Code coverage tests

This page documents the degree to which the PARI/GP source code is tested by our public test suite, distributed with the source distribution in directory src/test/. This is measured by the gcov utility; we then process gcov output using the lcov frond-end.

We test a few variants depending on Configure flags on the pari.math.u-bordeaux.fr machine (x86_64 architecture), and agregate them in the final report:

The target is to exceed 90% coverage for all mathematical modules (given that branches depending on DEBUGLEVEL or DEBUGMEM are not covered). This script is run to produce the results below.

LCOV - code coverage report
Current view: top level - modules - krasner.c (source / functions) Hit Total Coverage
Test: PARI/GP v2.18.0 lcov report (development 29804-254f602fce) Lines: 431 440 98.0 %
Date: 2024-12-18 09:08:59 Functions: 35 35 100.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /* Copyright (C) 2009  The PARI group.
       2             : 
       3             : This file is part of the PARI/GP package.
       4             : 
       5             : PARI/GP is free software; you can redistribute it and/or modify it under the
       6             : terms of the GNU General Public License as published by the Free Software
       7             : Foundation; either version 2 of the License, or (at your option) any later
       8             : version. It is distributed in the hope that it will be useful, but WITHOUT
       9             : ANY WARRANTY WHATSOEVER.
      10             : 
      11             : Check the License for details. You should have received a copy of it, along
      12             : with the package; see the file 'COPYING'. If not, write to the Free Software
      13             : Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */
      14             : 
      15             : #include "pari.h"
      16             : #include "paripriv.h"
      17             : 
      18             : #define DEBUGLEVEL DEBUGLEVEL_padicfields
      19             : 
      20             : /************************************************************/
      21             : /*     Computation of all the extensions of a given         */
      22             : /*               degree of a p-adic field                   */
      23             : /* Xavier Roblot                                            */
      24             : /************************************************************/
      25             : /* cf. Math. Comp, vol. 70, No. 236, pp. 1641-1659 for more details.
      26             :    Note that n is now e (since the e from the paper is always = 1) and l
      27             :    is now f */
      28             : /* Structure for a given type of extension */
      29             : typedef struct {
      30             :   GEN p;
      31             :   long e, f, j;
      32             :   long a, b, c;
      33             :   long v;     /* auxiliary variable */
      34             :   long r;     /* pr = p^r */
      35             :   GEN pr;     /* p-adic precision for poly. reduction */
      36             :   GEN q, qm1; /* p^f, q - 1 */
      37             :   GEN T;      /* polynomial defining K^ur */
      38             :   GEN frob;   /* Frobenius acting of the root of T (mod pr) */
      39             :   GEN u;      /* suitable root of unity (expressed in terms of the root of T) */
      40             :   GEN nbext;  /* number of extensions */
      41             :   GEN roottable; /* table of roots of polynomials over the residue field */
      42             :   GEN pk;     /* powers of p: [p^1, p^2, ..., p^c] */
      43             : } KRASNER_t;
      44             : 
      45             : /* Structure containing the field data (constructed with FieldData) */
      46             : typedef struct {
      47             :   GEN p;
      48             :   GEN top;  /* absolute polynomial of a = z + pi (mod pr) */
      49             :   GEN topr; /* top mod p */
      50             :   GEN z;    /* root of T in terms of a (mod pr) */
      51             :   GEN eis;  /* relative polynomial of pi in terms of z (mod pr)  */
      52             :   GEN pi;   /* prime element in terms of a */
      53             :   GEN ipi;  /* p/pi in terms of a (mod pr) (used to divide by pi) */
      54             :   GEN pik;  /* [1, pi, ..., pi^(e-1), pi^e/p] in terms of a (mod pr).
      55             :                Note the last one is different! */
      56             :   long cj;  /* number of conjugate fields */
      57             : } FAD_t;
      58             : 
      59             : /* Eval P(x) assuming P has positive coefficients and the result is a long */
      60             : static ulong
      61      169393 : ZX_z_eval(GEN P, ulong x)
      62             : {
      63      169393 :   long i, l = lg(P);
      64             :   ulong z;
      65             : 
      66      169393 :   if (typ(P) == t_INT) return itou(P);
      67       64463 :   if (l == 2) return 0;
      68       36995 :   z = itou(gel(P, l-1));
      69       95340 :   for (i = l-2; i > 1; i--) z = z*x + itou(gel(P,i));
      70       36995 :   return z;
      71             : }
      72             : 
      73             : /* Eval P(x, y) assuming P has positive coefficients and the result is a long */
      74             : static ulong
      75       40495 : ZXY_z_eval(GEN P, ulong x, ulong y)
      76             : {
      77       40495 :   long i, l = lg(P);
      78             :   ulong z;
      79             : 
      80       40495 :   if (l == 2) return 0;
      81       40495 :   z = ZX_z_eval(gel(P, l-1), y);
      82      169393 :   for (i = l-2; i > 1; i--) z = z*x + ZX_z_eval(gel(P, i), y);
      83       40495 :   return z;
      84             : }
      85             : 
      86             : /* a(x) mod (T,p) */
      87             : static GEN
      88      130186 : _eval(GEN a, GEN x, GEN T, GEN p)
      89             : {
      90             :   long d;
      91      130186 :   if (typ(x) != t_POL) return x;
      92       87094 :   d = degpol(x);
      93       87094 :   if (d <= 0) return d? gen_0: gel(x,2);
      94       85638 :   x = FpX_FpXQ_eval(x, a, T, p);
      95       85638 :   return simplify_shallow(x);
      96             : }
      97             : /* x an Fq[X], where Fq = Fp[Y]/(T(Y)), a an FpX representing the automorphism
      98             :  * y -> a(y). Return a(x), applying a() coefficientwise. */
      99             : static GEN
     100       36806 : FqX_FpXQ_eval(GEN x, GEN a, GEN T, GEN p)
     101      166992 : { pari_APPLY_pol_normalized(_eval(a, gel(x,i), T, p)); }
     102             : 
     103             : /* Sieving routines */
     104             : static GEN
     105         497 : InitSieve(long l) { return zero_F2v(l); }
     106             : static long
     107         777 : NextZeroValue(GEN sv, long i)
     108             : {
     109        1890 :   for(; i <= sv[1]; i++)
     110        1393 :     if (!F2v_coeff(sv, i)) return i;
     111         497 :   return 0; /* sieve is full or out of the sieve! */
     112             : }
     113             : static void
     114        1113 : SetSieveValue(GEN sv, long i)
     115        1113 : { if (i >= 1 && i <= sv[1]) F2v_set(sv, i); }
     116             : 
     117             : /* return 1 if the data verify Ore condition and 0 otherwise */
     118             : static long
     119          21 : VerifyOre(GEN p, long e, long j)
     120             : {
     121             :   long nv, b, vb, nb;
     122             : 
     123          21 :   if (j < 0) return 0;
     124          21 :   nv = e * u_pval(e, p);
     125          21 :   b  = j%e;
     126          21 :   if (b == 0) return (j == nv);
     127          14 :   if (j > nv) return 0;
     128             :   /* j < nv */
     129          14 :   vb = u_pval(b, p);
     130          14 :   nb = vb*e;
     131          14 :   return (nb <= j);
     132             : }
     133             : 
     134             : /* Given [K:Q_p] = m and disc(K/Q_p) = p^d, return all decompositions K/K^ur/Q_p
     135             :  * as [e, f, j] with
     136             :  *   K^ur/Q_p unramified of degree f,
     137             :  *   K/K^ur totally ramified of degree e and discriminant p^(e+j-1);
     138             :  * thus d = f*(e+j-1) and j > 0 iff ramification is wild */
     139             : static GEN
     140           7 : possible_efj_by_d(GEN p, long m, long d)
     141             : {
     142             :   GEN rep, div;
     143             :   long i, ctr, l;
     144             : 
     145           7 :   if (d == 0) return mkvec(mkvecsmall3(1, m, 0)); /* unramified */
     146           7 :   div = divisorsu(ugcd(m, d));
     147           7 :   l = lg(div); ctr = 1;
     148           7 :   rep = cgetg(l, t_VEC);
     149          28 :   for (i = 1; i < l; i++)
     150             :   {
     151          21 :     long f = div[i], e = m/f, j = d/f - e + 1;
     152          21 :     if (VerifyOre(p, e, j)) gel(rep, ctr++) = mkvecsmall3(e, f, j);
     153             :   }
     154           7 :   setlg(rep, ctr); return rep;
     155             : }
     156             : 
     157             : /* return the number of extensions corresponding to (e,f,j) */
     158             : static GEN
     159        1743 : NumberExtensions(KRASNER_t *data)
     160             : {
     161             :   ulong pp, pa;
     162             :   long e, a, b;
     163             :   GEN p, q, s0, p1;
     164             : 
     165        1743 :   e = data->e;
     166        1743 :   p = data->p;
     167        1743 :   q = data->q;
     168        1743 :   a = data->a; /* floor(j/e) <= v_p(e), hence p^a | e */
     169        1743 :   b = data->b; /* j % e */
     170        1743 :   if (is_bigint(p)) /* implies a = 0 */
     171          70 :     return b == 0? utoipos(e): mulsi(e, data->qm1);
     172             : 
     173        1673 :   pp = p[2];
     174        1673 :   switch(a)
     175             :   {
     176        1617 :     case 0:  pa = 1;  s0 = utoipos(e); break;
     177          49 :     case 1:  pa = pp; s0 = mului(e, powiu(q, e / pa)); break;
     178           7 :     default:
     179           7 :       pa = upowuu(pp, a); /* p^a */
     180           7 :       s0 = mulsi(e, powiu(q, (e / pa) * ((pa - 1) / (pp - 1))));
     181             :   }
     182             :   /* s0 = e * q^(e*sum(p^-i, i=1...a)) */
     183        1673 :   if (b == 0) return s0;
     184             : 
     185             :   /* q^floor((b-1)/p^(a+1)) */
     186          98 :   p1 = powiu(q, sdivsi(b-1, muluu(pa, pp)));
     187          98 :   return mulii(mulii(data->qm1, s0), p1);
     188             : }
     189             : 
     190             : static GEN
     191        3213 : get_topx(KRASNER_t *data, GEN eis)
     192             : {
     193             :   GEN p1, p2, rpl, c;
     194             :   pari_sp av;
     195             :   long j;
     196             :   /* top poly. is the minimal polynomial of root(T) + root(eis) */
     197        3213 :   if (data->f == 1) return eis;
     198        1953 :   c = FpX_neg(pol_x(data->v),data->pr);
     199        1953 :   rpl = FqX_translate(eis, c, data->T, data->pr);
     200        1953 :   p1 = p2 = rpl; av = avma;
     201       21525 :   for (j = 1; j < data->f; j++)
     202             :   {
     203             :     /* compute conjugate polynomials using the Frobenius */
     204       19572 :     p1 = FqX_FpXQ_eval(p1, data->frob, data->T, data->pr);
     205       19572 :     p2 = FqX_mul(p2, p1, data->T, data->pr);
     206       19572 :     if (gc_needed(av,2)) gerepileall(av, 2, &p1,&p2);
     207             :   }
     208        1953 :   return simplify_shallow(p2); /* ZX */
     209             : }
     210             : 
     211             : /* eis (ZXY): Eisenstein polynomial over the field defined by T.
     212             :  * topx (ZX): absolute equation of root(T) + root(eis).
     213             :  * Return the struct FAD corresponding to the field it defines (GENs created
     214             :  * as clones). Assume e > 1. */
     215             : static void
     216         854 : FieldData(KRASNER_t *data, FAD_t *fdata, GEN eis, GEN topx)
     217             : {
     218             :   GEN p1, p2, p3, z, ipi, cipi, dipi, t, Q;
     219             : 
     220         854 :   fdata->p = data->p;
     221         854 :   t = leafcopy(topx); setvarn(t, data->v);
     222         854 :   fdata->top  = t;
     223         854 :   fdata->topr = FpX_red(t, data->pr);
     224             : 
     225         854 :   if (data->f == 1) z = gen_0;
     226             :   else
     227             :   { /* Compute a root of T in K(top) using Hensel's lift */
     228         238 :     z = pol_x(data->v);
     229         238 :     p1 = FpX_deriv(data->T, data->p);
     230             :     /* First lift to a root mod p */
     231             :     for (;;) {
     232         560 :       p2 = FpX_FpXQ_eval(data->T, z, fdata->top, data->p);
     233         560 :       if (gequal0(p2)) break;
     234         322 :       p3 = FpX_FpXQ_eval(p1, z, fdata->top, data->p);
     235         322 :       z  = FpX_sub(z, FpXQ_div(p2, p3, fdata->top, data->p), data->p);
     236             :     }
     237             :     /* Then a root mod p^r */
     238         238 :     z = ZpX_ZpXQ_liftroot(data->T, z, fdata->top, data->p, data->r);
     239             :   }
     240             : 
     241         854 :   fdata->z  = z;
     242         854 :   fdata->eis = eis;
     243         854 :   fdata->pi  = Fq_sub(pol_x(data->v), fdata->z,
     244             :                       FpX_red(fdata->top, data->p), data->p);
     245         854 :   ipi = RgXQ_inv(fdata->pi, fdata->top);
     246         854 :   ipi = Q_remove_denom(ipi, &dipi);
     247         854 :   Q = mulii(data->pr, data->p);
     248         854 :   cipi = Fp_inv(diviiexact(dipi, data->p), Q);
     249         854 :   fdata->ipi = FpX_Fp_mul(ipi, cipi, Q); /* p/pi mod p^(pr+1) */
     250             : 
     251             :   /* Last one is set to pi^e/p (so we compute pi^e with one extra precision) */
     252         854 :   p2 = mulii(data->pr, data->p);
     253         854 :   p1 = FpXQ_powers(fdata->pi, data->e, fdata->topr, p2);
     254         854 :   gel(p1, data->e+1) = ZX_Z_divexact(gel(p1, data->e+1), data->p);
     255         854 :   fdata->pik  = p1;
     256         854 : }
     257             : 
     258             : /* return pol*ipi/p (mod top, pp) if it has integral coefficient, NULL
     259             :    otherwise. The result is reduced mod top, pp */
     260             : static GEN
     261      307468 : DivideByPi(FAD_t *fdata, GEN pp, GEN ppp, GEN pol)
     262             : {
     263             :   GEN P;
     264             :   long i, l;
     265      307468 :   pari_sp av = avma;
     266             : 
     267             :   /* "pol" is a t_INT or an FpX: signe() works for both */
     268      307468 :   if (!signe(pol)) return pol;
     269             : 
     270      300384 :   P = Fq_mul(pol, fdata->ipi, fdata->top, ppp); /* FpX */
     271      300384 :   l  = lg(P);
     272     1562631 :   for (i = 2; i < l; i++)
     273             :   {
     274             :     GEN r;
     275     1343377 :     gel(P,i) = dvmdii(gel(P,i), fdata->p, &r);
     276     1343377 :     if (r != gen_0) return gc_NULL(av);
     277             :   }
     278      219254 :   return FpX_red(P, pp);
     279             : }
     280             : 
     281             : /* return pol# = pol~/pi^vpi(pol~) mod pp where pol~(x) = pol(pi.x + beta)
     282             :  * has coefficients in the field defined by top and pi is a prime element */
     283             : static GEN
     284       40565 : GetSharp(FAD_t *fdata, GEN pp, GEN ppp, GEN pol, GEN beta, long *pl)
     285             : {
     286             :   GEN p1, p2;
     287       40565 :   long i, v, l, d = degpol(pol);
     288       40565 :   pari_sp av = avma;
     289             : 
     290       40565 :   if (!gequal0(beta))
     291       31927 :     p1 = FqX_translate(pol, beta, fdata->topr, pp);
     292             :   else
     293        8638 :     p1 = shallowcopy(pol);
     294       40565 :   p2 = p1;
     295      132930 :   for (v = 0;; v++)
     296             :   {
     297      334103 :     for (i = 0; i <= v; i++)
     298             :     {
     299      241738 :       GEN c = gel(p2, i+2);
     300      241738 :       c = DivideByPi(fdata, pp, ppp, c);
     301      241738 :       if (!c) break;
     302      201173 :       gel(p2, i+2) = c;
     303             :     }
     304      132930 :     if (i <= v) break;
     305       92365 :     p1 = shallowcopy(p2);
     306             :   }
     307       40565 :   if (!v) pari_err_BUG("GetSharp [no division]");
     308             : 
     309       65730 :   for (l = v; l >= 0; l--)
     310             :   {
     311       65730 :     GEN c = gel(p1, l+2);
     312       65730 :     c = DivideByPi(fdata, pp, ppp, c);
     313       65730 :     if (!c) { break; }
     314             :   }
     315             : 
     316       40565 :   *pl = l; if (l < 2) return NULL;
     317             : 
     318             :   /* adjust powers */
     319       31955 :   for (i = v+1; i <= d; i++)
     320       10458 :     gel(p1, i+2) = Fq_mul(gel(p1, i+2),
     321       10458 :                           gel(fdata->pik, i-v+1), fdata->topr, pp);
     322             : 
     323       21497 :   return gerepilecopy(av, normalizepol(p1));
     324             : }
     325             : 
     326             : /* Compute roots of pol in the residue field. Use table look-up if possible */
     327             : static GEN
     328       40495 : Quick_FqX_roots(KRASNER_t *data, GEN pol)
     329             : {
     330             :   GEN rts;
     331       40495 :   ulong ind = 0;
     332             : 
     333       40495 :   if (data->f == 1)
     334       22414 :     pol = FpXY_evalx(pol, gen_0, data->p);
     335             :   else
     336       18081 :     pol = FqX_red(pol, data->T, data->p);
     337       40495 :   if (data->roottable)
     338             :   {
     339       40495 :     ind = ZXY_z_eval(pol, data->q[2], data->p[2]);
     340       40495 :     if (gel(data->roottable, ind)) return gel(data->roottable, ind);
     341             :   }
     342        2856 :   rts = FqX_roots(pol, data->T, data->p);
     343        2856 :   if (ind) gel(data->roottable, ind) = gclone(rts);
     344        2856 :   return rts;
     345             : }
     346             : 
     347             : static void
     348         133 : FreeRootTable(GEN T)
     349             : {
     350         133 :   if (T)
     351             :   {
     352         133 :     long j, l = lg(T);
     353      590373 :     for (j = 1; j < l; j++) guncloneNULL(gel(T,j));
     354             :   }
     355         133 : }
     356             : 
     357             : /* Return the number of roots of pol congruent to alpha modulo pi working
     358             :    modulo pp (all roots if alpha is NULL); if flag is nonzero, return 1
     359             :    as soon as a root is found. (Note: ppp = pp*p for DivideByPi) */
     360             : static long
     361       59563 : RootCongruents(KRASNER_t *data, FAD_t *fdata, GEN pol, GEN alpha, GEN pp, GEN ppp, long sl, long flag)
     362             : {
     363             :   GEN R;
     364             :   long s, i;
     365             : 
     366       59563 :   if (alpha)
     367             :   {
     368             :     long l;
     369       40565 :     pol = GetSharp(fdata, pp, ppp, pol, alpha, &l);
     370       40565 :     if (l <= 1) return l;
     371             :     /* decrease precision if sl gets bigger than a multiple of e */
     372       21497 :     sl += l;
     373       21497 :     if (sl >= data->e)
     374             :     {
     375       18249 :       sl -= data->e;
     376       18249 :       ppp = pp;
     377       18249 :       pp = diviiexact(pp, data->p);
     378             :     }
     379             :   }
     380             : 
     381       40495 :   R  = Quick_FqX_roots(data, pol);
     382       75390 :   for (s = 0, i = 1; i < lg(R); i++)
     383             :   {
     384       40565 :     s += RootCongruents(data, fdata, pol, gel(R, i), pp, ppp, sl, flag);
     385       40565 :     if (flag && s) return 1;
     386             :   }
     387       34825 :   return s;
     388             : }
     389             : 
     390             : /* pol is a ZXY defining a polynomial over the field defined by fdata
     391             :    If flag != 0, return 1 as soon as a root is found. Computations are done with
     392             :    a precision of pr. */
     393             : static long
     394       18998 : RootCountingAlgorithm(KRASNER_t *data, FAD_t *fdata, GEN pol, long flag)
     395             : {
     396             :   long j, l, d;
     397       18998 :   GEN P = cgetg_copy(pol, &l);
     398             : 
     399       18998 :   P[1] = pol[1];
     400       18998 :   d = l-3;
     401       84693 :   for (j = 0; j < d; j++)
     402             :   {
     403       65695 :     GEN cf = gel(pol, j+2);
     404       65695 :     if (typ(cf) == t_INT)
     405       38430 :       cf = diviiexact(cf, data->p);
     406             :     else
     407       27265 :       cf = ZX_Z_divexact(cf, data->p);
     408       65695 :     gel(P, j+2) = Fq_mul(cf, gel(fdata->pik, j+1), fdata->topr, data->pr);
     409             :   }
     410       18998 :   gel(P, d+2) = gel(fdata->pik, d+1); /* pik[d] = pi^d/p */
     411             : 
     412       18998 :   return RootCongruents(data, fdata, P, NULL, diviiexact(data->pr, data->p), data->pr, 0, flag);
     413             : }
     414             : 
     415             : /* Return nonzero if the field given by fdata defines a field isomorphic to
     416             :  * the one defined by pol */
     417             : static long
     418       11662 : IsIsomorphic(KRASNER_t *data, FAD_t *fdata, GEN pol)
     419             : {
     420             :   long j, nb;
     421       11662 :   pari_sp av = avma;
     422             : 
     423       11662 :   if (RgX_is_ZX(pol)) return RootCountingAlgorithm(data, fdata, pol, 1);
     424             : 
     425       13545 :   for (j = 1; j <= data->f; j++)
     426             :   {
     427       10108 :     GEN p1 = FqX_FpXQ_eval(pol, fdata->z, fdata->top, data->pr);
     428       10108 :     nb = RootCountingAlgorithm(data, fdata, p1, 1);
     429       10108 :     if (nb) return gc_long(av, nb);
     430        9513 :     if (j < data->f)
     431        6076 :       pol = FqX_FpXQ_eval(pol, data->frob, data->T, data->pr);
     432             :   }
     433        3437 :   return gc_long(av,0);
     434             : }
     435             : 
     436             : /* Compute the number of conjugates fields of the field given by fdata */
     437             : static void
     438         854 : NbConjugateFields(KRASNER_t *data, FAD_t *fdata)
     439             : {
     440         854 :   GEN pol = fdata->eis;
     441             :   long j, nb;
     442         854 :   pari_sp av = avma;
     443             : 
     444         854 :   if (RgX_is_ZX(pol)) { /* split for efficiency; contains the case f = 1 */
     445         616 :     fdata->cj = data->e / RootCountingAlgorithm(data, fdata, pol, 0);
     446         616 :     set_avma(av); return;
     447             :   }
     448             : 
     449         238 :   nb = 0;
     450         882 :   for (j = 1; j <= data->f; j++)
     451             :   { /* Transform to pol. in z to pol. in a */
     452         644 :     GEN p1 = FqX_FpXQ_eval(pol, fdata->z, fdata->top, data->pr);
     453         644 :     nb += RootCountingAlgorithm(data, fdata, p1, 0);
     454             :     /* Look at the roots of conjugates polynomials */
     455         644 :     if (j < data->f)
     456         406 :       pol = FqX_FpXQ_eval(pol, data->frob, data->T, data->pr);
     457             :   }
     458         238 :   set_avma(av);
     459         238 :   fdata->cj = data->e * data->f / nb;
     460         238 :   return;
     461             : }
     462             : 
     463             : /* return a minimal list of polynomials generating all the totally
     464             :    ramified extensions of K^ur of degree e and discriminant
     465             :    p^{e + j - 1} in the tamely ramified case */
     466             : static GEN
     467        1582 : TamelyRamifiedCase(KRASNER_t *data)
     468             : {
     469        1582 :   long av = avma;
     470        1582 :   long g = ugcdui(data->e, data->qm1); /* (e, q-1) */
     471        1582 :   GEN rep, eis, Xe = gpowgs(pol_x(0), data->e), m = stoi(data->e / g);
     472             : 
     473        1582 :   rep = zerovec(g);
     474        1582 :   eis = gadd(Xe, data->p);
     475        1582 :   gel(rep, 1) = mkvec2(get_topx(data,eis), m);
     476        1582 :   if (g > 1)
     477             :   {
     478         497 :     ulong pmodg = umodiu(data->p, g);
     479         497 :     long r = 1, ct = 1;
     480         497 :     GEN sv = InitSieve(g-1);
     481             :     /* let Frobenius act to get a minimal set of polynomials over Q_p */
     482        1274 :     while (r)
     483             :     {
     484             :       long gr;
     485        1554 :       GEN p1 = (typ(data->u) == t_INT)?
     486         777 :         mulii(Fp_powu(data->u, r, data->p), data->p):
     487         588 :         ZX_Z_mul(FpXQ_powu(data->u, r, data->T, data->p), data->p);
     488         777 :       eis = gadd(Xe, p1); /* add cst coef */
     489         777 :       ct++;
     490         777 :       gel(rep, ct) = mkvec2(get_topx(data,eis), m);
     491         777 :       gr = r;
     492        1113 :       do { SetSieveValue(sv, gr); gr = Fl_mul(gr, pmodg, g); } while (gr != r);
     493         777 :       r  = NextZeroValue(sv, r);
     494             :     }
     495         497 :     setlg(rep, ct+1);
     496             :   }
     497        1582 :   return gerepilecopy(av, rep);
     498             : }
     499             : 
     500             : static long
     501         399 : function_l(GEN p, long a, long b, long i)
     502             : {
     503         399 :   long l = 1 + a - z_pval(i, p);
     504         399 :   if (i < b) l++;
     505         399 :   return (l < 1)? 1: l;
     506             : }
     507             : 
     508             : /* Structure of the coefficients set Omega. Each coefficient is [start, zr]
     509             :  * meaning all the numbers of the form:
     510             :  *   zeta_0 * p^start + ... + zeta_s * p^c (s = c - start)
     511             :  * with zeta_i roots of unity (powers of zq + zero), zeta_0 = 0 is
     512             :  * possible iff zr = 1 */
     513             : static GEN
     514         133 : StructureOmega(KRASNER_t *data, GEN *pnbpol)
     515             : {
     516         133 :   GEN nbpol, O = cgetg(data->e + 1, t_VEC);
     517             :   long i;
     518             : 
     519             :   /* i = 0 */
     520         133 :   gel(O, 1) = mkvecsmall2(1, 0);
     521         133 :   nbpol = mulii(data->qm1, powiu(data->q, data->c - 1));
     522         532 :   for (i = 1; i < data->e; i++)
     523             :   {
     524         399 :     long v_start, zero = 0;
     525             :     GEN nbcf, p1;
     526         399 :     v_start = function_l(data->p, data->a, data->b, i);
     527         399 :     p1 = powiu(data->q, data->c - v_start);
     528         399 :     if (i == data->b)
     529          98 :       nbcf = mulii(p1, data->qm1);
     530             :     else
     531             :     {
     532         301 :       nbcf = mulii(p1, data->q);
     533         301 :       zero = 1;
     534             :     }
     535         399 :     gel(O, i+1) = mkvecsmall2(v_start, zero);
     536         399 :     nbpol = mulii(nbpol, nbcf);
     537             :   }
     538         133 :   *pnbpol = nbpol; return O;
     539             : }
     540             : 
     541             : /* a random element of the finite field */
     542             : static GEN
     543       37450 : RandomFF(KRASNER_t *data)
     544             : {
     545       37450 :   long i, l = data->f + 2, p = itou(data->p);
     546       37450 :   GEN c = cgetg(l, t_POL);
     547       37450 :   c[1] = evalvarn(data->v);
     548       86919 :   for (i = 2; i < l; i++) gel(c, i) = utoi(random_Fl(p));
     549       37450 :   return ZX_renormalize(c, l);
     550             : }
     551             : static GEN
     552        2709 : RandomPol(KRASNER_t *data, GEN Omega)
     553             : {
     554        2709 :   long i, j, l = data->e + 3, end = data->c;
     555        2709 :   GEN pol = cgetg(l, t_POL);
     556        2709 :   pol[1] = evalsigne(1) | evalvarn(0);
     557       13230 :   for (i = 1; i <= data->e; i++)
     558             :   {
     559       10521 :     GEN c, cf = gel(Omega, i);
     560       10521 :     long st = cf[1], zr = cf[2];
     561             :     /* c = sum_{st <= j <= end} x_j p^j, where x_j are random Fq mod (p,upl)
     562             :      * If (!zr), insist on x_st != 0 */
     563             :     for (;;) {
     564       13027 :       c = RandomFF(data);
     565       13027 :       if (zr || signe(c)) break;
     566             :     }
     567       34944 :     for (j = 1; j <= end-st; j++)
     568       24423 :       c = ZX_add(c, ZX_Z_mul(RandomFF(data), gel(data->pk, j)));
     569       10521 :     c = ZX_Z_mul(c, gel(data->pk, st));
     570       10521 :     c = FpX_red(c, data->pr);
     571       10521 :     switch(degpol(c))
     572             :     {
     573         672 :       case -1: c = gen_0; break;
     574        7770 :       case  0: c = gel(c,2); break;
     575             :     }
     576       10521 :     gel(pol, i+1) = c;
     577             :   }
     578        2709 :   gel(pol, i+1) = gen_1; /* monic */
     579        2709 :   return pol;
     580             : }
     581             : 
     582             : static void
     583         854 : CloneFieldData(FAD_t *fdata)
     584             : {
     585         854 :  fdata->top = gclone(fdata->top);
     586         854 :  fdata->topr= gclone(fdata->topr);
     587         854 :  fdata->z   = gclone(fdata->z);
     588         854 :  fdata->eis = gclone(fdata->eis);
     589         854 :  fdata->pi  = gclone(fdata->pi);
     590         854 :  fdata->ipi = gclone(fdata->ipi);
     591         854 :  fdata->pik = gclone(fdata->pik);
     592         854 : }
     593             : static void
     594         854 : FreeFieldData(FAD_t *fdata)
     595             : {
     596         854 :   gunclone(fdata->top);
     597         854 :   gunclone(fdata->topr);
     598         854 :   gunclone(fdata->z);
     599         854 :   gunclone(fdata->eis);
     600         854 :   gunclone(fdata->pi);
     601         854 :   gunclone(fdata->ipi);
     602         854 :   gunclone(fdata->pik);
     603         854 : }
     604             : 
     605             : static GEN
     606         133 : WildlyRamifiedCase(KRASNER_t *data)
     607             : {
     608         133 :   long nbext, ct, fd, nb = 0, j;
     609             :   GEN nbpol, rpl, rep, Omega;
     610             :   FAD_t **vfd;
     611             :   pari_timer T;
     612         133 :   pari_sp av = avma, av2;
     613             : 
     614             :   /* Omega = vector giving the structure of the set Omega */
     615             :   /* nbpol = number of polynomials to consider = |Omega| */
     616         133 :   Omega = StructureOmega(data, &nbpol);
     617         133 :   nbext = itos_or_0(data->nbext);
     618         133 :   if (!nbext || (nbext & ~LGBITS))
     619           0 :     pari_err_OVERFLOW("padicfields [too many extensions]");
     620             : 
     621         133 :   if (DEBUGLEVEL>0) {
     622           0 :     err_printf("There are %ld extensions to find and %Ps polynomials to consider\n", nbext, nbpol);
     623           0 :     timer_start(&T);
     624             :   }
     625             : 
     626         133 :   vfd = (FAD_t**)new_chunk(nbext);
     627        2541 :   for (j = 0; j < nbext; j++) vfd[j] = (FAD_t*)new_chunk(sizeof(FAD_t));
     628             : 
     629         133 :   ct = 0;
     630         133 :   fd = 0;
     631         133 :   av2 = avma;
     632             : 
     633        2842 :   while (fd < nbext)
     634             :   { /* Jump randomly among the polynomials : seems best... */
     635        2709 :     rpl = RandomPol(data, Omega);
     636        2709 :     if (DEBUGLEVEL>3) err_printf("considering polynomial %Ps\n", rpl);
     637       12516 :     for (j = 0; j < ct; j++)
     638             :     {
     639       11662 :       nb = IsIsomorphic(data, vfd[j], rpl);
     640       11662 :       if (nb) break;
     641             :     }
     642        2709 :     if (!nb)
     643             :     {
     644         854 :       GEN topx = get_topx(data, rpl);
     645         854 :       FAD_t *f = (FAD_t*)vfd[ct];
     646         854 :       FieldData(data, f, rpl, topx);
     647         854 :       CloneFieldData(f);
     648         854 :       NbConjugateFields(data, f);
     649         854 :       nb = f->cj;
     650         854 :       fd += nb;
     651         854 :       ct++;
     652         854 :       if (DEBUGLEVEL>1)
     653           0 :         err_printf("%ld more extension%s\t(%ld/%ld, %ldms)\n",
     654             :                    nb, (nb == 1)? "": "s", fd, nbext, timer_delay(&T));
     655             :     }
     656        2709 :     set_avma(av2);
     657             :   }
     658             : 
     659         133 :   rep = cgetg(ct+1, t_VEC);
     660         987 :   for (j = 0; j < ct; j++)
     661             :   {
     662         854 :     FAD_t *f = (FAD_t*)vfd[j];
     663         854 :     GEN topx = ZX_copy(f->top);
     664         854 :     setvarn(topx, 0);
     665         854 :     gel(rep, j+1) = mkvec2(topx, stoi(f->cj));
     666         854 :     FreeFieldData(f);
     667             :   }
     668         133 :   FreeRootTable(data->roottable);
     669         133 :   return gerepileupto(av, rep);
     670             : }
     671             : 
     672             : /* return the minimal polynomial T of a generator of K^ur and the expression (mod pr)
     673             :  * in terms of T of a root of unity u such that u is l-maximal for all primes l
     674             :  * dividing g = (e,q-1). */
     675             : static void
     676        1715 : setUnramData(KRASNER_t *d)
     677             : {
     678        1715 :   if (d->f == 1)
     679             :   {
     680         560 :     d->T = pol_x(d->v);
     681         560 :     d->u = pgener_Fp(d->p);
     682         560 :     d->frob = pol_x(d->v);
     683             :   }
     684             :   else
     685             :   {
     686        1155 :     GEN L, z, T, p = d->p;
     687        1155 :     d->T = T = init_Fq(p, d->f, d->v);
     688        1155 :     L = gel(factoru(ugcdui(d->e, d->qm1)), 1);
     689        1155 :     z = gener_FpXQ_local(T, p, zv_to_ZV(L));
     690        1155 :     d->u = ZpXQ_sqrtnlift(pol_1(d->v), d->qm1, z, T, p, d->r);
     691        1155 :     d->frob = ZpX_ZpXQ_liftroot(T, FpXQ_pow(pol_x(d->v), p, T, p), T, p, d->r);
     692             :   }
     693        1715 : }
     694             : 
     695             : /* return [ p^1, p^2, ..., p^c ] */
     696             : static GEN
     697         133 : get_pk(KRASNER_t *data)
     698             : {
     699         133 :   long i, l = data->c + 1;
     700         133 :   GEN pk = cgetg(l, t_VEC), p = data->p;
     701         133 :   gel(pk, 1) = p;
     702         455 :   for (i = 2; i <= data->c; i++) gel(pk, i) = mulii(gel(pk, i-1), p);
     703         133 :   return pk;
     704             : }
     705             : 
     706             : /* Compute an absolute polynomial for all the totally ramified
     707             :    extensions of Q_p(z) of degree e and discriminant p^{e + j - 1}
     708             :    where z is a root of upl defining an unramified extension of Q_p */
     709             : /* See padicfields for the meaning of flag */
     710             : static GEN
     711        1743 : GetRamifiedPol(GEN p, GEN efj, long flag)
     712             : {
     713        1743 :   long e = efj[1], f = efj[2], j = efj[3], i, l;
     714        1743 :   const long v = 1;
     715             :   GEN L, pols;
     716             :   KRASNER_t data;
     717        1743 :   pari_sp av = avma;
     718             : 
     719        1743 :   if (DEBUGLEVEL>1)
     720           0 :     err_printf("  Computing extensions with decomposition [e, f, j] = [%ld, %ld, %ld]\n", e,f,j);
     721        1743 :   data.p   = p;
     722        1743 :   data.e   = e;
     723        1743 :   data.f   = f;
     724        1743 :   data.j   = j;
     725        1743 :   data.a   = j/e;
     726        1743 :   data.b   = j%e;
     727        1743 :   data.c   = (e+2*j)/e+1;
     728        1743 :   data.q   = powiu(p, f);
     729        1743 :   data.qm1 = subiu(data.q, 1);
     730        1743 :   data.v   = v;
     731        1743 :   data.r   = 1 + (long)ceildivuu(2*j + 3, e); /* enough precision */
     732        1743 :   data.pr  = powiu(p, data.r);
     733        1743 :   data.nbext = NumberExtensions(&data);
     734             : 
     735        1743 :   if (flag == 2) return data.nbext;
     736             : 
     737        1715 :   setUnramData(&data);
     738        1715 :   if (DEBUGLEVEL>1)
     739           0 :     err_printf("  Unramified part %Ps\n", data.T);
     740        1715 :   data.roottable = NULL;
     741        1715 :   if (j)
     742             :   {
     743         133 :     if (lgefint(data.q) == 3)
     744             :     {
     745         133 :       ulong npol = upowuu(data.q[2], e+1);
     746         133 :       if (npol && npol < (1<<19)) data.roottable = const_vec(npol, NULL);
     747             :     }
     748         133 :     data.pk = get_pk(&data);
     749         133 :     L = WildlyRamifiedCase(&data);
     750             :   }
     751             :   else
     752        1582 :     L = TamelyRamifiedCase(&data);
     753             : 
     754        1715 :   pols = cgetg_copy(L, &l);
     755        1715 :   if (flag == 1)
     756             :   {
     757        1631 :     GEN E = utoipos(e), F = utoipos(f), D = utoi(f*(e+j-1));
     758        4578 :     for (i = 1; i < l; i++)
     759             :     {
     760        2947 :       GEN T = gel(L,i);
     761        2947 :       gel(pols, i) = mkvec5(ZX_copy(gel(T, 1)), E,F,D, icopy(gel(T, 2)));
     762             :     }
     763             :   }
     764             :   else
     765             :   {
     766         350 :     for (i = 1; i < l; i++)
     767             :     {
     768         266 :       GEN T = gel(L,i);
     769         266 :       gel(pols, i) = ZX_copy(gel(T,1));
     770             :     }
     771             :   }
     772        1715 :   return gerepileupto(av, pols);
     773             : }
     774             : 
     775             : static GEN
     776         483 : possible_efj(GEN p, long m)
     777             : { /* maximal possible discriminant valuation d <= m * (1+v_p(m)) - 1 */
     778             :   /* 1) [j = 0, tame] d = m - f with f | m and v_p(f) = v_p(m), or
     779             :    * 2) [j > 0, wild] d >= m, j <= v_p(e)*e   */
     780         483 :   ulong m1, pve, pp = p[2]; /* pp used only if v > 0 */
     781         483 :   long ve, v = u_pvalrem(m, p, &m1);
     782         483 :   GEN L, D = divisorsu(m1);
     783         483 :   long i, taum1 = lg(D)-1, nb = 0;
     784             : 
     785         483 :   if (v) {
     786          49 :     for (pve = 1,ve = 1; ve <= v; ve++) { pve *= pp; nb += pve * ve; }
     787          21 :     nb = itos_or_0(muluu(nb, zv_sum(D)));
     788          21 :     if (!nb || is_bigint( mului(pve, sqru(v)) ) )
     789           0 :       pari_err_OVERFLOW("padicfields [too many ramification possibilities]");
     790             :   }
     791         483 :   nb += taum1; /* upper bound for the number of possible triples [e,f,j] */
     792             : 
     793         483 :   L = cgetg(nb + 1, t_VEC);
     794             :   /* 1) tame */
     795        2093 :   for (nb=1, i=1; i < lg(D); i++)
     796             :   {
     797        1610 :     long e = D[i], f = m / e;
     798        1610 :     gel(L, nb++) = mkvecsmall3(e, f, 0);
     799             :   }
     800             :   /* 2) wild */
     801             :   /* Ore's condition: either
     802             :    * 1) j = v_p(e) * e, or
     803             :    * 2) j = a e + b, with 0 < b < e and v_p(b) <= a < v_p(e) */
     804         511 :   for (pve = 1, ve = 1; ve <= v; ve++)
     805             :   {
     806          28 :     pve *= pp; /* = p^ve */
     807          56 :     for (i = 1; i < lg(D); i++)
     808             :     {
     809          28 :       long a,b, e = D[i] * pve, f = m / e;
     810          98 :       for (b = 1; b < e; b++)
     811         154 :         for (a = u_lval(b, pp); a < ve; a++)
     812          84 :           gel(L, nb++) = mkvecsmall3(e, f,  a*e + b);
     813          28 :       gel(L, nb++) = mkvecsmall3(e, f, ve*e);
     814             :     }
     815             :   }
     816         483 :   setlg(L, nb); return L;
     817             : }
     818             : 
     819             : static GEN
     820         490 : pols_from_efj(pari_sp av, GEN EFJ, GEN p, long flag)
     821             : {
     822             :   long i, l;
     823         490 :   GEN L = cgetg_copy(EFJ, &l);
     824         490 :   if (l == 1) { set_avma(av); return flag == 2? gen_0: cgetg(1, t_VEC); }
     825        2233 :   for (i = 1; i < l; i++) gel(L,i) = GetRamifiedPol(p, gel(EFJ,i), flag);
     826         490 :   if (flag == 2) return gerepileuptoint(av, ZV_sum(L));
     827         483 :   return gerepilecopy(av, shallowconcat1(L));
     828             : }
     829             : 
     830             : /* return a minimal list of polynomials generating all the extensions of
     831             :    Q_p of given degree N; if N is a t_VEC [n,d], return extensions of degree n
     832             :    and discriminant p^d. */
     833             : /* Return only the polynomials if flag = 0 (default), also the ramification
     834             :    degree, the residual degree and the discriminant if flag = 1 and only the
     835             :    number of extensions if flag = 2 */
     836             : GEN
     837         490 : padicfields0(GEN p, GEN N, long flag)
     838             : {
     839         490 :   pari_sp av = avma;
     840         490 :   long m = 0, d = -1;
     841             :   GEN L;
     842             : 
     843         490 :   if (typ(p) != t_INT) pari_err_TYPE("padicfields",p);
     844             :   /* be nice to silly users */
     845         490 :   if (!BPSW_psp(p)) pari_err_PRIME("padicfields",p);
     846         490 :   switch(typ(N))
     847             :   {
     848           7 :     case t_VEC:
     849           7 :       if (lg(N) != 3) pari_err_TYPE("padicfields",N);
     850           7 :       d = gtos(gel(N,2));
     851           7 :       N = gel(N,1); /* fall through */
     852         490 :     case t_INT:
     853         490 :       m = itos(N);
     854         490 :       if (m <= 0) pari_err_DOMAIN("padicfields", "degree", "<=", gen_0,N);
     855         490 :       break;
     856           0 :     default:
     857           0 :       pari_err_TYPE("padicfields",N);
     858             :   }
     859         490 :   if (d >= 0) return padicfields(p, m, d, flag);
     860         483 :   L = possible_efj(p, m);
     861         483 :   return pols_from_efj(av, L, p, flag);
     862             : }
     863             : 
     864             : GEN
     865           7 : padicfields(GEN p, long m, long d, long flag)
     866             : {
     867           7 :   long av = avma;
     868           7 :   GEN L = possible_efj_by_d(p, m, d);
     869           7 :   return pols_from_efj(av, L, p, flag);
     870             : }

Generated by: LCOV version 1.16