>97</td>
</tr>
<tr>
<td>FpV_invVandermonde</td>
<td>117</td>
</tr>
<tr>
<td>FpV_point</td>
<td>117</td>
</tr>
<tr>
<td>FpV_red</td>
<td>107</td>
</tr>
<tr>
<td>FpV_roots_to_pol</td>
<td>116</td>
</tr>
<tr>
<td>FpV_sub</td>
<td>107</td>
</tr>
<tr>
<td>FpV_to_mod</td>
<td>144</td>
</tr>
<tr>
<td>FpXC_center</td>
<td>122</td>
</tr>
<tr>
<td>FpXC_FpQV_eval</td>
<td>122</td>
</tr>
<tr>
<td>FpXM_center</td>
<td>122</td>
</tr>
</tbody>
</table>

356
<table>
<thead>
<tr>
<th>Function Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>FpXQ_powu</td>
<td>125</td>
</tr>
<tr>
<td>FpXQ_mul</td>
<td>125</td>
</tr>
<tr>
<td>FpXQ_Frobenius</td>
<td>129</td>
</tr>
<tr>
<td>FpXQ_gcd</td>
<td>125</td>
</tr>
<tr>
<td>FpXQ_get_red</td>
<td>126</td>
</tr>
<tr>
<td>FpXQ_halfgcd</td>
<td>125</td>
</tr>
<tr>
<td>FpXQ_invvBarrett</td>
<td>125</td>
</tr>
<tr>
<td>FpXQ_ispower</td>
<td>128</td>
</tr>
<tr>
<td>FpXQ_mul</td>
<td>125</td>
</tr>
<tr>
<td>FpXQ_nbfact</td>
<td>129</td>
</tr>
<tr>
<td>FpXQ_nbfact_Frobenius</td>
<td>129</td>
</tr>
<tr>
<td>FpXQ_nbroots</td>
<td>129</td>
</tr>
<tr>
<td>FpXQ_normalize</td>
<td>124</td>
</tr>
<tr>
<td>FpXQ_powu</td>
<td>125</td>
</tr>
<tr>
<td>FpXQ_red</td>
<td>125</td>
</tr>
<tr>
<td>FpXQ_rem</td>
<td>125</td>
</tr>
<tr>
<td>FpXQ_renormalize</td>
<td>125</td>
</tr>
<tr>
<td>FpXQ_roots</td>
<td>128</td>
</tr>
<tr>
<td>FpXQ_split_part</td>
<td>128</td>
</tr>
<tr>
<td>FpXQ_sqr</td>
<td>125</td>
</tr>
<tr>
<td>FpXQ_to_mod</td>
<td>125</td>
</tr>
<tr>
<td>FpXQ_add</td>
<td>119</td>
</tr>
<tr>
<td>FpXQ_autpow</td>
<td>121</td>
</tr>
<tr>
<td>FpXQ_autpowers</td>
<td>122</td>
</tr>
<tr>
<td>FpXQ_autsum</td>
<td>121</td>
</tr>
<tr>
<td>FpXQ_auttrace</td>
<td>121</td>
</tr>
<tr>
<td>FpXQ_charpoly</td>
<td>121</td>
</tr>
<tr>
<td>FpXQ_conjvec</td>
<td>121</td>
</tr>
<tr>
<td>FpXQ_div</td>
<td>120</td>
</tr>
<tr>
<td>FpXQ_ellcard</td>
<td>323</td>
</tr>
<tr>
<td>FpXQ_elldivpol</td>
<td>323</td>
</tr>
<tr>
<td>FpXQ_ellgens</td>
<td>323</td>
</tr>
<tr>
<td>FpXQ_ellgroup</td>
<td>323</td>
</tr>
<tr>
<td>FpXQ_ellij</td>
<td>323</td>
</tr>
<tr>
<td>FpXQ_elljissupersingular</td>
<td>323</td>
</tr>
<tr>
<td>FpXQ_elltwist</td>
<td>323</td>
</tr>
<tr>
<td>FpXQ_ffisom_inv</td>
<td>129</td>
</tr>
<tr>
<td>FpXQ_inv</td>
<td>120</td>
</tr>
<tr>
<td>FpXQ_invsafe</td>
<td>120</td>
</tr>
<tr>
<td>FpXQ_issquare</td>
<td>120</td>
</tr>
<tr>
<td>FpXQ_log</td>
<td>120, 121, 134</td>
</tr>
<tr>
<td>FpXQ_matrix_pow</td>
<td>121</td>
</tr>
<tr>
<td>FpXQ_minpoly</td>
<td>121</td>
</tr>
<tr>
<td>FpXQ_mul</td>
<td>120</td>
</tr>
<tr>
<td>FpXQ_norm</td>
<td>121</td>
</tr>
<tr>
<td>FpXQ_order</td>
<td>120, 134</td>
</tr>
<tr>
<td>FpXQ_pow</td>
<td>120</td>
</tr>
<tr>
<td>FpXQ_powers</td>
<td>121</td>
</tr>
<tr>
<td>FpXQ_powu</td>
<td>120</td>
</tr>
</tbody>
</table>

Fp_sqr 97 FqX_ddf 128
Fp_sqrt 98 FqX_degfact 128
Fp_sqrti 98 FqX_deriv 124
Fp_sqrtm 98 FqX_div 124
Fp_sub 97 FqX_divrem 124
Fp_to_mod 144 FqX_div_by_X_x 124
FqC_add 109 FqX_eval 124
FqC_Fq_mul 109 FqX_evalx 124
FqC_sub 109 FqX_factor 128
FqC_to_FlxC 154 FqX_factor_squarefree 128
FqM_deplin 109 FqX_Fp_mul 124
FqM_det 109 FqX_Fq_add 123
FqM_FqC_gauss 109 FqX_Fq_mul 124
FqM_FqC_invimage 109 FqX_Fq_mul_to_monic 124
FqM_FqC_mul 109 FqX_Fq_sub 123
FqM_gauss 109 FqX_gcd 124
FqM_inv 109 FqX_get_red 126
FqM_invimage 109 FqX_halfgcd 124
FqM_ker 109 FqX_mul 124
FqM_mul 109 FqX_mulu 124
FqM_rank 109 FqX_nbfact 129
FqM_suppl 109 FqX_nbroots 129
FqM_to_FlxM 155 FqX_neg 123
FqM_to_mod 144 FqX_normalize 124
FqM_to_nfM 283 FqX_pow 128
FqV_inv 121 FqX_ispower 128
FqV_red 119 FqX_is_squarefree 128
FqV_roots_to_pol 128 FqX_mul 124
FqV_to_FlxV 155 FqX_mulu 124
FqV_to_nfV 283 FqX_nbroots 128
FqX_add 127 FqX_sqr 124
FqX_div 127 FqX_sub 123
FqX_divrem 124 FqX_invsafe 120
FqX_eval 124 FqX_ispower 121
FqX_evalx 124 FqX_issquare 121
FqX_add 123 FqX_log 121

359
<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fq_mul</td>
<td>120</td>
</tr>
<tr>
<td>Fq_mulu</td>
<td>120</td>
</tr>
<tr>
<td>Fq_neg</td>
<td>120</td>
</tr>
<tr>
<td>Fq_neg_inv</td>
<td>120</td>
</tr>
<tr>
<td>Fq_pow</td>
<td>121</td>
</tr>
<tr>
<td>Fq_powu</td>
<td>121</td>
</tr>
<tr>
<td>Fq_red</td>
<td>119</td>
</tr>
<tr>
<td>Fq_sqr</td>
<td>120</td>
</tr>
<tr>
<td>Fq_sqrt</td>
<td>121</td>
</tr>
<tr>
<td>Fq_sqrti</td>
<td>121</td>
</tr>
<tr>
<td>Fq_sub</td>
<td>120</td>
</tr>
<tr>
<td>Fq_to_FF</td>
<td>227</td>
</tr>
<tr>
<td>Fq_to_FpXQ</td>
<td>119</td>
</tr>
<tr>
<td>Fq_to_nf</td>
<td>283</td>
</tr>
<tr>
<td>factor</td>
<td>199</td>
</tr>
<tr>
<td>Frobeniusform</td>
<td>173</td>
</tr>
<tr>
<td>fromdigits</td>
<td>86</td>
</tr>
<tr>
<td>fromdigits_2k</td>
<td>86</td>
</tr>
<tr>
<td>fujiwara_bound</td>
<td>225</td>
</tr>
<tr>
<td>fujiwara_bound_real</td>
<td>225</td>
</tr>
<tr>
<td>fun(E, e11)</td>
<td>42</td>
</tr>
<tr>
<td>fun(E, H)</td>
<td>42</td>
</tr>
<tr>
<td>functions_basic</td>
<td>52</td>
</tr>
<tr>
<td>functions_default</td>
<td>52</td>
</tr>
<tr>
<td>functions_gp</td>
<td>52</td>
</tr>
<tr>
<td>fuse_Z_factor</td>
<td>161</td>
</tr>
<tr>
<td>f_PRETTYMAT</td>
<td>239</td>
</tr>
<tr>
<td>f_RAW</td>
<td>239, 240</td>
</tr>
<tr>
<td>f_TEX</td>
<td>239, 240</td>
</tr>
<tr>
<td>g</td>
<td></td>
</tr>
<tr>
<td>gabs[z]</td>
<td>217</td>
</tr>
<tr>
<td>gadd</td>
<td>81, 218</td>
</tr>
<tr>
<td>gaddgs</td>
<td>15, 218</td>
</tr>
<tr>
<td>gaddsg</td>
<td>15, 218</td>
</tr>
<tr>
<td>gaddz</td>
<td>15, 26, 81, 219</td>
</tr>
<tr>
<td>gadd[z]</td>
<td>81</td>
</tr>
<tr>
<td>gaffect</td>
<td>26, 27, 199</td>
</tr>
<tr>
<td>gaffsg</td>
<td>27, 199</td>
</tr>
<tr>
<td>galoisexport</td>
<td>237</td>
</tr>
<tr>
<td>galoisidentify</td>
<td>237</td>
</tr>
<tr>
<td>galoisinit</td>
<td>235, 294, 295</td>
</tr>
<tr>
<td>galois_group</td>
<td>235</td>
</tr>
<tr>
<td>gal_get_den</td>
<td>295</td>
</tr>
<tr>
<td>gal_get_e</td>
<td>295</td>
</tr>
<tr>
<td>gal_get_gen</td>
<td>295</td>
</tr>
<tr>
<td>gal_get_group</td>
<td>295</td>
</tr>
<tr>
<td>gal_get_invvdm</td>
<td>295</td>
</tr>
<tr>
<td>gal_get_mod</td>
<td>295</td>
</tr>
<tr>
<td>gal_get_orders</td>
<td>295</td>
</tr>
<tr>
<td>gal_get_p</td>
<td>295</td>
</tr>
<tr>
<td>gal_get_pol</td>
<td>295</td>
</tr>
<tr>
<td>gal_get_roots</td>
<td>295</td>
</tr>
<tr>
<td>gammamellin</td>
<td>328</td>
</tr>
<tr>
<td>gammamellininv</td>
<td>328</td>
</tr>
<tr>
<td>gammamellininvinit</td>
<td>328</td>
</tr>
<tr>
<td>gand</td>
<td>212</td>
</tr>
<tr>
<td>garbage_collecting</td>
<td>17</td>
</tr>
<tr>
<td>gassoc_proto</td>
<td>99</td>
</tr>
<tr>
<td>gaussred_from_QR</td>
<td>173</td>
</tr>
<tr>
<td>gbezout</td>
<td>216</td>
</tr>
<tr>
<td>gboundcf</td>
<td>96</td>
</tr>
<tr>
<td>gcdii</td>
<td>96</td>
</tr>
<tr>
<td>gceil</td>
<td>209</td>
</tr>
<tr>
<td>gclone</td>
<td>27, 67, 68</td>
</tr>
<tr>
<td>gcloner</td>
<td>68</td>
</tr>
<tr>
<td>gclone_ref</td>
<td>69</td>
</tr>
<tr>
<td>gcoeff</td>
<td>15, 61, 252</td>
</tr>
<tr>
<td>gconj</td>
<td>223</td>
</tr>
<tr>
<td>gcopies</td>
<td>27, 68</td>
</tr>
<tr>
<td>gcopies_avma</td>
<td>67</td>
</tr>
<tr>
<td>gcopies_1g</td>
<td>68</td>
</tr>
<tr>
<td>gcvtol</td>
<td>209</td>
</tr>
<tr>
<td>gcvtop</td>
<td>200</td>
</tr>
<tr>
<td>gc_needed</td>
<td>23</td>
</tr>
<tr>
<td>gdeuc</td>
<td>215</td>
</tr>
<tr>
<td>gdiv</td>
<td>218</td>
</tr>
<tr>
<td>gdiventgs[z]</td>
<td>215</td>
</tr>
<tr>
<td>gdiventres</td>
<td>215</td>
</tr>
<tr>
<td>gdiventsg</td>
<td>215</td>
</tr>
<tr>
<td>gdivent[z]</td>
<td>215</td>
</tr>
<tr>
<td>gdivexact</td>
<td>214</td>
</tr>
<tr>
<td>gdivgs</td>
<td>218</td>
</tr>
<tr>
<td>gdivmod</td>
<td>215</td>
</tr>
<tr>
<td>gdivround</td>
<td>215</td>
</tr>
<tr>
<td>gdivs_g</td>
<td>218</td>
</tr>
<tr>
<td>gdivz</td>
<td>219</td>
</tr>
<tr>
<td>gdvd</td>
<td>215</td>
</tr>
<tr>
<td>gel</td>
<td>14, 15, 61, 252</td>
</tr>
<tr>
<td>GEN</td>
<td>13</td>
</tr>
<tr>
<td>GENbinbase</td>
<td>65</td>
</tr>
<tr>
<td>gener_F2xq</td>
<td>141</td>
</tr>
<tr>
<td>gener_Flxq</td>
<td>135</td>
</tr>
<tr>
<td>gener_FpXq</td>
<td>121</td>
</tr>
<tr>
<td>Function</td>
<td>Page</td>
</tr>
<tr>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>gener_FpXQ_local</td>
<td>121</td>
</tr>
<tr>
<td>gener_Fq_local</td>
<td>121</td>
</tr>
<tr>
<td>GENtoGENstr</td>
<td>239</td>
</tr>
<tr>
<td>GENtoGENstr_nospace</td>
<td>239</td>
</tr>
<tr>
<td>GENtostr</td>
<td>39, 239</td>
</tr>
<tr>
<td>GENtostr_raw</td>
<td>239</td>
</tr>
<tr>
<td>GENtostr_unquoted</td>
<td>239</td>
</tr>
<tr>
<td>GENtoTeXstr</td>
<td>39, 239</td>
</tr>
<tr>
<td>gen_0</td>
<td>13, 32</td>
</tr>
<tr>
<td>gen_1</td>
<td>13</td>
</tr>
<tr>
<td>gen_2</td>
<td>13</td>
</tr>
<tr>
<td>gen_bkeval</td>
<td>195</td>
</tr>
<tr>
<td>gen_bkeval_powers</td>
<td>195</td>
</tr>
<tr>
<td>gen_cmp_RgX</td>
<td>214</td>
</tr>
<tr>
<td>gen_det</td>
<td>194</td>
</tr>
<tr>
<td>gen_digits</td>
<td>196</td>
</tr>
<tr>
<td>gen_eillgens</td>
<td>193, 315</td>
</tr>
<tr>
<td>gen_eillgroup</td>
<td>193</td>
</tr>
<tr>
<td>gen_factorback</td>
<td>220</td>
</tr>
<tr>
<td>gen_factored_order</td>
<td>192</td>
</tr>
<tr>
<td>gen_FpM_Wiedemann</td>
<td>176</td>
</tr>
<tr>
<td>gen_fromdigits</td>
<td>196</td>
</tr>
<tr>
<td>gen_Gauss</td>
<td>194</td>
</tr>
<tr>
<td>gen_Gauss_pivot</td>
<td>194</td>
</tr>
<tr>
<td>gen_generator</td>
<td>192</td>
</tr>
<tr>
<td>gen_indexsort</td>
<td>213</td>
</tr>
<tr>
<td>gen_indexsort_uniq</td>
<td>213</td>
</tr>
<tr>
<td>gen_ker</td>
<td>194</td>
</tr>
<tr>
<td>gen_m1</td>
<td>13</td>
</tr>
<tr>
<td>gen_m2</td>
<td>13</td>
</tr>
<tr>
<td>gen_matcolinvimage</td>
<td>194</td>
</tr>
<tr>
<td>gen_matcolmul</td>
<td>194</td>
</tr>
<tr>
<td>gen_matid</td>
<td>194</td>
</tr>
<tr>
<td>gen_matinvimage</td>
<td>194</td>
</tr>
<tr>
<td>gen_matmul</td>
<td>194</td>
</tr>
<tr>
<td>gen_order</td>
<td>192</td>
</tr>
<tr>
<td>gen_PH_log</td>
<td>192</td>
</tr>
<tr>
<td>gen_plog</td>
<td>192</td>
</tr>
<tr>
<td>gen_Pollard_log</td>
<td>192</td>
</tr>
<tr>
<td>gen_pow</td>
<td>219</td>
</tr>
<tr>
<td>gen_powers</td>
<td>195, 220</td>
</tr>
<tr>
<td>gen_powu</td>
<td>219</td>
</tr>
<tr>
<td>gen_powu_fold</td>
<td>219</td>
</tr>
<tr>
<td>gen_powu_fold_i</td>
<td>219</td>
</tr>
<tr>
<td>gen_powu_i</td>
<td>219</td>
</tr>
<tr>
<td>gen_pow_fold</td>
<td>219</td>
</tr>
<tr>
<td>gen_pow_fold_i</td>
<td>219</td>
</tr>
<tr>
<td>gen_pow_i</td>
<td>219</td>
</tr>
<tr>
<td>gen_pow_init</td>
<td>219</td>
</tr>
<tr>
<td>gen_pow_table</td>
<td>219</td>
</tr>
<tr>
<td>gen_product</td>
<td>219</td>
</tr>
<tr>
<td>gen_RgX_bkeval</td>
<td>195</td>
</tr>
<tr>
<td>gen_search</td>
<td>214</td>
</tr>
<tr>
<td>gen_select_order</td>
<td>192</td>
</tr>
<tr>
<td>gen_setminus</td>
<td>213</td>
</tr>
<tr>
<td>gen_Shanks</td>
<td>192</td>
</tr>
<tr>
<td>gen_Shanks_init</td>
<td>192</td>
</tr>
<tr>
<td>gen_Shanks_log</td>
<td>191</td>
</tr>
<tr>
<td>gen_Shanks_sqrtn</td>
<td>192</td>
</tr>
<tr>
<td>gen_sort</td>
<td>213</td>
</tr>
<tr>
<td>gen_sort_inplace</td>
<td>213</td>
</tr>
<tr>
<td>gen_sort_uniq</td>
<td>213</td>
</tr>
<tr>
<td>gen_ZpM_Dixon</td>
<td>176</td>
</tr>
<tr>
<td>gen_ZpX_Dixon</td>
<td>197</td>
</tr>
<tr>
<td>gen_ZpX_Newton</td>
<td>197</td>
</tr>
<tr>
<td>geq</td>
<td>212</td>
</tr>
<tr>
<td>gequal</td>
<td>183, 210</td>
</tr>
<tr>
<td>gequal0</td>
<td>211</td>
</tr>
<tr>
<td>gequal1</td>
<td>211</td>
</tr>
<tr>
<td>gequalg</td>
<td>211</td>
</tr>
<tr>
<td>gequalml</td>
<td>211</td>
</tr>
<tr>
<td>gequalsg</td>
<td>211</td>
</tr>
<tr>
<td>gequalX</td>
<td>210</td>
</tr>
<tr>
<td>gerepile</td>
<td>18, 20, 26, 27, 65, 91</td>
</tr>
<tr>
<td>gerepileall</td>
<td>23</td>
</tr>
<tr>
<td>gerepilealll</td>
<td>20, 23, 66</td>
</tr>
<tr>
<td>gerepileallssp</td>
<td>20, 66</td>
</tr>
<tr>
<td>gerepilecoeffs</td>
<td>66</td>
</tr>
<tr>
<td>gerepilecoeffssp</td>
<td>66</td>
</tr>
<tr>
<td>gerepilecopy</td>
<td>20, 23, 66</td>
</tr>
<tr>
<td>gerepilemany</td>
<td>66</td>
</tr>
<tr>
<td>gerepilemanysp</td>
<td>66</td>
</tr>
<tr>
<td>gerepileupto</td>
<td>19, 20, 25, 27, 66, 91, 158, 205, 207, 252, 279</td>
</tr>
<tr>
<td>gerepileupoint</td>
<td>66</td>
</tr>
<tr>
<td>gerepileuptoleaf</td>
<td>66</td>
</tr>
<tr>
<td>getheap</td>
<td>69</td>
</tr>
<tr>
<td>getrand</td>
<td>96</td>
</tr>
<tr>
<td>getrealprecision</td>
<td>231</td>
</tr>
<tr>
<td>gettime</td>
<td>41</td>
</tr>
<tr>
<td>get_arith_Z</td>
<td>192</td>
</tr>
<tr>
<td>get_arith_ZZM</td>
<td>192</td>
</tr>
<tr>
<td>get_bnf</td>
<td>267</td>
</tr>
<tr>
<td>get_bnfpol</td>
<td>267</td>
</tr>
<tr>
<td>get_F2xqE_group</td>
<td>193</td>
</tr>
<tr>
<td>get_F2xqX_degree</td>
<td>143</td>
</tr>
<tr>
<td>get_F2xqX_mod</td>
<td>143</td>
</tr>
<tr>
<td>get_F2xqX_var</td>
<td>143</td>
</tr>
<tr>
<td>Function</td>
<td>Page</td>
</tr>
<tr>
<td>------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>gval</td>
<td>210</td>
</tr>
<tr>
<td>gvaluation</td>
<td>209</td>
</tr>
<tr>
<td>gvar</td>
<td>32, 35, 58</td>
</tr>
<tr>
<td>gvar2</td>
<td>58</td>
</tr>
<tr>
<td>gvsprintf</td>
<td>240</td>
</tr>
<tr>
<td>G_ZGC_mul</td>
<td>174</td>
</tr>
<tr>
<td>G_ZG_mul</td>
<td>174</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>H</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>hammingl</td>
<td>77</td>
</tr>
<tr>
<td>hashentry</td>
<td>249</td>
</tr>
<tr>
<td>hashtable</td>
<td>249</td>
</tr>
<tr>
<td>hash_create</td>
<td>250</td>
</tr>
<tr>
<td>hash_create_str</td>
<td>250</td>
</tr>
<tr>
<td>hash_create_ulong</td>
<td>250</td>
</tr>
<tr>
<td>hash_dbg</td>
<td>251</td>
</tr>
<tr>
<td>hash_destroy</td>
<td>251</td>
</tr>
<tr>
<td>hash_GEN</td>
<td>251</td>
</tr>
<tr>
<td>hash_haskey_long</td>
<td>250</td>
</tr>
<tr>
<td>hash_init_GEN</td>
<td>250</td>
</tr>
<tr>
<td>hash_insert</td>
<td>250</td>
</tr>
<tr>
<td>hash_insert2</td>
<td>250</td>
</tr>
<tr>
<td>hash_insert_long</td>
<td>250</td>
</tr>
<tr>
<td>hash_keys</td>
<td>251</td>
</tr>
<tr>
<td>hash_remove</td>
<td>250</td>
</tr>
<tr>
<td>hash_remove_select</td>
<td>250</td>
</tr>
<tr>
<td>hash_search</td>
<td>250</td>
</tr>
<tr>
<td>hash_search2</td>
<td>250</td>
</tr>
<tr>
<td>hash_select</td>
<td>250</td>
</tr>
<tr>
<td>hash_str</td>
<td>250</td>
</tr>
<tr>
<td>hash_str2</td>
<td>250</td>
</tr>
<tr>
<td>hash_values</td>
<td>251</td>
</tr>
<tr>
<td>hclassnO</td>
<td>296</td>
</tr>
<tr>
<td>hclassnO6</td>
<td>296</td>
</tr>
<tr>
<td>hclassnO6u</td>
<td>296</td>
</tr>
<tr>
<td>heap</td>
<td>14</td>
</tr>
<tr>
<td>hexadecimal tree</td>
<td>40</td>
</tr>
<tr>
<td>HIGHBIT</td>
<td>62</td>
</tr>
<tr>
<td>HIGHEXPOBIT</td>
<td>62</td>
</tr>
<tr>
<td>HIGHMASK</td>
<td>62</td>
</tr>
<tr>
<td>HIGHVALBIT</td>
<td>62</td>
</tr>
<tr>
<td>HIGHWORD</td>
<td>62</td>
</tr>
<tr>
<td>hilbertii</td>
<td>100</td>
</tr>
<tr>
<td>hnf</td>
<td>302</td>
</tr>
<tr>
<td>hnfall</td>
<td>302</td>
</tr>
<tr>
<td>hnfdivide</td>
<td>301</td>
</tr>
<tr>
<td>hnfll</td>
<td>302</td>
</tr>
<tr>
<td>hnfmerge_get_1</td>
<td>280</td>
</tr>
<tr>
<td>hnfmod</td>
<td>302</td>
</tr>
<tr>
<td>hnfmodid</td>
<td>302</td>
</tr>
<tr>
<td>hnfperm</td>
<td>302</td>
</tr>
<tr>
<td>hnf_CENTER</td>
<td>300</td>
</tr>
<tr>
<td>hnf_divscale</td>
<td>300</td>
</tr>
<tr>
<td>hnf_invimage</td>
<td>301</td>
</tr>
<tr>
<td>hnf_invscale</td>
<td>300</td>
</tr>
<tr>
<td>hnf_MODID</td>
<td>299</td>
</tr>
<tr>
<td>hnf_PART</td>
<td>299</td>
</tr>
<tr>
<td>hnf_solve</td>
<td>301</td>
</tr>
<tr>
<td>hqfeval</td>
<td>221</td>
</tr>
<tr>
<td>hyperell_locally_soluble</td>
<td>324</td>
</tr>
<tr>
<td>h_APROPOS</td>
<td>55</td>
</tr>
<tr>
<td>h_LONG</td>
<td>54</td>
</tr>
<tr>
<td>h_REGULAR</td>
<td>54</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>I</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>icopy</td>
<td>83</td>
</tr>
<tr>
<td>icopyifstack</td>
<td>68</td>
</tr>
<tr>
<td>icopyspec</td>
<td>83</td>
</tr>
<tr>
<td>icopy_avma</td>
<td>67</td>
</tr>
<tr>
<td>idealadd</td>
<td>279</td>
</tr>
<tr>
<td>idealaddmultoone</td>
<td>280</td>
</tr>
<tr>
<td>idealaddtoone</td>
<td>280</td>
</tr>
<tr>
<td>idealaddtoone_i</td>
<td>280</td>
</tr>
<tr>
<td>idealaddtoone_raw</td>
<td>280</td>
</tr>
<tr>
<td>idealappr</td>
<td>280, 294</td>
</tr>
<tr>
<td>idealappr0</td>
<td>294</td>
</tr>
<tr>
<td>idealapprfact</td>
<td>280</td>
</tr>
<tr>
<td>idealchinese</td>
<td>280</td>
</tr>
<tr>
<td>idealchineseinit</td>
<td>280</td>
</tr>
<tr>
<td>idealcoprime</td>
<td>280</td>
</tr>
<tr>
<td>idealcoprimefact</td>
<td>280</td>
</tr>
<tr>
<td>idealdiv</td>
<td>279</td>
</tr>
<tr>
<td>idealdivexact</td>
<td>279</td>
</tr>
<tr>
<td>idealdivpowprime</td>
<td>279</td>
</tr>
<tr>
<td>idealfactor</td>
<td>278, 280</td>
</tr>
<tr>
<td>idealfrobenius_aut</td>
<td>282</td>
</tr>
<tr>
<td>idealhnf</td>
<td>278</td>
</tr>
<tr>
<td>idealhnf0</td>
<td>278</td>
</tr>
<tr>
<td>idealHNF_inv</td>
<td>280</td>
</tr>
<tr>
<td>idealHNF_inv_Z</td>
<td>280</td>
</tr>
<tr>
<td>idealHNF_mul</td>
<td>279</td>
</tr>
<tr>
<td>idealhnf_principal</td>
<td>278</td>
</tr>
<tr>
<td>idealhnf_shallow</td>
<td>278</td>
</tr>
<tr>
<td>idealhnf_two</td>
<td>279</td>
</tr>
<tr>
<td>idealHNF_Z_factor</td>
<td>281</td>
</tr>
<tr>
<td>idealHNF_Z_factor_i</td>
<td>281</td>
</tr>
</tbody>
</table>

364
isprincipalraygen 294
isrationalzero 211
isrationalzeroscalar 211
isrealappr 211
ismall 212
is_357_power 100, 157, 158
is_bigint 83
is_const_t 61
is_entry 70
is_extscalar_t 61
is_intreal_t 61
is_limit 327
is_matvec_t 61
is_nf_extfactor 268
is_nf_factor 268
is_noncalc_t 61
is_pml 211
is_pth_power 158
is_rational_t 61
is_real_t 61
is_recursive_t 60
is_scalar_t 61
is_universal_constant 199
is_vec_t 61
is_Z_factor 160
is_Z_factormon0 160
is_Z_factorpos 160
itor .. 83
itos .. 27, 83, 199
itosstr 239
itos_or_0 83
itou .. 83
itou_or_0 83

K

killblock 68
krois .. 98
kroiu .. 98
Kronecker symbol 98, 99
kroner ... 98
Kronecker_to_F2xqX 142
Kronecker_to_FlxqX 136
Kronecker_to_FpXqX 125
Kronecker_to_mod 190
Kronecker_to_ZXX 180
krosi .. 98
kross .. 98
kroui .. 98

Kroun .. 98

L

lcmii ... 96
ldata_get_an 327
ldata_get_conductor 327
ldata_get_degree 327
ldata_get_dual 327
ldata_get_gammavec 327
ldata_get_k 327
ldata_get_residue 327
ldata_get_rootno 327
ldata_get_type 327
ldata_isreal 327
ldata_vecan 327
leading_coeff 32, 61
leafcopy 83, 253
leafcopy_avma 83
Legendre symbol 98
lexcmp .. 210
lexsort 212
lfun .. 328
lfunellmfpeters 328
lfuninit 328
lfuninit_make 328
lfunlambda 328
lfunmisc_to_1data 328
lfunmisc_to_1data_shallow 328
lunprod_get_fact 327
lunrootno 328
lunrootpoles 328
lunthetacheckinit 328
lunthetacost 328
lunzetakinit 328
lun_get_bitprec 327
lun_get_dom 327
lun_get_domain 327
lun_get_expot 327
lun_get_factgammavec 327
lun_get_k 327
lun_get_pol 327
lun_get_Residue 327
lun_get_step 327
lun_get_w2 327
lg .. 28, 57
LGBITS .. 62
lcols .. 59
lgeint .. 29, 58
<table>
<thead>
<tr>
<th>Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOWWORD</td>
<td>62</td>
</tr>
<tr>
<td>logintall</td>
<td>62</td>
</tr>
<tr>
<td>LOG10_2</td>
<td>63</td>
</tr>
<tr>
<td>LOG2_10</td>
<td>63</td>
</tr>
<tr>
<td>logint</td>
<td>95</td>
</tr>
<tr>
<td>LENER rejected</td>
<td>62</td>
</tr>
<tr>
<td>LOW_DEBUG</td>
<td>62</td>
</tr>
<tr>
<td>LONG_MAX</td>
<td>62</td>
</tr>
<tr>
<td>LONG_IS_64BIT</td>
<td>62</td>
</tr>
<tr>
<td>LLL_ALL</td>
<td>303</td>
</tr>
<tr>
<td>LLL_COMPATIBLE</td>
<td>303</td>
</tr>
<tr>
<td>LLL_GRAM</td>
<td>303</td>
</tr>
<tr>
<td>LLL_IWIND</td>
<td>303</td>
</tr>
<tr>
<td>LLL_KER</td>
<td>303</td>
</tr>
<tr>
<td>M</td>
<td></td>
</tr>
<tr>
<td>malloc</td>
<td>244</td>
</tr>
<tr>
<td>mantissa2nr</td>
<td>85</td>
</tr>
<tr>
<td>mantissa_real</td>
<td>31, 85</td>
</tr>
<tr>
<td>map_proto_G</td>
<td>99</td>
</tr>
<tr>
<td>map_proto_GL</td>
<td>99</td>
</tr>
<tr>
<td>map_proto_LG</td>
<td>99</td>
</tr>
<tr>
<td>matbrute</td>
<td>242</td>
</tr>
<tr>
<td>matdet</td>
<td>167</td>
</tr>
<tr>
<td>mathnf</td>
<td>278</td>
</tr>
<tr>
<td>matid</td>
<td>204</td>
</tr>
<tr>
<td>matid_F2m</td>
<td>113</td>
</tr>
<tr>
<td>matid_F2xqM</td>
<td>142</td>
</tr>
<tr>
<td>matid_Flm</td>
<td>109</td>
</tr>
<tr>
<td>matid_FlxqM</td>
<td>114</td>
</tr>
<tr>
<td>matpermanent</td>
<td>167</td>
</tr>
<tr>
<td>matrix</td>
<td>34</td>
</tr>
<tr>
<td>matrixxqz</td>
<td>302</td>
</tr>
<tr>
<td>matslice</td>
<td>253</td>
</tr>
<tr>
<td>maxdd</td>
<td>88</td>
</tr>
<tr>
<td>maxprime</td>
<td>13, 63</td>
</tr>
<tr>
<td>maxprime_check</td>
<td>63</td>
</tr>
<tr>
<td>maxss</td>
<td>88</td>
</tr>
<tr>
<td>maxuu</td>
<td>88</td>
</tr>
<tr>
<td>MAXVARN</td>
<td>62</td>
</tr>
<tr>
<td>MEDDEFAULTPREC</td>
<td>16, 62</td>
</tr>
<tr>
<td>merge_factor</td>
<td>214</td>
</tr>
<tr>
<td>merge_sort_uniq</td>
<td>213</td>
</tr>
<tr>
<td>mfcharmodulus</td>
<td>333</td>
</tr>
<tr>
<td>mfcharorder</td>
<td>333</td>
</tr>
<tr>
<td>mfcharpol</td>
<td>333</td>
</tr>
<tr>
<td>mfcsu4dim</td>
<td>333</td>
</tr>
<tr>
<td>MFCSU4_GET_vMjd</td>
<td>332</td>
</tr>
<tr>
<td>mdiv_val</td>
<td>333</td>
</tr>
<tr>
<td>mfessensteindim</td>
<td>333</td>
</tr>
<tr>
<td>mfessensteinspaceinit</td>
<td>333</td>
</tr>
<tr>
<td>mfembed</td>
<td>333</td>
</tr>
<tr>
<td>mfullimpl</td>
<td>333</td>
</tr>
<tr>
<td>mfiscuspidal</td>
<td>333</td>
</tr>
<tr>
<td>Function</td>
<td>Line</td>
</tr>
<tr>
<td>----------</td>
<td>------</td>
</tr>
<tr>
<td>Mod2</td>
<td>94</td>
</tr>
<tr>
<td>mod2</td>
<td>94</td>
</tr>
<tr>
<td>mod2BIL</td>
<td>94</td>
</tr>
<tr>
<td>Mod32</td>
<td>94</td>
</tr>
<tr>
<td>mod32</td>
<td>94</td>
</tr>
<tr>
<td>Mod4</td>
<td>94</td>
</tr>
<tr>
<td>mod4</td>
<td>94</td>
</tr>
<tr>
<td>Mod64</td>
<td>94</td>
</tr>
<tr>
<td>mod64</td>
<td>94</td>
</tr>
<tr>
<td>Mod8</td>
<td>94</td>
</tr>
<tr>
<td>mod8</td>
<td>94</td>
</tr>
<tr>
<td>modinv_good_disc</td>
<td>324</td>
</tr>
<tr>
<td>modinv_good_prime</td>
<td>324</td>
</tr>
<tr>
<td>modinv_height_factor</td>
<td>324</td>
</tr>
<tr>
<td>modinv_is_double_eta</td>
<td>324</td>
</tr>
<tr>
<td>modinv_is_Weber</td>
<td>324</td>
</tr>
<tr>
<td>modpr_genFq</td>
<td>283</td>
</tr>
<tr>
<td>modpr_get_p</td>
<td>282</td>
</tr>
<tr>
<td>modpr_get_T</td>
<td>282</td>
</tr>
<tr>
<td>modRr_safe</td>
<td>189</td>
</tr>
<tr>
<td>moebiusu</td>
<td>223</td>
</tr>
<tr>
<td>moebiusu_fact</td>
<td>100</td>
</tr>
<tr>
<td>monomial_F2x</td>
<td>139</td>
</tr>
<tr>
<td>monomial_F1x</td>
<td>131</td>
</tr>
<tr>
<td>mpabs</td>
<td>87</td>
</tr>
<tr>
<td>mpabs_shallow</td>
<td>87</td>
</tr>
<tr>
<td>mpadd</td>
<td>15</td>
</tr>
<tr>
<td>mpaff</td>
<td>82</td>
</tr>
<tr>
<td>mpbern</td>
<td>233</td>
</tr>
<tr>
<td>mpceil</td>
<td>84</td>
</tr>
<tr>
<td>mpcmp</td>
<td>88</td>
</tr>
<tr>
<td>mpcopy</td>
<td>83</td>
</tr>
<tr>
<td>mpcos[z]</td>
<td>231</td>
</tr>
<tr>
<td>mppeint1</td>
<td>231</td>
</tr>
<tr>
<td>mppeuler</td>
<td>234</td>
</tr>
<tr>
<td>mpexpm1</td>
<td>231</td>
</tr>
<tr>
<td>mpexpo</td>
<td>58</td>
</tr>
<tr>
<td>mpexp[z]</td>
<td>231</td>
</tr>
<tr>
<td>mpfloor</td>
<td>84</td>
</tr>
<tr>
<td>mplambertW</td>
<td>231</td>
</tr>
<tr>
<td>mplog2</td>
<td>234</td>
</tr>
<tr>
<td>mplog[z]</td>
<td>231</td>
</tr>
<tr>
<td>mpneg</td>
<td>87</td>
</tr>
<tr>
<td>mpodd</td>
<td>94</td>
</tr>
<tr>
<td>mppi</td>
<td>233</td>
</tr>
<tr>
<td>mpround</td>
<td>84</td>
</tr>
<tr>
<td>mpshift</td>
<td>85</td>
</tr>
<tr>
<td>mpsin</td>
<td>231</td>
</tr>
<tr>
<td>mpsin[m]</td>
<td>231</td>
</tr>
</tbody>
</table>

N

<table>
<thead>
<tr>
<th>Function</th>
<th>Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>name_numerr</td>
<td>249</td>
</tr>
<tr>
<td>name_var</td>
<td>36, 70</td>
</tr>
<tr>
<td>nb2extraprec</td>
<td>57</td>
</tr>
<tr>
<td>nb21g</td>
<td>57</td>
</tr>
<tr>
<td>nb2ndec</td>
<td>57</td>
</tr>
<tr>
<td>nb2nlong</td>
<td>57</td>
</tr>
<tr>
<td>nb2prec</td>
<td>57</td>
</tr>
<tr>
<td>nbrows</td>
<td>59</td>
</tr>
<tr>
<td>nchar2nlong</td>
<td>57</td>
</tr>
<tr>
<td>ncharvecexpo</td>
<td>307</td>
</tr>
<tr>
<td>nV_chinese_center</td>
<td>148</td>
</tr>
<tr>
<td>ndec2nbits</td>
<td>56</td>
</tr>
<tr>
<td>ndec2nlong</td>
<td>56</td>
</tr>
<tr>
<td>ndec2prec</td>
<td>56</td>
</tr>
<tr>
<td>neg</td>
<td>87</td>
</tr>
<tr>
<td>negr</td>
<td>87</td>
</tr>
<tr>
<td>newblock</td>
<td>68</td>
</tr>
<tr>
<td>new_chunk</td>
<td>64</td>
</tr>
<tr>
<td>new_chunk_resize</td>
<td>64</td>
</tr>
<tr>
<td>NEXT_PRIME_VIADIFF</td>
<td>63</td>
</tr>
<tr>
<td>NEXT_PRIME_VIADIFF_CHECK</td>
<td>63</td>
</tr>
<tr>
<td>nfadd</td>
<td>274</td>
</tr>
<tr>
<td>Function</td>
<td>Page</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>nfalgtobasis</td>
<td>275</td>
</tr>
<tr>
<td>nfarchstar</td>
<td>285</td>
</tr>
<tr>
<td>nfbasistoalg</td>
<td>275</td>
</tr>
<tr>
<td>nfcHECKSIGNS</td>
<td>284</td>
</tr>
<tr>
<td>nfcyclotomicunits</td>
<td>293</td>
</tr>
<tr>
<td>nfc_MULTABLE_MUL</td>
<td>275</td>
</tr>
<tr>
<td>nfC_nf_mul</td>
<td>275</td>
</tr>
<tr>
<td>nfdiv</td>
<td>274</td>
</tr>
<tr>
<td>nfdiveuc</td>
<td>274</td>
</tr>
<tr>
<td>nfdivrem</td>
<td>274</td>
</tr>
<tr>
<td>nfeltup</td>
<td>292</td>
</tr>
<tr>
<td>nfembed</td>
<td>284</td>
</tr>
<tr>
<td>nffactorback</td>
<td>278</td>
</tr>
<tr>
<td>nfgaloisconj</td>
<td>293</td>
</tr>
<tr>
<td>nfgaloismatrix</td>
<td>295</td>
</tr>
<tr>
<td>nfgaloisprntobasis</td>
<td>295</td>
</tr>
<tr>
<td>nfgcd</td>
<td>182</td>
</tr>
<tr>
<td>nfgcd_all</td>
<td>182</td>
</tr>
<tr>
<td>nfgvkummer</td>
<td>292</td>
</tr>
<tr>
<td>nfinit_basic</td>
<td>286</td>
</tr>
<tr>
<td>nfinit_complete</td>
<td>286</td>
</tr>
<tr>
<td>nfinv</td>
<td>274</td>
</tr>
<tr>
<td>nfinvmodideal</td>
<td>275</td>
</tr>
<tr>
<td>nfiSSQUAREFREE</td>
<td>292</td>
</tr>
<tr>
<td>nfmaxord</td>
<td>285</td>
</tr>
<tr>
<td>nfmaxord_t</td>
<td>285, 286</td>
</tr>
<tr>
<td>nfmaxord_to_nf</td>
<td>286</td>
</tr>
<tr>
<td>nfmod</td>
<td>275</td>
</tr>
<tr>
<td>nfmodprinit</td>
<td>282, 283</td>
</tr>
<tr>
<td>nfmul</td>
<td>274</td>
</tr>
<tr>
<td>nfmuli</td>
<td>275</td>
</tr>
<tr>
<td>nFM_det</td>
<td>276</td>
</tr>
<tr>
<td>nFM_inv</td>
<td>276</td>
</tr>
<tr>
<td>nFM_mul</td>
<td>276</td>
</tr>
<tr>
<td>nFM_NF_MULT</td>
<td>276</td>
</tr>
<tr>
<td>nFM_to_FqM</td>
<td>283</td>
</tr>
<tr>
<td>nfnewprec</td>
<td>273</td>
</tr>
<tr>
<td>nfnewprec_shallow</td>
<td>273</td>
</tr>
<tr>
<td>nfnorm</td>
<td>274</td>
</tr>
<tr>
<td>npoleval</td>
<td>274</td>
</tr>
<tr>
<td>npow</td>
<td>274</td>
</tr>
<tr>
<td>npowmodideal</td>
<td>275</td>
</tr>
<tr>
<td>npowu</td>
<td>274</td>
</tr>
<tr>
<td>nfrootsofl</td>
<td>293</td>
</tr>
<tr>
<td>nfroots_if_split</td>
<td>293</td>
</tr>
<tr>
<td>nfsign</td>
<td>278, 284</td>
</tr>
<tr>
<td>nfsign_ARCH</td>
<td>278, 284</td>
</tr>
<tr>
<td>nfSIGN_FROM_LOGARCH</td>
<td>285</td>
</tr>
<tr>
<td>nfSIGN_UNITS</td>
<td>285</td>
</tr>
<tr>
<td>nftyp</td>
<td>267</td>
</tr>
<tr>
<td>nfval</td>
<td>274, 284</td>
</tr>
<tr>
<td>nf_V_TO_FqV</td>
<td>283</td>
</tr>
<tr>
<td>nfX_TO_FqX</td>
<td>283</td>
</tr>
<tr>
<td>nf_deg1_prime</td>
<td>282</td>
</tr>
<tr>
<td>nf_FORCE</td>
<td>287</td>
</tr>
<tr>
<td>nf_GEN</td>
<td>287</td>
</tr>
<tr>
<td>nf_GEN_IF_PRINCIPAL</td>
<td>287</td>
</tr>
<tr>
<td>nf_GEN_MAT</td>
<td>287</td>
</tr>
<tr>
<td>nf_GET_GTWIST</td>
<td>288, 289, 304</td>
</tr>
<tr>
<td>nf_GET_GTWIST1</td>
<td>289</td>
</tr>
<tr>
<td>nf_GET_INDEX</td>
<td>269</td>
</tr>
<tr>
<td>nf_GET_INVZK</td>
<td>269</td>
</tr>
<tr>
<td>nf_GET_M</td>
<td>269, 288</td>
</tr>
<tr>
<td>nf_GET_POL</td>
<td>268</td>
</tr>
<tr>
<td>nf_GET_PREC</td>
<td>269</td>
</tr>
<tr>
<td>nf_GET_R1</td>
<td>269</td>
</tr>
<tr>
<td>nf_GET_R2</td>
<td>269</td>
</tr>
<tr>
<td>nf_GET_RAMIFIED_PRIMES</td>
<td>269</td>
</tr>
<tr>
<td>nf_GET_ROOTS</td>
<td>269</td>
</tr>
<tr>
<td>nf_GET_ROUNDG</td>
<td>269, 289</td>
</tr>
<tr>
<td>nf_GET_SIGN</td>
<td>269</td>
</tr>
<tr>
<td>nf_GET_TR</td>
<td>269</td>
</tr>
<tr>
<td>nf_GET_VARN</td>
<td>268</td>
</tr>
<tr>
<td>nf_GET_ZK</td>
<td>269</td>
</tr>
<tr>
<td>nf_GET_ZKD</td>
<td>269</td>
</tr>
<tr>
<td>nf_GET_ZKDEN</td>
<td>269</td>
</tr>
<tr>
<td>nf_GET_ZKPRIMAP</td>
<td>269</td>
</tr>
<tr>
<td>nf_hyperell_locally_soluble</td>
<td>324</td>
</tr>
<tr>
<td>nf_NFZK</td>
<td>292</td>
</tr>
<tr>
<td>nf_PARTIALFACT</td>
<td>286</td>
</tr>
<tr>
<td>nf_pV_TO_PRV</td>
<td>282</td>
</tr>
<tr>
<td>nf_rnfeq</td>
<td>292</td>
</tr>
<tr>
<td>nf_rnfeqsimple</td>
<td>292</td>
</tr>
<tr>
<td>nf_ROUND2</td>
<td>286</td>
</tr>
<tr>
<td>nf_to_Fp_coprime</td>
<td>290</td>
</tr>
<tr>
<td>nf_to_Fq</td>
<td>283</td>
</tr>
<tr>
<td>nf_to_Fq_INIT</td>
<td>282</td>
</tr>
<tr>
<td>nf_to_SCALAR_OR_ALG</td>
<td>275</td>
</tr>
<tr>
<td>nf_to_SCALAR_OR_BASIS</td>
<td>275</td>
</tr>
<tr>
<td>nmV_chinese_center</td>
<td>148</td>
</tr>
<tr>
<td>Function</td>
<td>Line</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>pari_fread_chars</td>
<td>242</td>
</tr>
<tr>
<td>pari_free</td>
<td>17, 65</td>
</tr>
<tr>
<td>pari_get_hist</td>
<td>55</td>
</tr>
<tr>
<td>pari_get_histtime</td>
<td>55</td>
</tr>
<tr>
<td>pari_get_homepath</td>
<td>243</td>
</tr>
<tr>
<td>pari_hit_return</td>
<td>54</td>
</tr>
<tr>
<td>pari_infile</td>
<td>54</td>
</tr>
<tr>
<td>pari_init</td>
<td>13, 14, 49</td>
</tr>
<tr>
<td>pari_init_opts</td>
<td>49</td>
</tr>
<tr>
<td>pari_init_primes</td>
<td>50, 51</td>
</tr>
<tr>
<td>pari_is_default</td>
<td>261</td>
</tr>
<tr>
<td>pari_is_dir</td>
<td>242</td>
</tr>
<tr>
<td>pari_is_file</td>
<td>242</td>
</tr>
<tr>
<td>pari_kernel_close</td>
<td>50</td>
</tr>
<tr>
<td>pari_kernel_init</td>
<td>50</td>
</tr>
<tr>
<td>pari_kill_plot_engine</td>
<td>335</td>
</tr>
<tr>
<td>pari_last_was_newline</td>
<td>241</td>
</tr>
<tr>
<td>pari_library_path</td>
<td>54</td>
</tr>
<tr>
<td>pari_malloc</td>
<td>17, 65, 247</td>
</tr>
<tr>
<td>pari_mt_close</td>
<td>51</td>
</tr>
<tr>
<td>pari_mt_init</td>
<td>50</td>
</tr>
<tr>
<td>pari_nb_hist</td>
<td>55</td>
</tr>
<tr>
<td>pari_old_names</td>
<td>14</td>
</tr>
<tr>
<td>pari_outfile</td>
<td>38, 241</td>
</tr>
<tr>
<td>PARI_plot</td>
<td>335</td>
</tr>
<tr>
<td>pari_plot_by_file</td>
<td>336</td>
</tr>
<tr>
<td>pari_printf</td>
<td>38, 39, 40, 71, 241, 242</td>
</tr>
<tr>
<td>pari_print_version</td>
<td>54</td>
</tr>
<tr>
<td>pari_putchar</td>
<td>38, 71, 241</td>
</tr>
<tr>
<td>pari_puts</td>
<td>38, 71, 241, 242</td>
</tr>
<tr>
<td>pari_rand</td>
<td>96</td>
</tr>
<tr>
<td>pari_realloc</td>
<td>17, 247</td>
</tr>
<tr>
<td>pari_RETRY</td>
<td>45</td>
</tr>
<tr>
<td>pari_safeopen</td>
<td>243</td>
</tr>
<tr>
<td>pari_set_last_newline</td>
<td>241</td>
</tr>
<tr>
<td>pari_set_plot_engine</td>
<td>335</td>
</tr>
<tr>
<td>pari_sighandler</td>
<td>51</td>
</tr>
<tr>
<td>pari_sig_init</td>
<td>51</td>
</tr>
<tr>
<td>pari_sp</td>
<td>17</td>
</tr>
<tr>
<td>pari_sprintf</td>
<td>39, 239</td>
</tr>
<tr>
<td>pari_stackcheck_init</td>
<td>51</td>
</tr>
<tr>
<td>pari_stack_alloc</td>
<td>252</td>
</tr>
<tr>
<td>pari_stack_base</td>
<td>252</td>
</tr>
<tr>
<td>pari_stack_delete</td>
<td>252</td>
</tr>
<tr>
<td>pari_stack_init</td>
<td>252</td>
</tr>
<tr>
<td>pari_stack_new</td>
<td>252</td>
</tr>
<tr>
<td>pari_stack_pushp</td>
<td>252</td>
</tr>
<tr>
<td>pari_stdin_isatty</td>
<td>243</td>
</tr>
<tr>
<td>pari_str</td>
<td>240</td>
</tr>
<tr>
<td>pari_strdup</td>
<td>239</td>
</tr>
<tr>
<td>pari_strndup</td>
<td>239</td>
</tr>
<tr>
<td>pari_thread_alloc</td>
<td>339</td>
</tr>
<tr>
<td>pari_thread_close</td>
<td>340</td>
</tr>
<tr>
<td>pari_thread_free</td>
<td>339</td>
</tr>
<tr>
<td>pari_thread_init</td>
<td>339</td>
</tr>
<tr>
<td>pari_thread_start</td>
<td>339</td>
</tr>
<tr>
<td>pari_thread_sync</td>
<td>339</td>
</tr>
<tr>
<td>pari_thread_valloc</td>
<td>339</td>
</tr>
<tr>
<td>pari_timer</td>
<td>41</td>
</tr>
<tr>
<td>pari_TRY</td>
<td>45</td>
</tr>
<tr>
<td>pari_unique_dir</td>
<td>244</td>
</tr>
<tr>
<td>pari_unique_filename</td>
<td>244</td>
</tr>
<tr>
<td>pari_unique_filename_suffix</td>
<td>244</td>
</tr>
<tr>
<td>pari_unlink</td>
<td>242</td>
</tr>
<tr>
<td>pari_var_close</td>
<td>70</td>
</tr>
<tr>
<td>pari_var_create</td>
<td>70</td>
</tr>
<tr>
<td>pari_var_init</td>
<td>70</td>
</tr>
<tr>
<td>pari_var_next</td>
<td>70</td>
</tr>
<tr>
<td>pari_var_next_temp</td>
<td>70</td>
</tr>
<tr>
<td>PARI_VERSION</td>
<td>76</td>
</tr>
<tr>
<td>pari_version</td>
<td>76</td>
</tr>
<tr>
<td>PARI_VERSION_SHIFT</td>
<td>76</td>
</tr>
<tr>
<td>pari_vprintf</td>
<td>39</td>
</tr>
<tr>
<td>pari_vprintff</td>
<td>39</td>
</tr>
<tr>
<td>parser_code</td>
<td>74</td>
</tr>
<tr>
<td>path_expand</td>
<td>243</td>
</tr>
<tr>
<td>perm_commute</td>
<td>234</td>
</tr>
<tr>
<td>perm_conj</td>
<td>234</td>
</tr>
<tr>
<td>perm_cycles</td>
<td>234</td>
</tr>
<tr>
<td>perm_inv</td>
<td>234</td>
</tr>
<tr>
<td>perm_mul</td>
<td>234</td>
</tr>
<tr>
<td>perm_order</td>
<td>234</td>
</tr>
<tr>
<td>perm_pow</td>
<td>234</td>
</tr>
<tr>
<td>perm_sign</td>
<td>234</td>
</tr>
<tr>
<td>perm_to_Z</td>
<td>234</td>
</tr>
<tr>
<td>pgener_Fl</td>
<td>79</td>
</tr>
<tr>
<td>pgener_Fl_local</td>
<td>79</td>
</tr>
<tr>
<td>pgener_Fp</td>
<td>99</td>
</tr>
<tr>
<td>pgener_Fp_local</td>
<td>99</td>
</tr>
<tr>
<td>pgener_Zl</td>
<td>79</td>
</tr>
<tr>
<td>pgener_Zp</td>
<td>99</td>
</tr>
<tr>
<td>Piz2n</td>
<td>233</td>
</tr>
<tr>
<td>Piz2r</td>
<td>233</td>
</tr>
<tr>
<td>Piz2n</td>
<td>234</td>
</tr>
<tr>
<td>plotbox</td>
<td>335</td>
</tr>
<tr>
<td>plotclip</td>
<td>335</td>
</tr>
</tbody>
</table>

372
<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>plotcolor</td>
<td>335</td>
</tr>
<tr>
<td>plotcopy</td>
<td>335</td>
</tr>
<tr>
<td>plotcursor</td>
<td>335</td>
</tr>
<tr>
<td>plotdraw</td>
<td>335</td>
</tr>
<tr>
<td>plot</td>
<td>335</td>
</tr>
<tr>
<td>plotthrow</td>
<td>335</td>
</tr>
<tr>
<td>plotshrink</td>
<td>335</td>
</tr>
<tr>
<td>plotinit</td>
<td>335</td>
</tr>
<tr>
<td>plotkill</td>
<td>335</td>
</tr>
<tr>
<td>plotline</td>
<td>335</td>
</tr>
<tr>
<td>plotlines</td>
<td>335</td>
</tr>
<tr>
<td>plotlinetype</td>
<td>335</td>
</tr>
<tr>
<td>plotmove</td>
<td>336</td>
</tr>
<tr>
<td>plotpoints</td>
<td>336</td>
</tr>
<tr>
<td>plotpointsIZE</td>
<td>336</td>
</tr>
<tr>
<td>plotpointtype</td>
<td>336</td>
</tr>
<tr>
<td>plotrbox</td>
<td>336</td>
</tr>
<tr>
<td>plotrech</td>
<td>335</td>
</tr>
<tr>
<td>plotrecth</td>
<td>336</td>
</tr>
<tr>
<td>plotrecthraw</td>
<td>336</td>
</tr>
<tr>
<td>plotrline</td>
<td>336</td>
</tr>
<tr>
<td>plotrmove</td>
<td>336</td>
</tr>
<tr>
<td>plotrpoint</td>
<td>336</td>
</tr>
<tr>
<td>plotscale</td>
<td>336</td>
</tr>
<tr>
<td>plotstring</td>
<td>336</td>
</tr>
<tr>
<td>point_to_a4a6</td>
<td>313</td>
</tr>
<tr>
<td>point_to_a4a6_F1</td>
<td>313</td>
</tr>
<tr>
<td>pol1_F2x</td>
<td>139</td>
</tr>
<tr>
<td>pol1_Flx</td>
<td>131</td>
</tr>
<tr>
<td>pol1_F2x</td>
<td>139</td>
</tr>
<tr>
<td>pol1_F2xX</td>
<td>142</td>
</tr>
<tr>
<td>pol1_Flx</td>
<td>131</td>
</tr>
<tr>
<td>pol1_FlxX</td>
<td>135</td>
</tr>
<tr>
<td>polclass</td>
<td>324</td>
</tr>
<tr>
<td>polcoef_i</td>
<td>224</td>
</tr>
<tr>
<td>poldivrem</td>
<td>215</td>
</tr>
<tr>
<td>poleval</td>
<td>185, 221</td>
</tr>
<tr>
<td>polgalois</td>
<td>237</td>
</tr>
<tr>
<td>polhensellift</td>
<td>150, 151</td>
</tr>
<tr>
<td>polmod</td>
<td>32</td>
</tr>
<tr>
<td>polmodular</td>
<td>324</td>
</tr>
<tr>
<td>polmodular_ZM</td>
<td>324</td>
</tr>
<tr>
<td>polmodular_ZXX</td>
<td>324</td>
</tr>
<tr>
<td>polmod_nffix</td>
<td>293</td>
</tr>
<tr>
<td>polmod_nffix2</td>
<td>293</td>
</tr>
<tr>
<td>polmod_to_embed</td>
<td>225</td>
</tr>
<tr>
<td>Polred</td>
<td>294</td>
</tr>
<tr>
<td>polred0</td>
<td>294</td>
</tr>
<tr>
<td>polredabs</td>
<td>294</td>
</tr>
<tr>
<td>polredabs2</td>
<td>294</td>
</tr>
<tr>
<td>polredabsall</td>
<td>294</td>
</tr>
<tr>
<td>Polrev</td>
<td>203</td>
</tr>
<tr>
<td>polx_F2x</td>
<td>139</td>
</tr>
<tr>
<td>polx_F2xX</td>
<td>142</td>
</tr>
<tr>
<td>polx_Flx</td>
<td>131</td>
</tr>
<tr>
<td>polx_FlxX</td>
<td>135</td>
</tr>
<tr>
<td>polx_zx</td>
<td>182</td>
</tr>
<tr>
<td>polynomial</td>
<td>32</td>
</tr>
<tr>
<td>pol1_0</td>
<td>203</td>
</tr>
<tr>
<td>pol1_1</td>
<td>203</td>
</tr>
<tr>
<td>pol1_x</td>
<td>203</td>
</tr>
<tr>
<td>pol1_x</td>
<td>203</td>
</tr>
<tr>
<td>pol1_xall</td>
<td>203</td>
</tr>
<tr>
<td>pol1_x_powers</td>
<td>203</td>
</tr>
<tr>
<td>pop_lex</td>
<td>73, 260</td>
</tr>
<tr>
<td>power_series</td>
<td>33</td>
</tr>
<tr>
<td>powersr</td>
<td>95</td>
</tr>
<tr>
<td>powgi</td>
<td>218, 297</td>
</tr>
<tr>
<td>powi</td>
<td>94</td>
</tr>
<tr>
<td>powis</td>
<td>94</td>
</tr>
<tr>
<td>powIs</td>
<td>95</td>
</tr>
<tr>
<td>powiu</td>
<td>94</td>
</tr>
<tr>
<td>powfrac</td>
<td>95</td>
</tr>
<tr>
<td>powr</td>
<td>94</td>
</tr>
<tr>
<td>powrhalf</td>
<td>95</td>
</tr>
<tr>
<td>powru</td>
<td>95</td>
</tr>
<tr>
<td>powruhalf</td>
<td>95</td>
</tr>
<tr>
<td>powuu</td>
<td>94</td>
</tr>
<tr>
<td>ppg</td>
<td>160</td>
</tr>
<tr>
<td>ppi</td>
<td>160</td>
</tr>
<tr>
<td>pple</td>
<td>160</td>
</tr>
<tr>
<td>ppo</td>
<td>160</td>
</tr>
<tr>
<td>prec2nbits</td>
<td>57</td>
</tr>
<tr>
<td>prec2nbits_mul</td>
<td>57</td>
</tr>
<tr>
<td>prec2ndec</td>
<td>56</td>
</tr>
<tr>
<td>precdb1</td>
<td>57</td>
</tr>
<tr>
<td>precision</td>
<td>59</td>
</tr>
<tr>
<td>precp</td>
<td>31, 58</td>
</tr>
<tr>
<td>PRECPBITS</td>
<td>62</td>
</tr>
<tr>
<td>PRECPSHIFT</td>
<td>62</td>
</tr>
<tr>
<td>preferences file</td>
<td>74</td>
</tr>
<tr>
<td>prid</td>
<td>280</td>
</tr>
<tr>
<td>prime</td>
<td>162</td>
</tr>
<tr>
<td>primeform</td>
<td>298</td>
</tr>
<tr>
<td>primeform_u</td>
<td>298</td>
</tr>
<tr>
<td>primepi_lower_bound</td>
<td>162</td>
</tr>
<tr>
<td>primepi_upper_bound</td>
<td>162</td>
</tr>
<tr>
<td>primes</td>
<td>162</td>
</tr>
<tr>
<td>primes_interval</td>
<td>162</td>
</tr>
</tbody>
</table>

373
QM_inv 168
QM_ker 169
QM_minors_coprime 302
QM_mul 169
QM_QC_mul 169
QM_rank 168
QpV_to_QV 152
Qp_agm2_sequence 233
QpBounding_Landen 233
QpDescinding_Landen 233
Qp_exp 233
Qp_gamma 233
Qp_log 233
Qp_sqrt 233
Qp_sqrtin 233
QR_init 173
Qtoss 204
quaddoc 224
quaddpoly 31
quadratic number 31
quadratic_prec_mask 153
quadtofp 199
quad_disc 224
quotient_group 236
quotient_perm 236
quotient_subgroup_lift 236
QV_isscalar 172
QXQC_to_mod_shallow 145
QXQM_mul 182
QXQM_sqr 182
QXQM_to_mod_shallow 145
QXQV_to_FpM 283
QXQV_to_mod 145
QXQV_to_qmod 145
QXQX_to_mod 145
QXQX_to_mod_shallow 145
QXQXV_to_mod 145
QXQXV_to_mod_shallow 145
QXQC_charpoly 182
QXQ_div_ratlift 182
QXQ_intnorm 181
QXQ_inv 181
QXQ_mul 181
QXQ_norm 181
QXQ_powers 182
QXQ_reverse 182
QXQ_sqr 181
QXV_QXQ_eval 182
QXX_QXQ_eval 182
QX_complex_roots 181, 225
QX_disc 181
QX_factor 181
QX_gcd 181
QX_mul 181
QX_resultant 181
QX_sqr 181
QX_ZXQV_eval 182
QX_ZQ_rem 181
Q_abs 216
Q_abs_shallow 216
Q_content 216
Q_content_safe 216
Q_denom 216
Q_denom_safe 217
Q_div_to_int 217
Q_factor 160
Q_factor_limit 160
Q_gcd 216
Q_muli_to_int 217
Q_muli_to_int 217
Q_primitive_part 217
Q_primpart 217
Q_pval 87, 216
Q_pvalrem 216
Q_remove_denom 217, 274

R
random 96
randomi 96
randomr 96
random_bits 96
random_F2x 139
random_F2xqE 321
random_F2xqX 143
random_F1 79, 96
random_Fle 319
random_Fle_pre 320
random_F1j_pre 320
random_F1v 109
random_F1x 131
random_F1xqE 322
random_F1xqX 136
random_FpC 107
random_FpE 318
random_FpV 107
random_FpX 118
random_FpXqE 323
random_FpXqX 124
rational function 33
rational number 31
RgM_inv 173 RgV_check_ZV 164
RgM_invimage 173 RgV_dotproduct 171
RgM_inv_upper 173 RgV_dotsquare 171
RgM_isdiagonal 172 RgV_gtofp 172
RgM_isidentity 172 RgV_isin 172
RgM_isscalar 172 RgV_isscalar 172
RgM_is_FFM 227 RgV_is_FpV 106
RgM_is_FpM 106 RgV_is_QV 164
RgM_is_QM 172 RgV_is_ZMV 169
RgM_is_ZM 172 RgV_is_ZV 164
RgM_minor 253 RgV_is_ZVnon0 164
RgM_mul 171 RgV_is_ZVpos 164
RgM_mulreal 171 RgV_kill0 171
RgM_multosym 171 RgV_neg 170
RgM_neg 170 RgV_nfix 293
RgM_powers 171 RgV_polint 171
RgM_QR_init 173 RgV_prod 171
RgM_rescale_to_int 166 RgV_RgC_mul 170
RgM_RgC_invimage 173 RgV_RgM_mul 171
RgM_RgC_mul 171 RgV_Rg_mul 170
RgM_RgC_type 106 RgV_sub 170
RgM_RgV_mul 171 RgV_sum 171
RgM_RgX_mul 171 RgV_sumpart 171
RgM_Rg_add 170 RgV_sumpart2 171
RgM_Rg_add_shallow 170 RgV_to_F2v 113
RgM_Rg_div 170 RgV_to_Flv 154
RgM_Rg_mul 170 RgV_to_FpV 106
RgM_Rg_sub 170 RgV_to_RgM 202
RgM_Rg_sub_shallow 170 RgV_to_RgX 201
RgM_shallowcopy 253 RgV_to_RgX_reverse 201
RgM_solve 173 RgV_to_ser 202
RgM_solve_realimag 173 RgV_to_str 239, 240
RgM_sqr 171 RgV_zc_mul 156
RgM_sub 170 RgV_zm_mul 156
RgM_sumcol 171 RgXnV_red_shallow 188
RgM_to_F2m 113 RgXn_eval 188
RgM_to_Flm 154 RgXn_exp 188
RgM_to_FpM 106 RgXn_inv 188
RgM_to_Fqm 109 RgXn_inv_i 188
RgM_to_nfM 275 RgXn_mul 187, 188
RgM_to_RgXV 202 RgXn_powers 188
RgM_to_RgXX 202 RgXn_powu 188
RgM_transmul 171 RgXn_powu_i 188
RgM_transmultosym 171 RgXn_recip_shallow 187
RgM_type 106 RgXn_red shallow 187
RgM_type2 106 RgXn_reverse 188
RgM_zc_mul 156 RgXn_sqrt 187, 188
RgM_zm_mul 156 RgXn_sqr 187, 188
RgV_add 170 RgXQC_red 189
RgX_RgV_eval 185
RgX_RgXnV_eval 188
RgX_RgXn_eval 188
RgX_RgXQV_eval 189
RgX_RgQX_eval 188, 189
RgX_Rg_add 184
RgX_Rg_add_shallow 184
RgX_Rg_div 185
RgX_Rg_divexact 185
RgX_Rg_eval_bk 185
RgX_Rg_mul 185
RgX_Rg_sub 185
RgX_Rg_type 105
RgX_rotate_shallow 184
RgX_shift 140, 184
RgX_shift_inplace 184
RgX_shift_inplace_init 184
RgX_shift_shallow 184
RgX_splitting 132, 183
RgX_sqr 185
RgX_sqrhigh_i 188
RgX_sqrspec 186
RgX_sqr_i 185
RgX_sub 184
RgX_sylvester_matrix 208
RgX_to_F2x 154
RgX_to_Flx 154
RgX_to_FlxqX 154
RgX_to_FpX 114
RgX_to_FpXQX 119
RgX_to_FqX 119
RgX_to_nfX 275
RgX_to_RgC 201
RgX_to_RgV 202
RgX_to_ser 202
RgX_to_ser_inexact 202
RgX_translate 187
RgX_type 105
RgX_type2 106
RgX_type3 106
RgX_type_decode 105
RgX_type_is_composite 105
RgX_unscale 187
RgX_val 184
RgX_valrem 184
RgX_valrem_inexact 184
Rg_col_ei 204
Rg_get_0 33, 105
Rg_get_1 105
Rg_is_FF 227
Rg_is_Fp 106
Rg_is_FpQX 119
Rg_nf 292, 293
Rg_nfX 170
Rg_RgC_sub 185
Rg_RgQX_sub 185
Rg_Rg_to_F2 154
Rg_Rg_to_F2QX 154
Rg_Rg_to_F1 153, 154
Rg_Rg_to_Flxq 154
Rg_Rg_to_Fp 106, 107
Rg_Rg_to_FpQX 119
Rg_Rg_to_Fq 119
Rg_Rg_to_RgC 202
Rg_Rg_type 104
RM_round_maxrank 269, 289, 304
rnf_complete 273
rnfdisc_factorized 292
rnfeltabstorel 292
rnfeltreltoabs 292
rnfeltup------- 292
rnfequationall 292
rnf_build_nfabs 273
rnf_COND 291
rnf_get_absdegree 270
rnf_get_alpha 271
rnf_get_degree 270
rnf_get_disc 271
rnf_get_ideal_disc 271
rnf_get_index 271
rnf_get_invzk 271
rnf_get_k 271
rnf_get_map 271, 292
rnf_get_nf 271
rnf_get_nfdegree 271
rnf_get_nfP 271
rnf_get_nfpol 271
rnf_get_nfvarn 271
rnf_get_nfzk 271, 292
rnf_get_pol 271
rnf_get_polabs 271, 273
rnf_get_varn 271
rnfzabs------- 271
rnfzabs 271
rootmod------- 145
rootmod0 145
rootmod2 145
rootsof1pow 232
rootsof1powinit 232

379
rootsof1q_cx \qquad 232
rootsof1u_cx \qquad 232
rootsof1u_Fp \qquad 99
rootsof1_cx \qquad 232
rootsofi_Fl \qquad 99
rootsof1_Fp \qquad 99
roots_from_deg1 \quad 209
roots_to_pol \quad 209
roots_to_pol_r1 \quad 209
roundr \quad 84
roundr_safe \quad 85
row vector \quad 33
row \quad 253
rowcopy \quad 253
rowpermute \quad 254
rowlance \quad 253
rowlancepermute \quad 254
rowaplice \quad 254
row__i \quad 253
rtodbl \quad 28, 199
rtror \quad 84
R_abs \quad 223
R_abs_shallow \quad 223
R_from_QR \quad 173

S
scalarcol \quad 204
scalarcol_shallow \quad 208
scalarmat \quad 204
scalarmat_s \quad 204
scalarmat_shallow \quad 208
scalarmat \quad 203
scalarmat_shallow \quad 208
scalarpol \quad 203
scalarpol_shallow \quad 208
scalarpol \quad 203
scalarpol_shallow \quad 208
scalarser \quad 203
scalar_Flm \quad 109
scalar_ZX \quad 176
scalar_ZX_shallow \quad 176
svdivi \quad 93
svdivsi_rem \quad 93
svdivss_rem \quad 93
sdomain_isincl \quad 328
sd_breakloop \quad 262
sd_colors \quad 262
sd_compatible \quad 262
sd_datadir \quad 262
sd_debug \quad 262
sd_debugfiles \quad 262
sd_debugmem \quad 262
sd_echo \quad 262
sd_factor_add_primes \quad 262
sd_factor_proven \quad 262
sd_format \quad 262
sd_graphcolormap \quad 262
sd_graphcolors \quad 262
sd_help \quad 262
sd_histfile \quad 262
sd_histsize \quad 262
sd_intarray \quad 264
sd_lines \quad 262
sd_linewrap \quad 262
sd_log \quad 262
sd_logfile \quad 262
sd_nbthreads \quad 262
sd_new_galois_format \quad 262
sd_output \quad 263
sd_parisize \quad 263
sd_parisizemax \quad 263
sd_path \quad 263
sd_plothsizes \quad 263
sd_prettyprinter \quad 263
sd_primitlimit \quad 263
sd_prompt \quad 263
sd_prompt_cont \quad 263
sd_prompt church \quad 263
sd_psafe \quad 263
sd_preadline \quad 263
sd_realbitprecision \quad 263
sd_realprecision \quad 263
sd_recover \quad 263
sd_secure \quad 263
sd_seriesprecision \quad 263
sd_simplify \quad 263
sd_sopath \quad 263
sd_strictargs \quad 263
sd_strictmatch \quad 263
sd_string \quad 264
sd_texstyle \quad 262
sd_threadsize \quad 263
sd_threadsize \quad 263
sd_timer \quad 263
sd_toggle \quad 263
sd_uconfig \quad 264
secure \quad 53
serchop0 \quad 203
serchop_i \quad 203
seasures \quad 225
ser_inv \quad 226
ser_isexactzero \quad 226
subgroups_tableset 236
tabemul 276
tabemulvec 276
tabemul_ei 276
tablureach 214
tableset_find_index 236
tableset 276
teichmullerinit 149
term_color 242
termgetcolor 242
tex 242
thetagetan 327
thetagetbitprec 327
thetagetk 327
thetagetm 328
thetagetr 327
thetagetsqrtN 328
thetagettdom 328
threads 339
timer 41
timer2 41
timerdelay 41
timerget 41
timerprintf 41
timerstart 41
togglesign 60
togglesign_safe 60, 165, 166
to_ffamat 174, 277
to_ffamat_shallow 174, 278
Tp_to_FF 227
trans_eval 232
traverseheap 69
tridiv_bound 159
trivialgroup 235
trivialfact 204
truecoefficient 222, 226
truecoefficient 61
truedivii 91
truedivis 91
truedivisi 91
truevmdii 93
truevmdis 93
truevmdsi 93
tunc2nr 85
tunc2nr_lg 85
truncr 84
trunc_safe 84
TWOPOTBITS_IN_LONG 62
typ 28, 57
TYPBITS 62
typnumber 28
type 14
typename 57
TYPnumBITS 62
TYPSHIFT 62
typ_BNF 267
typ_BNR 267
typNF 267
t_CLOSURE 34
t_COL 33
t_COMPLEX 31
t_ELL_Fp 311
t_ELL_Fq 311, 317
t_ELL_NF 311
t_ELL_Q 311
t_ELL_Qp 311
t_ELL_Rg 312
t_ERROR 34
t_FFELT 31

t_FF_FpXq 31
t_FF_Flxq 31
t_FF_Fpxq 31
t_FRAC 31
t_INFINITY 34
t_INT 29
t_INTMOD 31
t_LIST 34
t_MAT 34
t_PADIC 31
t_POL	32
t_POLMOD	32
t_QFI	33
t_QFR	33
t_QUAD	31
t_REAL	30
t_RFRAC	33
t_SER	33
t_VEC	34
t_VECSMALL	33

U

uabsdiviu_rem	93
uabsdiviu_rem	93
udivuu_rem	93
ugcd	95
ugcdiu	95
ugcdui	96
uislucastspsp	100
uisprime	163
uisprimepower	100
uisprime_101	163
uisprime_661	163
uissquare	157
uissquareall	157
uissquarefree	100
uissquarefree_fact	100
uis_357_power	100
uis_357_powermod	100
ulcm	96
ulogint	95
ulong	95
ULONG_MAX	49
umod2n	62
umodiu	94
umodiu	94
umodu	94
umodu	94
umuluu_le	91
umuluu_or_0	91
unegisfundamental	100
unextprime	162
unsetisclone	28
uordinal	239
uposisfundamental	100
upovuu	95
upper_to_cx	199

uprecprime	162
upprime	162
upprimepi	162
up_prime	162
upr_norm	281
usqrt	157
usqrttn	157
usumdivk_fact	100
usumdiv_fact	100
utoi	83
utoineg	83
utoipos	83
utor	83
uu32toi	26, 84
uu32toineg	84
uutoi	84
uutoineg	84
u_chinese_coprimenext	145
u_forprime_arith_init	164
u_forprime_next	43, 164
u_forprime_restrict	164
u_lval	86
u_lvalrem	86
u_lvalrem_stop	86
u_ppe	160
u_pval	86
u_pvalrem	86
u_sumdedekind_coprimenext	100

V

vali	85
valp	31, 33, 58
VALPBITS	62
VALPnumBITS	62
vals	85
varargs	25
varhigher	35
variable (priority)	34
variable (temporary)	36
variable (user)	35
variable number	32, 35, 72
varlower	35
varn	32, 33, 35, 58
VARNBITS	62
varncmp	35
varmax	37
varmin	37
VARNnumBITS	62

383
vecsmall_max
vecsmall_lexcmp
vecsmall_lengthen
vecsmall_isin
vecsmall_indexsort
vecsmall_indexmin
vecsmall_ei
vecsmall_duplicate_sorted
vecsmall_duplicate
vecsmall_concat
vecsmall_coincidence
vecsmall_append
vecsmalltrunc_init
vecsmallpermute
vecslicepermute
vecrangess
vecrange
veczeta
vecコーダ
vec_Q primpart
vec_prepend
vec_to_vecsmall

clear

W

warnfile
warnmem
warnprec
writebin

Z

Z2_sqrt
ZabM_indexrank
ZabM_inv
<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zn_sqrt</td>
<td>98</td>
<td>ZV_cmp</td>
<td>169</td>
</tr>
<tr>
<td>ZpMs_ZpCs_solve</td>
<td>175</td>
<td>ZV_content</td>
<td>165</td>
</tr>
<tr>
<td>ZpM_echelon</td>
<td>152</td>
<td>ZV_content</td>
<td>169</td>
</tr>
<tr>
<td>ZpXQM_productFrobenius</td>
<td>151</td>
<td>ZV_copy</td>
<td>169</td>
</tr>
<tr>
<td>ZpXQX_digits</td>
<td>152</td>
<td>ZV_dotproduct</td>
<td>165</td>
</tr>
<tr>
<td>ZpXQX_divrem</td>
<td>152</td>
<td>zv_dotproduct</td>
<td>169</td>
</tr>
<tr>
<td>ZpXQX_liftfact</td>
<td>151</td>
<td>ZV_dotsquare</td>
<td>165</td>
</tr>
<tr>
<td>ZpXQX_liftroot</td>
<td>151, 152</td>
<td>ZV_dvd</td>
<td>165</td>
</tr>
<tr>
<td>ZpXQX_liftroot_valid</td>
<td>152</td>
<td>ZV_equal</td>
<td>164</td>
</tr>
<tr>
<td>ZpXQX_roots</td>
<td>152</td>
<td>ZV_equal</td>
<td>169</td>
</tr>
<tr>
<td>ZpXQ_div</td>
<td>151</td>
<td>ZV_equal0</td>
<td>164</td>
</tr>
<tr>
<td>ZpXQ_inv</td>
<td>151</td>
<td>zv_equal0</td>
<td>169</td>
</tr>
<tr>
<td>ZpXQ_invlift</td>
<td>151</td>
<td>ZV_extgcd</td>
<td>96, 165</td>
</tr>
<tr>
<td>ZpXQ_liftroot</td>
<td>151</td>
<td>ZV_indexsort</td>
<td>166</td>
</tr>
<tr>
<td>ZpXQ_log</td>
<td>151</td>
<td>ZV_isscalar</td>
<td>172</td>
</tr>
<tr>
<td>ZpXQ_sqrt</td>
<td>151</td>
<td>ZV_lval</td>
<td>87</td>
</tr>
<tr>
<td>ZpXQ_sqrtmlift</td>
<td>151</td>
<td>ZV_lvalrem</td>
<td>87</td>
</tr>
<tr>
<td>ZpX_disc_val</td>
<td>150</td>
<td>ZV_max_lg</td>
<td>165</td>
</tr>
<tr>
<td>ZpX_Frobenius</td>
<td>150</td>
<td>zv_neg</td>
<td>168</td>
</tr>
<tr>
<td>ZpX_gcd</td>
<td>150</td>
<td>ZV_neg_inplace</td>
<td>165</td>
</tr>
<tr>
<td>ZpX_liftfact</td>
<td>150</td>
<td>zv_neg_inplace</td>
<td>168</td>
</tr>
<tr>
<td>ZpX_liftroot</td>
<td>149, 150, 152</td>
<td>ZV_nv_mod_tree</td>
<td>147</td>
</tr>
<tr>
<td>ZpX_liftroots</td>
<td>150</td>
<td>ZV_prod</td>
<td>165</td>
</tr>
<tr>
<td>ZpX_monic_factor</td>
<td>151</td>
<td>zv_prod</td>
<td>169</td>
</tr>
<tr>
<td>ZpX_reduced_resultant</td>
<td>150</td>
<td>ZV_producttree</td>
<td>147, 148</td>
</tr>
<tr>
<td>ZpX_reduced_resultant_fast</td>
<td>150</td>
<td>zv_prod_Z</td>
<td>169</td>
</tr>
<tr>
<td>ZpX_resultant_val</td>
<td>150</td>
<td>ZV_pval</td>
<td>87</td>
</tr>
<tr>
<td>ZpX_roots</td>
<td>150</td>
<td>ZV_pvalrem</td>
<td>87</td>
</tr>
<tr>
<td>ZpX_ZpXQ_liftroot</td>
<td>151</td>
<td>ZV_search</td>
<td>166</td>
</tr>
<tr>
<td>ZpX_ZpXQ_liftroot_ea</td>
<td>151</td>
<td>zv_search</td>
<td>169</td>
</tr>
<tr>
<td>Zp_issquare</td>
<td>99</td>
<td>ZV_snfall</td>
<td>301</td>
</tr>
<tr>
<td>Zq_sqrt</td>
<td>149</td>
<td>ZV_snf_group</td>
<td>301</td>
</tr>
<tr>
<td>Zp_Sqrt</td>
<td>149</td>
<td>ZV_snf_trunc</td>
<td>301</td>
</tr>
<tr>
<td>Zp_Sqrtlif</td>
<td>149</td>
<td>ZV_sort</td>
<td>165, 166</td>
</tr>
<tr>
<td>Zp_Teichmuller</td>
<td>149</td>
<td>ZV_sort_inplace</td>
<td>165</td>
</tr>
<tr>
<td>ZqX_liftfact</td>
<td>152</td>
<td>ZV_sort_uniq</td>
<td>165</td>
</tr>
<tr>
<td>ZqX_liftroot</td>
<td>152</td>
<td>ZV_sum</td>
<td>165</td>
</tr>
<tr>
<td>ZqX_roots</td>
<td>152</td>
<td>zv_sum</td>
<td>169</td>
</tr>
<tr>
<td>Zq_Sqrtalif</td>
<td>151</td>
<td>ZV_togglesign</td>
<td>165</td>
</tr>
<tr>
<td>ZvV_equal</td>
<td>169</td>
<td>ZV_to_F2v</td>
<td>113</td>
</tr>
<tr>
<td>Zv_abscmp</td>
<td>164</td>
<td>ZV_to_F1v</td>
<td>154</td>
</tr>
<tr>
<td>Zv_allpqn</td>
<td>96</td>
<td>ZV_to_F1v</td>
<td>155</td>
</tr>
<tr>
<td>Zv_cba</td>
<td>160</td>
<td>ZV_to_nv</td>
<td>154</td>
</tr>
<tr>
<td>Zv_cba_extend</td>
<td>160</td>
<td>ZV_to_zv</td>
<td>154</td>
</tr>
<tr>
<td>Zv_chinese</td>
<td>147</td>
<td>zv_to_Zv</td>
<td>155</td>
</tr>
<tr>
<td>ZV_chinesetree</td>
<td>148</td>
<td>zv_to_zx</td>
<td>156</td>
</tr>
<tr>
<td>ZV_chinese_center</td>
<td>147</td>
<td>ZV_union_shallow</td>
<td>166</td>
</tr>
<tr>
<td>ZV_chinese_tree</td>
<td>148</td>
<td>ZV_zc_mul</td>
<td>156</td>
</tr>
<tr>
<td>ZV_cmp</td>
<td>164, 214</td>
<td>ZV_zMMS_mul</td>
<td>175</td>
</tr>
<tr>
<td>Function</td>
<td>Page</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>zv_ZM_mul</td>
<td>156</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZV_ZM_mul</td>
<td>156</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZV_Z_dvd</td>
<td>87</td>
<td></td>
<td></td>
</tr>
<tr>
<td>zv_Z_mul</td>
<td>169</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZXC_nv_mod_tree</td>
<td>147</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZXM_incremental_CRT</td>
<td>146</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZXM_init_CRT</td>
<td>146</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZXM_nv_mod_tree</td>
<td>147</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZXn_mul</td>
<td>180</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZXn_sqr</td>
<td>180</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZXXM_mul</td>
<td>180</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZXXM_sqr</td>
<td>180</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZXXQX_dvd</td>
<td>186</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZXXQX_mul</td>
<td>180</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZXXQX_sqr</td>
<td>180</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZXT_rem12n</td>
<td>179</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZXT_to_FlxXT</td>
<td>154</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZXXV_dotproduct</td>
<td>179</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZXXV_equal</td>
<td>179</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZXXV_rem12n</td>
<td>179</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZXXV_to_FlxV</td>
<td>154</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZXXV_z_mul</td>
<td>179</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZXXT_to_FlxXT</td>
<td>154</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZXXV_to_FlxXV</td>
<td>154</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZXX_max_lg</td>
<td>180</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZXX_mul_Kronecker</td>
<td>181</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZXX_nv_mod_tree</td>
<td>147</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZXX_renormalize</td>
<td>180</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZXX_sqrspec</td>
<td>181</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZXX_to_F2xX</td>
<td>142</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZXX_to_FlxX</td>
<td>154</td>
<td></td>
<td></td>
</tr>
<tr>
<td>zxx_to_FlxX</td>
<td>154</td>
<td></td>
<td></td>
</tr>
<tr>
<td>zxx_to_Kronecker</td>
<td>136</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZXX_to_Kronecker</td>
<td>180</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZXX_to_Kronecker_spec</td>
<td>180</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZXX_Z_add_shallow</td>
<td>180</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZXXZ_divexact</td>
<td>180</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZXXZ_mul</td>
<td>180</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZX_add</td>
<td>176</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZX_compositum_disjoint</td>
<td>179</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZX_content</td>
<td>177</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZX_copy</td>
<td>176</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZX_deflate_max</td>
<td>178</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZX_deflate_order</td>
<td>178</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZX_deriv</td>
<td>178</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZX_disc</td>
<td>178</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>