Code coverage tests

This page documents the degree to which the PARI/GP source code is tested by our public test suite, distributed with the source distribution in directory src/test/. This is measured by the gcov utility; we then process gcov output using the lcov frond-end.

We test a few variants depending on Configure flags on the pari.math.u-bordeaux.fr machine (x86_64 architecture), and agregate them in the final report:

The target is to exceed 90% coverage for all mathematical modules (given that branches depending on DEBUGLEVEL or DEBUGMEM are not covered). This script is run to produce the results below.

LCOV - code coverage report
Current view: top level - modules - algebras.c (source / functions) Hit Total Coverage
Test: PARI/GP v2.18.1 lcov report (development 29999-b543a28f59) Lines: 3970 3996 99.3 %
Date: 2025-02-16 09:14:14 Functions: 346 347 99.7 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /* Copyright (C) 2000  The PARI group.
       2             : 
       3             : This file is part of the PARI/GP package.
       4             : 
       5             : PARI/GP is free software; you can redistribute it and/or modify it under the
       6             : terms of the GNU General Public License as published by the Free Software
       7             : Foundation; either version 2 of the License, or (at your option) any later
       8             : version. It is distributed in the hope that it will be useful, but WITHOUT
       9             : ANY WARRANTY WHATSOEVER.
      10             : 
      11             : Check the License for details. You should have received a copy of it, along
      12             : with the package; see the file 'COPYING'. If not, write to the Free Software
      13             : Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */
      14             : #include "pari.h"
      15             : #include "paripriv.h"
      16             : 
      17             : #define DEBUGLEVEL DEBUGLEVEL_alg
      18             : 
      19             : #define dbg_printf(lvl) if (DEBUGLEVEL >= (lvl) + 3) err_printf
      20             : 
      21             : /********************************************************************/
      22             : /**                                                                **/
      23             : /**           ASSOCIATIVE ALGEBRAS, CENTRAL SIMPLE ALGEBRAS        **/
      24             : /**                 contributed by Aurel Page (2014)               **/
      25             : /**                                                                **/
      26             : /********************************************************************/
      27             : static GEN alg_subalg(GEN al, GEN basis);
      28             : static GEN alg_maximal_primes(GEN al, GEN P);
      29             : static GEN algnatmultable(GEN al, long D);
      30             : static GEN _tablemul_ej(GEN mt, GEN x, long j);
      31             : static GEN _tablemul_ej_Fp(GEN mt, GEN x, long j, GEN p);
      32             : static GEN _tablemul_ej_Fl(GEN mt, GEN x, long j, ulong p);
      33             : static ulong algtracei(GEN mt, ulong p, ulong expo, ulong modu);
      34             : static GEN alg_pmaximal(GEN al, GEN p);
      35             : static GEN alg_maximal(GEN al);
      36             : static GEN algtracematrix(GEN al);
      37             : static GEN algtableinit_i(GEN mt0, GEN p);
      38             : static GEN algbasisrightmultable(GEN al, GEN x);
      39             : static GEN algbasismul(GEN al, GEN x, GEN y);
      40             : static GEN algbasismultable(GEN al, GEN x);
      41             : static GEN algbasismultable_Flm(GEN mt, GEN x, ulong m);
      42             : static GEN algeltfromnf_i(GEN al, GEN x);
      43             : static void computesplitting(GEN al, long d, long v, long flag);
      44             : static GEN alg_change_overorder_shallow(GEN al, GEN ord);
      45             : 
      46             : static GEN H_inv(GEN x);
      47             : static GEN H_norm(GEN x, long abs);
      48             : static GEN H_trace(GEN x, long abs);
      49             : 
      50             : static int
      51     1414323 : checkalg_i(GEN al)
      52             : {
      53             :   GEN mt, rnf;
      54             :   long t;
      55     1414323 :   if (typ(al) != t_VEC || lg(al) != 12) return 0;
      56     1413994 :   mt = alg_get_multable(al);
      57     1413994 :   if (typ(mt) != t_VEC || lg(mt) == 1 || typ(gel(mt,1)) != t_MAT) return 0;
      58     1413973 :   rnf = alg_get_splittingfield(al);
      59     1413973 :   if (isintzero(rnf) || !gequal0(alg_get_char(al)))
      60      545901 :     return 1;
      61      868072 :   if (typ(gel(al,2)) != t_VEC || lg(gel(al,2)) == 1) return 0;
      62             :   /* not checkrnf_i: beware placeholder from alg_csa_table */
      63      868065 :   t = typ(rnf);
      64      868065 :   return t==t_COMPLEX || t==t_REAL || (t==t_VEC && lg(rnf)==13);
      65             : }
      66             : void
      67     1541667 : checkalg(GEN al)
      68             : {
      69     1541667 :   if (al && !checkalg_i(al))
      70         203 :     pari_err_TYPE("checkalg [please apply alginit()]",al);
      71     1541464 : }
      72             : 
      73             : static int
      74      186858 : checklat_i(GEN al, GEN lat)
      75             : {
      76             :   long N,i,j;
      77             :   GEN m,t,c;
      78      186858 :   if (typ(lat)!=t_VEC || lg(lat) != 3) return 0;
      79      186858 :   t = gel(lat,2);
      80      186858 :   if (typ(t) != t_INT && typ(t) != t_FRAC) return 0;
      81      186858 :   if (gsigne(t)<=0) return 0;
      82      186858 :   m = gel(lat,1);
      83      186858 :   if (typ(m) != t_MAT) return 0;
      84      186858 :   N = alg_get_absdim(al);
      85      186858 :   if (lg(m)-1 != N || lg(gel(m,1))-1 != N) return 0;
      86     1686020 :   for (i=1; i<=N; i++)
      87    14154399 :     for (j=1; j<=N; j++) {
      88    12655237 :       c = gcoeff(m,i,j);
      89    12655237 :       if (typ(c) != t_INT) return 0;
      90    12655237 :       if (j<i && signe(gcoeff(m,i,j))) return 0;
      91    12655237 :       if (i==j && !signe(gcoeff(m,i,j))) return 0;
      92             :     }
      93      186851 :   return 1;
      94             : }
      95      186858 : void checklat(GEN al, GEN lat)
      96      186858 : { if (!checklat_i(al,lat)) pari_err_TYPE("checklat [please apply alglathnf()]", lat); }
      97             : 
      98             : /**  ACCESSORS  **/
      99             : long
     100    10022814 : alg_type(GEN al)
     101             : {
     102             :   long t;
     103    10022814 :   if (!al) return al_REAL;
     104     9892621 :   t = typ(alg_get_splittingfield(al));
     105     9892621 :   if (t==t_REAL || t==t_COMPLEX) return al_REAL;
     106     9889100 :   if (isintzero(alg_get_splittingfield(al)) || !gequal0(alg_get_char(al))) return al_TABLE;
     107     7713481 :   switch(typ(gmael(al,2,1))) {
     108     1690759 :     case t_MAT: return al_CSA;
     109     6022687 :     case t_INT:
     110             :     case t_FRAC:
     111             :     case t_POL:
     112     6022687 :     case t_POLMOD: return al_CYCLIC;
     113          35 :     default: return al_NULL;
     114             :   }
     115             :   return -1; /*LCOV_EXCL_LINE*/
     116             : }
     117             : long
     118        2254 : algtype(GEN al)
     119        2254 : { return checkalg_i(al)? alg_type(al): al_NULL; }
     120             : 
     121             : static long /* is a square special case? */
     122        1183 : alg_is_asq(GEN al) { return typ(gmael(al,6,1)) == t_VEC; }
     123             : 
     124             : /* absdim == dim for al_TABLE. */
     125             : static long
     126         259 : algreal_dim(GEN al)
     127             : {
     128         259 :   switch(lg(alg_get_multable(al))) {
     129         161 :     case 2: case 3: return 1;
     130          91 :     case 5: return 4;
     131           7 :     default: pari_err_TYPE("algreal_dim", al);
     132             :   }
     133             :   return -1; /*LCOV_EXCL_LINE*/
     134             : }
     135             : long
     136      410688 : alg_get_dim(GEN al)
     137             : {
     138             :   long d;
     139      410688 :   if (!al) return 4;
     140      410688 :   switch(alg_type(al)) {
     141       19577 :     case al_TABLE: return lg(alg_get_multable(al))-1;
     142      390999 :     case al_CSA: return lg(alg_get_relmultable(al))-1;
     143          77 :     case al_CYCLIC: d = alg_get_degree(al); return d*d;
     144          28 :     case al_REAL: return algreal_dim(al);
     145           7 :     default: pari_err_TYPE("alg_get_dim", al);
     146             :   }
     147             :   return -1; /*LCOV_EXCL_LINE*/
     148             : }
     149             : 
     150             : long
     151     2566295 : alg_get_absdim(GEN al)
     152             : {
     153     2566295 :   if (!al) return 4;
     154     2519577 :   switch(alg_type(al)) {
     155      927115 :     case al_TABLE: case al_REAL: return lg(alg_get_multable(al))-1;
     156      198856 :     case al_CSA: return alg_get_dim(al)*nf_get_degree(alg_get_center(al));
     157     1393599 :     case al_CYCLIC:
     158     1393599 :       return rnf_get_absdegree(alg_get_splittingfield(al))*alg_get_degree(al);
     159           7 :     default: pari_err_TYPE("alg_get_absdim", al);
     160             :   }
     161             :   return -1;/*LCOV_EXCL_LINE*/
     162             : }
     163             : 
     164             : long
     165        6216 : algdim(GEN al, long abs)
     166             : {
     167        6216 :   checkalg(al);
     168        6195 :   if (abs) return alg_get_absdim(al);
     169        5551 :   return alg_get_dim(al);
     170             : }
     171             : 
     172             : /* only cyclic */
     173             : GEN
     174       20937 : alg_get_auts(GEN al)
     175             : {
     176       20937 :   long ta = alg_type(al);
     177       20937 :   if (ta != al_CYCLIC && ta != al_REAL)
     178           0 :     pari_err_TYPE("alg_get_auts [noncyclic algebra]", al);
     179       20937 :   return gel(al,2);
     180             : }
     181             : GEN
     182        1169 : alg_get_aut(GEN al)
     183             : {
     184        1169 :   long ta = alg_type(al);
     185        1169 :   if (ta != al_CYCLIC && ta != al_REAL)
     186          28 :     pari_err_TYPE("alg_get_aut [noncyclic algebra]", al);
     187        1141 :   return gel(alg_get_auts(al),1);
     188             : }
     189             : GEN
     190          63 : algaut(GEN al) { checkalg(al); return alg_get_aut(al); }
     191             : GEN
     192       19992 : alg_get_b(GEN al)
     193             : {
     194       19992 :   long ta = alg_type(al);
     195       19992 :   if (ta != al_CYCLIC && ta != al_REAL)
     196          28 :     pari_err_TYPE("alg_get_b [noncyclic algebra]", al);
     197       19964 :   return gel(al,3);
     198             : }
     199             : GEN
     200          91 : algb(GEN al) { checkalg(al); return alg_get_b(al); }
     201             : 
     202             : /* only CSA */
     203             : GEN
     204      393925 : alg_get_relmultable(GEN al)
     205             : {
     206      393925 :   if (alg_type(al) != al_CSA)
     207          14 :     pari_err_TYPE("alg_get_relmultable [algebra not given via mult. table]", al);
     208      393911 :   return gel(al,2);
     209             : }
     210             : GEN
     211          70 : algrelmultable(GEN al) { checkalg(al); return alg_get_relmultable(al); }
     212             : GEN
     213          84 : alg_get_splittingdata(GEN al)
     214             : {
     215          84 :   if (alg_type(al) != al_CSA)
     216          14 :     pari_err_TYPE("alg_get_splittingdata [algebra not given via mult. table]",al);
     217          70 :   return gel(al,3);
     218             : }
     219             : GEN
     220          84 : algsplittingdata(GEN al) { checkalg(al); return alg_get_splittingdata(al); }
     221             : GEN
     222        4347 : alg_get_splittingbasis(GEN al)
     223             : {
     224        4347 :   if (alg_type(al) != al_CSA)
     225           0 :     pari_err_TYPE("alg_get_splittingbasis [algebra not given via mult. table]",al);
     226        4347 :   return gmael(al,3,2);
     227             : }
     228             : GEN
     229        4347 : alg_get_splittingbasisinv(GEN al)
     230             : {
     231        4347 :   if (alg_type(al) != al_CSA)
     232           0 :     pari_err_TYPE("alg_get_splittingbasisinv [algebra not given via mult. table]",al);
     233        4347 :   return gmael(al,3,3);
     234             : }
     235             : 
     236             : /* only cyclic and CSA */
     237             : GEN
     238    25865324 : alg_get_splittingfield(GEN al) { return gel(al,1); }
     239             : GEN
     240         161 : algsplittingfield(GEN al)
     241             : {
     242             :   long ta;
     243         161 :   checkalg(al);
     244         161 :   ta = alg_type(al);
     245         161 :   if (ta != al_CYCLIC && ta != al_CSA && ta != al_REAL)
     246           7 :     pari_err_TYPE("alg_get_splittingfield [use alginit]",al);
     247         154 :   return alg_get_splittingfield(al);
     248             : }
     249             : long
     250     2498604 : alg_get_degree(GEN al)
     251             : {
     252             :   long ta;
     253     2498604 :   ta = alg_type(al);
     254     2498604 :   if (ta == al_REAL) return algreal_dim(al)==1? 1 : 2;
     255     2498520 :   if (ta != al_CYCLIC && ta != al_CSA)
     256          21 :     pari_err_TYPE("alg_get_degree [use alginit]",al);
     257     2498499 :   return rnf_get_degree(alg_get_splittingfield(al));
     258             : }
     259             : long
     260         679 : algdegree(GEN al)
     261             : {
     262         679 :   checkalg(al);
     263         672 :   return alg_get_degree(al);
     264             : }
     265             : 
     266             : GEN
     267      543784 : alg_get_center(GEN al)
     268             : {
     269             :   long ta;
     270      543784 :   ta = alg_type(al);
     271      543784 :   if (ta == al_REAL)
     272             :   {
     273          28 :     if (algreal_dim(al) != 4) return alg_get_splittingfield(al);
     274          14 :     return stor(1, LOWDEFAULTPREC);
     275             :   }
     276      543756 :   if (ta != al_CSA && ta != al_CYCLIC)
     277          14 :     pari_err_TYPE("alg_get_center [use alginit]",al);
     278      543742 :   return rnf_get_nf(alg_get_splittingfield(al));
     279             : }
     280             : GEN
     281         315 : alg_get_splitpol(GEN al)
     282             : {
     283         315 :   long ta = alg_type(al);
     284         315 :   if (ta != al_CYCLIC && ta != al_CSA)
     285           0 :     pari_err_TYPE("alg_get_splitpol [use alginit]",al);
     286         315 :   return rnf_get_pol(alg_get_splittingfield(al));
     287             : }
     288             : GEN
     289      103644 : alg_get_abssplitting(GEN al)
     290             : {
     291      103644 :   long ta = alg_type(al), prec;
     292      103644 :   if (ta != al_CYCLIC && ta != al_CSA)
     293           0 :     pari_err_TYPE("alg_get_abssplitting [use alginit]",al);
     294      103644 :   prec = nf_get_prec(alg_get_center(al));
     295      103644 :   return rnf_build_nfabs(alg_get_splittingfield(al), prec);
     296             : }
     297             : GEN
     298        2198 : alg_get_hasse_i(GEN al)
     299             : {
     300        2198 :   long ta = alg_type(al);
     301        2198 :   if (ta != al_CYCLIC && ta != al_CSA && ta != al_REAL)
     302           7 :     pari_err_TYPE("alg_get_hasse_i [use alginit]",al);
     303        2191 :   if (ta == al_CSA && !alg_is_asq(al))
     304          21 :     pari_err_IMPL("computation of Hasse invariants over table CSA");
     305        2170 :   return gel(al,4);
     306             : }
     307             : GEN
     308         266 : alghassei(GEN al) { checkalg(al); return alg_get_hasse_i(al); }
     309             : GEN
     310        4550 : alg_get_hasse_f(GEN al)
     311             : {
     312        4550 :   long ta = alg_type(al);
     313             :   GEN hf;
     314        4550 :   if (ta != al_CYCLIC && ta != al_CSA)
     315           7 :     pari_err_TYPE("alg_get_hasse_f [use alginit]",al);
     316        4543 :   if (ta == al_CSA && !alg_is_asq(al))
     317           7 :     pari_err_IMPL("computation of Hasse invariants over table CSA");
     318        4536 :   hf = gel(al,5);
     319        4536 :   if (typ(hf) == t_INT) /* could be computed on the fly */
     320          35 :     pari_err(e_MISC, "Hasse invariants were not computed for this algebra");
     321        4501 :   return hf;
     322             : }
     323             : GEN
     324         364 : alghassef(GEN al) { checkalg(al); return alg_get_hasse_f(al); }
     325             : 
     326             : /* all types */
     327             : GEN
     328        3297 : alg_get_basis(GEN al) { return gel(al,7); }
     329             : GEN
     330         154 : algbasis(GEN al) { checkalg(al); return alg_get_basis(al); }
     331             : GEN
     332       87411 : alg_get_invbasis(GEN al) { return gel(al,8); }
     333             : GEN
     334          84 : alginvbasis(GEN al) { checkalg(al); return alg_get_invbasis(al); }
     335             : GEN
     336     3769935 : alg_get_multable(GEN al) { return gel(al,9); }
     337             : GEN
     338         308 : algmultable(GEN al) { checkalg(al); return alg_get_multable(al); }
     339             : GEN
     340    11670330 : alg_get_char(GEN al) { if (!al) return gen_0; return gel(al,10); }
     341             : GEN
     342         112 : algchar(GEN al) { checkalg(al); return alg_get_char(al); }
     343             : GEN
     344      652222 : alg_get_tracebasis(GEN al) { return gel(al,11); }
     345             : GEN
     346        3862 : alg_get_invol(GEN al) { return gmael(al,6,2); }
     347             : 
     348             : /* lattices */
     349             : GEN
     350      251188 : alglat_get_primbasis(GEN lat) { return gel(lat,1); }
     351             : GEN
     352      296779 : alglat_get_scalar(GEN lat) { return gel(lat,2); }
     353             : 
     354             : /* algmodpr */
     355             : GEN
     356        3948 : algmodpr_get_pr(GEN data) { return gel(data,1); }
     357             : long
     358        5005 : algmodpr_get_k(GEN data) { return gel(data,2)[1]; } /* target M_k(F_p^m) */
     359             : long
     360        2219 : algmodpr_get_m(GEN data) { return gel(data,2)[2]; } /* target M_k(F_p^m) */
     361             : GEN
     362        1715 : algmodpr_get_ff(GEN data) { return gel(data,3); }
     363             : GEN
     364        1708 : algmodpr_get_proj(GEN data) { return gel(data,4); }
     365             : GEN
     366        3003 : algmodpr_get_lift(GEN data) { return gel(data,5); }
     367             : GEN
     368        1729 : algmodpr_get_tau(GEN data) { return gel(data,6); }
     369             : GEN
     370        3948 : algmodpr_get_p(GEN data) { return pr_get_p(algmodpr_get_pr(data)); }
     371             : GEN
     372        3801 : algmodpr_get_T(GEN data) { return gel(data,2)[2]==1 ? NULL : gel(data,7); }
     373             : 
     374             : /** ADDITIONAL **/
     375             : 
     376             : /* is N=smooth*prime? */
     377       15444 : static int Z_easyfactor(GEN N, ulong lim)
     378             : {
     379             :   GEN fa;
     380       15444 :   if (lgefint(N) <= 3) return 1;
     381       13629 :   fa = absZ_factor_limit(N, lim);
     382       13629 :   return BPSW_psp(veclast(gel(fa,1)));
     383             : }
     384             : 
     385             : /* no garbage collection */
     386             : static GEN
     387        1834 : backtrackfacto(GEN y0, long n, GEN red, GEN pl, GEN nf, GEN data, int (*test)(GEN,GEN), GEN* fa, GEN N, GEN I)
     388             : {
     389             :   long b, i;
     390        1834 :   ulong lim = 1UL << 17;
     391        1834 :   long *v = new_chunk(n+1);
     392        1834 :   pari_sp av = avma;
     393        1834 :   for (b = 0;; b += (2*b)/(3*n) + 1)
     394         343 :   {
     395             :     GEN ny, y1, y2;
     396        2177 :     set_avma(av);
     397        6423 :     for (i = 1; i <= n; i++) v[i] = -b;
     398        2177 :     v[n]--;
     399             :     for(;;)
     400             :     {
     401       15859 :       i = n;
     402       16521 :       while (i > 0)
     403       16178 :       { if (v[i] == b) v[i--] = -b; else { v[i]++; break; } }
     404       15859 :       if (i==0) break;
     405             : 
     406       15516 :       y1 = y0;
     407       34142 :       for (i = 1; i <= n; i++) y1 = nfadd(nf, y1, ZC_z_mul(gel(red,i), v[i]));
     408       15516 :       if (!nfchecksigns(nf, y1, pl)) continue;
     409             : 
     410       15444 :       ny = absi_shallow(nfnorm(nf, y1));
     411       15444 :       if (!signe(ny)) continue;
     412       15444 :       ny = diviiexact(ny, gcdii(ny, N));
     413       15444 :       if (!Z_easyfactor(ny, lim)) continue;
     414             : 
     415        2423 :       y2 = idealdivexact(nf, y1, idealadd(nf,y1,I));
     416        2423 :       *fa = idealfactor(nf, y2);
     417        2423 :       if (!data || test(data,*fa)) return y1;
     418             :     }
     419             :   }
     420             : }
     421             : 
     422             : /* if data == NULL, the test is skipped */
     423             : /* in the test, the factorization does not contain the known factors */
     424             : static GEN
     425        1834 : factoredextchinesetest(GEN nf, GEN x, GEN y, GEN pl, GEN* fa, GEN data, int (*test)(GEN,GEN))
     426             : {
     427        1834 :   pari_sp av = avma;
     428             :   long n,i;
     429        1834 :   GEN x1, y0, y1, red, N, I, P = gel(x,1), E = gel(x,2);
     430        1834 :   n = nf_get_degree(nf);
     431        1834 :   x = idealchineseinit(nf, mkvec2(x,pl));
     432        1834 :   x1 = gel(x,1);
     433        1834 :   red = lg(x1) == 1? matid(n): gmael(x1,1,1);
     434        1834 :   y0 = idealchinese(nf, x, y);
     435             : 
     436        1834 :   E = shallowcopy(E);
     437        1834 :   if (!gequal0(y0))
     438        7846 :     for (i=1; i<lg(E); i++)
     439             :     {
     440        6012 :       long v = nfval(nf,y0,gel(P,i));
     441        6012 :       if (cmpsi(v, gel(E,i)) < 0) gel(E,i) = stoi(v);
     442             :     }
     443             :   /* N and I : known factors */
     444        1834 :   I = factorbackprime(nf, P, E);
     445        1834 :   N = idealnorm(nf,I);
     446             : 
     447        1834 :   y1 = backtrackfacto(y0, n, red, pl, nf, data, test, fa, N, I);
     448             : 
     449             :   /* restore known factors */
     450        7846 :   for (i=1; i<lg(E); i++) gel(E,i) = stoi(nfval(nf,y1,gel(P,i)));
     451        1834 :   *fa = famat_reduce(famat_mul_shallow(*fa, mkmat2(P, E)));
     452        1834 :   return gc_all(av, 2, &y1, fa);
     453             : }
     454             : 
     455             : static GEN
     456        1421 : factoredextchinese(GEN nf, GEN x, GEN y, GEN pl, GEN* fa)
     457        1421 : { return factoredextchinesetest(nf,x,y,pl,fa,NULL,NULL); }
     458             : 
     459             : /** OPERATIONS ON ASSOCIATIVE ALGEBRAS algebras.c **/
     460             : 
     461             : /*
     462             : Convention:
     463             : (K/F,sigma,b) = sum_{i=0..n-1} u^i*K
     464             : t*u = u*sigma(t)
     465             : 
     466             : Natural basis:
     467             : 1<=i<=d*n^2
     468             : b_i = u^((i-1)/(dn))*ZKabs.((i-1)%(dn)+1)
     469             : 
     470             : Integral basis:
     471             : Basis of some order.
     472             : 
     473             : al structure:
     474             : 1- rnf of the cyclic splitting field of degree n over the center nf of degree d
     475             : 2- VEC of aut^i 1<=i<=n if n>1, or i=0 if n=1
     476             : 3- b in nf
     477             : 4- infinite hasse invariants (mod n) : VECSMALL of size r1, values only 0 or n/2 (if integral)
     478             : 5- finite hasse invariants (mod n) : VEC[sorted VEC of primes, VECSMALL of hasse inv mod n]
     479             : 6- VEC
     480             :   6.1- 0, or [a,b,sa] where sa^2=a if al is quaternion algebra (a,b)
     481             :   6.2- dn^2*dn^2 matrix of stored involution
     482             : 7* dn^2*dn^2 matrix expressing the integral basis in terms of the natural basis
     483             : 8* dn^2*dn^2 matrix expressing the natural basis in terms of the integral basis
     484             : 9* VEC of dn^2 matrices giving the dn^2*dn^2 left multiplication tables of the integral basis
     485             : 10* characteristic of the base field (used only for algebras given by a multiplication table)
     486             : 11* trace of basis elements
     487             : 
     488             : If al is given by a multiplication table (al_TABLE), only the * fields are present.
     489             : The other ones are filled with gen_0 placeholders.
     490             : */
     491             : 
     492             : /* assumes same center and same variable */
     493             : /* currently only works for coprime degrees */
     494             : GEN
     495          84 : algtensor(GEN al1, GEN al2, long flag) {
     496          84 :   pari_sp av = avma;
     497             :   long v, k, d1, d2;
     498             :   GEN nf, P1, P2, aut1, aut2, b1, b2, C, rnf, aut, b, x1, x2, al, rnfpol;
     499             : 
     500          84 :   checkalg(al1);
     501          70 :   checkalg(al2);
     502          63 :   if (alg_type(al1) != al_CYCLIC  || alg_type(al2) != al_CYCLIC)
     503          21 :     pari_err_IMPL("tensor of noncyclic algebras"); /* TODO: do it. */
     504             : 
     505          42 :   nf = alg_get_center(al1);
     506          42 :   if (!gequal(alg_get_center(al2),nf))
     507           7 :     pari_err_OP("tensor product [not the same center]", al1, al2);
     508             : 
     509          35 :   P1=alg_get_splitpol(al1); aut1=alg_get_aut(al1); b1=alg_get_b(al1);
     510          35 :   P2=alg_get_splitpol(al2); aut2=alg_get_aut(al2); b2=alg_get_b(al2);
     511          35 :   v=varn(P1);
     512             : 
     513          35 :   d1=alg_get_degree(al1);
     514          35 :   d2=alg_get_degree(al2);
     515          35 :   if (ugcd(d1,d2) != 1)
     516           7 :     pari_err_IMPL("tensor of cyclic algebras of noncoprime degrees"); /* TODO */
     517             : 
     518          28 :   if (d1==1) return gcopy(al2);
     519          21 :   if (d2==1) return gcopy(al1);
     520             : 
     521          14 :   C = nfcompositum(nf, P1, P2, 3);
     522          14 :   rnfpol = gel(C,1);
     523          14 :   if (!(flag & al_FACTOR)) rnfpol = mkvec2(rnfpol, stoi(1<<20));
     524          14 :   rnf = rnfinit(nf, rnfpol);
     525             :   /* TODO use integral basis of P1 and P2 to get that of C */
     526          14 :   x1 = gel(C,2);
     527          14 :   x2 = gel(C,3);
     528          14 :   k = itos(gel(C,4));
     529          14 :   aut = gadd(gsubst(aut2,v,x2),gmulsg(k,gsubst(aut1,v,x1)));
     530          14 :   b = nfmul(nf,nfpow_u(nf,b1,d2),nfpow_u(nf,b2,d1));
     531          14 :   al = alg_cyclic(rnf, aut, b, flag);
     532          14 :   return gerepilecopy(av,al);
     533             : }
     534             : 
     535             : /* M an n x d Flm of rank d, n >= d. Initialize Mx = y solver */
     536             : static GEN
     537        9041 : Flm_invimage_init(GEN M, ulong p)
     538             : {
     539        9041 :   GEN v = Flm_indexrank(M, p), perm = gel(v,1);
     540        9041 :   GEN MM = rowpermute(M, perm); /* square invertible */
     541        9041 :   return mkvec2(Flm_inv(MM,p), perm);
     542             : }
     543             : /* assume Mx = y has a solution, v = Flm_invimage_init(M,p); return x */
     544             : static GEN
     545      619723 : Flm_invimage_pre(GEN v, GEN y, ulong p)
     546             : {
     547      619723 :   GEN inv = gel(v,1), perm = gel(v,2);
     548      619723 :   return Flm_Flc_mul(inv, vecsmallpermute(y, perm), p);
     549             : }
     550             : 
     551             : GEN
     552       14956 : algradical(GEN al)
     553             : {
     554       14956 :   pari_sp av = avma;
     555             :   GEN I, x, traces, K, MT, P, mt;
     556             :   long l,i,ni, n;
     557             :   ulong modu, expo, p;
     558       14956 :   checkalg(al);
     559       14956 :   if (alg_type(al) != al_TABLE) return gen_0;
     560       14865 :   P = alg_get_char(al);
     561       14865 :   mt = alg_get_multable(al);
     562       14865 :   n = alg_get_absdim(al);
     563       14865 :   dbg_printf(1)("algradical: char=%Ps, dim=%d\n", P, n);
     564       14865 :   traces = algtracematrix(al);
     565       14865 :   if (!signe(P))
     566             :   {
     567         546 :     dbg_printf(2)(" char 0, computing kernel...\n");
     568         546 :     K = ker(traces);
     569         546 :     dbg_printf(2)(" ...done.\n");
     570         546 :     ni = lg(K)-1; if (!ni) return gc_const(av, gen_0);
     571          70 :     return gerepileupto(av, K);
     572             :   }
     573       14319 :   dbg_printf(2)(" char>0, computing kernel...\n");
     574       14319 :   K = FpM_ker(traces, P);
     575       14319 :   dbg_printf(2)(" ...done.\n");
     576       14319 :   ni = lg(K)-1; if (!ni) return gc_const(av, gen_0);
     577        7930 :   if (abscmpiu(P,n)>0) return gerepileupto(av, K);
     578             : 
     579             :   /* tough case, p <= n. Ronyai's algorithm */
     580        4982 :   p = P[2]; l = 1;
     581        4982 :   expo = p; modu = p*p;
     582        4982 :   dbg_printf(2)(" char>0, hard case.\n");
     583        9748 :   while (modu<=(ulong)n) { l++; modu *= p; }
     584        4982 :   MT = ZMV_to_FlmV(mt, modu);
     585        4982 :   I = ZM_to_Flm(K,p); /* I_0 */
     586       13463 :   for (i=1; i<=l; i++) {/*compute I_i, expo = p^i, modu = p^(l+1) > n*/
     587             :     long j, lig,col;
     588        9041 :     GEN v = cgetg(ni+1, t_VECSMALL);
     589        9041 :     GEN invI = Flm_invimage_init(I, p);
     590        9041 :     dbg_printf(2)(" computing I_%d:\n", i);
     591        9041 :     traces = cgetg(ni+1,t_MAT);
     592       61073 :     for (j = 1; j <= ni; j++)
     593             :     {
     594       52032 :       GEN M = algbasismultable_Flm(MT, gel(I,j), modu);
     595       52032 :       uel(v,j) = algtracei(M, p,expo,modu);
     596             :     }
     597       61073 :     for (col=1; col<=ni; col++)
     598             :     {
     599       52032 :       GEN t = cgetg(n+1,t_VECSMALL); gel(traces,col) = t;
     600       52032 :       x = gel(I, col); /*col-th basis vector of I_{i-1}*/
     601      671755 :       for (lig=1; lig<=n; lig++)
     602             :       {
     603      619723 :         GEN y = _tablemul_ej_Fl(MT,x,lig,p);
     604      619723 :         GEN z = Flm_invimage_pre(invI, y, p);
     605      619723 :         uel(t,lig) = Flv_dotproduct(v, z, p);
     606             :       }
     607             :     }
     608        9041 :     dbg_printf(2)(" computing kernel...\n");
     609        9041 :     K = Flm_ker(traces, p);
     610        9041 :     dbg_printf(2)(" ...done.\n");
     611        9041 :     ni = lg(K)-1; if (!ni) return gc_const(av, gen_0);
     612        8481 :     I = Flm_mul(I,K,p);
     613        8481 :     expo *= p;
     614             :   }
     615        4422 :   return Flm_to_ZM(I);
     616             : }
     617             : 
     618             : /* compute the multiplication table of the element x, where mt is a
     619             :  * multiplication table in an arbitrary ring */
     620             : static GEN
     621         476 : Rgmultable(GEN mt, GEN x)
     622             : {
     623         476 :   long i, l = lg(x);
     624         476 :   GEN z = NULL;
     625        6188 :   for (i = 1; i < l; i++)
     626             :   {
     627        5712 :     GEN c = gel(x,i);
     628        5712 :     if (!gequal0(c))
     629             :     {
     630         714 :       GEN M = RgM_Rg_mul(gel(mt,i),c);
     631         714 :       z = z? RgM_add(z, M): M;
     632             :     }
     633             :   }
     634         476 :   return z;
     635             : }
     636             : 
     637             : static GEN
     638          56 : change_Rgmultable(GEN mt, GEN P, GEN Pi)
     639             : {
     640             :   GEN mt2;
     641          56 :   long lmt = lg(mt), i;
     642          56 :   mt2 = cgetg(lmt,t_VEC);
     643         532 :   for (i=1;i<lmt;i++) {
     644         476 :     GEN mti = Rgmultable(mt,gel(P,i));
     645         476 :     gel(mt2,i) = RgM_mul(Pi, RgM_mul(mti,P));
     646             :   }
     647          56 :   return mt2;
     648             : }
     649             : 
     650             : /* S: lift (basis of quotient) ; Si: proj */
     651             : static GEN
     652       38475 : alg_quotient0(GEN al, GEN S, GEN Si, long nq, GEN p, long maps)
     653             : {
     654       38475 :   GEN mt = cgetg(nq+1,t_VEC), P, Pi, d;
     655             :   long i;
     656       38475 :   dbg_printf(3)("  alg_quotient0: char=%Ps, dim=%d, dim I=%d\n", p, alg_get_absdim(al), lg(S)-1);
     657      176124 :   for (i=1; i<=nq; i++) {
     658      137649 :     GEN mti = algbasismultable(al,gel(S,i));
     659      137649 :     if (signe(p)) gel(mt,i) = FpM_mul(Si, FpM_mul(mti,S,p), p);
     660        6076 :     else          gel(mt,i) = RgM_mul(Si, RgM_mul(mti,S));
     661             :   }
     662       38475 :   if (!signe(p) && !isint1(Q_denom(mt))) {
     663          42 :     dbg_printf(3)("  bad case: denominator=%Ps\n", Q_denom(mt));
     664          42 :     P = Q_remove_denom(Si,&d);
     665          42 :     P = ZM_hnf(P);
     666          42 :     P = RgM_Rg_div(P,d); /* P: new basis (Z-basis of image of order in al) */
     667          42 :     Pi = RgM_inv(P);
     668          42 :     mt = change_Rgmultable(mt,P,Pi);
     669          42 :     Si = RgM_mul(Pi,Si);
     670          42 :     S = RgM_mul(S,P);
     671             :   }
     672       38475 :   al = algtableinit_i(mt,p);
     673       38475 :   if (maps) al = mkvec3(al,Si,S); /* algebra, proj, lift */
     674       38475 :   return al;
     675             : }
     676             : 
     677             : /* quotient of an algebra by a nontrivial two-sided ideal */
     678             : GEN
     679       12357 : alg_quotient(GEN al, GEN I, long maps)
     680             : {
     681       12357 :   pari_sp av = avma;
     682             :   GEN p, IS, ISi, S, Si;
     683             :   long n, ni;
     684             : 
     685       12357 :   checkalg(al);
     686       12357 :   if (alg_type(al) != al_TABLE) pari_err_TYPE("alg_quotient [not a table algebra]", al);
     687       12350 :   p = alg_get_char(al);
     688       12350 :   n = alg_get_absdim(al);
     689       12350 :   ni = lg(I)-1;
     690             : 
     691             :   /* force first vector of complement to be the identity */
     692       12350 :   IS = shallowconcat(I, gcoeff(alg_get_multable(al),1,1));
     693       12350 :   if (signe(p)) {
     694       12322 :     IS = FpM_suppl(IS,p);
     695       12322 :     ISi = FpM_inv(IS,p);
     696             :   }
     697             :   else {
     698          28 :     IS = suppl(IS);
     699          28 :     ISi = RgM_inv(IS);
     700             :   }
     701       12350 :   S = vecslice(IS, ni+1, n);
     702       12350 :   Si = rowslice(ISi, ni+1, n);
     703       12350 :   return gerepilecopy(av, alg_quotient0(al, S, Si, n-ni, p, maps));
     704             : }
     705             : 
     706             : static GEN
     707       39501 : image_keep_first(GEN m, GEN p) /* assume first column is nonzero or m==0, no GC */
     708             : {
     709             :   GEN ir, icol, irow, M, c, x;
     710             :   long i;
     711       39501 :   if (gequal0(gel(m,1))) return zeromat(nbrows(m),0);
     712             : 
     713       39487 :   if (signe(p)) ir = FpM_indexrank(m,p);
     714        1708 :   else          ir = indexrank(m);
     715             : 
     716       39487 :   icol = gel(ir,2);
     717       39487 :   if (icol[1]==1) return extract0(m,icol,NULL);
     718             : 
     719          14 :   irow = gel(ir,1);
     720          14 :   M = extract0(m, irow, icol);
     721          14 :   c = extract0(gel(m,1), irow, NULL);
     722          14 :   if (signe(p)) x = FpM_FpC_invimage(M,c,p);
     723           0 :   else          x = inverseimage(M,c); /* TODO modulo a small prime */
     724             : 
     725          21 :   for (i=1; i<lg(x); i++)
     726             :   {
     727          21 :     if (!gequal0(gel(x,i)))
     728             :     {
     729          14 :       icol[i] = 1;
     730          14 :       vecsmall_sort(icol);
     731          14 :       return extract0(m,icol,NULL);
     732             :     }
     733             :   }
     734             : 
     735             :   return NULL; /* LCOV_EXCL_LINE */
     736             : }
     737             : 
     738             : /* z[1],...z[nz] central elements such that z[1]A + z[2]A + ... + z[nz]A = A
     739             :  * is a direct sum. idempotents ==> first basis element is identity */
     740             : GEN
     741       12694 : alg_centralproj(GEN al, GEN z, long maps)
     742             : {
     743       12694 :   pari_sp av = avma;
     744             :   GEN S, U, Ui, alq, p;
     745       12694 :   long i, iu, lz = lg(z), ta;
     746             : 
     747       12694 :   checkalg(al);
     748       12694 :   ta = alg_type(al);
     749       12694 :   if (ta != al_TABLE) pari_err_TYPE("algcentralproj [not a table algebra]", al);
     750       12687 :   if (typ(z) != t_VEC) pari_err_TYPE("alcentralproj",z);
     751       12680 :   p = alg_get_char(al);
     752       12680 :   dbg_printf(3)("  alg_centralproj: char=%Ps, dim=%d, #z=%d\n", p, alg_get_absdim(al), lz-1);
     753       12680 :   S = cgetg(lz,t_VEC); /* S[i] = Im(z_i) */
     754       38819 :   for (i=1; i<lz; i++)
     755             :   {
     756       26139 :     GEN mti = algbasismultable(al, gel(z,i));
     757       26139 :     gel(S,i) = image_keep_first(mti,p);
     758             :   }
     759       12680 :   U = shallowconcat1(S); /* U = [Im(z_1)|Im(z_2)|...|Im(z_nz)], n x n */
     760       12680 :   if (lg(U)-1 < alg_get_absdim(al)) pari_err_TYPE("alcentralproj [z[i]'s not surjective]",z);
     761       12673 :   if (signe(p)) Ui = FpM_inv(U,p);
     762         854 :   else          Ui = RgM_inv(U);
     763             :   if (!Ui) pari_err_BUG("alcentralproj"); /*LCOV_EXCL_LINE*/
     764             : 
     765       12673 :   alq = cgetg(lz,t_VEC);
     766       38798 :   for (iu=0,i=1; i<lz; i++)
     767             :   {
     768       26125 :     long nq = lg(gel(S,i))-1, ju = iu + nq;
     769       26125 :     GEN Si = rowslice(Ui, iu+1, ju);
     770       26125 :     gel(alq, i) = alg_quotient0(al,gel(S,i),Si,nq,p,maps);
     771       26125 :     iu = ju;
     772             :   }
     773       12673 :   return gerepilecopy(av, alq);
     774             : }
     775             : 
     776             : /* al is an al_TABLE */
     777             : static GEN
     778       33245 : algtablecenter(GEN al)
     779             : {
     780       33245 :   pari_sp av = avma;
     781             :   long n, i, j, k, ic;
     782             :   GEN C, cij, mt, p;
     783             : 
     784       33245 :   n = alg_get_absdim(al);
     785       33245 :   mt = alg_get_multable(al);
     786       33245 :   p = alg_get_char(al);
     787       33245 :   C = cgetg(n+1,t_MAT);
     788      158605 :   for (j=1; j<=n; j++)
     789             :   {
     790      125360 :     gel(C,j) = cgetg(n*n-n+1,t_COL);
     791      125360 :     ic = 1;
     792     1124680 :     for (i=2; i<=n; i++) {
     793      999320 :       if (signe(p)) cij = FpC_sub(gmael(mt,i,j),gmael(mt,j,i),p);
     794       57694 :       else          cij = RgC_sub(gmael(mt,i,j),gmael(mt,j,i));
     795    20001840 :       for (k=1; k<=n; k++, ic++) gcoeff(C,ic,j) = gel(cij, k);
     796             :     }
     797             :   }
     798       33245 :   if (signe(p)) return gerepileupto(av, FpM_ker(C,p));
     799        1785 :   else          return gerepileupto(av, ker(C));
     800             : }
     801             : 
     802             : GEN
     803       11795 : algcenter(GEN al)
     804             : {
     805       11795 :   checkalg(al);
     806       11795 :   if (alg_type(al)==al_TABLE) return algtablecenter(al);
     807        2821 :   return alg_get_center(al);
     808             : }
     809             : 
     810             : /* Only in positive characteristic. Assumes that al is semisimple. */
     811             : GEN
     812        9720 : algprimesubalg(GEN al)
     813             : {
     814        9720 :   pari_sp av = avma;
     815             :   GEN p, Z, F, K;
     816             :   long nz, i;
     817        9720 :   checkalg(al);
     818        9720 :   p = alg_get_char(al);
     819        9720 :   if (!signe(p)) pari_err_DOMAIN("algprimesubalg","characteristic","=",gen_0,p);
     820             : 
     821        9706 :   Z = algtablecenter(al);
     822        9706 :   nz = lg(Z)-1;
     823        9706 :   if (nz==1) return Z;
     824             : 
     825        6759 :   F = cgetg(nz+1, t_MAT);
     826       28340 :   for (i=1; i<=nz; i++) {
     827       21581 :     GEN zi = gel(Z,i);
     828       21581 :     gel(F,i) = FpC_sub(algpow(al,zi,p),zi,p);
     829             :   }
     830        6759 :   K = FpM_ker(F,p);
     831        6759 :   return gerepileupto(av, FpM_mul(Z,K,p));
     832             : }
     833             : 
     834             : static GEN
     835       19871 : out_decompose(GEN t, GEN Z, GEN P, GEN p)
     836             : {
     837       19871 :   GEN ali = gel(t,1), projm = gel(t,2), liftm = gel(t,3), pZ;
     838       19871 :   if (signe(p)) pZ = FpM_image(FpM_mul(projm,Z,p),p);
     839        1617 :   else          pZ = image(RgM_mul(projm,Z));
     840       19871 :   return mkvec5(ali, projm, liftm, pZ, P);
     841             : }
     842             : /* fa factorization of charpol(x) */
     843             : static GEN
     844        9974 : alg_decompose_from_facto(GEN al, GEN x, GEN fa, GEN Z, long mini)
     845             : {
     846        9974 :   long k = lgcols(fa)-1, k2 = mini? 1: k/2;
     847        9974 :   GEN v1 = rowslice(fa,1,k2);
     848        9974 :   GEN v2 = rowslice(fa,k2+1,k);
     849        9974 :   GEN alq, P, Q, p = alg_get_char(al);
     850        9974 :   dbg_printf(3)("  alg_decompose_from_facto\n");
     851        9974 :   if (signe(p)) {
     852        9148 :     P = FpXV_factorback(gel(v1,1), gel(v1,2), p, 0);
     853        9148 :     Q = FpXV_factorback(gel(v2,1), gel(v2,2), p, 0);
     854        9148 :     P = FpX_mul(P, FpXQ_inv(P,Q,p), p);
     855             :   }
     856             :   else {
     857         826 :     P = factorback(v1);
     858         826 :     Q = factorback(v2);
     859         826 :     P = RgX_mul(P, RgXQ_inv(P,Q));
     860             :   }
     861        9974 :   P = algpoleval(al, P, x);
     862        9974 :   if (signe(p)) Q = FpC_sub(col_ei(lg(P)-1,1), P, p);
     863         826 :   else          Q = gsub(gen_1, P);
     864        9974 :   if (gequal0(P) || gequal0(Q)) return NULL;
     865        9974 :   alq = alg_centralproj(al, mkvec2(P,Q), 1);
     866             : 
     867        9974 :   P = out_decompose(gel(alq,1), Z, P, p); if (mini) return P;
     868        9897 :   Q = out_decompose(gel(alq,2), Z, Q, p);
     869        9897 :   return mkvec2(P,Q);
     870             : }
     871             : 
     872             : static GEN
     873       15231 : random_pm1(long n)
     874             : {
     875       15231 :   GEN z = cgetg(n+1,t_VECSMALL);
     876             :   long i;
     877       62885 :   for (i = 1; i <= n; i++) z[i] = random_bits(5)%3 - 1;
     878       15231 :   return z;
     879             : }
     880             : 
     881             : static GEN alg_decompose(GEN al, GEN Z, long mini, GEN* pt_primelt);
     882             : /* Try to split al using x's charpoly. Return gen_0 if simple, NULL if failure.
     883             :  * And a splitting otherwise
     884             :  * If pt_primelt!=NULL, compute a primitive element of the center when simple */
     885             : static GEN
     886       18291 : try_fact(GEN al, GEN x, GEN zx, GEN Z, GEN Zal, long mini, GEN* pt_primelt)
     887             : {
     888       18291 :   GEN z, dec0, dec1, cp = algcharpoly(Zal,zx,0,1), fa, p = alg_get_char(al);
     889             :   long nfa, e;
     890       18291 :   dbg_printf(3)("  try_fact: zx=%Ps\n", zx);
     891       18291 :   if (signe(p)) fa = FpX_factor(cp,p);
     892        1512 :   else          fa = factor(cp);
     893       18291 :   dbg_printf(3)("  charpoly=%Ps\n", fa);
     894       18291 :   nfa = nbrows(fa);
     895       18291 :   if (nfa == 1) {
     896        8317 :     if (signe(p)) e = gel(fa,2)[1];
     897         686 :     else          e = itos(gcoeff(fa,1,2));
     898        8317 :     if (e == 1) {
     899        4487 :       if (pt_primelt != NULL) *pt_primelt = mkvec2(x, cp);
     900        4487 :       return gen_0;
     901             :     }
     902        3830 :     else return NULL;
     903             :   }
     904        9974 :   dec0 = alg_decompose_from_facto(al, x, fa, Z, mini);
     905        9974 :   if (!dec0) return NULL;
     906        9974 :   if (!mini) return dec0;
     907          77 :   dec1 = alg_decompose(gel(dec0,1), gel(dec0,4), 1, pt_primelt);
     908          77 :   z = gel(dec0,5);
     909          77 :   if (!isintzero(dec1)) {
     910           7 :     if (signe(p)) z = FpM_FpC_mul(gel(dec0,3),dec1,p);
     911           7 :     else          z = RgM_RgC_mul(gel(dec0,3),dec1);
     912             :   }
     913          77 :   return z;
     914             : }
     915             : static GEN
     916           7 : randcol(long n, GEN b)
     917             : {
     918           7 :   GEN N = addiu(shifti(b,1), 1);
     919             :   long i;
     920           7 :   GEN res =  cgetg(n+1,t_COL);
     921          63 :   for (i=1; i<=n; i++)
     922             :   {
     923          56 :     pari_sp av = avma;
     924          56 :     gel(res,i) = gerepileuptoint(av, subii(randomi(N),b));
     925             :   }
     926           7 :   return res;
     927             : }
     928             : /* Return gen_0 if already simple. mini: only returns a central idempotent
     929             :  * corresponding to one simple factor
     930             :  * if pt_primelt!=NULL, sets it to a primitive element of the center when simple */
     931             : static GEN
     932       28438 : alg_decompose(GEN al, GEN Z, long mini, GEN* pt_primelt)
     933             : {
     934             :   pari_sp av;
     935             :   GEN Zal, x, zx, rand, dec0, B, p;
     936       28438 :   long i, nz = lg(Z)-1;
     937             : 
     938       28438 :   if (nz == 1) {
     939       13977 :     if (pt_primelt != 0) *pt_primelt = mkvec2(zerocol(alg_get_dim(al)), pol_x(0));
     940       13977 :     return gen_0;
     941             :   }
     942       14461 :   p = alg_get_char(al);
     943       14461 :   dbg_printf(2)(" alg_decompose: char=%Ps, dim=%d, dim Z=%d\n", p, alg_get_absdim(al), nz);
     944       14461 :   Zal = alg_subalg(al,Z);
     945       14461 :   Z = gel(Zal,2);
     946       14461 :   Zal = gel(Zal,1);
     947       14461 :   av = avma;
     948             : 
     949       14461 :   rand = random_pm1(nz);
     950       14461 :   zx = zc_to_ZC(rand);
     951       14461 :   if (signe(p)) {
     952       13313 :     zx = FpC_red(zx,p);
     953       13313 :     x = ZM_zc_mul(Z,rand);
     954       13313 :     x = FpC_red(x,p);
     955             :   }
     956        1148 :   else x = RgM_zc_mul(Z,rand);
     957       14461 :   dec0 = try_fact(al,x,zx,Z,Zal,mini,pt_primelt);
     958       14461 :   if (dec0) return dec0;
     959        3760 :   set_avma(av);
     960             : 
     961        3830 :   for (i=2; i<=nz; i++)
     962             :   {
     963        3823 :     dec0 = try_fact(al,gel(Z,i),col_ei(nz,i),Z,Zal,mini,pt_primelt);
     964        3823 :     if (dec0) return dec0;
     965          70 :     set_avma(av);
     966             :   }
     967           7 :   B = int2n(10);
     968             :   for (;;)
     969           0 :   {
     970           7 :     GEN x = randcol(nz,B), zx = ZM_ZC_mul(Z,x);
     971           7 :     dec0 = try_fact(al,x,zx,Z,Zal,mini,pt_primelt);
     972           7 :     if (dec0) return dec0;
     973           0 :     set_avma(av);
     974             :   }
     975             : }
     976             : 
     977             : static GEN
     978       24098 : alg_decompose_total(GEN al, GEN Z, long maps)
     979             : {
     980             :   GEN dec, sc, p;
     981             :   long i;
     982             : 
     983       24098 :   dec = alg_decompose(al, Z, 0, NULL);
     984       24098 :   if (isintzero(dec))
     985             :   {
     986       14201 :     if (maps) {
     987        9021 :       long n = alg_get_absdim(al);
     988        9021 :       al = mkvec3(al, matid(n), matid(n));
     989             :     }
     990       14201 :     return mkvec(al);
     991             :   }
     992        9897 :   p = alg_get_char(al); if (!signe(p)) p = NULL;
     993        9897 :   sc = cgetg(lg(dec), t_VEC);
     994       29691 :   for (i=1; i<lg(sc); i++) {
     995       19794 :     GEN D = gel(dec,i), a = gel(D,1), Za = gel(D,4);
     996       19794 :     GEN S = alg_decompose_total(a, Za, maps);
     997       19794 :     gel(sc,i) = S;
     998       19794 :     if (maps)
     999             :     {
    1000       13186 :       GEN projm = gel(D,2), liftm = gel(D,3);
    1001       13186 :       long j, lS = lg(S);
    1002       34814 :       for (j=1; j<lS; j++)
    1003             :       {
    1004       21628 :         GEN Sj = gel(S,j), p2 = gel(Sj,2), l2 = gel(Sj,3);
    1005       21628 :         if (p) p2 = FpM_mul(p2, projm, p);
    1006        1449 :         else   p2 = RgM_mul(p2, projm);
    1007       21628 :         if (p) l2 = FpM_mul(liftm, l2, p);
    1008        1449 :         else   l2 = RgM_mul(liftm, l2);
    1009       21628 :         gel(Sj,2) = p2;
    1010       21628 :         gel(Sj,3) = l2;
    1011             :       }
    1012             :     }
    1013             :   }
    1014        9897 :   return shallowconcat1(sc);
    1015             : }
    1016             : 
    1017             : static GEN
    1018       14531 : alg_subalg(GEN al, GEN basis)
    1019             : {
    1020       14531 :   GEN invbasis, mt, p = alg_get_char(al);
    1021             :   long i, j, n;
    1022             : 
    1023       14531 :   if (!signe(p)) p = NULL;
    1024       14531 :   basis = shallowmatconcat(mkvec2(col_ei(alg_get_absdim(al),1), basis));
    1025       14531 :   if (p)
    1026             :   {
    1027       13362 :     basis = image_keep_first(basis,p);
    1028       13362 :     invbasis = FpM_inv(basis,p);
    1029             :   }
    1030             :   else
    1031             :   { /* FIXME use an integral variant of image_keep_first */
    1032        1169 :     basis = QM_ImQ_hnf(basis);
    1033        1169 :     invbasis = RgM_inv(basis);
    1034             :   }
    1035       14531 :   n = lg(basis)-1;
    1036       14531 :   mt = cgetg(n+1,t_VEC);
    1037       14531 :   gel(mt,1) = matid(n);
    1038       45015 :   for (i = 2; i <= n; i++)
    1039             :   {
    1040       30484 :     GEN mtx = cgetg(n+1,t_MAT), x = gel(basis,i);
    1041       30484 :     gel(mtx,1) = col_ei(n,i);
    1042      182326 :     for (j = 2; j <= n; j++)
    1043             :     {
    1044      151842 :       GEN xy = algmul(al, x, gel(basis,j));
    1045      151842 :       if (p) gel(mtx,j) = FpM_FpC_mul(invbasis, xy, p);
    1046       36253 :       else   gel(mtx,j) = RgM_RgC_mul(invbasis, xy);
    1047             :     }
    1048       30484 :     gel(mt,i) = mtx;
    1049             :   }
    1050       14531 :   return mkvec2(algtableinit_i(mt,p), basis);
    1051             : }
    1052             : 
    1053             : GEN
    1054          84 : algsubalg(GEN al, GEN basis)
    1055             : {
    1056          84 :   pari_sp av = avma;
    1057             :   GEN p;
    1058          84 :   checkalg(al);
    1059          84 :   if (alg_type(al) == al_REAL) pari_err_TYPE("algsubalg [real algebra]", al);
    1060          77 :   if (typ(basis) != t_MAT) pari_err_TYPE("algsubalg",basis);
    1061          70 :   p = alg_get_char(al);
    1062          70 :   if (signe(p)) basis = RgM_to_FpM(basis,p);
    1063          70 :   return gerepilecopy(av, alg_subalg(al,basis));
    1064             : }
    1065             : 
    1066             : static int
    1067       14642 : cmp_algebra(GEN x, GEN y)
    1068             : {
    1069             :   long d;
    1070       14642 :   d = gel(x,1)[1] - gel(y,1)[1]; if (d) return d < 0? -1: 1;
    1071       12733 :   d = gel(x,1)[2] - gel(y,1)[2]; if (d) return d < 0? -1: 1;
    1072       12733 :   return cmp_universal(gel(x,2), gel(y,2));
    1073             : }
    1074             : 
    1075             : GEN
    1076        9825 : algsimpledec_ss(GEN al, long maps)
    1077             : {
    1078        9825 :   pari_sp av = avma;
    1079             :   GEN Z, p, r, res, perm;
    1080             :   long i, l, n;
    1081        9825 :   checkalg(al);
    1082        9825 :   p = alg_get_char(al);
    1083        9825 :   dbg_printf(1)("algsimpledec_ss: char=%Ps, dim=%d\n", p, alg_get_absdim(al));
    1084        9825 :   if (signe(p))                     Z = algprimesubalg(al);
    1085         273 :   else if (alg_type(al)!=al_TABLE)  Z = gen_0;
    1086         252 :   else                              Z = algtablecenter(al);
    1087             : 
    1088        9825 :   if (lg(Z) == 2) {/* dim Z = 1 */
    1089        5521 :     n = alg_get_absdim(al);
    1090        5521 :     set_avma(av);
    1091        5521 :     if (!maps) return mkveccopy(al);
    1092        4814 :     retmkvec(mkvec3(gcopy(al), matid(n), matid(n)));
    1093             :   }
    1094        4304 :   res = alg_decompose_total(al, Z, maps);
    1095        4304 :   l = lg(res); r = cgetg(l, t_VEC);
    1096       18505 :   for (i = 1; i < l; i++)
    1097             :   {
    1098       14201 :     GEN A = maps? gmael(res,i,1): gel(res,i);
    1099       14201 :     gel(r,i) = mkvec2(mkvecsmall2(alg_get_dim(A), lg(algtablecenter(A))),
    1100             :                       alg_get_multable(A));
    1101             :   }
    1102        4304 :   perm = gen_indexsort(r, (void*)cmp_algebra, &cmp_nodata);
    1103        4304 :   return gerepilecopy(av, vecpermute(res, perm));
    1104             : }
    1105             : 
    1106             : GEN
    1107        2730 : algsimpledec(GEN al, long maps)
    1108             : {
    1109        2730 :   pari_sp av = avma;
    1110             :   int ss;
    1111        2730 :   GEN rad, dec, res, proj=NULL, lift=NULL;
    1112        2730 :   rad = algradical(al);
    1113        2730 :   ss = gequal0(rad);
    1114        2730 :   if (!ss)
    1115             :   {
    1116        1428 :     al = alg_quotient(al, rad, maps);
    1117        1428 :     if (maps) {
    1118          14 :       proj = gel(al,2);
    1119          14 :       lift = gel(al,3);
    1120          14 :       al = gel(al,1);
    1121             :     }
    1122             :   }
    1123        2730 :   dec = algsimpledec_ss(al, maps);
    1124        2730 :   if (!ss && maps) /* update maps */
    1125             :   {
    1126          14 :     GEN p = alg_get_char(al);
    1127             :     long i;
    1128          42 :     for (i=1; i<lg(dec); i++)
    1129             :     {
    1130          28 :       if (signe(p))
    1131             :       {
    1132          14 :         gmael(dec,i,2) = FpM_mul(gmael(dec,i,2), proj, p);
    1133          14 :         gmael(dec,i,3) = FpM_mul(lift, gmael(dec,i,3), p);
    1134             :       }
    1135             :       else
    1136             :       {
    1137          14 :         gmael(dec,i,2) = RgM_mul(gmael(dec,i,2), proj);
    1138          14 :         gmael(dec,i,3) = RgM_mul(lift, gmael(dec,i,3));
    1139             :       }
    1140             :     }
    1141             :   }
    1142        2730 :   res = mkvec2(rad, dec);
    1143        2730 :   return gerepilecopy(av,res);
    1144             : }
    1145             : 
    1146             : static GEN alg_idempotent(GEN al, long n, long d);
    1147             : static GEN
    1148       13057 : try_split(GEN al, GEN x, long n, long d)
    1149             : {
    1150       13057 :   GEN cp, p = alg_get_char(al), fa, e, pol, exp, P, Q, U, u, mx, mte, ire;
    1151       13057 :   long nfa, i, smalldim = alg_get_absdim(al)+1, dim, smalli = 0;
    1152       13057 :   cp = algcharpoly(al,x,0,1);
    1153       13057 :   fa = FpX_factor(cp,p);
    1154       13057 :   nfa = nbrows(fa);
    1155       13057 :   if (nfa == 1) return NULL;
    1156        5061 :   pol = gel(fa,1);
    1157        5061 :   exp = gel(fa,2);
    1158             : 
    1159             :   /* charpoly is always a d-th power */
    1160       15696 :   for (i=1; i<lg(exp); i++) {
    1161       10642 :     if (exp[i]%d) pari_err(e_MISC, "the algebra must be simple (try_split 1)");
    1162       10635 :     exp[i] /= d;
    1163             :   }
    1164        5054 :   cp = FpXV_factorback(gel(fa,1), gel(fa,2), p, 0);
    1165             : 
    1166             :   /* find smallest Fp-dimension of a characteristic space */
    1167       15689 :   for (i=1; i<lg(pol); i++) {
    1168       10635 :     dim = degree(gel(pol,i))*exp[i];
    1169       10635 :     if (dim < smalldim) {
    1170        5126 :       smalldim = dim;
    1171        5126 :       smalli = i;
    1172             :     }
    1173             :   }
    1174        5054 :   i = smalli;
    1175        5054 :   if (smalldim != n) return NULL;
    1176             :   /* We could also compute e*al*e and try again with this smaller algebra */
    1177             :   /* Fq-rank 1 = Fp-rank n idempotent: success */
    1178             : 
    1179             :   /* construct idempotent */
    1180        5040 :   mx = algbasismultable(al,x);
    1181        5040 :   P = gel(pol,i);
    1182        5040 :   P = FpX_powu(P, exp[i], p);
    1183        5040 :   Q = FpX_div(cp, P, p);
    1184        5040 :   e = algpoleval(al, Q, mkvec2(x,mx));
    1185        5040 :   U = FpXQ_inv(Q, P, p);
    1186        5040 :   u = algpoleval(al, U, mkvec2(x,mx));
    1187        5040 :   e = algbasismul(al, e, u);
    1188        5040 :   mte = algbasisrightmultable(al,e);
    1189        5040 :   ire = FpM_indexrank(mte,p);
    1190        5040 :   if (lg(gel(ire,1))-1 != smalldim*d) pari_err(e_MISC, "the algebra must be simple (try_split 2)");
    1191             : 
    1192        5033 :   return mkvec3(e,mte,ire);
    1193             : }
    1194             : 
    1195             : /*
    1196             :  * Given a simple algebra al of dimension d^2 over its center of degree n,
    1197             :  * find an idempotent e in al with rank n (which is minimal).
    1198             : */
    1199             : static GEN
    1200        5047 : alg_idempotent(GEN al, long n, long d)
    1201             : {
    1202        5047 :   pari_sp av = avma;
    1203        5047 :   long i, N = alg_get_absdim(al);
    1204        5047 :   GEN e, p = alg_get_char(al), x;
    1205       12728 :   for(i=2; i<=N; i++) {
    1206       12385 :     x = col_ei(N,i);
    1207       12385 :     e = try_split(al, x, n, d);
    1208       12371 :     if (e) return e;
    1209        7681 :     set_avma(av);
    1210             :   }
    1211             :   for(;;) {
    1212         672 :     x = random_FpC(N,p);
    1213         672 :     e = try_split(al, x, n, d);
    1214         672 :     if (e) return e;
    1215         329 :     set_avma(av);
    1216             :   }
    1217             : }
    1218             : 
    1219             : static GEN
    1220        4585 : try_descend(GEN M, GEN B, GEN p, long m, long n, long d)
    1221             : {
    1222        4585 :   GEN B2 = cgetg(m+1,t_MAT), b;
    1223        4585 :   long i, j, k=0;
    1224       13321 :   for (i=1; i<=d; i++)
    1225             :   {
    1226        8736 :     k++;
    1227        8736 :     b = gel(B,i);
    1228        8736 :     gel(B2,k) = b;
    1229       20426 :     for (j=1; j<n; j++)
    1230             :     {
    1231       11690 :       k++;
    1232       11690 :       b = FpM_FpC_mul(M,b,p);
    1233       11690 :       gel(B2,k) = b;
    1234             :     }
    1235             :   }
    1236        4585 :   if (!signe(FpM_det(B2,p))) return NULL;
    1237        4165 :   return FpM_inv(B2,p);
    1238             : }
    1239             : 
    1240             : /* Given an m*m matrix M with irreducible charpoly over F of degree n,
    1241             :  * let K = F(M), which is a field, and write m=d*n.
    1242             :  * Compute the d-dimensional K-vector space structure on V=F^m induced by M.
    1243             :  * Return [B,C] where:
    1244             :  *  - B is m*d matrix over F giving a K-basis b_1,...,b_d of V
    1245             :  *  - C is d*m matrix over F[x] expressing the canonical F-basis of V on the b_i
    1246             :  * Currently F = Fp TODO extend this. */
    1247             : static GEN
    1248        4165 : descend_i(GEN M, long n, GEN p)
    1249             : {
    1250             :   GEN B, C;
    1251             :   long m,d,i;
    1252             :   pari_sp av;
    1253        4165 :   m = lg(M)-1;
    1254        4165 :   d = m/n;
    1255        4165 :   B = cgetg(d+1,t_MAT);
    1256        4165 :   av = avma;
    1257             : 
    1258             :   /* try a subset of the canonical basis */
    1259       12061 :   for (i=1; i<=d; i++)
    1260        7896 :     gel(B,i) = col_ei(m,n*(i-1)+1);
    1261        4165 :   C = try_descend(M,B,p,m,n,d);
    1262        4165 :   if (C) return mkvec2(B,C);
    1263         385 :   set_avma(av);
    1264             : 
    1265             :   /* try smallish elements */
    1266        1155 :   for (i=1; i<=d; i++)
    1267         770 :     gel(B,i) = FpC_red(zc_to_ZC(random_pm1(m)),p);
    1268         385 :   C = try_descend(M,B,p,m,n,d);
    1269         385 :   if (C) return mkvec2(B,C);
    1270          35 :   set_avma(av);
    1271             : 
    1272             :   /* try random elements */
    1273             :   for (;;)
    1274             :   {
    1275         105 :     for (i=1; i<=d; i++)
    1276          70 :       gel(B,i) = random_FpC(m,p);
    1277          35 :     C = try_descend(M,B,p,m,n,d);
    1278          35 :     if (C) return mkvec2(B,C);
    1279           0 :     set_avma(av);
    1280             :   }
    1281             : }
    1282             : static GEN
    1283       18746 : RgC_contract(GEN C, long n, long v) /* n>1 */
    1284             : {
    1285             :   GEN C2, P;
    1286             :   long m, d, i, j;
    1287       18746 :   m = lg(C)-1;
    1288       18746 :   d = m/n;
    1289       18746 :   C2 = cgetg(d+1,t_COL);
    1290       55034 :   for (i=1; i<=d; i++)
    1291             :   {
    1292       36288 :     P = pol_xn(n-1,v);
    1293      131348 :     for (j=1; j<=n; j++)
    1294       95060 :       gel(P,j+1) = gel(C,n*(i-1)+j);
    1295       36288 :     P = normalizepol(P);
    1296       36288 :     gel(C2,i) = P;
    1297             :   }
    1298       18746 :   return C2;
    1299             : }
    1300             : static GEN
    1301        4165 : RgM_contract(GEN A, long n, long v) /* n>1 */
    1302             : {
    1303        4165 :   GEN A2 = cgetg(lg(A),t_MAT);
    1304             :   long i;
    1305       22911 :   for (i=1; i<lg(A2); i++)
    1306       18746 :     gel(A2,i) = RgC_contract(gel(A,i),n,v);
    1307        4165 :   return A2;
    1308             : }
    1309             : static GEN
    1310        4165 : descend(GEN M, long n, GEN p, long v)
    1311             : {
    1312        4165 :   GEN res = descend_i(M,n,p);
    1313        4165 :   gel(res,2) = RgM_contract(gel(res,2),n,v);
    1314        4165 :   return res;
    1315             : }
    1316             : 
    1317             : /* isomorphism of Fp-vector spaces M_d(F_p^n) -> (F_p)^(d^2*n) */
    1318             : static GEN
    1319       49343 : RgM_mat2col(GEN M, long d, long n)
    1320             : {
    1321       49343 :   long nd = d*n,  N = d*nd, i, j, ni, nj;
    1322       49343 :   GEN C = cgetg(N+1, t_COL);
    1323      168504 :   for (i=1, ni = 0; i<=d; i++, ni += nd)
    1324      459508 :     for (j=1, nj = 0; j<=d; j++, nj += n)
    1325             :     {
    1326      340347 :       GEN P = gcoeff(M,i,j);
    1327      340347 :       long k, e = ni + nj + 1;
    1328      340347 :       if (typ(P)==t_POL)
    1329             :       {
    1330      339731 :         long dP = degpol(P);
    1331      706043 :         for (k = 0; k <= dP; k++)
    1332      366312 :           gel(C,e+k) = gel(P,k+2);
    1333             :       } else
    1334             :       {
    1335         616 :         gel(C,e) = P;
    1336         616 :         k = 1;
    1337             :       }
    1338      555042 :       for (  ; k < n; k++)
    1339      214695 :         gel(C,e+k) = gen_0;
    1340             :     }
    1341       49343 :   return C;
    1342             : }
    1343             : /* inverse isomorphism */
    1344             : static GEN
    1345        1708 : RgC_col2mat(GEN C, long d, long n, long v)
    1346             : {
    1347             :   long i, j, start;
    1348        1708 :   GEN M = cgetg(d+1, t_MAT), cM;
    1349        5432 :   for (j=1; j<=d; j++)
    1350             :   {
    1351        3724 :     cM = cgetg(d+1, t_COL);
    1352       14420 :     for (i=1; i<=d; i++)
    1353             :     {
    1354       10696 :       start = n*(d*(i-1)+j-1)+1;
    1355       10696 :       if (n==1) gel(cM,i) = gel(C, start);
    1356        4564 :       else gel(cM,i) = RgV_to_RgX(vecslice(C, start, start+n-1), v);
    1357             :     }
    1358        3724 :     gel(M,j) = cM;
    1359             :   }
    1360        1708 :   return M;
    1361             : }
    1362             : 
    1363             : static GEN
    1364        6510 : alg_finite_csa_split(GEN al, long v)
    1365             : {
    1366             :   GEN Z, e, mte, ire, primelt, b, T, M, proje, lifte, extre, p, B, C, mt, mx, map, mapi, T2, ro;
    1367        6510 :   long n, d, N = alg_get_absdim(al), i;
    1368        6510 :   p = alg_get_char(al);
    1369             :   /* compute the center */
    1370        6510 :   Z = algcenter(al);
    1371             :   /* TODO option to give the center as input instead of computing it */
    1372        6510 :   n = lg(Z)-1;
    1373             : 
    1374             :   /* compute a minimal rank idempotent e */
    1375        6510 :   if (n==N) {
    1376        1456 :     d = 1;
    1377        1456 :     e = col_ei(N,1);
    1378        1456 :     mte = matid(N);
    1379        1456 :     ire = mkvec2(identity_perm(n),identity_perm(n));
    1380             :   }
    1381             :   else {
    1382        5054 :     d = usqrt(N/n);
    1383        5054 :     if (d*d*n != N) pari_err(e_MISC, "the algebra must be simple (alg_finite_csa_split 1)");
    1384        5047 :     e = alg_idempotent(al,n,d);
    1385        5033 :     mte = gel(e,2);
    1386        5033 :     ire = gel(e,3);
    1387        5033 :     e = gel(e,1);
    1388             :   }
    1389             : 
    1390             :   /* identify the center */
    1391        6489 :   if (n==1)
    1392             :   {
    1393        2317 :     T = pol_x(v);
    1394        2317 :     primelt = gen_0;
    1395             :   }
    1396             :   else
    1397             :   {
    1398        4172 :     b = alg_decompose(al, Z, 1, &primelt);
    1399        4172 :     if (!gequal0(b)) pari_err(e_MISC, "the algebra must be simple (alg_finite_csa_split 2)");
    1400        4165 :     T = gel(primelt,2);
    1401        4165 :     primelt = gel(primelt,1);
    1402        4165 :     setvarn(T,v);
    1403             :   }
    1404             : 
    1405             :   /* use the ffinit polynomial */
    1406        6482 :   if (n>1)
    1407             :   {
    1408        4165 :     T2 = init_Fq(p,n,v);
    1409        4165 :     setvarn(T,fetch_var_higher());
    1410        4165 :     ro = FpXQX_roots(T2,T,p);
    1411        4165 :     ro = gel(ro,1);
    1412        4165 :     primelt = algpoleval(al,ro,primelt);
    1413        4165 :     T = T2;
    1414        4165 :     delete_var();
    1415             :   }
    1416             : 
    1417             :   /* descend al*e to a vector space over the center */
    1418             :   /* lifte: al*e -> al ; proje: al*e -> al */
    1419        6482 :   lifte = shallowextract(mte,gel(ire,2));
    1420        6482 :   extre = shallowmatextract(mte,gel(ire,1),gel(ire,2));
    1421        6482 :   extre = FpM_inv(extre,p);
    1422        6482 :   proje = rowpermute(mte,gel(ire,1));
    1423        6482 :   proje = FpM_mul(extre,proje,p);
    1424        6482 :   if (n==1)
    1425             :   {
    1426        2317 :     B = lifte;
    1427        2317 :     C = proje;
    1428             :   }
    1429             :   else
    1430             :   {
    1431        4165 :     M = algbasismultable(al,primelt);
    1432        4165 :     M = FpM_mul(M,lifte,p);
    1433        4165 :     M = FpM_mul(proje,M,p);
    1434        4165 :     B = descend(M,n,p,v);
    1435        4165 :     C = gel(B,2);
    1436        4165 :     B = gel(B,1);
    1437        4165 :     B = FpM_mul(lifte,B,p);
    1438        4165 :     C = FqM_mul(C,proje,T,p);
    1439             :   }
    1440             : 
    1441             :   /* compute the isomorphism */
    1442        6482 :   mt = alg_get_multable(al);
    1443        6482 :   map = cgetg(N+1,t_VEC);
    1444        6482 :   M = cgetg(N+1,t_MAT);
    1445       55321 :   for (i=1; i<=N; i++)
    1446             :   {
    1447       48839 :     mx = gel(mt,i);
    1448       48839 :     mx = FpM_mul(mx,B,p);
    1449       48839 :     mx = FqM_mul(C,mx,T,p);
    1450       48839 :     gel(map,i) = mx;
    1451       48839 :     gel(M,i) = RgM_mat2col(mx,d,n);
    1452             :   }
    1453        6482 :   mapi = FpM_inv(M,p);
    1454        6482 :   if (!mapi) pari_err(e_MISC, "the algebra must be simple (alg_finite_csa_split 3)");
    1455        6475 :   return mkvec4(T,map,mapi,M);
    1456             : }
    1457             : 
    1458             : GEN
    1459        3766 : algsplit(GEN al, long v)
    1460             : {
    1461        3766 :   pari_sp av = avma;
    1462             :   GEN res, T, map, mapi, ff, p;
    1463             :   long i,j,k,li,lj;
    1464        3766 :   checkalg(al);
    1465        3759 :   p = alg_get_char(al);
    1466        3759 :   if (gequal0(p))
    1467           7 :     pari_err_IMPL("splitting a characteristic 0 algebra over its center");
    1468        3752 :   res = alg_finite_csa_split(al, v);
    1469        3717 :   T = gel(res,1);
    1470        3717 :   map = gel(res,2);
    1471        3717 :   mapi = gel(res,3);
    1472        3717 :   ff = Tp_to_FF(T,p);
    1473       33593 :   for (i=1; i<lg(map); i++)
    1474             :   {
    1475       29876 :     li = lg(gel(map,i));
    1476       89908 :     for (j=1; j<li; j++)
    1477             :     {
    1478       60032 :       lj = lg(gmael(map,i,j));
    1479      190876 :       for (k=1; k<lj; k++)
    1480      130844 :         gmael3(map,i,j,k) = Fq_to_FF(gmael3(map,i,j,k),ff);
    1481             :     }
    1482             :   }
    1483             : 
    1484        3717 :   return gerepilecopy(av, mkvec2(map,mapi));
    1485             : }
    1486             : 
    1487             : /* multiplication table sanity checks */
    1488             : static GEN
    1489       60916 : check_mt_noid(GEN mt, GEN p)
    1490             : {
    1491             :   long i, l;
    1492       60916 :   GEN MT = cgetg_copy(mt, &l);
    1493       60916 :   if (typ(MT) != t_VEC || l == 1) return NULL;
    1494      300553 :   for (i = 1; i < l; i++)
    1495             :   {
    1496      239686 :     GEN M = gel(mt,i);
    1497      239686 :     if (typ(M) != t_MAT || lg(M) != l || lgcols(M) != l) return NULL;
    1498      239658 :     if (p) M = RgM_to_FpM(M,p);
    1499      239658 :     gel(MT,i) = M;
    1500             :   }
    1501       60867 :   return MT;
    1502             : }
    1503             : static GEN
    1504       60391 : check_mt(GEN mt, GEN p)
    1505             : {
    1506             :   long i;
    1507             :   GEN MT;
    1508       60391 :   MT = check_mt_noid(mt, p);
    1509       60391 :   if (!MT || !ZM_isidentity(gel(MT,1))) return NULL;
    1510      236347 :   for (i=2; i<lg(MT); i++)
    1511      175984 :     if (ZC_is_ei(gmael(MT,i,1)) != i) return NULL;
    1512       60363 :   return MT;
    1513             : }
    1514             : 
    1515             : static GEN
    1516         294 : check_relmt(GEN nf, GEN mt)
    1517             : {
    1518         294 :   long i, l = lg(mt), j, k;
    1519         294 :   GEN MT = gcopy(mt), a, b, d;
    1520         294 :   if (typ(MT) != t_VEC || l == 1) return NULL;
    1521        1225 :   for (i = 1; i < l; i++)
    1522             :   {
    1523         952 :     GEN M = gel(MT,i);
    1524         952 :     if (typ(M) != t_MAT || lg(M) != l || lgcols(M) != l) return NULL;
    1525        4760 :     for (k = 1; k < l; k++)
    1526       21525 :       for (j = 1; j < l; j++)
    1527             :       {
    1528       17717 :         a = gcoeff(M,j,k);
    1529       17717 :         if (typ(a)==t_INT) continue;
    1530        2247 :         b = algtobasis(nf,a);
    1531        2247 :         d = Q_denom(b);
    1532        2247 :         if (!isint1(d))
    1533          14 :           pari_err_DOMAIN("alg_csa_table", "denominator(mt)", "!=", gen_1, mt);
    1534        2233 :         gcoeff(M,j,k) = lift(basistoalg(nf,b));
    1535             :       }
    1536         938 :     if (i > 1 && RgC_is_ei(gel(M,1)) != i) return NULL; /* i = 1 checked at end */
    1537         931 :     gel(MT,i) = M;
    1538             :   }
    1539         273 :   if (!RgM_isidentity(gel(MT,1))) return NULL;
    1540         273 :   return MT;
    1541             : }
    1542             : 
    1543             : int
    1544         532 : algisassociative(GEN mt0, GEN p)
    1545             : {
    1546         532 :   pari_sp av = avma;
    1547             :   long i, j, k, n;
    1548             :   GEN M, mt;
    1549             : 
    1550         532 :   if (checkalg_i(mt0)) { p = alg_get_char(mt0); mt0 = alg_get_multable(mt0); }
    1551         532 :   if (!p) p = gen_0;
    1552         532 :   if (typ(p) != t_INT) pari_err_TYPE("algisassociative",p);
    1553         525 :   mt = check_mt_noid(mt0, isintzero(p)? NULL: p);
    1554         525 :   if (!mt) pari_err_TYPE("algisassociative (mult. table)", mt0);
    1555         490 :   if (!ZM_isidentity(gel(mt,1))) return gc_bool(av,0);
    1556         476 :   n = lg(mt)-1;
    1557         476 :   M = cgetg(n+1,t_MAT);
    1558        3731 :   for (j=1; j<=n; j++) gel(M,j) = cgetg(n+1,t_COL);
    1559        3731 :   for (i=1; i<=n; i++)
    1560             :   {
    1561        3255 :     GEN mi = gel(mt,i);
    1562       36918 :     for (j=1; j<=n; j++) gcoeff(M,i,j) = gel(mi,j); /* ei.ej */
    1563             :   }
    1564        3241 :   for (i=2; i<=n; i++) {
    1565        2772 :     GEN mi = gel(mt,i);
    1566       30373 :     for (j=2; j<=n; j++) {
    1567      381451 :       for (k=2; k<=n; k++) {
    1568             :         GEN x, y;
    1569      353850 :         if (signe(p)) {
    1570      242039 :           x = _tablemul_ej_Fp(mt,gcoeff(M,i,j),k,p);
    1571      242039 :           y = FpM_FpC_mul(mi,gcoeff(M,j,k),p);
    1572             :         }
    1573             :         else {
    1574      111811 :           x = _tablemul_ej(mt,gcoeff(M,i,j),k);
    1575      111811 :           y = RgM_RgC_mul(mi,gcoeff(M,j,k));
    1576             :         }
    1577             :         /* not cmp_universal: must not fail on 0 == Mod(0,2) for instance */
    1578      353850 :         if (!gequal(x,y)) return gc_bool(av,0);
    1579             :       }
    1580             :     }
    1581             :   }
    1582         469 :   return gc_bool(av,1);
    1583             : }
    1584             : 
    1585             : int
    1586         392 : algiscommutative(GEN al) /* assumes e_1 = 1 */
    1587             : {
    1588             :   long i,j,k,N,sp;
    1589             :   GEN mt,a,b,p;
    1590         392 :   checkalg(al);
    1591         392 :   if (alg_type(al) != al_TABLE) return alg_get_degree(al)==1;
    1592         329 :   N = alg_get_absdim(al);
    1593         329 :   mt = alg_get_multable(al);
    1594         329 :   p = alg_get_char(al);
    1595         329 :   sp = signe(p);
    1596        1491 :   for (i=2; i<=N; i++)
    1597        9772 :     for (j=2; j<=N; j++)
    1598       89047 :       for (k=1; k<=N; k++) {
    1599       80514 :         a = gcoeff(gel(mt,i),k,j);
    1600       80514 :         b = gcoeff(gel(mt,j),k,i);
    1601       80514 :         if (sp) {
    1602       73423 :           if (cmpii(Fp_red(a,p), Fp_red(b,p))) return 0;
    1603             :         }
    1604        7091 :         else if (gcmp(a,b)) return 0;
    1605             :       }
    1606         252 :   return 1;
    1607             : }
    1608             : 
    1609             : int
    1610         392 : algissemisimple(GEN al)
    1611             : {
    1612         392 :   pari_sp av = avma;
    1613             :   GEN rad;
    1614         392 :   checkalg(al);
    1615         392 :   if (alg_type(al) != al_TABLE) return 1;
    1616         329 :   rad = algradical(al);
    1617         329 :   set_avma(av);
    1618         329 :   return gequal0(rad);
    1619             : }
    1620             : 
    1621             : /* ss : known to be semisimple */
    1622             : int
    1623         301 : algissimple(GEN al, long ss)
    1624             : {
    1625         301 :   pari_sp av = avma;
    1626             :   GEN Z, dec, p;
    1627         301 :   checkalg(al);
    1628         301 :   if (alg_type(al) != al_TABLE) return 1;
    1629         245 :   if (!ss && !algissemisimple(al)) return 0;
    1630             : 
    1631         203 :   p = alg_get_char(al);
    1632         203 :   if (signe(p)) Z = algprimesubalg(al);
    1633         112 :   else          Z = algtablecenter(al);
    1634             : 
    1635         203 :   if (lg(Z) == 2) {/* dim Z = 1 */
    1636         112 :     set_avma(av);
    1637         112 :     return 1;
    1638             :   }
    1639          91 :   dec = alg_decompose(al, Z, 1, NULL);
    1640          91 :   set_avma(av);
    1641          91 :   return gequal0(dec);
    1642             : }
    1643             : 
    1644             : static long
    1645         546 : is_place_emb(GEN nf, GEN pl)
    1646             : {
    1647             :   long r, r1, r2;
    1648         546 :   if (typ(pl) != t_INT) pari_err_TYPE("is_place_emb", pl);
    1649         525 :   if (signe(pl)<=0) pari_err_DOMAIN("is_place_emb", "pl", "<=", gen_0, pl);
    1650         518 :   nf_get_sign(nf,&r1,&r2); r = r1+r2;
    1651         518 :   if (cmpiu(pl,r)>0) pari_err_DOMAIN("is_place_emb", "pl", ">", utoi(r), pl);
    1652         497 :   return itou(pl);
    1653             : }
    1654             : 
    1655             : static long
    1656         497 : alghasse_emb(GEN al, long emb)
    1657             : {
    1658         497 :   GEN nf = alg_get_center(al);
    1659         497 :   long r1 = nf_get_r1(nf);
    1660         497 :   return (emb <= r1)? alg_get_hasse_i(al)[emb]: 0;
    1661             : }
    1662             : 
    1663             : static long
    1664        1799 : alghasse_pr(GEN al, GEN pr)
    1665             : {
    1666        1799 :   GEN hf = alg_get_hasse_f(al);
    1667        1792 :   long i = tablesearch(gel(hf,1), pr, &cmp_prime_ideal);
    1668        1792 :   return i? gel(hf,2)[i]: 0;
    1669             : }
    1670             : 
    1671             : static long
    1672        2380 : alghasse_0(GEN al, GEN pl)
    1673             : {
    1674             :   long ta;
    1675             :   GEN pr, nf;
    1676        2380 :   ta = alg_type(al);
    1677        2380 :   if (ta == al_REAL) return algreal_dim(al)!=1;
    1678        2359 :   if (!pl)
    1679           7 :     pari_err(e_MISC, "must provide a place pl");
    1680        2352 :   if (ta == al_CSA && !alg_is_asq(al))
    1681           7 :     pari_err_IMPL("computation of Hasse invariants over table CSA");
    1682        2345 :   if ((pr = get_prid(pl))) return alghasse_pr(al, pr);
    1683         546 :   nf = alg_get_center(al);
    1684         546 :   return alghasse_emb(al, is_place_emb(nf, pl));
    1685             : }
    1686             : GEN
    1687         567 : alghasse(GEN al, GEN pl)
    1688             : {
    1689             :   long h;
    1690         567 :   checkalg(al);
    1691         567 :   if (alg_type(al) == al_TABLE) pari_err_TYPE("alghasse [use alginit]",al);
    1692         560 :   h = alghasse_0(al,pl);
    1693         490 :   return sstoQ(h, alg_get_degree(al));
    1694             : }
    1695             : 
    1696             : /* h >= 0, d >= 0 */
    1697             : static long
    1698        2219 : indexfromhasse(long h, long d) { return d/ugcd(h,d); }
    1699             : 
    1700             : long
    1701        2191 : algindex(GEN al, GEN pl)
    1702             : {
    1703             :   long d, res, i, l, ta;
    1704             :   GEN hi, hf;
    1705             : 
    1706        2191 :   checkalg(al);
    1707        2184 :   ta = alg_type(al);
    1708        2184 :   if (ta == al_TABLE) pari_err_TYPE("algindex [use alginit]",al);
    1709        2177 :   if (ta == al_REAL) return algreal_dim(al)==1 ? 1 : 2;
    1710        2093 :   d = alg_get_degree(al);
    1711        2093 :   if (pl) return indexfromhasse(alghasse_0(al,pl), d);
    1712             : 
    1713             :   /* else : global index */
    1714         273 :   res = 1;
    1715         273 :   hi = alg_get_hasse_i(al); l = lg(hi);
    1716         518 :   for (i=1; i<l && res!=d; i++) res = ulcm(res, indexfromhasse(hi[i],d));
    1717         273 :   hf = gel(alg_get_hasse_f(al), 2); l = lg(hf);
    1718         420 :   for (i=1; i<l && res!=d; i++) res = ulcm(res, indexfromhasse(hf[i],d));
    1719         266 :   return res;
    1720             : }
    1721             : 
    1722             : int
    1723         287 : algisdivision(GEN al, GEN pl)
    1724             : {
    1725         287 :   checkalg(al);
    1726         287 :   if (alg_type(al) == al_TABLE) {
    1727          21 :     if (!algissimple(al,0)) return 0;
    1728          14 :     if (algiscommutative(al)) return 1;
    1729           7 :     pari_err_IMPL("algisdivision for table algebras");
    1730             :   }
    1731         266 :   return algindex(al,pl) == alg_get_degree(al);
    1732             : }
    1733             : 
    1734             : int
    1735        1652 : algissplit(GEN al, GEN pl)
    1736             : {
    1737        1652 :   checkalg(al);
    1738        1652 :   if (alg_type(al) == al_TABLE) pari_err_TYPE("algissplit [use alginit]", al);
    1739        1638 :   return algindex(al,pl) == 1;
    1740             : }
    1741             : 
    1742             : int
    1743        1386 : algisramified(GEN al, GEN pl) { return !algissplit(al,pl); }
    1744             : 
    1745             : /* sorted; infinite places first */
    1746             : GEN
    1747         364 : algramifiedplaces(GEN al)
    1748             : {
    1749         364 :   pari_sp av = avma;
    1750             :   GEN ram, hf, hi, Lpr;
    1751             :   long r1, count, i, ta;
    1752         364 :   checkalg(al);
    1753         364 :   ta = alg_type(al);
    1754         364 :   if (ta != al_CSA && ta != al_CYCLIC)
    1755          14 :     pari_err_TYPE("algramifiedplaces [not a central simple algebra"
    1756             :         " over a number field]", al);
    1757         350 :   r1 = nf_get_r1(alg_get_center(al));
    1758         350 :   hi = alg_get_hasse_i(al);
    1759         336 :   hf = alg_get_hasse_f(al);
    1760         322 :   Lpr = gel(hf,1);
    1761         322 :   hf = gel(hf,2);
    1762         322 :   ram = cgetg(r1+lg(Lpr), t_VEC);
    1763         322 :   count = 0;
    1764         889 :   for (i=1; i<=r1; i++)
    1765         567 :     if (hi[i]) {
    1766         224 :       count++;
    1767         224 :       gel(ram,count) = stoi(i);
    1768             :     }
    1769        1084 :   for (i=1; i<lg(Lpr); i++)
    1770         762 :     if (hf[i]) {
    1771         322 :       count++;
    1772         322 :       gel(ram,count) = gel(Lpr,i);
    1773             :     }
    1774         322 :   setlg(ram, count+1);
    1775         322 :   return gerepilecopy(av, ram);
    1776             : }
    1777             : 
    1778             : /* no GC */
    1779             : static int
    1780         154 : algissimilar_i(GEN al, GEN al2, GEN pl)
    1781             : {
    1782             :   GEN ram, ram2;
    1783             :   long i;
    1784         154 :   if (pl) return gequal(alghasse(al,pl), alghasse(al2,pl));
    1785          84 :   ram = algramifiedplaces(al);
    1786          63 :   ram2 = algramifiedplaces(al2);
    1787          63 :   if(!gequal(ram, ram2)) return 0;
    1788          84 :   for (i=1; i<lg(ram); i++)
    1789          49 :     if (!gequal(alghasse(al,gel(ram,i)), alghasse(al2,gel(ram,i))))
    1790           7 :       return 0;
    1791          35 :   return 1;
    1792             : }
    1793             : 
    1794             : int
    1795         245 : algisisom(GEN al, GEN al2, GEN pl)
    1796             : {
    1797         245 :   pari_sp av = avma;
    1798             :   long t, d;
    1799         245 :   checkalg(al);
    1800         238 :   checkalg(al2);
    1801         231 :   t = alg_type(al);
    1802         231 :   if (t != al_CYCLIC && t != al_CSA)
    1803          14 :     pari_err_TYPE("algisisom [al: apply alginit()]", al);
    1804         217 :   t = alg_type(al2);
    1805         217 :   if (t != al_CYCLIC && t != al_CSA)
    1806          14 :     pari_err_TYPE("algisisom [al2: apply alginit()]", al2);
    1807         203 :   if (!gequal(nf_get_pol(alg_get_center(al)), nf_get_pol(alg_get_center(al2))))
    1808           7 :     pari_err(e_MISC, "base fields must be identical in algisisom");
    1809         196 :   d = alg_get_degree(al);
    1810         196 :   if (d != alg_get_degree(al2)) return gc_int(av, 0);
    1811         189 :   if (d == 1) return gc_int(av, 1);
    1812         154 :   return gc_int(av, algissimilar_i(al,al2,pl));
    1813             : }
    1814             : 
    1815             : GEN
    1816          84 : algnewprec_shallow(GEN al, long prec)
    1817             : {
    1818             :   GEN al2;
    1819          84 :   long t = algtype(al);
    1820          84 :   if (t != al_CYCLIC && t != al_CSA) return al;
    1821          56 :   al2 = shallowcopy(al);
    1822          56 :   gel(al2,1) = rnfnewprec_shallow(gel(al2,1), prec);
    1823          56 :   return al2;
    1824             : };
    1825             : 
    1826             : GEN
    1827          84 : algnewprec(GEN al, long prec)
    1828             : {
    1829          84 :   pari_sp av = avma;
    1830          84 :   GEN al2 = algnewprec_shallow(al, prec);
    1831          84 :   return gerepilecopy(av, al2);
    1832             : }
    1833             : 
    1834             : /** OPERATIONS ON ELEMENTS operations.c **/
    1835             : 
    1836             : static long
    1837     1898306 : alg_model0(GEN al, GEN x)
    1838             : {
    1839     1898306 :   long t, N = alg_get_absdim(al), lx = lg(x), d, n, D, i;
    1840     1898306 :   if (typ(x) == t_MAT) return al_MATRIX;
    1841     1852183 :   if (typ(x) != t_COL) return al_INVALID;
    1842     1852106 :   if (N == 1) {
    1843        7679 :     if (lx != 2) return al_INVALID;
    1844        7658 :     switch(typ(gel(x,1)))
    1845             :     {
    1846        4928 :       case t_INT: case t_FRAC: return al_TRIVIAL; /* cannot distinguish basis and alg from size */
    1847        2723 :       case t_POL: case t_POLMOD: return al_ALGEBRAIC;
    1848           7 :       default: return al_INVALID;
    1849             :     }
    1850             :   }
    1851             : 
    1852     1844427 :   switch(alg_type(al)) {
    1853      735373 :     case al_TABLE:
    1854      735373 :       if (lx != N+1) return al_INVALID;
    1855      735352 :       return al_BASIS;
    1856      942741 :     case al_CYCLIC:
    1857      942741 :       d = alg_get_degree(al);
    1858      942741 :       if (lx == N+1) return al_BASIS;
    1859      113822 :       if (lx == d+1) return al_ALGEBRAIC;
    1860          49 :       return al_INVALID;
    1861      166313 :     case al_CSA:
    1862      166313 :       D = alg_get_dim(al);
    1863      166313 :       n = nf_get_degree(alg_get_center(al));
    1864      166313 :       if (n == 1) {
    1865       22652 :         if (lx != D+1) return al_INVALID;
    1866      104433 :         for (i=1; i<=D; i++) {
    1867       84007 :           t = typ(gel(x,i));
    1868       84007 :           if (t == t_POL || t == t_POLMOD)  return al_ALGEBRAIC;
    1869             :             /* TODO t_COL for coefficients in basis form ? */
    1870             :         }
    1871       20426 :         return al_BASIS;
    1872             :       }
    1873             :       else {
    1874      143661 :         if (lx == N+1) return al_BASIS;
    1875       25795 :         if (lx == D+1) return al_ALGEBRAIC;
    1876           7 :         return al_INVALID;
    1877             :       }
    1878             :   }
    1879             :   return al_INVALID; /* LCOV_EXCL_LINE */
    1880             : }
    1881             : 
    1882             : static void
    1883     1898117 : checkalgx(GEN x, long model)
    1884             : {
    1885             :   long t, i;
    1886     1898117 :   switch(model) {
    1887     1702563 :     case al_BASIS:
    1888    22658105 :       for (i=1; i<lg(x); i++) {
    1889    20955549 :         t = typ(gel(x,i));
    1890    20955549 :         if (t != t_INT && t != t_FRAC)
    1891           7 :           pari_err_TYPE("checkalgx", gel(x,i));
    1892             :       }
    1893     1702556 :       return;
    1894      149431 :     case al_TRIVIAL:
    1895             :     case al_ALGEBRAIC:
    1896      505564 :       for (i=1; i<lg(x); i++) {
    1897      356140 :         t = typ(gel(x,i));
    1898      356140 :         if (t != t_INT && t != t_FRAC && t != t_POL && t != t_POLMOD)
    1899             :           /* TODO t_COL ? */
    1900           7 :           pari_err_TYPE("checkalgx", gel(x,i));
    1901             :       }
    1902      149424 :       return;
    1903             :   }
    1904             : }
    1905             : 
    1906             : long
    1907     1898306 : alg_model(GEN al, GEN x)
    1908             : {
    1909     1898306 :   long res = alg_model0(al, x);
    1910     1898306 :   if (res == al_INVALID) pari_err_TYPE("alg_model", x);
    1911     1898117 :   checkalgx(x, res); return res;
    1912             : }
    1913             : 
    1914             : static long
    1915      462910 : H_model0(GEN x)
    1916             : {
    1917             :   long i;
    1918      462910 :   switch(typ(x))
    1919             :   {
    1920       15274 :     case t_INT:
    1921             :     case t_FRAC:
    1922             :     case t_REAL:
    1923             :     case t_COMPLEX:
    1924       15274 :       return H_SCALAR;
    1925       10157 :     case t_MAT:
    1926       10157 :       return H_MATRIX;
    1927      437367 :     case t_COL:
    1928      437367 :       if (lg(x)!=5) return H_INVALID;
    1929     2186688 :       for (i=1; i<=4; i++) if (!is_real_t(typ(gel(x,i)))) return H_INVALID;
    1930      437332 :       return H_QUATERNION;
    1931         112 :     default:
    1932         112 :       return al_INVALID;
    1933             :   }
    1934             : }
    1935             : 
    1936             : static long
    1937      462910 : H_model(GEN x)
    1938             : {
    1939      462910 :   long res = H_model0(x);
    1940      462910 :   if (res == H_INVALID) pari_err_TYPE("H_model", x);
    1941      462763 :   return res;
    1942             : }
    1943             : 
    1944             : static GEN
    1945         756 : alC_add_i(GEN al, GEN x, GEN y, long lx)
    1946             : {
    1947         756 :   GEN A = cgetg(lx, t_COL);
    1948             :   long i;
    1949        2296 :   for (i=1; i<lx; i++) gel(A,i) = algadd(al, gel(x,i), gel(y,i));
    1950         749 :   return A;
    1951             : }
    1952             : static GEN
    1953         406 : alM_add(GEN al, GEN x, GEN y)
    1954             : {
    1955         406 :   long lx = lg(x), l, j;
    1956             :   GEN z;
    1957         406 :   if (lg(y) != lx) pari_err_DIM("alM_add (rows)");
    1958         392 :   if (lx == 1) return cgetg(1, t_MAT);
    1959         385 :   z = cgetg(lx, t_MAT); l = lgcols(x);
    1960         385 :   if (lgcols(y) != l) pari_err_DIM("alM_add (columns)");
    1961        1127 :   for (j = 1; j < lx; j++) gel(z,j) = alC_add_i(al, gel(x,j), gel(y,j), l);
    1962         371 :   return z;
    1963             : }
    1964             : static GEN
    1965       17745 : H_add(GEN x, GEN y)
    1966             : {
    1967       17745 :   long tx = H_model(x), ty = H_model(y);
    1968       17724 :   if ((tx==H_MATRIX) ^ (ty==H_MATRIX)) pari_err_TYPE2("H_add", x, y);
    1969       17710 :   if (tx>ty) { swap(x,y); lswap(tx,ty); }
    1970       17710 :   switch (tx)
    1971             :   {
    1972         105 :     case H_MATRIX: /* both H_MATRIX */ return alM_add(NULL, x, y);
    1973       16681 :     case H_QUATERNION: /* both H_QUATERNION */ return gadd(x,y);
    1974         924 :     case H_SCALAR:
    1975         924 :       if (ty == H_SCALAR) return gadd(x,y);
    1976             :       else /* ty == H_QUATERNION */
    1977             :       {
    1978         217 :         pari_sp av = avma;
    1979         217 :         GEN res = gcopy(y), im;
    1980         217 :         gel(res,1) = gadd(gel(res,1), real_i(x));
    1981         217 :         im = imag_i(x);
    1982         217 :         if (im != gen_0) gel(res,2) = gadd(gel(res,2), im);
    1983         217 :         return gerepileupto(av, res);
    1984             :       }
    1985             :   }
    1986             :   return NULL; /*LCOV_EXCL_LINE*/
    1987             : }
    1988             : GEN
    1989       54999 : algadd(GEN al, GEN x, GEN y)
    1990             : {
    1991       54999 :   pari_sp av = avma;
    1992             :   long tx, ty;
    1993             :   GEN p;
    1994       54999 :   checkalg(al);
    1995       54999 :   if (alg_type(al)==al_REAL) return H_add(x,y);
    1996       37254 :   tx = alg_model(al,x);
    1997       37247 :   ty = alg_model(al,y);
    1998       37247 :   p = alg_get_char(al);
    1999       37247 :   if (signe(p)) return FpC_add(x,y,p);
    2000       37114 :   if (tx==ty) {
    2001       36232 :     if (tx!=al_MATRIX) return gadd(x,y);
    2002         301 :     return gerepilecopy(av, alM_add(al,x,y));
    2003             :   }
    2004         882 :   if (tx==al_ALGEBRAIC) x = algalgtobasis(al,x);
    2005         882 :   if (ty==al_ALGEBRAIC) y = algalgtobasis(al,y);
    2006         882 :   return gerepileupto(av, gadd(x,y));
    2007             : }
    2008             : 
    2009             : static GEN
    2010          98 : H_neg(GEN x)
    2011             : {
    2012          98 :   (void)H_model(x);
    2013          70 :   return gneg(x);
    2014             : }
    2015             : 
    2016             : GEN
    2017         245 : algneg(GEN al, GEN x)
    2018             : {
    2019         245 :   checkalg(al);
    2020         245 :   if (alg_type(al)==al_REAL) return H_neg(x);
    2021         147 :   (void)alg_model(al,x);
    2022         140 :   return gneg(x);
    2023             : }
    2024             : 
    2025             : static GEN
    2026         210 : alC_sub_i(GEN al, GEN x, GEN y, long lx)
    2027             : {
    2028             :   long i;
    2029         210 :   GEN A = cgetg(lx, t_COL);
    2030         630 :   for (i=1; i<lx; i++) gel(A,i) = algsub(al, gel(x,i), gel(y,i));
    2031         210 :   return A;
    2032             : }
    2033             : static GEN
    2034         126 : alM_sub(GEN al, GEN x, GEN y)
    2035             : {
    2036         126 :   long lx = lg(x), l, j;
    2037             :   GEN z;
    2038         126 :   if (lg(y) != lx) pari_err_DIM("alM_sub (rows)");
    2039         119 :   if (lx == 1) return cgetg(1, t_MAT);
    2040         112 :   z = cgetg(lx, t_MAT); l = lgcols(x);
    2041         112 :   if (lgcols(y) != l) pari_err_DIM("alM_sub (columns)");
    2042         315 :   for (j = 1; j < lx; j++) gel(z,j) = alC_sub_i(al, gel(x,j), gel(y,j), l);
    2043         105 :   return z;
    2044             : }
    2045             : GEN
    2046        1127 : algsub(GEN al, GEN x, GEN y)
    2047             : {
    2048             :   long tx, ty;
    2049        1127 :   pari_sp av = avma;
    2050             :   GEN p;
    2051        1127 :   checkalg(al);
    2052        1127 :   if (alg_type(al)==al_REAL) return gerepileupto(av, algadd(NULL,x,gneg(y)));
    2053         973 :   tx = alg_model(al,x);
    2054         966 :   ty = alg_model(al,y);
    2055         966 :   p = alg_get_char(al);
    2056         966 :   if (signe(p)) return FpC_sub(x,y,p);
    2057         875 :   if (tx==ty) {
    2058         553 :     if (tx != al_MATRIX) return gsub(x,y);
    2059         126 :     return gerepilecopy(av, alM_sub(al,x,y));
    2060             :   }
    2061         322 :   if (tx==al_ALGEBRAIC) x = algalgtobasis(al,x);
    2062         322 :   if (ty==al_ALGEBRAIC) y = algalgtobasis(al,y);
    2063         322 :   return gerepileupto(av, gsub(x,y));
    2064             : }
    2065             : 
    2066             : static GEN
    2067        1659 : algalgmul_cyc(GEN al, GEN x, GEN y)
    2068             : {
    2069        1659 :   pari_sp av = avma;
    2070        1659 :   long n = alg_get_degree(al), i, k;
    2071             :   GEN xalg, yalg, res, rnf, auts, sum, b, prod, autx;
    2072        1659 :   rnf = alg_get_splittingfield(al);
    2073        1659 :   auts = alg_get_auts(al);
    2074        1659 :   b = alg_get_b(al);
    2075             : 
    2076        1659 :   xalg = cgetg(n+1, t_COL);
    2077        4935 :   for (i=0; i<n; i++)
    2078        3276 :     gel(xalg,i+1) = lift_shallow(rnfbasistoalg(rnf,gel(x,i+1)));
    2079             : 
    2080        1659 :   yalg = cgetg(n+1, t_COL);
    2081        4935 :   for (i=0; i<n; i++) gel(yalg,i+1) = rnfbasistoalg(rnf,gel(y,i+1));
    2082             : 
    2083        1659 :   res = cgetg(n+1,t_COL);
    2084        4935 :   for (k=0; k<n; k++) {
    2085        3276 :     gel(res,k+1) = gmul(gel(xalg,k+1),gel(yalg,1));
    2086        5166 :     for (i=1; i<=k; i++) {
    2087        1890 :       autx = poleval(gel(xalg,k-i+1),gel(auts,i));
    2088        1890 :       prod = gmul(autx,gel(yalg,i+1));
    2089        1890 :       gel(res,k+1) = gadd(gel(res,k+1), prod);
    2090             :     }
    2091             : 
    2092        3276 :     sum = gen_0;
    2093        5166 :     for (; i<n; i++) {
    2094        1890 :       autx = poleval(gel(xalg,k+n-i+1),gel(auts,i));
    2095        1890 :       prod = gmul(autx,gel(yalg,i+1));
    2096        1890 :       sum = gadd(sum,prod);
    2097             :     }
    2098        3276 :     sum = gmul(b,sum);
    2099             : 
    2100        3276 :     gel(res,k+1) = gadd(gel(res,k+1),sum);
    2101             :   }
    2102             : 
    2103        1659 :   return gerepilecopy(av, res);
    2104             : }
    2105             : 
    2106             : static GEN
    2107      521822 : _tablemul(GEN mt, GEN x, GEN y)
    2108             : {
    2109      521822 :   pari_sp av = avma;
    2110      521822 :   long D = lg(mt)-1, i;
    2111      521822 :   GEN res = NULL;
    2112     8016946 :   for (i=1; i<=D; i++) {
    2113     7495124 :     GEN c = gel(x,i);
    2114     7495124 :     if (!gequal0(c)) {
    2115     1755676 :       GEN My = RgM_RgC_mul(gel(mt,i),y);
    2116     1755676 :       GEN t = RgC_Rg_mul(My,c);
    2117     1755676 :       res = res? RgC_add(res,t): t;
    2118             :     }
    2119             :   }
    2120      521822 :   if (!res) { set_avma(av); return zerocol(D); }
    2121      520912 :   return gerepileupto(av, res);
    2122             : }
    2123             : 
    2124             : static GEN
    2125      300428 : _tablemul_Fp(GEN mt, GEN x, GEN y, GEN p)
    2126             : {
    2127      300428 :   pari_sp av = avma;
    2128      300428 :   long D = lg(mt)-1, i;
    2129      300428 :   GEN res = NULL;
    2130     2869101 :   for (i=1; i<=D; i++) {
    2131     2568673 :     GEN c = gel(x,i);
    2132     2568673 :     if (signe(c)) {
    2133      533353 :       GEN My = FpM_FpC_mul(gel(mt,i),y,p);
    2134      533353 :       GEN t = FpC_Fp_mul(My,c,p);
    2135      533353 :       res = res? FpC_add(res,t,p): t;
    2136             :     }
    2137             :   }
    2138      300428 :   if (!res) { set_avma(av); return zerocol(D); }
    2139      299889 :   return gerepileupto(av, res);
    2140             : }
    2141             : 
    2142             : /* x*ej */
    2143             : static GEN
    2144      111811 : _tablemul_ej(GEN mt, GEN x, long j)
    2145             : {
    2146      111811 :   pari_sp av = avma;
    2147      111811 :   long D = lg(mt)-1, i;
    2148      111811 :   GEN res = NULL;
    2149     1707468 :   for (i=1; i<=D; i++) {
    2150     1595657 :     GEN c = gel(x,i);
    2151     1595657 :     if (!gequal0(c)) {
    2152      162302 :       GEN My = gel(gel(mt,i),j);
    2153      162302 :       GEN t = RgC_Rg_mul(My,c);
    2154      162302 :       res = res? RgC_add(res,t): t;
    2155             :     }
    2156             :   }
    2157      111811 :   if (!res) { set_avma(av); return zerocol(D); }
    2158      111629 :   return gerepileupto(av, res);
    2159             : }
    2160             : static GEN
    2161      242039 : _tablemul_ej_Fp(GEN mt, GEN x, long j, GEN p)
    2162             : {
    2163      242039 :   pari_sp av = avma;
    2164      242039 :   long D = lg(mt)-1, i;
    2165      242039 :   GEN res = NULL;
    2166     4364787 :   for (i=1; i<=D; i++) {
    2167     4122748 :     GEN c = gel(x,i);
    2168     4122748 :     if (!gequal0(c)) {
    2169      289954 :       GEN My = gel(gel(mt,i),j);
    2170      289954 :       GEN t = FpC_Fp_mul(My,c,p);
    2171      289954 :       res = res? FpC_add(res,t,p): t;
    2172             :     }
    2173             :   }
    2174      242039 :   if (!res) { set_avma(av); return zerocol(D); }
    2175      241927 :   return gerepileupto(av, res);
    2176             : }
    2177             : 
    2178             : static GEN
    2179      619723 : _tablemul_ej_Fl(GEN mt, GEN x, long j, ulong p)
    2180             : {
    2181      619723 :   pari_sp av = avma;
    2182      619723 :   long D = lg(mt)-1, i;
    2183      619723 :   GEN res = NULL;
    2184    13815540 :   for (i=1; i<=D; i++) {
    2185    13195817 :     ulong c = x[i];
    2186    13195817 :     if (c) {
    2187     1274519 :       GEN My = gel(gel(mt,i),j);
    2188     1274519 :       GEN t = Flv_Fl_mul(My,c, p);
    2189     1274519 :       res = res? Flv_add(res,t, p): t;
    2190             :     }
    2191             :   }
    2192      619723 :   if (!res) { set_avma(av); return zero_Flv(D); }
    2193      619723 :   return gerepileupto(av, res);
    2194             : }
    2195             : 
    2196             : static GEN
    2197         686 : algalgmul_csa(GEN al, GEN x, GEN y)
    2198             : {
    2199         686 :   GEN z, nf = alg_get_center(al);
    2200             :   long i;
    2201         686 :   z = _tablemul(alg_get_relmultable(al), x, y);
    2202        2485 :   for (i=1; i<lg(z); i++)
    2203        1799 :     gel(z,i) = basistoalg(nf,gel(z,i));
    2204         686 :   return z;
    2205             : }
    2206             : 
    2207             : /* assumes x and y in algebraic form */
    2208             : static GEN
    2209        2345 : algalgmul(GEN al, GEN x, GEN y)
    2210             : {
    2211        2345 :   switch(alg_type(al))
    2212             :   {
    2213        1659 :     case al_CYCLIC: return algalgmul_cyc(al, x, y);
    2214         686 :     case al_CSA: return algalgmul_csa(al, x, y);
    2215             :   }
    2216             :   return NULL; /*LCOV_EXCL_LINE*/
    2217             : }
    2218             : 
    2219             : static GEN
    2220      821564 : algbasismul(GEN al, GEN x, GEN y)
    2221             : {
    2222      821564 :   GEN mt = alg_get_multable(al), p = alg_get_char(al);
    2223      821564 :   if (signe(p)) return _tablemul_Fp(mt, x, y, p);
    2224      521136 :   return _tablemul(mt, x, y);
    2225             : }
    2226             : 
    2227             : /* x[i,]*y. Assume lg(x) > 1 and 0 < i < lgcols(x) */
    2228             : static GEN
    2229      119651 : alMrow_alC_mul_i(GEN al, GEN x, GEN y, long i, long lx)
    2230             : {
    2231      119651 :   pari_sp av = avma;
    2232      119651 :   GEN c = algmul(al,gcoeff(x,i,1),gel(y,1)), ZERO;
    2233             :   long k;
    2234      119651 :   ZERO = zerocol(alg_get_absdim(al));
    2235      273308 :   for (k = 2; k < lx; k++)
    2236             :   {
    2237      153657 :     GEN t = algmul(al, gcoeff(x,i,k), gel(y,k));
    2238      153657 :     if (!gequal(t,ZERO)) c = algadd(al, c, t);
    2239             :   }
    2240      119651 :   return gerepilecopy(av, c);
    2241             : }
    2242             : /* return x * y, 1 < lx = lg(x), l = lgcols(x) */
    2243             : static GEN
    2244       54502 : alM_alC_mul_i(GEN al, GEN x, GEN y, long lx, long l)
    2245             : {
    2246       54502 :   GEN z = cgetg(l,t_COL);
    2247             :   long i;
    2248      174153 :   for (i=1; i<l; i++) gel(z,i) = alMrow_alC_mul_i(al,x,y,i,lx);
    2249       54502 :   return z;
    2250             : }
    2251             : static GEN
    2252       25627 : alM_mul(GEN al, GEN x, GEN y)
    2253             : {
    2254       25627 :   long j, l, lx=lg(x), ly=lg(y);
    2255             :   GEN z;
    2256       25627 :   if (ly==1) return cgetg(1,t_MAT);
    2257       25529 :   if (lx != lgcols(y)) pari_err_DIM("alM_mul");
    2258       25508 :   if (lx==1) return zeromat(0, ly-1);
    2259       25501 :   l = lgcols(x); z = cgetg(ly,t_MAT);
    2260       80003 :   for (j=1; j<ly; j++) gel(z,j) = alM_alC_mul_i(al,x,gel(y,j),lx,l);
    2261       25501 :   return z;
    2262             : }
    2263             : 
    2264             : static void
    2265      205639 : H_compo(GEN x, GEN* a, GEN* b, GEN* c, GEN* d)
    2266             : {
    2267      205639 :   switch(H_model(x))
    2268             :   {
    2269        5173 :     case H_SCALAR:
    2270        5173 :       *a = real_i(x);
    2271        5173 :       *b = imag_i(x);
    2272        5173 :       *c = gen_0;
    2273        5173 :       *d = gen_0;
    2274        5173 :       return;
    2275      200466 :     case H_QUATERNION:
    2276      200466 :       *a = gel(x,1);
    2277      200466 :       *b = gel(x,2);
    2278      200466 :       *c = gel(x,3);
    2279      200466 :       *d = gel(x,4);
    2280      200466 :       return;
    2281             :     default: *a = *b = *c = *d = NULL; return; /*LCOV_EXCL_LINE*/
    2282             :   }
    2283             : }
    2284             : static GEN
    2285      108129 : H_mul(GEN x, GEN y)
    2286             : {
    2287      108129 :   pari_sp av = avma;
    2288             :   GEN a,b,c,d,u,v,w,z;
    2289      108129 :   long tx = H_model(x), ty = H_model(y);
    2290      108115 :   if ((tx==H_MATRIX) ^ (ty==H_MATRIX)) pari_err_TYPE2("H_mul", x, y);
    2291      108108 :   if (tx == H_MATRIX) /* both H_MATRIX */ return alM_mul(NULL, x, y);
    2292      103817 :   if (tx == H_SCALAR && ty == H_SCALAR) return gmul(x,y);
    2293      102620 :   H_compo(x,&a,&b,&c,&d);
    2294      102620 :   H_compo(y,&u,&v,&w,&z);
    2295      102620 :   return gerepilecopy(av,mkcol4(
    2296             :         gsub(gmul(a,u), gadd(gadd(gmul(b,v),gmul(c,w)),gmul(d,z))),
    2297             :         gsub(gadd(gmul(a,v),gadd(gmul(b,u),gmul(c,z))), gmul(d,w)),
    2298             :         gsub(gadd(gmul(a,w),gadd(gmul(c,u),gmul(d,v))), gmul(b,z)),
    2299             :         gsub(gadd(gmul(a,z),gadd(gmul(b,w),gmul(d,u))), gmul(c,v))
    2300             :         ));
    2301             : }
    2302             : 
    2303             : GEN
    2304      821832 : algmul(GEN al, GEN x, GEN y)
    2305             : {
    2306      821832 :   pari_sp av = avma;
    2307             :   long tx, ty;
    2308      821832 :   checkalg(al);
    2309      821832 :   if (alg_type(al)==al_REAL) return H_mul(x,y);
    2310      713983 :   tx = alg_model(al,x);
    2311      713969 :   ty = alg_model(al,y);
    2312      713969 :   if (tx==al_MATRIX) {
    2313       20832 :     if (ty==al_MATRIX) return alM_mul(al,x,y);
    2314           7 :     pari_err_TYPE("algmul", y);
    2315             :   }
    2316      693137 :   if (signe(alg_get_char(al))) return algbasismul(al,x,y);
    2317      521150 :   if (tx==al_TRIVIAL) retmkcol(gmul(gel(x,1),gel(y,1)));
    2318      520450 :   if (tx==al_ALGEBRAIC && ty==al_ALGEBRAIC) return algalgmul(al,x,y);
    2319      518924 :   if (tx==al_ALGEBRAIC) x = algalgtobasis(al,x);
    2320      518924 :   if (ty==al_ALGEBRAIC) y = algalgtobasis(al,y);
    2321      518924 :   return gerepileupto(av,algbasismul(al,x,y));
    2322             : }
    2323             : 
    2324             : static GEN
    2325         329 : H_sqr(GEN x)
    2326             : {
    2327         329 :   pari_sp av = avma;
    2328         329 :   long tx = H_model(x);
    2329             :   GEN a,b,c,d;
    2330         308 :   if (tx == H_SCALAR) return gsqr(x);
    2331         224 :   if (tx == H_MATRIX) return H_mul(x,x);
    2332         119 :   H_compo(x,&a,&b,&c,&d);
    2333         119 :   return gerepilecopy(av, mkcol4(
    2334             :         gsub(gsqr(a), gadd(gsqr(b),gadd(gsqr(c),gsqr(d)))),
    2335             :         gshift(gmul(a,b),1),
    2336             :         gshift(gmul(a,c),1),
    2337             :         gshift(gmul(a,d),1)
    2338             :         ));
    2339             : }
    2340             : 
    2341             : GEN
    2342      127727 : algsqr(GEN al, GEN x)
    2343             : {
    2344      127727 :   pari_sp av = avma;
    2345             :   long tx;
    2346      127727 :   checkalg(al);
    2347      127692 :   if (alg_type(al)==al_REAL) return H_sqr(x);
    2348      127363 :   tx = alg_model(al,x);
    2349      127293 :   if (tx==al_MATRIX) return gerepilecopy(av,alM_mul(al,x,x));
    2350      126782 :   if (signe(alg_get_char(al))) return algbasismul(al,x,x);
    2351        3381 :   if (tx==al_TRIVIAL) retmkcol(gsqr(gel(x,1)));
    2352        3031 :   if (tx==al_ALGEBRAIC) return algalgmul(al,x,x);
    2353        2212 :   return gerepileupto(av,algbasismul(al,x,x));
    2354             : }
    2355             : 
    2356             : static GEN
    2357       14399 : algmtK2Z_cyc(GEN al, GEN m)
    2358             : {
    2359       14399 :   pari_sp av = avma;
    2360       14399 :   GEN nf = alg_get_abssplitting(al), res, mt, rnf = alg_get_splittingfield(al), c, dc;
    2361       14399 :   long n = alg_get_degree(al), N = nf_get_degree(nf), Nn, i, j, i1, j1;
    2362       14399 :   Nn = N*n;
    2363       14399 :   res = zeromatcopy(Nn,Nn);
    2364       60312 :   for (i=0; i<n; i++)
    2365      247380 :   for (j=0; j<n; j++) {
    2366      201467 :     c = gcoeff(m,i+1,j+1);
    2367      201467 :     if (!gequal0(c)) {
    2368       45913 :       c = rnfeltreltoabs(rnf,c);
    2369       45913 :       c = algtobasis(nf,c);
    2370       45913 :       c = Q_remove_denom(c,&dc);
    2371       45913 :       mt = zk_multable(nf,c);
    2372       45913 :       if (dc) mt = ZM_Z_div(mt,dc);
    2373      384860 :       for (i1=1; i1<=N; i1++)
    2374     3464636 :       for (j1=1; j1<=N; j1++)
    2375     3125689 :         gcoeff(res,i*N+i1,j*N+j1) = gcoeff(mt,i1,j1);
    2376             :     }
    2377             :   }
    2378       14399 :   return gerepilecopy(av,res);
    2379             : }
    2380             : 
    2381             : static GEN
    2382        1687 : algmtK2Z_csa(GEN al, GEN m)
    2383             : {
    2384        1687 :   pari_sp av = avma;
    2385        1687 :   GEN nf = alg_get_center(al), res, mt, c, dc;
    2386        1687 :   long d2 = alg_get_dim(al), n = nf_get_degree(nf), D, i, j, i1, j1;
    2387        1687 :   D = d2*n;
    2388        1687 :   res = zeromatcopy(D,D);
    2389        9086 :   for (i=0; i<d2; i++)
    2390       45206 :   for (j=0; j<d2; j++) {
    2391       37807 :     c = gcoeff(m,i+1,j+1);
    2392       37807 :     if (!gequal0(c)) {
    2393        7035 :       c = algtobasis(nf,c);
    2394        7035 :       c = Q_remove_denom(c,&dc);
    2395        7035 :       mt = zk_multable(nf,c);
    2396        7035 :       if (dc) mt = ZM_Z_div(mt,dc);
    2397       22064 :       for (i1=1; i1<=n; i1++)
    2398       50414 :       for (j1=1; j1<=n; j1++)
    2399       35385 :         gcoeff(res,i*n+i1,j*n+j1) = gcoeff(mt,i1,j1);
    2400             :     }
    2401             :   }
    2402        1687 :   return gerepilecopy(av,res);
    2403             : }
    2404             : 
    2405             : /* assumes al is a CSA or CYCLIC */
    2406             : static GEN
    2407       16086 : algmtK2Z(GEN al, GEN m)
    2408             : {
    2409       16086 :   switch(alg_type(al))
    2410             :   {
    2411       14399 :     case al_CYCLIC: return algmtK2Z_cyc(al, m);
    2412        1687 :     case al_CSA: return algmtK2Z_csa(al, m);
    2413             :   }
    2414             :   return NULL; /*LCOV_EXCL_LINE*/
    2415             : }
    2416             : 
    2417             : /* left multiplication table, as a vector space of dimension n over the splitting field (by right multiplication) */
    2418             : static GEN
    2419       17164 : algalgmultable_cyc(GEN al, GEN x)
    2420             : {
    2421       17164 :   pari_sp av = avma;
    2422       17164 :   long n = alg_get_degree(al), i, j;
    2423             :   GEN res, rnf, auts, b, pol;
    2424       17164 :   rnf = alg_get_splittingfield(al);
    2425       17164 :   auts = alg_get_auts(al);
    2426       17164 :   b = alg_get_b(al);
    2427       17164 :   pol = rnf_get_pol(rnf);
    2428             : 
    2429       17164 :   res = zeromatcopy(n,n);
    2430       68663 :   for (i=0; i<n; i++)
    2431       51499 :     gcoeff(res,i+1,1) = lift_shallow(rnfbasistoalg(rnf,gel(x,i+1)));
    2432             : 
    2433       68663 :   for (i=0; i<n; i++) {
    2434      132405 :     for (j=1; j<=i; j++)
    2435       80906 :       gcoeff(res,i+1,j+1) = gmodulo(poleval(gcoeff(res,i-j+1,1),gel(auts,j)),pol);
    2436      132405 :     for (; j<n; j++)
    2437       80906 :       gcoeff(res,i+1,j+1) = gmodulo(gmul(b,poleval(gcoeff(res,n+i-j+1,1),gel(auts,j))), pol);
    2438             :   }
    2439             : 
    2440       68663 :   for (i=0; i<n; i++)
    2441       51499 :     gcoeff(res,i+1,1) = gmodulo(gcoeff(res,i+1,1),pol);
    2442             : 
    2443       17164 :   return gerepilecopy(av, res);
    2444             : }
    2445             : 
    2446             : static GEN
    2447        2170 : elementmultable(GEN mt, GEN x)
    2448             : {
    2449        2170 :   pari_sp av = avma;
    2450        2170 :   long D = lg(mt)-1, i;
    2451        2170 :   GEN z = NULL;
    2452       11207 :   for (i=1; i<=D; i++)
    2453             :   {
    2454        9037 :     GEN c = gel(x,i);
    2455        9037 :     if (!gequal0(c))
    2456             :     {
    2457        2961 :       GEN M = RgM_Rg_mul(gel(mt,i),c);
    2458        2961 :       z = z? RgM_add(z, M): M;
    2459             :     }
    2460             :   }
    2461        2170 :   if (!z) { set_avma(av); return zeromatcopy(D,D); }
    2462        2170 :   return gerepileupto(av, z);
    2463             : }
    2464             : /* mt a t_VEC of Flm modulo m */
    2465             : static GEN
    2466       52032 : algbasismultable_Flm(GEN mt, GEN x, ulong m)
    2467             : {
    2468       52032 :   pari_sp av = avma;
    2469       52032 :   long D = lg(gel(mt,1))-1, i;
    2470       52032 :   GEN z = NULL;
    2471      671755 :   for (i=1; i<=D; i++)
    2472             :   {
    2473      619723 :     ulong c = x[i];
    2474      619723 :     if (c)
    2475             :     {
    2476       81218 :       GEN M = Flm_Fl_mul(gel(mt,i),c, m);
    2477       81218 :       z = z? Flm_add(z, M, m): M;
    2478             :     }
    2479             :   }
    2480       52032 :   if (!z) { set_avma(av); return zero_Flm(D,D); }
    2481       52032 :   return gerepileupto(av, z);
    2482             : }
    2483             : static GEN
    2484      372436 : elementabsmultable_Z(GEN mt, GEN x)
    2485             : {
    2486      372436 :   long i, l = lg(x);
    2487      372436 :   GEN z = NULL;
    2488     4369472 :   for (i = 1; i < l; i++)
    2489             :   {
    2490     3997036 :     GEN c = gel(x,i);
    2491     3997036 :     if (signe(c))
    2492             :     {
    2493     1135355 :       GEN M = ZM_Z_mul(gel(mt,i),c);
    2494     1135355 :       z = z? ZM_add(z, M): M;
    2495             :     }
    2496             :   }
    2497      372436 :   return z;
    2498             : }
    2499             : static GEN
    2500      160781 : elementabsmultable(GEN mt, GEN x)
    2501             : {
    2502      160781 :   GEN d, z = elementabsmultable_Z(mt, Q_remove_denom(x,&d));
    2503      160781 :   return (z && d)? ZM_Z_div(z, d): z;
    2504             : }
    2505             : static GEN
    2506      211655 : elementabsmultable_Fp(GEN mt, GEN x, GEN p)
    2507             : {
    2508      211655 :   GEN z = elementabsmultable_Z(mt, x);
    2509      211655 :   return z? FpM_red(z, p): z;
    2510             : }
    2511             : static GEN
    2512      372436 : algbasismultable(GEN al, GEN x)
    2513             : {
    2514      372436 :   pari_sp av = avma;
    2515      372436 :   GEN z, p = alg_get_char(al), mt = alg_get_multable(al);
    2516      372436 :   z = signe(p)? elementabsmultable_Fp(mt, x, p): elementabsmultable(mt, x);
    2517      372436 :   if (!z)
    2518             :   {
    2519        4287 :     long D = lg(mt)-1;
    2520        4287 :     set_avma(av); return zeromat(D,D);
    2521             :   }
    2522      368149 :   return gerepileupto(av, z);
    2523             : }
    2524             : 
    2525             : static GEN
    2526        2170 : algalgmultable_csa(GEN al, GEN x)
    2527             : {
    2528        2170 :   GEN nf = alg_get_center(al), m;
    2529             :   long i,j;
    2530        2170 :   m = elementmultable(alg_get_relmultable(al), x);
    2531       11207 :   for (i=1; i<lg(m); i++)
    2532       53102 :     for(j=1; j<lg(m); j++)
    2533       44065 :       gcoeff(m,i,j) = basistoalg(nf,gcoeff(m,i,j));
    2534        2170 :   return m;
    2535             : }
    2536             : 
    2537             : /* assumes x in algebraic form */
    2538             : static GEN
    2539       19005 : algalgmultable(GEN al, GEN x)
    2540             : {
    2541       19005 :   switch(alg_type(al))
    2542             :   {
    2543       17164 :     case al_CYCLIC: return algalgmultable_cyc(al, x);
    2544        1841 :     case al_CSA: return algalgmultable_csa(al, x);
    2545             :   }
    2546             :   return NULL; /*LCOV_EXCL_LINE*/
    2547             : }
    2548             : 
    2549             : /* on the natural basis */
    2550             : /* assumes x in algebraic form */
    2551             : static GEN
    2552       16086 : algZmultable(GEN al, GEN x) {
    2553       16086 :   pari_sp av = avma;
    2554       16086 :   return gerepileupto(av, algmtK2Z(al,algalgmultable(al,x)));
    2555             : }
    2556             : 
    2557             : /* x integral */
    2558             : static GEN
    2559       41265 : algbasisrightmultable(GEN al, GEN x)
    2560             : {
    2561       41265 :   long N = alg_get_absdim(al), i,j,k;
    2562       41265 :   GEN res = zeromatcopy(N,N), c, mt = alg_get_multable(al), p = alg_get_char(al);
    2563       41265 :   if (gequal0(p)) p = NULL;
    2564      374591 :   for (i=1; i<=N; i++) {
    2565      333326 :     c = gel(x,i);
    2566      333326 :     if (!gequal0(c)) {
    2567     1339560 :       for (j=1; j<=N; j++)
    2568    20693268 :       for(k=1; k<=N; k++) {
    2569    19474932 :         if (p) gcoeff(res,k,j) = Fp_add(gcoeff(res,k,j), Fp_mul(c, gcoeff(gel(mt,j),k,i), p), p);
    2570    14559732 :         else gcoeff(res,k,j) = addii(gcoeff(res,k,j), mulii(c, gcoeff(gel(mt,j),k,i)));
    2571             :       }
    2572             :     }
    2573             :   }
    2574       41265 :   return res;
    2575             : }
    2576             : 
    2577             : /* central simple algebra al from alginit */
    2578             : /* right multiplication table on integral basis; no checks no GC */
    2579             : static GEN
    2580          77 : algrightmultable(GEN al, GEN x)
    2581             : {
    2582             :   GEN d, M;
    2583          77 :   x = algalgtobasis(al, x);
    2584          70 :   x = Q_remove_denom(x, &d);
    2585          70 :   M = algbasisrightmultable(al,x);
    2586          70 :   return d ? ZM_Z_div(M,d) : M;
    2587             : }
    2588             : 
    2589             : /* basis for matrices : 1, E_{i,j} for (i,j)!=(1,1) */
    2590             : /* index : ijk = ((i-1)*N+j-1)*n + k */
    2591             : /* square matrices only, coefficients in basis form, shallow function */
    2592             : static GEN
    2593       23961 : algmat2basis(GEN al, GEN M)
    2594             : {
    2595       23961 :   long n = alg_get_absdim(al), N = lg(M)-1, i, j, k, ij, ijk;
    2596             :   GEN res, x;
    2597       23961 :   res = zerocol(N*N*n);
    2598       75131 :   for (i=1; i<=N; i++) {
    2599      163310 :     for (j=1, ij=(i-1)*N+1; j<=N; j++, ij++) {
    2600      112140 :       x = gcoeff(M,i,j);
    2601      819532 :       for (k=1, ijk=(ij-1)*n+1; k<=n; k++, ijk++) {
    2602      707392 :         gel(res, ijk) = gel(x, k);
    2603      707392 :         if (i>1 && i==j) gel(res, ijk) = gsub(gel(res,ijk), gel(res,k));
    2604             :       }
    2605             :     }
    2606             :   }
    2607             : 
    2608       23961 :   return res;
    2609             : }
    2610             : 
    2611             : static GEN
    2612         294 : algbasis2mat(GEN al, GEN M, long N)
    2613             : {
    2614         294 :   long n = alg_get_absdim(al), i, j, k, ij, ijk;
    2615             :   GEN res, x;
    2616         294 :   res = zeromatcopy(N,N);
    2617         882 :   for (i=1; i<=N; i++)
    2618        1764 :   for (j=1; j<=N; j++)
    2619        1176 :     gcoeff(res,i,j) = zerocol(n);
    2620             : 
    2621         882 :   for (i=1; i<=N; i++) {
    2622        1764 :     for (j=1, ij=(i-1)*N+1; j<=N; j++, ij++) {
    2623        1176 :       x = gcoeff(res,i,j);
    2624        9240 :       for (k=1, ijk=(ij-1)*n+1; k<=n; k++, ijk++) {
    2625        8064 :         gel(x,k) = gel(M,ijk);
    2626        8064 :         if (i>1 && i==j) gel(x,k) = gadd(gel(x,k), gel(M,k));
    2627             :       }
    2628             :     }
    2629             :   }
    2630             : 
    2631         294 :   return res;
    2632             : }
    2633             : 
    2634             : static GEN
    2635       23884 : algmatbasis_ei(GEN al, long ijk, long N)
    2636             : {
    2637       23884 :   long n = alg_get_absdim(al), i, j, k, ij;
    2638             :   GEN res;
    2639             : 
    2640       23884 :   res = zeromatcopy(N,N);
    2641       74900 :   for (i=1; i<=N; i++)
    2642      162848 :   for (j=1; j<=N; j++)
    2643      111832 :     gcoeff(res,i,j) = zerocol(n);
    2644             : 
    2645       23884 :   k = ijk%n;
    2646       23884 :   if (k==0) k=n;
    2647       23884 :   ij = (ijk-k)/n+1;
    2648             : 
    2649       23884 :   if (ij==1) {
    2650       16947 :     for (i=1; i<=N; i++)
    2651       11410 :       gcoeff(res,i,i) = col_ei(n,k);
    2652        5537 :     return res;
    2653             :   }
    2654             : 
    2655       18347 :   j = ij%N;
    2656       18347 :   if (j==0) j=N;
    2657       18347 :   i = (ij-j)/N+1;
    2658             : 
    2659       18347 :   gcoeff(res,i,j) = col_ei(n,k);
    2660       18347 :   return res;
    2661             : }
    2662             : 
    2663             : /* FIXME lazy implementation! */
    2664             : static GEN
    2665         910 : algleftmultable_mat(GEN al, GEN M)
    2666             : {
    2667         910 :   long N = lg(M)-1, n = alg_get_absdim(al), D = N*N*n, j;
    2668             :   GEN res, x, Mx;
    2669         910 :   if (N == 0) return cgetg(1, t_MAT);
    2670         903 :   if (N != nbrows(M)) pari_err_DIM("algleftmultable_mat (nonsquare)");
    2671         882 :   res = cgetg(D+1, t_MAT);
    2672       24766 :   for (j=1; j<=D; j++) {
    2673       23884 :     x = algmatbasis_ei(al, j, N);
    2674       23884 :     Mx = algmul(al, M, x);
    2675       23884 :     gel(res, j) = algmat2basis(al, Mx);
    2676             :   }
    2677         882 :   return res;
    2678             : }
    2679             : 
    2680             : /* left multiplication table on integral basis */
    2681             : static GEN
    2682       23660 : algleftmultable(GEN al, GEN x)
    2683             : {
    2684       23660 :   pari_sp av = avma;
    2685             :   long tx;
    2686             :   GEN res;
    2687             : 
    2688       23660 :   checkalg(al);
    2689       23660 :   tx = alg_model(al,x);
    2690       23639 :   switch(tx) {
    2691         994 :     case al_TRIVIAL : res = mkmatcopy(mkcol(gel(x,1))); break;
    2692         280 :     case al_ALGEBRAIC : x = algalgtobasis(al,x);
    2693       22127 :     case al_BASIS : res = algbasismultable(al,x); break;
    2694         518 :     case al_MATRIX : res = algleftmultable_mat(al,x); break;
    2695             :     default : return NULL; /* LCOV_EXCL_LINE */
    2696             :   }
    2697       23632 :   return gerepileupto(av,res);
    2698             : }
    2699             : 
    2700             : static GEN
    2701        4347 : algbasissplittingmatrix_csa(GEN al, GEN x)
    2702             : {
    2703        4347 :   long d = alg_get_degree(al), i, j;
    2704        4347 :   GEN rnf = alg_get_splittingfield(al), splba = alg_get_splittingbasis(al), splbainv = alg_get_splittingbasisinv(al), M;
    2705        4347 :   M = algbasismultable(al,x);
    2706        4347 :   M = RgM_mul(M, splba); /* TODO best order ? big matrix /Q vs small matrix /nf */
    2707        4347 :   M = RgM_mul(splbainv, M);
    2708       12852 :   for (i=1; i<=d; i++)
    2709       25326 :   for (j=1; j<=d; j++)
    2710       16821 :     gcoeff(M,i,j) = rnfeltabstorel(rnf, gcoeff(M,i,j));
    2711        4347 :   return M;
    2712             : }
    2713             : 
    2714             : static GEN
    2715         728 : algmat_tomatrix(GEN al, GEN x) /* abs = 0 */
    2716             : {
    2717             :   GEN res;
    2718             :   long i,j;
    2719         728 :   if (lg(x) == 1) return cgetg(1, t_MAT);
    2720         700 :   res = zeromatcopy(nbrows(x),lg(x)-1);
    2721        2212 :   for (j=1; j<lg(x); j++)
    2722        4879 :   for (i=1; i<lgcols(x); i++)
    2723        3367 :     gcoeff(res,i,j) = algtomatrix(al,gcoeff(x,i,j),0);
    2724         700 :   return shallowmatconcat(res);
    2725             : }
    2726             : 
    2727             : static GEN
    2728          42 : R_tomatrix(GEN x)
    2729             : {
    2730          42 :   long t = H_model(x);
    2731          42 :   if (t == H_QUATERNION) pari_err_TYPE("R_tomatrix", x);
    2732          35 :   if (t == H_MATRIX) return x;
    2733          21 :   return mkmat(mkcol(x));
    2734             : }
    2735             : static GEN
    2736          84 : C_tomatrix(GEN z, long abs)
    2737             : {
    2738             :   GEN x,y;
    2739          84 :   long t = H_model(z), nrows, ncols;
    2740          84 :   if (t == H_QUATERNION) pari_err_TYPE("C_tomatrix", z);
    2741          77 :   if (!abs)
    2742             :   {
    2743          14 :     if (t == H_MATRIX) return z;
    2744           7 :     return mkmat(mkcol(z));
    2745             :   }
    2746          63 :   if (t == H_MATRIX)
    2747             :   {
    2748             :     /* Warning: this is not the same choice of basis as for other algebras */
    2749             :     GEN res, a, b;
    2750             :     long i,j;
    2751          56 :     RgM_dimensions(z,&nrows,&ncols);
    2752          56 :     res = zeromatcopy(2*nrows,2*ncols);
    2753         168 :     for (i=1; i<=nrows; i++)
    2754         336 :       for (j=1; j<=ncols; j++)
    2755             :       {
    2756         224 :         a = real_i(gcoeff(z,i,j));
    2757         224 :         b = imag_i(gcoeff(z,i,j));
    2758         224 :         gcoeff(res,2*i-1,2*j-1) = a;
    2759         224 :         gcoeff(res,2*i,2*j) = a;
    2760         224 :         gcoeff(res,2*i-1,2*j) = gneg(b);
    2761         224 :         gcoeff(res,2*i,2*j-1) = b;
    2762             :       }
    2763          56 :     return res;
    2764             :   }
    2765           7 :   x = real_i(z);
    2766           7 :   y = imag_i(z);
    2767           7 :   return mkmat22(x,gneg(y),y,x);
    2768             : }
    2769             : static GEN
    2770        2457 : H_tomatrix(GEN x, long abs)
    2771             : {
    2772        2457 :   long tx = H_model(x);
    2773        2450 :   GEN a = NULL, b =NULL, c = NULL, d = NULL, md = NULL, M = NULL;
    2774        2450 :   if (abs) {
    2775         413 :     if (tx == H_MATRIX) return algleftmultable_mat(NULL,x);
    2776         280 :     switch(tx)
    2777             :     {
    2778          77 :       case H_SCALAR:
    2779          77 :         a = real_i(x);
    2780          77 :         b = imag_i(x);
    2781          77 :         c = gen_0;
    2782          77 :         d = gen_0;
    2783          77 :         break;
    2784         203 :       case H_QUATERNION:
    2785         203 :         a = gel(x,1);
    2786         203 :         b = gel(x,2);
    2787         203 :         c = gel(x,3);
    2788         203 :         d = gel(x,4);
    2789         203 :         break;
    2790             :     }
    2791         280 :     M = scalarmat(a,4);
    2792         280 :     gcoeff(M,2,1) = gcoeff(M,4,3) = b;
    2793         280 :     gcoeff(M,1,2) = gcoeff(M,3,4) = gneg(b);
    2794         280 :     gcoeff(M,3,1) = gcoeff(M,2,4) = c;
    2795         280 :     gcoeff(M,4,2) = gcoeff(M,1,3) = gneg(c);
    2796         280 :     gcoeff(M,4,1) = gcoeff(M,3,2) = d;
    2797         280 :     gcoeff(M,2,3) = gcoeff(M,1,4) = gneg(d);
    2798             :   }
    2799             :   else /* abs == 0 */
    2800             :   {
    2801        2037 :     if (tx == H_MATRIX) return algmat_tomatrix(NULL,x);
    2802        1778 :     switch(tx)
    2803             :     {
    2804         273 :       case H_SCALAR:
    2805         273 :         M = mkmat22(
    2806             :             x,      gen_0,
    2807             :             gen_0,  conj_i(x)
    2808             :             );
    2809         273 :         break;
    2810        1505 :       case H_QUATERNION:
    2811        1505 :         a = gel(x,1);
    2812        1505 :         b = gel(x,2);
    2813        1505 :         c = gel(x,3);
    2814        1505 :         md = gneg(gel(x,4));
    2815        1505 :         M = mkmat22(
    2816             :             mkcomplex(a,b),     mkcomplex(gneg(c),md),
    2817             :             mkcomplex(c,md),    mkcomplex(a,gneg(b))
    2818             :             );
    2819             :     }
    2820             :   }
    2821        2058 :   return M;
    2822             : }
    2823             : 
    2824             : GEN
    2825       25109 : algtomatrix(GEN al, GEN x, long abs)
    2826             : {
    2827       25109 :   pari_sp av = avma;
    2828       25109 :   GEN res = NULL;
    2829             :   long ta, tx;
    2830       25109 :   checkalg(al);
    2831       25109 :   ta = alg_type(al);
    2832       25109 :   if (ta==al_REAL)
    2833             :   {
    2834        2268 :     switch(alg_get_absdim(al)) {
    2835          42 :       case 1: res = R_tomatrix(x); break;
    2836          84 :       case 2: res = C_tomatrix(x,abs); break;
    2837        2135 :       case 4: res = H_tomatrix(x,abs); break;
    2838           7 :       default: pari_err_TYPE("algtomatrix [apply alginit]", al);
    2839             :     }
    2840        2240 :     return gerepilecopy(av, res);
    2841             :   }
    2842       22841 :   if (abs || ta==al_TABLE) return algleftmultable(al,x);
    2843        7014 :   tx = alg_model(al,x);
    2844        7014 :   if (tx == al_MATRIX) res = algmat_tomatrix(al,x);
    2845        6545 :   else switch (alg_type(al))
    2846             :   {
    2847        2198 :     case al_CYCLIC:
    2848        2198 :       if (tx==al_BASIS) x = algbasistoalg(al,x);
    2849        2198 :       res = algalgmultable(al,x);
    2850        2198 :       break;
    2851        4347 :     case al_CSA:
    2852        4347 :       if (tx==al_ALGEBRAIC) x = algalgtobasis(al,x);
    2853        4347 :       res = algbasissplittingmatrix_csa(al,x);
    2854        4347 :       break;
    2855             :     default: return NULL; /*LCOV_EXCL_LINE*/
    2856             :   }
    2857        7014 :   return gerepilecopy(av,res);
    2858             : }
    2859             : 
    2860             : /*  x^(-1)*y, NULL if no solution */
    2861             : static GEN
    2862         112 : C_divl_i(GEN x, GEN y)
    2863             : {
    2864         112 :   long tx = H_model(x), ty = H_model(y);
    2865         112 :   if (tx != ty) pari_err_TYPE2("C_divl", x, y);
    2866         105 :   switch (tx) {
    2867          42 :     case H_SCALAR:
    2868          42 :       if (gequal0(x)) return gequal0(y) ? gen_0 : NULL;
    2869          14 :       else return gdiv(y,x);
    2870          56 :     case H_MATRIX:
    2871          56 :       if ((lg(x)>1 && lg(x) != lgcols(x)) || (lg(y)>1 && lg(y) != lgcols(y)))
    2872           7 :         pari_err_DIM("C_divl (nonsquare)");
    2873          49 :       if (lg(x) != lg(y)) pari_err_DIM("C_divl");
    2874          42 :       if (lg(y) == 1) return cgetg(1, t_MAT);
    2875          42 :       return RgM_invimage(x, y);
    2876           7 :     default: pari_err_TYPE("C_divl", x); return NULL;
    2877             :   }
    2878             : }
    2879             : /* H^k -> C^2k */
    2880             : static GEN
    2881         140 : HC_to_CC(GEN v)
    2882             : {
    2883         140 :   long l = lg(v), i;
    2884         140 :   GEN w = cgetg(2*l-1, t_COL), a, b, c, d;
    2885         420 :   for (i=1; i<l; i++)
    2886             :   {
    2887         280 :     H_compo(gel(v,i),&a,&b,&c,&d);
    2888         280 :     gel(w,2*i-1) = mkcomplex(a,b);
    2889         280 :     gel(w,2*i) = mkcomplex(c,gneg(d));
    2890             :   }
    2891         140 :   return w;
    2892             : }
    2893             : /* C^2k -> H^k */
    2894             : static GEN
    2895          98 : CC_to_HC(GEN w)
    2896             : {
    2897          98 :   long l = lg(w), i, lv = (l+1)/2;
    2898          98 :   GEN v = cgetg(lv, t_COL), ab, cd;
    2899         294 :   for (i=1; i<lv; i++)
    2900             :   {
    2901         196 :     ab = gel(w,2*i-1);
    2902         196 :     cd = gel(w,2*i);
    2903         196 :     gel(v,i) = mkcol4(real_i(ab),imag_i(ab),real_i(cd),gneg(imag_i(cd)));
    2904             :   }
    2905          98 :   return v;
    2906             : }
    2907             : /* M_{k,n}(H) -> M_{2k,n}(C) */
    2908             : static GEN
    2909         210 : HM_to_CM(GEN x) pari_APPLY_same(HC_to_CC(gel(x,i)));
    2910             : /* M_{2k,n}(C) -> M_{k,n}(H) */
    2911             : static GEN
    2912         147 : CM_to_HM(GEN x) pari_APPLY_same(CC_to_HC(gel(x,i)));
    2913             : /*  x^(-1)*y, NULL if no solution */
    2914             : static GEN
    2915         203 : H_divl_i(GEN x, GEN y)
    2916             : {
    2917         203 :   pari_sp av = avma;
    2918         203 :   long tx = H_model(x), ty = H_model(y);
    2919         189 :   if ((tx==H_MATRIX) ^ (ty==H_MATRIX)) pari_err_TYPE2("H_divl", x, y);
    2920         168 :   if (tx==H_MATRIX)
    2921             :   {
    2922             :     GEN mx, my, mxdivy;
    2923          98 :     if ((lg(x)>1 && lg(x) != lgcols(x)) || (lg(y)>1 && lg(y) != lgcols(y)))
    2924          14 :       pari_err_DIM("H_divl (nonsquare)");
    2925          84 :     if (lg(x) != lg(y)) pari_err_DIM("H_divl");
    2926          77 :     if (lg(y) == 1) return cgetg(1, t_MAT);
    2927          70 :     mx = H_tomatrix(x,0);
    2928          70 :     my = HM_to_CM(y);
    2929          70 :     mxdivy = RgM_invimage(mx, my);
    2930          70 :     if (!mxdivy) return gc_NULL(av);
    2931          49 :     return gerepilecopy(av,CM_to_HM(mxdivy));
    2932             :   }
    2933          70 :   if (gequal0(y)) return gen_0;
    2934          56 :   if (gequal0(x)) return NULL;
    2935          42 :   return gerepilecopy(av,H_mul(H_inv(x),y));
    2936             : }
    2937             : /*  x^(-1)*y, NULL if no solution */
    2938             : static GEN
    2939        3199 : algdivl_i(GEN al, GEN x, GEN y, long tx, long ty) {
    2940        3199 :   pari_sp av = avma;
    2941        3199 :   GEN res, p = alg_get_char(al), mtx;
    2942        3199 :   if (tx != ty) {
    2943         343 :     if (tx==al_ALGEBRAIC) { x = algalgtobasis(al,x); tx=al_BASIS; }
    2944         343 :     if (ty==al_ALGEBRAIC) { y = algalgtobasis(al,y); ty=al_BASIS; }
    2945             :   }
    2946        3199 :   if (ty == al_MATRIX)
    2947             :   {
    2948          77 :     if (alg_type(al) != al_TABLE) y = algalgtobasis(al,y);
    2949          77 :     y = algmat2basis(al,y);
    2950             :   }
    2951        3199 :   if (signe(p)) res = FpM_FpC_invimage(algbasismultable(al,x),y,p);
    2952             :   else
    2953             :   {
    2954        3010 :     if (ty==al_ALGEBRAIC)   mtx = algalgmultable(al,x);
    2955        2303 :     else                    mtx = algleftmultable(al,x);
    2956        3010 :     res = inverseimage(mtx,y);
    2957             :   }
    2958        3199 :   if (!res || lg(res)==1) return gc_NULL(av);
    2959        1764 :   if (tx == al_MATRIX) {
    2960         294 :     res = algbasis2mat(al, res, lg(x)-1);
    2961         294 :     return gerepilecopy(av,res);
    2962             :   }
    2963        1470 :   return gerepileupto(av,res);
    2964             : }
    2965             : static GEN
    2966        1015 : algdivl_i2(GEN al, GEN x, GEN y)
    2967             : {
    2968             :   long tx, ty;
    2969        1015 :   checkalg(al);
    2970        1015 :   if (alg_type(al)==al_REAL) switch(alg_get_absdim(al)) {
    2971         112 :     case 1: case 2: return C_divl_i(x,y);
    2972         147 :     case 4: return H_divl_i(x,y);
    2973             :   }
    2974         756 :   tx = alg_model(al,x);
    2975         749 :   ty = alg_model(al,y);
    2976         749 :   if (tx == al_MATRIX) {
    2977         140 :     if (ty != al_MATRIX) pari_err_TYPE2("\\", x, y);
    2978         133 :     if ((lg(x)>1 && lg(x) != lgcols(x)) || (lg(y)>1 && lg(y) != lgcols(y)))
    2979          28 :       pari_err_DIM("algdivl (nonsquare)");
    2980         105 :     if (lg(x) != lg(y)) pari_err_DIM("algdivl");
    2981          84 :     if (lg(y) == 1) return cgetg(1, t_MAT);
    2982             :   }
    2983         686 :   return algdivl_i(al,x,y,tx,ty);
    2984             : }
    2985             : 
    2986         889 : GEN algdivl(GEN al, GEN x, GEN y)
    2987             : {
    2988             :   GEN z;
    2989         889 :   z = algdivl_i2(al,x,y);
    2990         742 :   if (!z) pari_err_INV("algdivl", x);
    2991         728 :   return z;
    2992             : }
    2993             : 
    2994             : int
    2995         126 : algisdivl(GEN al, GEN x, GEN y, GEN* ptz)
    2996             : {
    2997         126 :   pari_sp av = avma;
    2998         126 :   GEN z = algdivl_i2(al,x,y);
    2999         126 :   if (!z) return gc_bool(av,0);
    3000          84 :   if (ptz != NULL) *ptz = z;
    3001          84 :   return 1;
    3002             : }
    3003             : 
    3004             : static GEN
    3005         140 : C_inv(GEN x)
    3006             : {
    3007         140 :   switch (H_model(x))
    3008             :   {
    3009          63 :     case H_SCALAR: return gequal0(x) ? NULL : ginv(x);
    3010          70 :     case H_MATRIX: return RgM_inv(x);
    3011           7 :     default: pari_err_TYPE("alginv_i", x);
    3012             :   }
    3013             :   return NULL; /*LCOV_EXCL_LINE*/
    3014             : }
    3015             : static GEN
    3016         259 : H_inv(GEN x)
    3017             : {
    3018         259 :   pari_sp av = avma;
    3019             :   GEN nm, xi;
    3020             :   long i;
    3021         259 :   switch (H_model(x))
    3022             :   {
    3023          28 :     case H_SCALAR:
    3024          28 :       if (gequal0(x)) return NULL;
    3025          14 :       return ginv(x);
    3026         161 :     case H_QUATERNION:
    3027         161 :       if (gequal0(x)) return NULL;
    3028         154 :       nm = H_norm(x, 0);
    3029         154 :       xi = gdiv(x,nm);
    3030         616 :       for(i=2; i<=4; i++) gel(xi,i) = gneg(gel(xi,i));
    3031         154 :       return gerepilecopy(av,xi);
    3032          63 :     case H_MATRIX:
    3033          63 :       if (lg(x)==1) return cgetg(1,t_MAT);
    3034          56 :       return H_divl_i(x, matid(lg(x)-1));
    3035             :   }
    3036             :   return NULL; /*LCOV_EXCL_LINE*/
    3037             : }
    3038             : static GEN
    3039        2989 : alginv_i(GEN al, GEN x)
    3040             : {
    3041        2989 :   pari_sp av = avma;
    3042        2989 :   GEN res = NULL, p = alg_get_char(al);
    3043             :   long tx, n, ta;
    3044        2989 :   ta = alg_type(al);
    3045        2989 :   if (ta==al_REAL) switch(alg_get_absdim(al)) {
    3046         140 :     case 1: case 2: return C_inv(x);
    3047         217 :     case 4: return H_inv(x);
    3048           7 :     default: pari_err_TYPE("alginv_i [apply alginit]", al);
    3049             :   }
    3050        2625 :   tx = alg_model(al,x);
    3051        2604 :   switch(tx) {
    3052          70 :     case al_TRIVIAL :
    3053          70 :       if (signe(p)) { res = mkcol(Fp_inv(gel(x,1),p)); break; }
    3054          56 :       else          { res = mkcol(ginv(gel(x,1))); break; }
    3055         455 :     case al_ALGEBRAIC :
    3056             :       switch(ta) {
    3057         350 :         case al_CYCLIC: n = alg_get_degree(al); break;
    3058         105 :         case al_CSA: n = alg_get_dim(al); break;
    3059             :         default: return NULL; /* LCOV_EXCL_LINE */
    3060             :       }
    3061         455 :       res = algdivl_i(al, x, col_ei(n,1), tx, al_ALGEBRAIC); break;
    3062        1841 :     case al_BASIS : res = algdivl_i(al, x, col_ei(alg_get_absdim(al),1), tx,
    3063        1841 :                                                             al_BASIS); break;
    3064         238 :     case al_MATRIX :
    3065         238 :       n = lg(x)-1;
    3066         238 :       if (n==0) return cgetg(1, t_MAT);
    3067         224 :       if (n != nbrows(x)) pari_err_DIM("alginv_i (nonsquare)");
    3068         217 :       res = algdivl_i(al, x, col_ei(n*n*alg_get_absdim(al),1), tx, al_BASIS);
    3069             :         /* cheat on type because wrong dimension */
    3070             :   }
    3071        2583 :   if (!res) return gc_NULL(av);
    3072        1162 :   return gerepilecopy(av,res);
    3073             : }
    3074             : GEN
    3075        1330 : alginv(GEN al, GEN x)
    3076             : {
    3077             :   GEN z;
    3078        1330 :   checkalg(al);
    3079        1330 :   z = alginv_i(al,x);
    3080        1281 :   if (!z) pari_err_INV("alginv", x);
    3081        1246 :   return z;
    3082             : }
    3083             : 
    3084             : int
    3085        1659 : algisinv(GEN al, GEN x, GEN* ptix)
    3086             : {
    3087        1659 :   pari_sp av = avma;
    3088             :   GEN ix;
    3089        1659 :   if (al) checkalg(al);
    3090        1659 :   ix = alginv_i(al,x);
    3091        1659 :   if (!ix) return gc_bool(av,0);
    3092         196 :   if (ptix != NULL) *ptix = ix;
    3093         196 :   return 1;
    3094             : }
    3095             : 
    3096             : /*  x*y^(-1)  */
    3097             : GEN
    3098         469 : algdivr(GEN al, GEN x, GEN y) { return algmul(al, x, alginv(al, y)); }
    3099             : 
    3100       52170 : static GEN _mul(void* data, GEN x, GEN y) { return algmul((GEN)data,x,y); }
    3101      125333 : static GEN _sqr(void* data, GEN x) { return algsqr((GEN)data,x); }
    3102             : 
    3103             : static GEN
    3104          21 : algmatid(GEN al, long N)
    3105             : {
    3106          21 :   long n = alg_get_absdim(al), i, j;
    3107             :   GEN res, one, zero;
    3108             : 
    3109          21 :   res = zeromatcopy(N,N);
    3110          21 :   one = col_ei(n,1);
    3111          21 :   zero = zerocol(n);
    3112          49 :   for (i=1; i<=N; i++)
    3113          84 :   for (j=1; j<=N; j++)
    3114          56 :     gcoeff(res,i,j) = i==j ? one : zero;
    3115          21 :   return res;
    3116             : }
    3117             : 
    3118             : GEN
    3119       22582 : algpow(GEN al, GEN x, GEN n)
    3120             : {
    3121       22582 :   pari_sp av = avma;
    3122             :   GEN res;
    3123       22582 :   long s = signe(n);
    3124       22582 :   checkalg(al);
    3125       22582 :   if (!s && alg_type(al)==al_REAL)
    3126             :   {
    3127          63 :     if (H_model(x) == H_MATRIX) return matid(lg(x)-1);
    3128          35 :     else                        return gen_1;
    3129             :   }
    3130       22519 :   switch (s) {
    3131          28 :     case 0:
    3132          28 :       if (alg_model(al,x) == al_MATRIX)
    3133          21 :         res = algmatid(al,lg(x)-1);
    3134             :       else
    3135           7 :         res = col_ei(alg_get_absdim(al),1);
    3136          28 :       return res;
    3137       22344 :     case 1:
    3138       22344 :       res = gen_pow_i(x, n, (void*)al, _sqr, _mul); break;
    3139         147 :     default: /* -1 */
    3140         147 :       res = gen_pow_i(alginv(al,x), gneg(n), (void*)al, _sqr, _mul);
    3141             :   }
    3142       22477 :   return gerepilecopy(av,res);
    3143             : }
    3144             : 
    3145             : static GEN
    3146         546 : algredcharpoly_i(GEN al, GEN x, long v)
    3147             : {
    3148         546 :   GEN rnf = alg_get_splittingfield(al);
    3149         546 :   GEN cp = charpoly(algtomatrix(al,x,0),v);
    3150         539 :   long i, m = lg(cp);
    3151        2184 :   for (i=2; i<m; i++) gel(cp,i) = rnfeltdown(rnf, gel(cp,i));
    3152         539 :   return cp;
    3153             : }
    3154             : 
    3155             : /* assumes al is CSA or CYCLIC */
    3156             : static GEN
    3157         553 : algredcharpoly(GEN al, GEN x, long v)
    3158             : {
    3159         553 :   pari_sp av = avma;
    3160         553 :   long w = gvar(rnf_get_pol(alg_get_center(al)));
    3161         553 :   if (varncmp(v,w)>=0) pari_err_PRIORITY("algredcharpoly",pol_x(v),">=",w);
    3162         546 :   switch(alg_type(al))
    3163             :   {
    3164         546 :     case al_CYCLIC:
    3165             :     case al_CSA:
    3166         546 :       return gerepileupto(av, algredcharpoly_i(al, x, v));
    3167             :   }
    3168             :   return NULL; /*LCOV_EXCL_LINE*/
    3169             : }
    3170             : 
    3171             : static GEN
    3172       32300 : algbasischarpoly(GEN al, GEN x, long v)
    3173             : {
    3174       32300 :   pari_sp av = avma;
    3175       32300 :   GEN p = alg_get_char(al), mx;
    3176       32300 :   if (alg_model(al,x) == al_MATRIX) mx = algleftmultable_mat(al,x);
    3177       32209 :   else                              mx = algbasismultable(al,x);
    3178       32293 :   if (signe(p)) {
    3179       29955 :     GEN res = FpM_charpoly(mx,p);
    3180       29955 :     setvarn(res,v);
    3181       29955 :     return gerepileupto(av, res);
    3182             :   }
    3183        2338 :   return gerepileupto(av, charpoly(mx,v));
    3184             : }
    3185             : 
    3186             : static GEN
    3187          35 : R_charpoly(GEN x, long v, long abs)
    3188             : {
    3189          35 :   pari_sp av = avma;
    3190          35 :   GEN res = NULL;
    3191          35 :   switch (H_model(x))
    3192             :   {
    3193          14 :     case H_SCALAR: res = mkpoln(2, gen_1, gneg(x)); break;
    3194          14 :     case H_MATRIX:
    3195          14 :       res = charpoly(x,v);
    3196          14 :       if (abs) res = gpowgs(res,nbrows(x));
    3197          14 :       break;
    3198           7 :     default: pari_err_TYPE("R_charpoly", x);
    3199             :   }
    3200          28 :   if (v) setvarn(res, v);
    3201          28 :   return gerepilecopy(av, res);
    3202             : }
    3203             : static GEN
    3204          35 : C_charpoly(GEN x, long v, long abs)
    3205             : {
    3206          35 :   pari_sp av = avma;
    3207          35 :   GEN res = NULL;
    3208          35 :   switch (H_model(x))
    3209             :   {
    3210          14 :     case H_SCALAR:
    3211          14 :       if (abs)  res = mkpoln(3, gen_1, gneg(gshift(real_i(x),1)), cxnorm(x));
    3212           7 :       else      res = mkpoln(2, gen_1, gneg(x));
    3213          14 :       break;
    3214          14 :     case H_MATRIX:
    3215          14 :       res = charpoly(x,v);
    3216          14 :       if (abs) res = gpowgs(real_i(gmul(res,gconj(res))),nbrows(x));
    3217          14 :       break;
    3218           7 :     default: pari_err_TYPE("C_charpoly", x);
    3219             :   }
    3220          28 :   if (v) setvarn(res, v);
    3221          28 :   return gerepilecopy(av, res);
    3222             : }
    3223             : static GEN
    3224          98 : H_charpoly(GEN x, long v, long abs)
    3225             : {
    3226          98 :   pari_sp av = avma;
    3227             :   GEN res;
    3228          98 :   if (H_model(x) == H_MATRIX) return greal(charpoly(H_tomatrix(x,abs),v));
    3229          70 :   res = mkpoln(3, gen_1, gneg(H_trace(x,0)), H_norm(x,0));
    3230          70 :   if (v) setvarn(res, v);
    3231          70 :   if (abs) res = gsqr(res);
    3232          70 :   return gerepilecopy(av, res);
    3233             : }
    3234             : 
    3235             : GEN
    3236       32496 : algcharpoly(GEN al, GEN x, long v, long abs)
    3237             : {
    3238             :   long ta;
    3239       32496 :   if (v<0) v=0;
    3240       32496 :   checkalg(al);
    3241       32496 :   ta = alg_type(al);
    3242       32496 :   if (ta == al_REAL) switch (alg_get_absdim(al)) {
    3243          35 :     case 1: return R_charpoly(x, v, abs);
    3244          35 :     case 2: return C_charpoly(x, v, abs);
    3245          98 :     case 4: return H_charpoly(x, v, abs);
    3246           7 :     default: pari_err_TYPE("algcharpoly [apply alginit]", al);
    3247             :   }
    3248             : 
    3249             :   /* gneg(x[1]) left on stack */
    3250       32321 :   if (alg_model(al,x) == al_TRIVIAL) {
    3251          84 :     GEN p = alg_get_char(al);
    3252          84 :     if (signe(p)) return deg1pol(gen_1,Fp_neg(gel(x,1),p),v);
    3253          70 :     return deg1pol(gen_1,gneg(gel(x,1)),v);
    3254             :   }
    3255             : 
    3256       32230 :   switch(ta) {
    3257         665 :     case al_CYCLIC: case al_CSA:
    3258         665 :       if (abs)
    3259             :       {
    3260         112 :         if (alg_model(al,x)==al_ALGEBRAIC) x = algalgtobasis(al,x);
    3261             :       }
    3262         553 :       else return algredcharpoly(al,x,v);
    3263       31677 :     case al_TABLE: return algbasischarpoly(al,x,v);
    3264             :     default : return NULL; /* LCOV_EXCL_LINE */
    3265             :   }
    3266             : }
    3267             : 
    3268             : /* assumes x in basis form */
    3269             : static GEN
    3270      652376 : algabstrace(GEN al, GEN x)
    3271             : {
    3272      652376 :   pari_sp av = avma;
    3273      652376 :   GEN res = NULL, p = alg_get_char(al);
    3274      652376 :   if (signe(p)) return FpV_dotproduct(x, alg_get_tracebasis(al), p);
    3275       49462 :   switch(alg_model(al,x)) {
    3276         154 :     case al_TRIVIAL: return gcopy(gel(x,1)); break;
    3277       49308 :     case al_BASIS: res = RgV_dotproduct(x, alg_get_tracebasis(al)); break;
    3278             :   }
    3279       49308 :   return gerepileupto(av,res);
    3280             : }
    3281             : 
    3282             : static GEN
    3283        1512 : algredtrace(GEN al, GEN x)
    3284             : {
    3285        1512 :   pari_sp av = avma;
    3286        1512 :   GEN res = NULL;
    3287        1512 :   switch(alg_model(al,x)) {
    3288          35 :     case al_TRIVIAL: return gcopy(gel(x,1)); break;
    3289         560 :     case al_BASIS: return algredtrace(al, algbasistoalg(al,x));
    3290             :                    /* TODO precompute too? */
    3291         917 :     case al_ALGEBRAIC:
    3292         917 :       switch(alg_type(al))
    3293             :       {
    3294         588 :         case al_CYCLIC:
    3295         588 :           res = rnfelttrace(alg_get_splittingfield(al),gel(x,1));
    3296         588 :           break;
    3297         329 :         case al_CSA:
    3298         329 :           res = gtrace(algalgmultable_csa(al,x));
    3299         329 :           res = gdiv(res, stoi(alg_get_degree(al)));
    3300         329 :           break;
    3301             :         default: return NULL; /* LCOV_EXCL_LINE */
    3302             :       }
    3303             :   }
    3304         917 :   return gerepileupto(av,res);
    3305             : }
    3306             : 
    3307             : static GEN
    3308         469 : algtrace_mat(GEN al, GEN M, long abs) {
    3309         469 :   pari_sp av = avma;
    3310         469 :   long N = lg(M)-1, i;
    3311         469 :   GEN res, p = alg_get_char(al);
    3312         469 :   if (N == 0) return gen_0;
    3313         448 :   if (N != nbrows(M)) pari_err_DIM("algtrace_mat (nonsquare)");
    3314             : 
    3315         434 :   if (!signe(p)) p = NULL;
    3316         434 :   if (alg_type(al) == al_TABLE) abs = 1;
    3317         434 :   res = algtrace(al, gcoeff(M,1,1), abs);
    3318         896 :   for (i=2; i<=N; i++) {
    3319         462 :     if (p)  res = Fp_add(res, algtrace(al,gcoeff(M,i,i),abs), p);
    3320         455 :     else    res = gadd(res, algtrace(al,gcoeff(M,i,i),abs));
    3321             :   }
    3322         434 :   if (abs) res = gmulgu(res, N); /* absolute trace */
    3323         434 :   return gerepileupto(av, res);
    3324             : }
    3325             : 
    3326             : static GEN
    3327          35 : R_trace(GEN x, long abs)
    3328             : {
    3329          35 :   pari_sp av = avma;
    3330          35 :   GEN res = NULL;
    3331          35 :   switch (H_model(x))
    3332             :   {
    3333          14 :     case H_SCALAR: res = gcopy(x); break;
    3334          14 :     case H_MATRIX: res = abs? mulrs(gtrace(x),nbrows(x)) : gtrace(x); break;
    3335           7 :     default: pari_err_TYPE("R_trace", x);
    3336             :   }
    3337          28 :   return gerepilecopy(av, res);
    3338             : }
    3339             : static GEN
    3340          35 : C_trace(GEN x, long abs)
    3341             : {
    3342          35 :   pari_sp av = avma;
    3343          35 :   GEN res = NULL;
    3344          35 :   switch (H_model(x))
    3345             :   {
    3346          14 :     case H_SCALAR: res = abs ? gshift(real_i(x),1) : x; break;
    3347          14 :     case H_MATRIX:
    3348          14 :       res = abs ? mulrs(real_i(gtrace(x)),2*nbrows(x)) : gtrace(x); break;
    3349           7 :     default: pari_err_TYPE("C_trace", x);
    3350             :   }
    3351          28 :   return gerepilecopy(av, res);
    3352             : }
    3353             : static GEN
    3354         567 : H_trace(GEN x, long abs)
    3355             : {
    3356         567 :   long s = abs? 2 : 1;
    3357         567 :   switch (H_model(x))
    3358             :   {
    3359         154 :     case H_SCALAR: return gshift(real_i(x),s);
    3360         329 :     case H_QUATERNION: return gshift(gel(x,1),s);
    3361          77 :     case H_MATRIX:
    3362          77 :       return algtrace_mat(NULL, x, abs);
    3363             :   }
    3364             :   return NULL; /*LCOV_EXCL_LINE*/
    3365             : }
    3366             : 
    3367             : GEN
    3368        2702 : algtrace(GEN al, GEN x, long abs)
    3369             : {
    3370             :   long ta;
    3371        2702 :   checkalg(al);
    3372        2702 :   ta = alg_type(al);
    3373        2702 :   if (ta==al_REAL) switch (alg_get_absdim(al)) {
    3374          35 :     case 1: return R_trace(x,abs);
    3375          35 :     case 2: return C_trace(x,abs);
    3376         497 :     case 4: return H_trace(x,abs);
    3377           7 :     default: pari_err_TYPE("algtrace [apply alginit]", al);
    3378             :   }
    3379        2128 :   if (alg_model(al,x) == al_MATRIX) return algtrace_mat(al,x,abs);
    3380        1736 :   switch(ta) {
    3381        1596 :     case al_CYCLIC: case al_CSA:
    3382        1596 :       if (!abs) return algredtrace(al,x);
    3383         644 :       if (alg_model(al,x)==al_ALGEBRAIC) x = algalgtobasis(al,x);
    3384         784 :     case al_TABLE: return algabstrace(al,x);
    3385             :     default : return NULL; /* LCOV_EXCL_LINE */
    3386             :   }
    3387             : }
    3388             : 
    3389             : static GEN
    3390       71294 : ZM_trace(GEN x)
    3391             : {
    3392       71294 :   long i, lx = lg(x);
    3393             :   GEN t;
    3394       71294 :   if (lx < 3) return lx == 1? gen_0: gcopy(gcoeff(x,1,1));
    3395       70391 :   t = gcoeff(x,1,1);
    3396     1190209 :   for (i = 2; i < lx; i++) t = addii(t, gcoeff(x,i,i));
    3397       70391 :   return t;
    3398             : }
    3399             : static GEN
    3400      221815 : FpM_trace(GEN x, GEN p)
    3401             : {
    3402      221815 :   long i, lx = lg(x);
    3403             :   GEN t;
    3404      221815 :   if (lx < 3) return lx == 1? gen_0: gcopy(gcoeff(x,1,1));
    3405      209524 :   t = gcoeff(x,1,1);
    3406     1730808 :   for (i = 2; i < lx; i++) t = Fp_add(t, gcoeff(x,i,i), p);
    3407      209524 :   return t;
    3408             : }
    3409             : 
    3410             : static GEN
    3411       65604 : algtracebasis(GEN al)
    3412             : {
    3413       65604 :   pari_sp av = avma;
    3414       65604 :   GEN mt = alg_get_multable(al), p = alg_get_char(al);
    3415       65604 :   long i, l = lg(mt);
    3416       65604 :   GEN v = cgetg(l, t_VEC);
    3417      287419 :   if (signe(p)) for (i=1; i < l; i++) gel(v,i) = FpM_trace(gel(mt,i), p);
    3418       79909 :   else          for (i=1; i < l; i++) gel(v,i) = ZM_trace(gel(mt,i));
    3419       65604 :   return gerepileupto(av,v);
    3420             : }
    3421             : 
    3422             : /* Assume: i > 0, expo := p^i <= absdim, x contained in I_{i-1} given by mult
    3423             :  * table modulo modu=p^(i+1). Return Tr(x^(p^i)) mod modu */
    3424             : static ulong
    3425       52032 : algtracei(GEN mt, ulong p, ulong expo, ulong modu)
    3426             : {
    3427       52032 :   pari_sp av = avma;
    3428       52032 :   long j, l = lg(mt);
    3429       52032 :   ulong tr = 0;
    3430       52032 :   mt = Flm_powu(mt,expo,modu);
    3431      671755 :   for (j=1; j<l; j++) tr += ucoeff(mt,j,j);
    3432       52032 :   return gc_ulong(av, (tr/expo) % p);
    3433             : }
    3434             : 
    3435             : static GEN
    3436          42 : R_norm(GEN x, long abs)
    3437             : {
    3438          42 :   pari_sp av = avma;
    3439          42 :   GEN res = NULL;
    3440          42 :   switch (H_model(x))
    3441             :   {
    3442          14 :     case H_SCALAR: res = gcopy(x); break;
    3443          21 :     case H_MATRIX: res = abs ? powrs(det(x),nbrows(x)) : det(x); break;
    3444           7 :     default: pari_err_TYPE("R_norm", x);
    3445             :   }
    3446          35 :   return gerepilecopy(av,res);
    3447             : }
    3448             : static GEN
    3449          42 : C_norm(GEN x, long abs)
    3450             : {
    3451          42 :   pari_sp av = avma;
    3452          42 :   GEN res = NULL;
    3453          42 :   switch (H_model(x))
    3454             :   {
    3455          14 :     case H_SCALAR: res = abs ? cxnorm(x) : x; break;
    3456          21 :     case H_MATRIX: res = abs ? powrs(cxnorm(det(x)),nbrows(x)) : det(x); break;
    3457           7 :     default: pari_err_TYPE("C_norm", x);
    3458             :   }
    3459          35 :   return gerepilecopy(av,res);
    3460             : }
    3461             : static GEN
    3462         434 : H_norm(GEN x, long abs)
    3463             : {
    3464         434 :   pari_sp av = avma;
    3465         434 :   switch (H_model(x))
    3466             :   {
    3467          42 :     case H_SCALAR:
    3468          42 :       if (abs)  return gerepilecopy(av,gsqr(gnorm(x)));
    3469          35 :       else      return gnorm(x);
    3470         322 :     case H_QUATERNION:
    3471         322 :       if (abs)  return gerepilecopy(av,gsqr(gnorml2(x)));
    3472         294 :       else      return gnorml2(x);
    3473          63 :     case H_MATRIX:
    3474          63 :       return gerepilecopy(av,real_i(det(H_tomatrix(x,abs))));
    3475             :   }
    3476             :   return NULL; /*LCOV_EXCL_LINE*/
    3477             : }
    3478             : 
    3479             : GEN
    3480        1309 : algnorm(GEN al, GEN x, long abs)
    3481             : {
    3482        1309 :   pari_sp av = avma;
    3483             :   long tx, ta;
    3484             :   GEN p, rnf, res, mx;
    3485        1309 :   checkalg(al);
    3486        1309 :   ta = alg_type(al);
    3487        1309 :   if (ta==al_REAL) switch (alg_get_absdim(al)) {
    3488          42 :     case 1: return R_norm(x,abs);
    3489          42 :     case 2: return C_norm(x,abs);
    3490         210 :     case 4: return H_norm(x,abs);
    3491           7 :     default: pari_err_TYPE("algnorm [apply alginit]", al);
    3492             :   }
    3493        1008 :   p = alg_get_char(al);
    3494        1008 :   tx = alg_model(al,x);
    3495        1008 :   if (signe(p)) {
    3496          21 :     if (tx == al_MATRIX)    mx = algleftmultable_mat(al,x);
    3497          14 :     else                    mx = algbasismultable(al,x);
    3498          21 :     return gerepileupto(av, FpM_det(mx,p));
    3499             :   }
    3500         987 :   if (tx == al_TRIVIAL) return gcopy(gel(x,1));
    3501             : 
    3502         945 :   switch(ta) {
    3503         875 :     case al_CYCLIC: case al_CSA:
    3504         875 :       if (abs)
    3505             :       {
    3506         196 :         if (alg_model(al,x)==al_ALGEBRAIC) x = algalgtobasis(al,x);
    3507             :       }
    3508             :       else
    3509             :       {
    3510         679 :         rnf = alg_get_splittingfield(al);
    3511         679 :         res = rnfeltdown(rnf, det(algtomatrix(al,x,0)));
    3512         672 :         break;
    3513             :       }
    3514             :     case al_TABLE:
    3515         266 :       if (tx == al_MATRIX)  mx = algleftmultable_mat(al,x);
    3516         105 :       else                  mx = algbasismultable(al,x);
    3517         259 :       res = det(mx);
    3518         259 :       break;
    3519             :     default: return NULL; /* LCOV_EXCL_LINE */
    3520             :   }
    3521         931 :   return gerepileupto(av, res);
    3522             : }
    3523             : 
    3524             : static GEN
    3525       71178 : algalgtonat_cyc(GEN al, GEN x)
    3526             : {
    3527       71178 :   pari_sp av = avma;
    3528       71178 :   GEN nf = alg_get_abssplitting(al), rnf = alg_get_splittingfield(al), res, c;
    3529       71178 :   long n = alg_get_degree(al), N = nf_get_degree(nf), i, i1;
    3530       71178 :   res = zerocol(N*n);
    3531      221154 :   for (i=0; i<n; i++) {
    3532      149976 :     c = gel(x,i+1);
    3533      149976 :     c = rnfeltreltoabs(rnf,c);
    3534      149976 :     if (!gequal0(c)) {
    3535       97302 :       c = algtobasis(nf,c);
    3536      510311 :       for (i1=1; i1<=N; i1++) gel(res,i*N+i1) = gel(c,i1);
    3537             :     }
    3538             :   }
    3539       71178 :   return gerepilecopy(av, res);
    3540             : }
    3541             : 
    3542             : static GEN
    3543       16149 : algalgtonat_csa(GEN al, GEN x)
    3544             : {
    3545       16149 :   pari_sp av = avma;
    3546       16149 :   GEN nf = alg_get_center(al), res, c;
    3547       16149 :   long d2 = alg_get_dim(al), n = nf_get_degree(nf), i, i1;
    3548       16149 :   res = zerocol(d2*n);
    3549       80080 :   for (i=0; i<d2; i++) {
    3550       63931 :     c = gel(x,i+1);
    3551       63931 :     if (!gequal0(c)) {
    3552       35966 :       c = algtobasis(nf,c);
    3553      107366 :       for (i1=1; i1<=n; i1++) gel(res,i*n+i1) = gel(c,i1);
    3554             :     }
    3555             :   }
    3556       16149 :   return gerepilecopy(av, res);
    3557             : }
    3558             : 
    3559             : /* assumes al CSA or CYCLIC */
    3560             : static GEN
    3561       87327 : algalgtonat(GEN al, GEN x)
    3562             : {
    3563       87327 :   switch(alg_type(al))
    3564             :   {
    3565       71178 :     case al_CYCLIC: return algalgtonat_cyc(al, x);
    3566       16149 :     case al_CSA: return algalgtonat_csa(al, x);
    3567             :   }
    3568             :   return NULL; /*LCOV_EXCL_LINE*/
    3569             : }
    3570             : 
    3571             : static GEN
    3572       17094 : algnattoalg_cyc(GEN al, GEN x)
    3573             : {
    3574       17094 :   pari_sp av = avma;
    3575       17094 :   GEN nf = alg_get_abssplitting(al), rnf = alg_get_splittingfield(al), res, c;
    3576       17094 :   long n = alg_get_degree(al), N = nf_get_degree(nf), i, i1;
    3577       17094 :   res = zerocol(n);
    3578       17094 :   c = zerocol(N);
    3579       68390 :   for (i=0; i<n; i++) {
    3580      411523 :     for (i1=1; i1<=N; i1++) gel(c,i1) = gel(x,i*N+i1);
    3581       51296 :     gel(res,i+1) = rnfeltabstorel(rnf,basistoalg(nf,c));
    3582             :   }
    3583       17094 :   return gerepilecopy(av, res);
    3584             : }
    3585             : 
    3586             : static GEN
    3587        2135 : algnattoalg_csa(GEN al, GEN x)
    3588             : {
    3589        2135 :   pari_sp av = avma;
    3590        2135 :   GEN nf = alg_get_center(al), res, c;
    3591        2135 :   long d2 = alg_get_dim(al), n = nf_get_degree(nf), i, i1;
    3592        2135 :   res = zerocol(d2);
    3593        2135 :   c = zerocol(n);
    3594       11032 :   for (i=0; i<d2; i++) {
    3595       28728 :     for (i1=1; i1<=n; i1++) gel(c,i1) = gel(x,i*n+i1);
    3596        8897 :     gel(res,i+1) = basistoalg(nf,c);
    3597             :   }
    3598        2135 :   return gerepilecopy(av, res);
    3599             : }
    3600             : 
    3601             : /* assumes al CSA or CYCLIC */
    3602             : static GEN
    3603       19229 : algnattoalg(GEN al, GEN x)
    3604             : {
    3605       19229 :   switch(alg_type(al))
    3606             :   {
    3607       17094 :     case al_CYCLIC: return algnattoalg_cyc(al, x);
    3608        2135 :     case al_CSA: return algnattoalg_csa(al, x);
    3609             :   }
    3610             :   return NULL; /*LCOV_EXCL_LINE*/
    3611             : }
    3612             : 
    3613             : static GEN
    3614         182 : algalgtobasis_mat(GEN al, GEN x) /* componentwise */
    3615             : {
    3616         182 :   pari_sp av = avma;
    3617             :   long lx, lxj, i, j;
    3618             :   GEN res;
    3619         182 :   lx = lg(x);
    3620         182 :   res = cgetg(lx, t_MAT);
    3621         546 :   for (j=1; j<lx; j++) {
    3622         364 :     lxj = lg(gel(x,j));
    3623         364 :     gel(res,j) = cgetg(lxj, t_COL);
    3624        1092 :     for (i=1; i<lxj; i++)
    3625         728 :       gcoeff(res,i,j) = algalgtobasis(al,gcoeff(x,i,j));
    3626             :   }
    3627         182 :   return gerepilecopy(av,res);
    3628             : }
    3629             : GEN
    3630       89329 : algalgtobasis(GEN al, GEN x)
    3631             : {
    3632             :   pari_sp av;
    3633             :   long tx, ta;
    3634       89329 :   checkalg(al);
    3635       89322 :   ta = alg_type(al);
    3636       89322 :   if (ta != al_CYCLIC && ta != al_CSA) pari_err_TYPE("algalgtobasis [use alginit]", al);
    3637       89287 :   tx = alg_model(al,x);
    3638       89266 :   if (tx==al_BASIS) return gcopy(x);
    3639       87425 :   if (tx==al_MATRIX) return algalgtobasis_mat(al,x);
    3640       87243 :   av = avma;
    3641       87243 :   x = algalgtonat(al,x);
    3642       87243 :   x = RgM_RgC_mul(alg_get_invbasis(al),x);
    3643       87243 :   return gerepileupto(av, x);
    3644             : }
    3645             : 
    3646             : /*
    3647             :  Quaternion algebras special case:
    3648             :  al = (L/F, sigma, b) with L quadratic
    3649             :  > v^2-a: i = v
    3650             :  > v^2+A*v+B: i = 2*v+A: i^2 = a = A^2-4*B
    3651             :  al ~ (a,b)_F
    3652             : */
    3653             : /* We could improve efficiency, but these functions are just for convenience. */
    3654             : GEN
    3655         280 : algquattobasis(GEN al, GEN x)
    3656             : {
    3657         280 :   pari_sp av = avma;
    3658             :   GEN L1, L2, pol, A, x2, nf;
    3659             :   long v, i, ta;
    3660         280 :   checkalg(al);
    3661         273 :   if (alg_is_asq(al))
    3662             :   {
    3663          84 :     x = algalgtonat(al,x);
    3664          84 :     x = RgM_RgC_mul(alg_get_invbasis(al),x);
    3665          84 :     return gerepileupto(av,x);
    3666             :   }
    3667         189 :   ta = alg_type(al);
    3668         189 :   if (ta != al_CYCLIC || alg_get_degree(al)!=2)
    3669          28 :     pari_err_TYPE("algquattobasis [not a quaternion algebra]", al);
    3670         161 :   if (typ(x)!=t_COL && typ(x)!=t_VEC) pari_err_TYPE("algquattobasis", x);
    3671         154 :   if (lg(x)!=5) pari_err_DIM("algquattobasis [quaternions have 4 components]");
    3672         147 :   nf = alg_get_center(al);
    3673         147 :   x2 = cgetg(5, t_COL);
    3674         707 :   for (i=1; i<=4; i++) gel(x2,i) = basistoalg(nf, gel(x,i));
    3675         140 :   gel(x2,4) = gneg(gel(x2,4));
    3676         140 :   pol = alg_get_splitpol(al);
    3677         140 :   v = varn(pol);
    3678         140 :   A = gel(pol,3); /* coeff of v^1 */
    3679         140 :   if (gequal0(A))
    3680             :   {
    3681             :     /* i = v */
    3682          91 :     L1 = deg1pol_shallow(gel(x2,2), gel(x2,1), v);
    3683          91 :     L2 = deg1pol_shallow(gel(x2,4), gel(x2,3), v);
    3684             :   }
    3685             :   else
    3686             :   {
    3687             :     /* i = 2*v+A */
    3688          49 :     L1 = deg1pol_shallow(gshift(gel(x2,2),1),
    3689          49 :         gadd(gel(x2,1),gmul(A,gel(x2,2))), v);
    3690          49 :     L2 = deg1pol_shallow(gshift(gel(x2,4),1),
    3691          49 :         gadd(gel(x2,3),gmul(A,gel(x2,4))), v);
    3692             :   }
    3693         140 :   return gerepileupto(av, algalgtobasis(al,mkcol2(L1,L2)));
    3694             : }
    3695             : GEN
    3696         126 : algbasistoquat(GEN al, GEN x)
    3697             : {
    3698         126 :   pari_sp av = avma;
    3699             :   GEN pol, A, x2, q;
    3700             :   long v, ta;
    3701         126 :   checkalg(al);
    3702         119 :   if (alg_is_asq(al))
    3703             :   {
    3704          21 :     x = RgM_RgC_mul(alg_get_basis(al),x);
    3705          21 :     x = algnattoalg(al,x);
    3706          21 :     return gerepileupto(av, x);
    3707             :   }
    3708          98 :   ta = alg_type(al);
    3709          98 :   if (ta != al_CYCLIC || alg_get_degree(al)!=2)
    3710          28 :     pari_err_TYPE("algbasistoquat [not a quaternion algebra]", al);
    3711          70 :   pol = alg_get_splitpol(al);
    3712          70 :   v = varn(pol);
    3713          70 :   A = gel(pol,3); /* coeff of v^1 */
    3714          70 :   x2 = algbasistoalg(al, x);
    3715          56 :   x2 = lift0(x2, v);
    3716          56 :   q = cgetg(5, t_COL);
    3717          56 :   if (gequal0(A))
    3718             :   {
    3719             :     /* v = i */
    3720          42 :     gel(q,1) = polcoef_i(gel(x2,1),0,v);
    3721          42 :     gel(q,2) = polcoef_i(gel(x2,1),1,v);
    3722          42 :     gel(q,3) = polcoef_i(gel(x2,2),0,v);
    3723          42 :     gel(q,4) = polcoef_i(gel(x2,2),1,v);
    3724          42 :     gel(q,4) = gneg(gel(q,4));
    3725             :   }
    3726             :   else
    3727             :   {
    3728             :     /* v = (i-A)/2 */
    3729          14 :     gel(q,2) = gshift(polcoef_i(gel(x2,1),1,v),-1);
    3730          14 :     gel(q,1) = gsub(polcoef_i(gel(x2,1),0,v), gmul(A,gel(q,2)));
    3731          14 :     gel(q,4) = gneg(gshift(polcoef_i(gel(x2,2),1,v),-1));
    3732          14 :     gel(q,3) = gadd(polcoef_i(gel(x2,2),0,v),gmul(A,gel(q,4)));
    3733             :   }
    3734          56 :   return gerepilecopy(av, q);
    3735             : }
    3736             : GEN
    3737          98 : algisquatalg(GEN al)
    3738             : {
    3739          98 :   pari_sp av = avma;
    3740             :   GEN pol, a;
    3741             :   long ta;
    3742          98 :   checkalg(al);
    3743          91 :   ta = alg_type(al);
    3744          91 :   if (ta == al_REAL && algreal_dim(al)==4)
    3745           7 :     return gerepilecopy(av, mkvec2(gen_m1,gen_m1));
    3746          84 :   if (alg_is_asq(al))
    3747          21 :     return gerepilecopy(av, mkvec2(gmael3(al,6,1,1),gmael3(al,6,1,2)));
    3748          63 :   if (ta != al_CYCLIC || alg_get_degree(al)!=2) return gc_const(av, gen_0);
    3749          35 :   pol = alg_get_splitpol(al);
    3750          35 :   if (gequal0(gel(pol,3))) a = gneg(gel(pol,2)); /* coeffs of v^1 and v^0 */
    3751           7 :   else a = RgX_disc(pol);
    3752          35 :   return gerepilecopy(av, mkvec2(a,lift_shallow(alg_get_b(al))));
    3753             : }
    3754             : 
    3755             : static GEN
    3756         119 : algbasistoalg_mat(GEN al, GEN x) /* componentwise */
    3757             : {
    3758         119 :   long j, lx = lg(x);
    3759         119 :   GEN res = cgetg(lx, t_MAT);
    3760         357 :   for (j=1; j<lx; j++) {
    3761         238 :     long i, lxj = lg(gel(x,j));
    3762         238 :     gel(res,j) = cgetg(lxj, t_COL);
    3763         714 :     for (i=1; i<lxj; i++) gcoeff(res,i,j) = algbasistoalg(al,gcoeff(x,i,j));
    3764             :   }
    3765         119 :   return res;
    3766             : }
    3767             : GEN
    3768        3409 : algbasistoalg(GEN al, GEN x)
    3769             : {
    3770             :   pari_sp av;
    3771             :   long tx, ta;
    3772        3409 :   checkalg(al);
    3773        3409 :   ta = alg_type(al);
    3774        3409 :   if (ta != al_CYCLIC && ta != al_CSA) pari_err_TYPE("algbasistoalg [use alginit]", al);
    3775        3388 :   tx = alg_model(al,x);
    3776        3374 :   if (tx==al_ALGEBRAIC) return gcopy(x);
    3777        3241 :   if (tx==al_MATRIX) return algbasistoalg_mat(al,x);
    3778        3122 :   av = avma;
    3779        3122 :   x = RgM_RgC_mul(alg_get_basis(al),x);
    3780        3122 :   x = algnattoalg(al,x);
    3781        3122 :   return gerepileupto(av, x);
    3782             : }
    3783             : 
    3784             : static GEN
    3785        4466 : R_random(GEN b)
    3786             : {
    3787        4466 :   pari_sp av = avma;
    3788        4466 :   long prec = realprec(b);
    3789        4466 :   GEN z = randomr(prec); shiftr_inplace(z, 1);
    3790        4466 :   return gerepileuptoleaf(av, mulrr(b,addsr(-1, z)));
    3791             : }
    3792             : static GEN
    3793         182 : C_random(GEN b)
    3794             : {
    3795         182 :   retmkcomplex(R_random(b), R_random(b));
    3796             : }
    3797             : static GEN
    3798         980 : H_random(GEN b)
    3799             : {
    3800         980 :   GEN res = cgetg(5, t_COL);
    3801             :   long i;
    3802        4900 :   for (i=1; i<=4; i++) gel(res,i) = R_random(b);
    3803         980 :   return res;
    3804             : }
    3805             : GEN
    3806       20104 : algrandom(GEN al, GEN b)
    3807             : {
    3808       20104 :   GEN res = NULL, p, N;
    3809             :   long i, n;
    3810       20104 :   checkalg(al);
    3811       20090 :   if (alg_type(al)==al_REAL)
    3812             :   {
    3813        1365 :     if (typ(b) != t_REAL) pari_err_TYPE("algrandom",b);
    3814        1358 :     if (signe(b) < 0) pari_err_DOMAIN("algrandom", "b", "<", gen_0, b);
    3815        1351 :     switch(alg_get_absdim(al))
    3816             :     {
    3817         182 :       case 1: res = R_random(b); break;
    3818         182 :       case 2: res = C_random(b); break;
    3819         980 :       case 4: res = H_random(b); break;
    3820           7 :       default: pari_err_TYPE("algrandom [apply alginit]", al);
    3821             :     }
    3822        1344 :     return res;
    3823             :   }
    3824       18725 :   if (typ(b) != t_INT) pari_err_TYPE("algrandom",b);
    3825       18718 :   if (signe(b) < 0) pari_err_DOMAIN("algrandom", "b", "<", gen_0, b);
    3826       18711 :   n = alg_get_absdim(al);
    3827       18711 :   N = addiu(shifti(b,1), 1); /* left on stack */
    3828       18711 :   p = alg_get_char(al); if (!signe(p)) p = NULL;
    3829       18711 :   res = cgetg(n+1,t_COL);
    3830      168385 :   for (i = 1; i <= n; i++)
    3831             :   {
    3832      149674 :     pari_sp av = avma;
    3833      149674 :     GEN t = subii(randomi(N),b);
    3834      149674 :     if (p) t = modii(t, p);
    3835      149674 :     gel(res,i) = gerepileuptoint(av, t);
    3836             :   }
    3837       18711 :   return res;
    3838             : }
    3839             : 
    3840             : static GEN
    3841          84 : H_poleval(GEN pol, GEN x)
    3842             : {
    3843          84 :   pari_sp av = avma;
    3844             :   GEN res;
    3845             :   long i;
    3846          84 :   switch (H_model(x))
    3847             :   {
    3848          21 :     case H_SCALAR: return RgX_cxeval(pol, x, NULL);
    3849          49 :     case H_QUATERNION: break;
    3850           7 :     default: pari_err_TYPE("H_poleval", x);
    3851             :   }
    3852             : 
    3853          49 :   res = zerocol(4);
    3854         231 :   for (i=lg(pol)-1; i>1; i--)
    3855             :   {
    3856         182 :     gel(res,1) = gadd(gel(res,1), gel(pol,i));
    3857         182 :     if (i>2) res = H_mul(x, res);
    3858             :   }
    3859             : 
    3860          49 :   return gerepilecopy(av,res);
    3861             : }
    3862             : 
    3863             : /* Assumes pol has coefficients in the same ring as the COL x; x either
    3864             :  * in basis or algebraic form or [x,mx] where mx is the mult. table of x.
    3865             :  TODO more general version: pol with coeffs in center and x in basis form */
    3866             : GEN
    3867       29434 : algpoleval(GEN al, GEN pol, GEN x)
    3868             : {
    3869       29434 :   pari_sp av = avma;
    3870       29434 :   GEN p, mx = NULL, res, c;
    3871       29434 :   long i, xalg = 0;
    3872       29434 :   if (typ(pol) != t_POL) pari_err_TYPE("algpoleval", pol);
    3873       29420 :   checkalg(al);
    3874       29420 :   if (alg_type(al)==al_REAL) return H_poleval(pol,x);
    3875       29336 :   p = alg_get_char(al);
    3876       29336 :   if (typ(x) == t_VEC)
    3877             :   {
    3878       10122 :     if (lg(x) != 3) pari_err_TYPE("algpoleval [vector must be of length 2]", x);
    3879       10115 :     mx = gel(x,2);
    3880       10115 :     x = gel(x,1);
    3881       10115 :     if (typ(mx)!=t_MAT || !gequal(x,gel(mx,1)))
    3882          21 :       pari_err_TYPE("algpoleval [mx must be the multiplication table of x]", mx);
    3883             :   }
    3884             :   else
    3885             :   {
    3886       19214 :     switch(alg_model(al,x))
    3887             :     {
    3888          14 :       case al_ALGEBRAIC: mx = algalgmultable(al,x); xalg=1; break;
    3889       19186 :       case al_BASIS:
    3890       19186 :       case al_TRIVIAL: mx = algbasismultable(al,x); break;
    3891           7 :       default: pari_err_TYPE("algpoleval", x);
    3892             :     }
    3893             :   }
    3894       29294 :   res = zerocol(lg(mx)-1);
    3895       29294 :   if (signe(p)) {
    3896       86405 :     for (i=lg(pol)-1; i>1; i--)
    3897             :     {
    3898       62879 :       gel(res,1) = Fp_add(gel(res,1), gel(pol,i), p);
    3899       62879 :       if (i>2) res = FpM_FpC_mul(mx, res, p);
    3900             :     }
    3901             :   }
    3902             :   else {
    3903       29323 :     for (i=lg(pol)-1; i>1; i--)
    3904             :     {
    3905       23555 :       c = gel(pol,i);
    3906       23555 :       if (xalg || is_rational_t(typ(c))) gel(res,1) = gadd(gel(res,1), c);
    3907         420 :       else res = RgC_add(res, algeltfromnf_i(al,c));
    3908       23555 :       if (i>2) res = RgM_RgC_mul(mx, res);
    3909             :     }
    3910             :   }
    3911       29294 :   return gerepileupto(av, res);
    3912             : }
    3913             : 
    3914             : static GEN
    3915          98 : H_invol(GEN x)
    3916             : {
    3917          98 :   pari_sp av = avma;
    3918             :   long tx;
    3919             :   GEN cx;
    3920          98 :   if (!x) return gerepileupto(av,diagonal(mkvec4(gen_1,gen_m1,gen_m1,gen_m1)));
    3921          35 :   tx = H_model(x);
    3922          28 :   if (tx == H_SCALAR) return gconj(x);
    3923          14 :   cx = gneg(x);
    3924          14 :   gel(cx,1) = gcopy(gel(x,1));
    3925          14 :   return gerepileupto(av, cx);
    3926             : }
    3927             : 
    3928             : GEN
    3929         308 : alginvol(GEN al, GEN x)
    3930             : {
    3931         308 :   pari_sp av = avma;
    3932             :   GEN invol;
    3933         308 :   checkalg(al);
    3934         294 :   if (!x && al) return gerepileupto(av, alg_get_invol(al));
    3935         175 :   if (alg_type(al)==al_REAL) return H_invol(x);
    3936         133 :   x = algalgtobasis(al, x);
    3937         126 :   invol = alg_get_invol(al);
    3938         126 :   if (typ(invol)!=t_MAT)
    3939           7 :     pari_err_DOMAIN("alginvol [al does not contain an involution]", "invol", "=", gen_0, invol);
    3940         119 :   return gerepileupto(av, RgM_RgC_mul(invol,x));
    3941             : }
    3942             : 
    3943             : GEN
    3944         112 : algskolemnoether(GEN al, GEN a, GEN fa)
    3945             : {
    3946         112 :   pari_sp av = avma;
    3947         112 :   long c = 0, i, ta;
    3948             :   GEN M, K, b;
    3949         112 :   checkalg(al);
    3950         105 :   ta = alg_type(al);
    3951         105 :   if (ta!=al_CYCLIC && ta!=al_CSA) pari_err_TYPE("algskolemnoether"
    3952             :       " [al: apply alginit()]", al);
    3953          91 :   if (typ(a) != t_VEC) a = mkvec(a);
    3954          91 :   if (typ(fa) != t_VEC) fa = mkvec(fa);
    3955          91 :   if (lg(a) != lg(fa)) pari_err_DIM("algskolemnoether [lg(a) != lg(fa)]");
    3956          84 :   if (lg(a) == 1) return gerepileupto(av, col_ei(alg_get_absdim(al),1));
    3957             : 
    3958             :   /* compute space K of b s.t. b*a_i == fa_i*b for all i */
    3959          77 :   M = cgetg(lg(a),t_COL);
    3960         154 :   for (i=1; i<lg(a); i++) gel(M,i) = RgM_sub(algrightmultable(al,gel(a,i)),
    3961          91 :                                       algleftmultable(al,gel(fa,i)));
    3962          56 :   M = shallowmatconcat(M);
    3963          56 :   K = QM_ker(M);
    3964             : 
    3965             :   /* find invertible element in K */
    3966          56 :   if (lg(K)==1) pari_err(e_MISC, "no solution in algskolemnoether"
    3967             :       " [check simplicity and homomorphism assumptions]");
    3968          49 :   b = gel(K,1);
    3969        1449 :   while (!algisinv(al, b, NULL))
    3970             :   {
    3971        1407 :     b = gadd(b, gel(K,1+random_Fl(lg(K)-1)));
    3972        1407 :     c++;
    3973        1407 :     if (c > 200) pari_err(e_MISC, "probable infinite loop in algskolemnoether"
    3974             :         " (the subalgebra is probably not simple)");
    3975             :   }
    3976          42 :   return gerepileupto(av, b);
    3977             : }
    3978             : 
    3979             : /** GRUNWALD-WANG **/
    3980             : /*
    3981             : Song Wang's PhD thesis (pdf pages)
    3982             : p.25 definition of chi_b. K^Ker(chi_b) = K(b^(1/m))
    3983             : p.26 bound on the conductor (also Cohen adv. GTM 193 p.166)
    3984             : p.21 & p.34 description special case, also on wikipedia:
    3985             : http://en.wikipedia.org/wiki/Grunwald%E2%80%93Wang_theorem#Special_fields
    3986             : p.77 Kummer case
    3987             : */
    3988             : 
    3989             : /* n > 0. Is n = 2^k ? */
    3990             : static int
    3991         385 : uispow2(ulong n) { return !(n &(n-1)); }
    3992             : 
    3993             : static GEN
    3994         441 : get_phi0(GEN bnr, GEN Lpr, GEN Ld, GEN pl, long *pr, long *pn)
    3995             : {
    3996         441 :   const long NTRY = 10; /* FIXME: magic constant */
    3997         441 :   const long n = (lg(Ld)==1)? 2: vecsmall_max(Ld);
    3998         441 :   GEN S = bnr_get_cyc(bnr);
    3999             :   GEN Sst, G, globGmod, loc, X, Rglob, Rloc, H, U, Lconj;
    4000             :   long i, j, r, nbfrob, nbloc, nz, t;
    4001             : 
    4002         441 :   *pn = n;
    4003         441 :   *pr = r = lg(S)-1;
    4004         441 :   if (!r) return NULL;
    4005         392 :   Sst = cgetg(r+1, t_VECSMALL); /* Z/n-dual */
    4006        1715 :   for (i=1; i<=r; i++) Sst[i] = ugcdiu(gel(S,i), n);
    4007         392 :   if (Sst[1] != n) return NULL;
    4008         385 :   Lconj = NULL;
    4009         385 :   nbloc = nbfrob = lg(Lpr)-1;
    4010         385 :   if (uispow2(n))
    4011             :   {
    4012         266 :     long l = lg(pl), k = 0;
    4013         266 :     GEN real = cgetg(l, t_VECSMALL);
    4014         994 :     for (i = 1; i < l; i++)
    4015         728 :       if (pl[i] == -1) real[++k] = i;
    4016         266 :     if (k)
    4017             :     {
    4018         266 :       GEN nf = bnr_get_nf(bnr), I = bid_get_fact(bnr_get_bid(bnr));
    4019         266 :       GEN v, y, C = idealchineseinit(bnr, I);
    4020         266 :       long r1 = nf_get_r1(nf), n = nbrows(I);
    4021         266 :       nbloc += k;
    4022         266 :       Lconj = cgetg(k+1, t_VEC);
    4023         266 :       v = const_vecsmall(r1, 1);
    4024         266 :       y = const_vec(n, gen_1);
    4025         728 :       for (i = 1; i <= k; i++)
    4026             :       {
    4027         462 :         v[real[i]] = -1; gel(Lconj,i) = idealchinese(nf, mkvec2(C,v), y);
    4028         462 :         v[real[i]] = 1;
    4029             :       }
    4030             :     }
    4031             :   }
    4032         385 :   globGmod = cgetg(r+1,t_MAT);
    4033         385 :   G = cgetg(r+1,t_VECSMALL);
    4034        1701 :   for (i = 1; i <= r; i++)
    4035             :   {
    4036        1316 :     G[i] = n / Sst[i]; /* pairing between S and Sst */
    4037        1316 :     gel(globGmod,i) = cgetg(nbloc+1,t_VECSMALL);
    4038             :   }
    4039             : 
    4040             :   /* compute images of Frobenius elements (and complex conjugation) */
    4041         385 :   loc = cgetg(nbloc+1,t_VECSMALL);
    4042         868 :   for (i = 1; i <= nbloc; i++)
    4043             :   {
    4044             :     long L;
    4045         651 :     if (i <= nbfrob)
    4046             :     {
    4047         322 :       X = gel(Lpr, i);
    4048         322 :       L = Ld[i];
    4049             :     }
    4050             :     else
    4051             :     { /* X = 1 (mod f), sigma_i(x) < 0, positive at all other real places */
    4052         329 :       X = gel(Lconj, i-nbfrob);
    4053         329 :       L = 2;
    4054             :     }
    4055         651 :     X = ZV_to_Flv(isprincipalray(bnr,X), n);
    4056        2499 :     for (nz=0,j=1; j<=r; j++)
    4057             :     {
    4058        1848 :       ulong c = (X[j] * G[j]) % L;
    4059        1848 :       ucoeff(globGmod,i,j) = c;
    4060        1848 :       if (c) nz = 1;
    4061             :     }
    4062         651 :     if (!nz) return NULL;
    4063         483 :     loc[i] = L;
    4064             :   }
    4065             : 
    4066             :   /* try some random elements in the dual */
    4067         217 :   Rglob = cgetg(r+1,t_VECSMALL);
    4068         461 :   for (t=0; t<NTRY; t++) {
    4069        1615 :     for (j = 1; j <= r; j++) Rglob[j] = random_Fl(Sst[j]);
    4070         454 :     Rloc = zm_zc_mul(globGmod,Rglob);
    4071        1119 :     for (i = 1; i <= nbloc; i++)
    4072         909 :       if (Rloc[i] % loc[i] == 0) break;
    4073         454 :     if (i > nbloc) return zv_to_ZV(Rglob);
    4074             :   }
    4075             : 
    4076             :   /* try to realize some random elements of the product of the local duals */
    4077           7 :   H = ZM_hnfall_i(shallowconcat(zm_to_ZM(globGmod),
    4078             :                                 diagonal_shallow(zv_to_ZV(loc))), &U, 2);
    4079             :   /* H,U nbloc x nbloc */
    4080           7 :   Rloc = cgetg(nbloc+1,t_COL);
    4081          77 :   for (t = 0; t < NTRY; t++)
    4082             :   { /* nonzero random coordinate */ /* TODO add special case ? */
    4083         560 :     for (i = 1; i <= nbloc; i++) gel(Rloc,i) = stoi(1 + random_Fl(loc[i]-1));
    4084          70 :     Rglob = hnf_invimage(H, Rloc);
    4085          70 :     if (Rglob)
    4086             :     {
    4087           0 :       Rglob = ZM_ZC_mul(U,Rglob);
    4088           0 :       return vecslice(Rglob,1,r);
    4089             :     }
    4090             :   }
    4091           7 :   return NULL;
    4092             : }
    4093             : 
    4094             : static GEN
    4095         441 : bnrgwsearch(GEN bnr, GEN Lpr, GEN Ld, GEN pl)
    4096             : {
    4097         441 :   pari_sp av = avma;
    4098             :   long n, r;
    4099         441 :   GEN phi0 = get_phi0(bnr,Lpr,Ld,pl, &r,&n), gn, v, H,U;
    4100         441 :   if (!phi0) return gc_const(av, gen_0);
    4101         210 :   gn = stoi(n);
    4102             :   /* compute kernel of phi0 */
    4103         210 :   v = ZV_extgcd(vec_append(phi0, gn));
    4104         210 :   U = vecslice(gel(v,2), 1,r);
    4105         210 :   H = ZM_hnfmodid(rowslice(U, 1,r), gn);
    4106         210 :   return gerepileupto(av, H);
    4107             : }
    4108             : 
    4109             : GEN
    4110         210 : bnfgwgeneric(GEN bnf, GEN Lpr, GEN Ld, GEN pl, long var)
    4111             : {
    4112         210 :   pari_sp av = avma;
    4113         210 :   const long n = (lg(Ld)==1)? 2: vecsmall_max(Ld);
    4114             :   forprime_t S;
    4115         210 :   GEN bnr = NULL, ideal = gen_1, nf, dec, H = gen_0, finf, pol;
    4116             :   ulong ell, p;
    4117             :   long deg, i, degell;
    4118         210 :   (void)uisprimepower(n, &ell);
    4119         210 :   nf = bnf_get_nf(bnf);
    4120         210 :   deg = nf_get_degree(nf);
    4121         210 :   degell = ugcd(deg,ell-1);
    4122         210 :   finf = cgetg(lg(pl),t_VEC);
    4123         546 :   for (i=1; i<lg(pl); i++) gel(finf,i) = pl[i]==-1 ? gen_1 : gen_0;
    4124             : 
    4125         210 :   u_forprime_init(&S, 2, ULONG_MAX);
    4126         903 :   while ((p = u_forprime_next(&S))) {
    4127         903 :     if (Fl_powu(p % ell, degell, ell) != 1) continue; /* ell | p^deg-1 ? */
    4128         434 :     dec = idealprimedec(nf, utoipos(p));
    4129         784 :     for (i=1; i<lg(dec); i++) {
    4130         560 :       GEN pp = gel(dec,i);
    4131         560 :       if (RgV_isin(Lpr,pp)) continue;
    4132             :         /* TODO also accept the prime ideals at which there is a condition
    4133             :          * (use local Artin)? */
    4134         497 :       if (smodis(idealnorm(nf,pp),ell) != 1) continue; /* ell | N(pp)-1 ? */
    4135         441 :       ideal = idealmul(bnf,ideal,pp);
    4136             :       /* TODO: give factorization ? */
    4137         441 :       bnr = Buchray(bnf, mkvec2(ideal,finf), nf_INIT);
    4138         441 :       H = bnrgwsearch(bnr,Lpr,Ld,pl);
    4139         441 :       if (H != gen_0)
    4140             :       {
    4141         210 :         pol = rnfkummer(bnr,H,nf_get_prec(nf));
    4142         210 :         setvarn(pol, var);
    4143         210 :         return gerepileupto(av,pol);
    4144             :       }
    4145             :     }
    4146             :   }
    4147             :   pari_err_BUG("bnfgwgeneric (no suitable p)"); /*LCOV_EXCL_LINE*/
    4148             :   return NULL;/*LCOV_EXCL_LINE*/
    4149             : }
    4150             : 
    4151             : /* pr.p != ell */
    4152             : static GEN
    4153        1624 : localextdeg(GEN nf, GEN pr, long d, ulong ell, long n)
    4154             : {
    4155             :   GEN modpr, T, p, gen, k;
    4156        1624 :   if (d == 1) return gen_1;
    4157        1610 :   k = powuu(ell, Z_lval(subiu(pr_norm(pr),1), ell));
    4158        1610 :   k = divis(k, n / d);
    4159        1610 :   modpr = nf_to_Fq_init(nf, &pr, &T, &p);
    4160        1610 :   (void)Fq_sqrtn(gen_1, k, T, p, &gen);
    4161        1610 :   return Fq_to_nf(gen, modpr);
    4162             : }
    4163             : /* pr.p = ell */
    4164             : static GEN
    4165         175 : localextdegell(GEN nf, GEN pr, GEN E, long d, long n)
    4166             : {
    4167             :   GEN x;
    4168         175 :   if (d == 1) return gen_1;
    4169         168 :   x = nfadd(nf, gen_1, pr_get_gen(pr));
    4170         168 :   return nfpowmodideal(nf, x, stoi(n / d), idealpow(nf, pr, E));
    4171             : }
    4172             : 
    4173             : /* Ld[i] must be nontrivial powers of the same prime ell */
    4174             : /* pl : -1 at real places at which the extension must ramify, 0 elsewhere */
    4175             : GEN
    4176         294 : nfgwkummer(GEN nf, GEN Lpr, GEN Ld, GEN pl, long var)
    4177             : {
    4178         294 :   const long n = (lg(Ld)==1)? 2: vecsmall_max(Ld);
    4179             :   ulong ell;
    4180         294 :   long i, l = lg(Lpr), v = uisprimepower(n, &ell);
    4181         294 :   GEN E = cgetg(l, t_COL), y = cgetg(l, t_VEC), fa;
    4182             : 
    4183        2093 :   for (i = 1; i < l; i++)
    4184             :   {
    4185        1799 :     GEN pr = gel(Lpr,i), p = pr_get_p(pr);
    4186        1799 :     if (!absequalui(ell, p))
    4187             :     {
    4188        1624 :       gel(E, i) = gen_1;
    4189        1624 :       gel(y, i) = localextdeg(nf, pr, Ld[i], ell, n);
    4190             :     }
    4191             :     else
    4192             :     {
    4193         175 :       long e = pr_get_e(pr);
    4194         175 :       gel(E, i) = addui(1 + v*e, divsi(e, subiu(p,1)));
    4195         175 :       gel(y, i) = localextdegell(nf, pr, gel(E,i), Ld[i], n);
    4196             :     }
    4197             :   }
    4198         294 :   y = factoredextchinese(nf, mkmat2(shallowtrans(Lpr),E), y, pl, &fa);
    4199         294 :   return gsub(gpowgs(pol_x(var),n), basistoalg(nf, y));
    4200             : }
    4201             : 
    4202             : static GEN
    4203        1113 : get_vecsmall(GEN v)
    4204             : {
    4205        1113 :   switch(typ(v))
    4206             :   {
    4207         987 :     case t_VECSMALL: return v;
    4208         119 :     case t_VEC: if (RgV_is_ZV(v)) return ZV_to_zv(v);
    4209             :   }
    4210           7 :   pari_err_TYPE("nfgrunwaldwang",v);
    4211             :   return NULL;/*LCOV_EXCL_LINE*/
    4212             : }
    4213             : GEN
    4214         602 : nfgrunwaldwang(GEN nf0, GEN Lpr, GEN Ld, GEN pl, long var)
    4215             : {
    4216             :   ulong n, ell, ell2;
    4217         602 :   pari_sp av = avma;
    4218             :   GEN nf, bnf;
    4219             :   long t, w, i, vnf;
    4220             : 
    4221         602 :   if (var < 0) var = 0;
    4222         602 :   nf = get_nf(nf0,&t);
    4223         602 :   if (!nf) pari_err_TYPE("nfgrunwaldwang",nf0);
    4224         602 :   vnf = nf_get_varn(nf);
    4225         602 :   if (varncmp(var, vnf) >= 0)
    4226           7 :     pari_err_PRIORITY("nfgrunwaldwang", pol_x(var), ">=", vnf);
    4227         595 :   if (typ(Lpr) != t_VEC) pari_err_TYPE("nfgrunwaldwang",Lpr);
    4228         581 :   if (lg(Lpr) != lg(Ld)) pari_err_DIM("nfgrunwaldwang [#Lpr != #Ld]");
    4229         574 :   if (nf_get_degree(nf)==1) Lpr = shallowcopy(Lpr);
    4230        2709 :   for (i=1; i<lg(Lpr); i++) {
    4231        2142 :     GEN pr = gel(Lpr,i);
    4232        2142 :     if (nf_get_degree(nf)==1 && typ(pr)==t_INT)
    4233          77 :       gel(Lpr,i) = gel(idealprimedec(nf,pr), 1);
    4234        2065 :     else checkprid(pr);
    4235             :   }
    4236         567 :   if (lg(pl)-1 != nf_get_r1(nf))
    4237           7 :     pari_err_DOMAIN("nfgrunwaldwang [pl should have r1 components]", "#pl",
    4238           7 :         "!=", stoi(nf_get_r1(nf)), stoi(lg(pl)-1));
    4239             : 
    4240         560 :   Ld = get_vecsmall(Ld);
    4241         553 :   pl = get_vecsmall(pl);
    4242         553 :   bnf = get_bnf(nf0,&t);
    4243         553 :   n = (lg(Ld)==1)? 2: vecsmall_max(Ld);
    4244             : 
    4245         553 :   if (!uisprimepower(n, &ell))
    4246           7 :     pari_err_IMPL("nfgrunwaldwang for non prime-power local degrees (a)");
    4247        2646 :   for (i=1; i<lg(Ld); i++)
    4248        2107 :     if (Ld[i]!=1 && (!uisprimepower(Ld[i],&ell2) || ell2!=ell))
    4249           7 :       pari_err_IMPL("nfgrunwaldwang for non prime-power local degrees (b)");
    4250        1393 :   for (i=1; i<lg(pl); i++)
    4251         861 :     if (pl[i]==-1 && ell%2)
    4252           7 :       pari_err_IMPL("nfgrunwaldwang for non prime-power local degrees (c)");
    4253             : 
    4254         532 :   w = bnf? bnf_get_tuN(bnf): itos(gel(nfrootsof1(nf),1));
    4255             : 
    4256             :   /* TODO choice between kummer and generic ? Let user choose between speed
    4257             :    * and size */
    4258         532 :   if (w%n==0 && lg(Ld)>1)
    4259         294 :     return gerepileupto(av, nfgwkummer(nf,Lpr,Ld,pl,var));
    4260         238 :   if (ell==n)
    4261             :   {
    4262         210 :     if (!bnf) bnf = Buchall(nf, nf_FORCE, 0);
    4263         210 :     return gerepileupto(av, bnfgwgeneric(bnf,Lpr,Ld,pl,var));
    4264             :   }
    4265          28 :   pari_err_IMPL("nfgrunwaldwang for nonprime degree");
    4266             :   return NULL; /*LCOV_EXCL_LINE*/
    4267             : }
    4268             : 
    4269             : /** HASSE INVARIANTS **/
    4270             : 
    4271             : /* TODO long -> ulong + uel */
    4272             : static GEN
    4273        1484 : hasseconvert(GEN H, long n)
    4274             : {
    4275             :   GEN h, c;
    4276             :   long i, l;
    4277        1484 :   switch(typ(H)) {
    4278        1323 :     case t_VEC:
    4279        1323 :       l = lg(H); h = cgetg(l,t_VECSMALL);
    4280        1323 :       if (l == 1) return h;
    4281        1197 :       c = gel(H,1);
    4282        1197 :       if (typ(c) == t_VEC && l == 3)
    4283         476 :         return mkvec2(gel(H,1),hasseconvert(gel(H,2),n));
    4284        3374 :       for (i=1; i<l; i++)
    4285             :       {
    4286        2681 :         c = gel(H,i);
    4287        2681 :         switch(typ(c)) {
    4288         910 :           case t_INT:  break;
    4289           7 :           case t_INTMOD:
    4290           7 :             c = gel(c,2); break;
    4291        1743 :           case t_FRAC :
    4292        1743 :             c = gmulgs(c,n);
    4293        1743 :             if (typ(c) == t_INT) break;
    4294           7 :             pari_err_DOMAIN("hasseconvert [degree should be a denominator of the invariant]", "denom(h)", "ndiv", stoi(n), Q_denom(gel(H,i)));
    4295          21 :           default : pari_err_TYPE("Hasse invariant", c);
    4296             :         }
    4297        2653 :         h[i] = smodis(c,n);
    4298             :       }
    4299         693 :       return h;
    4300         154 :     case t_VECSMALL: return H;
    4301             :   }
    4302           7 :   pari_err_TYPE("Hasse invariant", H);
    4303             :   return NULL;/*LCOV_EXCL_LINE*/
    4304             : }
    4305             : 
    4306             : /* assume f >= 2 */
    4307             : static long
    4308         546 : cyclicrelfrob0(GEN nf, GEN aut, GEN pr, GEN q, long f, long g)
    4309             : {
    4310         546 :   GEN T, p, a, b, modpr = nf_to_Fq_init(nf,&pr,&T,&p);
    4311             :   long s;
    4312             : 
    4313         546 :   a = pol_x(nf_get_varn(nf));
    4314         546 :   b = galoisapply(nf, aut, modpr_genFq(modpr));
    4315         546 :   b = nf_to_Fq(nf, b, modpr);
    4316        1575 :   for (s = 0; !ZX_equal(a, b); s++) a = Fq_pow(a, q, T, p);
    4317         546 :   return g * Fl_inv(s, f); /* < n */
    4318             : }
    4319             : 
    4320             : static long
    4321        3352 : cyclicrelfrob(GEN rnf, GEN auts, GEN pr)
    4322             : {
    4323        3352 :   pari_sp av = avma;
    4324        3352 :   long f,g,frob, n = rnf_get_degree(rnf);
    4325        3352 :   GEN P = rnfidealprimedec(rnf, pr);
    4326             : 
    4327        3352 :   if (pr_get_e(gel(P,1)) > pr_get_e(pr))
    4328           0 :     pari_err_DOMAIN("cyclicrelfrob","e(PR/pr)",">",gen_1,pr);
    4329        3352 :   g = lg(P) - 1;
    4330        3352 :   f = n / g;
    4331             : 
    4332        3352 :   if (f <= 2) frob = g % n;
    4333             :   else {
    4334         546 :     GEN nf2, PR = gel(P,1);
    4335         546 :     GEN autabs = rnfeltreltoabs(rnf,gel(auts,g));
    4336         546 :     nf2 = obj_check(rnf,rnf_NFABS);
    4337         546 :     autabs = nfadd(nf2, autabs, gmul(rnf_get_k(rnf), rnf_get_alpha(rnf)));
    4338         546 :     frob = cyclicrelfrob0(nf2, autabs, PR, pr_norm(pr), f, g);
    4339             :   }
    4340        3352 :   return gc_long(av, frob);
    4341             : }
    4342             : 
    4343             : static long
    4344        1127 : localhasse(GEN rnf, GEN cnd, GEN pl, GEN auts, GEN b, long k)
    4345             : {
    4346        1127 :   pari_sp av = avma;
    4347             :   long v, m, h, lfa, frob, n, i;
    4348             :   GEN previous, y, pr, nf, q, fa;
    4349        1127 :   nf = rnf_get_nf(rnf);
    4350        1127 :   n = rnf_get_degree(rnf);
    4351        1127 :   pr = gcoeff(cnd,k,1);
    4352        1127 :   v = nfval(nf, b, pr);
    4353        1127 :   m = lg(cnd)>1 ? nbrows(cnd) : 0;
    4354             : 
    4355             :   /* add the valuation of b to the conductor... */
    4356        1127 :   previous = gcoeff(cnd,k,2);
    4357        1127 :   gcoeff(cnd,k,2) = addis(previous, v);
    4358             : 
    4359        1127 :   y = const_vec(m, gen_1);
    4360        1127 :   gel(y,k) = b;
    4361             :   /* find a factored element y congruent to b mod pr^(vpr(b)+vpr(cnd)) and to 1 mod the conductor. */
    4362        1127 :   y = factoredextchinese(nf, cnd, y, pl, &fa);
    4363        1127 :   h = 0;
    4364        1127 :   lfa = nbrows(fa);
    4365             :   /* sum of all Hasse invariants of (rnf/nf,aut,y) is 0, Hasse invariants at q!=pr are easy, Hasse invariant at pr is the same as for al=(rnf/nf,aut,b). */
    4366        2211 :   for (i=1; i<=lfa; i++) {
    4367        1084 :     q = gcoeff(fa,i,1);
    4368        1084 :     if (cmp_prime_ideal(pr,q)) {
    4369        1007 :       frob = cyclicrelfrob(rnf, auts, q);
    4370        1007 :       frob = Fl_mul(frob,umodiu(gcoeff(fa,i,2),n),n);
    4371        1007 :       h = Fl_add(h,frob,n);
    4372             :     }
    4373             :   }
    4374             :   /* ...then restore it. */
    4375        1127 :   gcoeff(cnd,k,2) = previous;
    4376        1127 :   return gc_long(av, Fl_neg(h,n));
    4377             : }
    4378             : 
    4379             : static GEN
    4380        1386 : allauts(GEN rnf, GEN aut)
    4381             : {
    4382        1386 :   long n = rnf_get_degree(rnf), i;
    4383        1386 :   GEN pol = rnf_get_pol(rnf), vaut;
    4384        1386 :   if (n==1) n=2;
    4385        1386 :   vaut = cgetg(n,t_VEC);
    4386        1386 :   aut = lift_shallow(rnfbasistoalg(rnf,aut));
    4387        1386 :   if (typ(aut) != t_POL || varn(pol) != varn(aut))
    4388           0 :     pari_err_TYPE("alg_cyclic", aut);
    4389        1386 :   gel(vaut,1) = aut;
    4390        1841 :   for (i=1; i<n-1; i++)
    4391         455 :     gel(vaut,i+1) = RgX_rem(poleval(gel(vaut,i), aut), pol);
    4392        1386 :   return vaut;
    4393             : }
    4394             : 
    4395             : static GEN
    4396         413 : clean_factor(GEN fa)
    4397             : {
    4398         413 :   GEN P2,E2, P = gel(fa,1), E = gel(fa,2);
    4399         413 :   long l = lg(P), i, j = 1;
    4400         413 :   P2 = cgetg(l, t_COL);
    4401         413 :   E2 = cgetg(l, t_COL);
    4402        2849 :   for (i = 1;i < l; i++)
    4403        2436 :     if (signe(gel(E,i))) {
    4404         728 :       gel(P2,j) = gel(P,i);
    4405         728 :       gel(E2,j) = gel(E,i); j++;
    4406             :     }
    4407         413 :   setlg(P2,j);
    4408         413 :   setlg(E2,j); return mkmat2(P2,E2);
    4409             : }
    4410             : 
    4411             : /* shallow concat x[1],...x[nx],y[1], ... y[ny], returning a t_COL. To be
    4412             :  * used when we do not know whether x,y are t_VEC or t_COL */
    4413             : static GEN
    4414         826 : colconcat(GEN x, GEN y)
    4415             : {
    4416         826 :   long i, lx = lg(x), ly = lg(y);
    4417         826 :   GEN z=cgetg(lx+ly-1, t_COL);
    4418        4396 :   for (i=1; i<lx; i++) z[i]     = x[i];
    4419        2128 :   for (i=1; i<ly; i++) z[lx+i-1]= y[i];
    4420         826 :   return z;
    4421             : }
    4422             : 
    4423             : /* return v(x) at all primes in listpr, replace x by cofactor */
    4424             : static GEN
    4425        1799 : nfmakecoprime(GEN nf, GEN *px, GEN listpr)
    4426             : {
    4427        1799 :   long j, l = lg(listpr);
    4428        1799 :   GEN x1, x = *px, L = cgetg(l, t_COL);
    4429             : 
    4430        1799 :   if (typ(x) != t_MAT)
    4431             :   { /* scalar, divide at the end (fast valuation) */
    4432        1547 :     x1 = NULL;
    4433        6293 :     for (j=1; j<l; j++)
    4434             :     {
    4435        4746 :       GEN pr = gel(listpr,j), e;
    4436        4746 :       long v = nfval(nf, x, pr);
    4437        4746 :       e = stoi(v); gel(L,j) = e;
    4438        6538 :       if (v) x1 = x1? idealmulpowprime(nf, x1, pr, e)
    4439        1792 :                     : idealpow(nf, pr, e);
    4440             :     }
    4441        1547 :     if (x1) x = idealdivexact(nf, idealhnf(nf,x), x1);
    4442             :   }
    4443             :   else
    4444             :   { /* HNF, divide as we proceed (reduce size) */
    4445         525 :     for (j=1; j<l; j++)
    4446             :     {
    4447         273 :       GEN pr = gel(listpr,j);
    4448         273 :       long v = idealval(nf, x, pr);
    4449         273 :       gel(L,j) = stoi(v);
    4450         273 :       if (v) x = idealmulpowprime(nf, x, pr, stoi(-v));
    4451             :     }
    4452             :   }
    4453        1799 :   *px = x; return L;
    4454             : }
    4455             : 
    4456             : /* Caveat: factorizations are not sorted wrt cmp_prime_ideal: Lpr comes first */
    4457             : static GEN
    4458         413 : computecnd(GEN rnf, GEN Lpr)
    4459             : {
    4460             :   GEN id, nf, fa, Le, P,E;
    4461         413 :   long n = rnf_get_degree(rnf);
    4462             : 
    4463         413 :   nf = rnf_get_nf(rnf);
    4464         413 :   id = rnf_get_idealdisc(rnf);
    4465         413 :   Le = nfmakecoprime(nf, &id, Lpr);
    4466         413 :   fa = idealfactor(nf, id); /* part of D_{L/K} coprime with Lpr */
    4467         413 :   P =  colconcat(Lpr,gel(fa,1));
    4468         413 :   E =  colconcat(Le, gel(fa,2));
    4469         413 :   fa = mkmat2(P, gdiventgs(E, eulerphiu(n)));
    4470         413 :   return mkvec2(fa, clean_factor(fa));
    4471             : }
    4472             : 
    4473             : /* h >= 0 */
    4474             : static void
    4475          77 : nextgen(GEN gene, long h, GEN* gens, GEN* hgens, long* ngens, long* curgcd) {
    4476          77 :   long nextgcd = ugcd(h,*curgcd);
    4477          77 :   if (nextgcd == *curgcd) return;
    4478          77 :   (*ngens)++;
    4479          77 :   gel(*gens,*ngens) = gene;
    4480          77 :   gel(*hgens,*ngens) = utoi(h);
    4481          77 :   *curgcd = nextgcd;
    4482          77 :   return;
    4483             : }
    4484             : 
    4485             : static int
    4486         140 : dividesmod(long d, long h, long n) { return !(h%cgcd(d,n)); }
    4487             : 
    4488             : /* ramified prime with nontrivial Hasse invariant */
    4489             : static GEN
    4490          77 : localcomplete(GEN rnf, GEN pl, GEN cnd, GEN auts, long j, long n, long h, long* v)
    4491             : {
    4492             :   GEN nf, gens, hgens, pr, modpr, T, p, sol, U, b, gene, randg, pu;
    4493             :   long ngens, i, d, np, d1, d2, hg, dnf, vcnd, curgcd;
    4494          77 :   nf = rnf_get_nf(rnf);
    4495          77 :   pr = gcoeff(cnd,j,1);
    4496          77 :   np = umodiu(pr_norm(pr), n);
    4497          77 :   dnf = nf_get_degree(nf);
    4498          77 :   vcnd = itos(gcoeff(cnd,j,2));
    4499          77 :   ngens = 13+dnf;
    4500          77 :   gens = zerovec(ngens);
    4501          77 :   hgens = zerovec(ngens);
    4502          77 :   *v = 0;
    4503          77 :   curgcd = 0;
    4504          77 :   ngens = 0;
    4505             : 
    4506          77 :   if (!uisprime(n)) {
    4507           0 :     gene =  pr_get_gen(pr);
    4508           0 :     hg = localhasse(rnf, cnd, pl, auts, gene, j);
    4509           0 :     nextgen(gene, hg, &gens, &hgens, &ngens, &curgcd);
    4510             :   }
    4511             : 
    4512          77 :   if (ugcd(np,n) != 1) { /* GCD(Np,n) != 1 */
    4513          77 :     pu = idealprincipalunits(nf,pr,vcnd);
    4514          77 :     pu = abgrp_get_gen(pu);
    4515         154 :     for (i=1; i<lg(pu) && !dividesmod(curgcd,h,n); i++) {
    4516          77 :       gene = gel(pu,i);
    4517          77 :       hg = localhasse(rnf, cnd, pl, auts, gene, j);
    4518          77 :       nextgen(gene, hg, &gens, &hgens, &ngens, &curgcd);
    4519             :     }
    4520             :   }
    4521             : 
    4522          77 :   d = ugcd(np-1,n);
    4523          77 :   if (d != 1) { /* GCD(Np-1,n) != 1 */
    4524          14 :     modpr = nf_to_Fq_init(nf, &pr, &T, &p);
    4525          14 :     while (!dividesmod(curgcd,h,n)) { /* TODO gener_FpXQ_local */
    4526           0 :       if (T==NULL) randg = randomi(p);
    4527           0 :       else randg = random_FpX(degpol(T), varn(T),p);
    4528             : 
    4529           0 :       if (!gequal0(randg) && !gequal1(randg)) {
    4530           0 :         gene = Fq_to_nf(randg, modpr);
    4531           0 :         hg = localhasse(rnf, cnd, pl, auts, gene, j);
    4532           0 :         nextgen(gene, hg, &gens, &hgens, &ngens, &curgcd);
    4533             :       }
    4534             :     }
    4535             :   }
    4536             : 
    4537          77 :   setlg(gens,ngens+1);
    4538          77 :   setlg(hgens,ngens+1);
    4539             : 
    4540          77 :   sol = ZV_extgcd(hgens);
    4541          77 :   U = ZV_to_Flv(gmael(sol,2,ngens), n);
    4542          77 :   d = itou(gel(sol,1));
    4543          77 :   d1 = ugcd(d, n);
    4544          77 :   d2 = d / d1;
    4545          77 :   d = Fl_mul(h / d1, Fl_inv(d2,n), n);
    4546          77 :   if (d != 1) U = Flv_Fl_mul(U, d, n);
    4547         154 :   for (i = 1, b = gen_1; i <= ngens; i++)
    4548          77 :     if (U[i]) b = nfmul(nf, b, nfpow_u(nf, gel(gens,i), U[i]));
    4549          77 :   *v = U[1]; return b;
    4550             : }
    4551             : 
    4552             : static int
    4553        1002 : testsplits(GEN data, GEN fa)
    4554             : {
    4555        1002 :   GEN rnf = gel(data,1), forbid = gel(data,2), P = gel(fa,1), E = gel(fa,2);
    4556        1002 :   long i, n, l = lg(P);
    4557             : 
    4558        1467 :   for (i = 1; i < l; i++)
    4559             :   {
    4560         956 :     GEN pr = gel(P,i);
    4561         956 :     if (tablesearch(forbid, pr, &cmp_prime_ideal)) return 0;
    4562             :   }
    4563         511 :   n = rnf_get_degree(rnf);
    4564         742 :   for (i = 1; i < l; i++)
    4565             :   {
    4566         329 :     long e = itos(gel(E,i)) % n;
    4567         329 :     if (e)
    4568             :     {
    4569         314 :       GEN L = rnfidealprimedec(rnf, gel(P,i));
    4570         314 :       long g = lg(L) - 1;
    4571         314 :       if ((e * g) % n) return 0;
    4572             :     }
    4573             :   }
    4574         413 :   return 1;
    4575             : }
    4576             : 
    4577             : /* remove entries with Hasse invariant 0 */
    4578             : static GEN
    4579         854 : hassereduce(GEN hf)
    4580             : {
    4581         854 :   GEN pr,h, PR = gel(hf,1), H = gel(hf,2);
    4582         854 :   long i, j, l = lg(PR);
    4583             : 
    4584         854 :   pr= cgetg(l, t_VEC);
    4585         854 :   h = cgetg(l, t_VECSMALL);
    4586        4788 :   for (i = j = 1; i < l; i++)
    4587        3934 :     if (H[i]) {
    4588        3598 :       gel(pr,j) = gel(PR,i);
    4589        3598 :       h[j] = H[i]; j++;
    4590             :     }
    4591         854 :   setlg(pr,j);
    4592         854 :   setlg(h,j); return mkvec2(pr,h);
    4593             : }
    4594             : 
    4595             : static void
    4596        1036 : alg_insert_quatconj(GEN al)
    4597             : {
    4598             :   GEN aut, nf, rnf, nfabs, gene, absaut;
    4599             :   long d;
    4600        1036 :   aut = alg_get_aut(al);
    4601        1036 :   d = alg_get_absdim(al) / 4;
    4602        1036 :   nf = alg_get_center(al);
    4603        1036 :   rnf = alg_get_splittingfield(al);
    4604        1036 :   nfabs = rnf_build_nfabs(rnf, nf_get_prec(nf));
    4605        1036 :   gene = lift_shallow(rnfeltabstorel(rnf,pol_x(nf_get_varn(nfabs))));
    4606        1036 :   absaut = rnfeltreltoabs(rnf,poleval(gene,aut));
    4607        1036 :   gmael(al,6,2) = shallowmatconcat(mkmat22(
    4608             :     nfgaloismatrix(nfabs,absaut),
    4609             :     gen_0,
    4610             :     gen_0,
    4611             :     gneg(matid(2*d))
    4612             :     ));
    4613        1036 : }
    4614             : 
    4615             : /* rnf complete */
    4616             : static GEN
    4617         413 : alg_complete0(GEN rnf, GEN aut, GEN hf, GEN hi, long flag)
    4618             : {
    4619         413 :   pari_sp av = avma;
    4620             :   GEN nf, pl, pl2, cnd, prcnd, cnds, y, Lpr, auts, b, fa, data, hfe;
    4621             :   GEN forbid, al, ind, perm;
    4622             :   long D, n, d, i, j, l;
    4623         413 :   nf = rnf_get_nf(rnf);
    4624         413 :   n = rnf_get_degree(rnf);
    4625         413 :   d = nf_get_degree(nf);
    4626         413 :   D = d*n*n;
    4627         413 :   checkhasse(nf,hf,hi,n);
    4628         413 :   hf = hassereduce(hf);
    4629         413 :   Lpr = gel(hf,1);
    4630         413 :   hfe = gel(hf,2);
    4631             : 
    4632         413 :   auts = allauts(rnf,aut);
    4633             : 
    4634         413 :   pl = leafcopy(hi); /* conditions on the final b */
    4635         413 :   pl2 = leafcopy(hi); /* conditions for computing local Hasse invariants */
    4636         413 :   l = lg(pl); ind = cgetg(l, t_VECSMALL);
    4637        1036 :   for (i = j = 1; i < l; i++)
    4638         623 :     if (hi[i]) { pl[i] = -1; pl2[i] = 1; } else ind[j++] = i;
    4639         413 :   setlg(ind, j);
    4640         413 :   y = nfpolsturm(nf, rnf_get_pol(rnf), ind);
    4641         777 :   for (i = 1; i < j; i++)
    4642         364 :     if (!signe(gel(y,i))) { pl[ind[i]] = 1; pl2[ind[i]] = 1; }
    4643             : 
    4644         413 :   cnds = computecnd(rnf,Lpr);
    4645         413 :   prcnd = gel(cnds,1);
    4646         413 :   cnd = gel(cnds,2);
    4647         413 :   y = cgetg(lgcols(prcnd),t_VEC);
    4648         413 :   forbid = vectrunc_init(lg(Lpr));
    4649        2198 :   for (i=j=1; i<lg(Lpr); i++)
    4650             :   {
    4651        1785 :     GEN pr = gcoeff(prcnd,i,1), yi;
    4652        1785 :     long v, e = itou( gcoeff(prcnd,i,2) );
    4653        1785 :     if (!e) {
    4654        1708 :       long frob = cyclicrelfrob(rnf,auts,pr), f1 = ugcd(frob,n);
    4655        1708 :       vectrunc_append(forbid, pr);
    4656        1708 :       yi = gen_0;
    4657        1708 :       v = ((hfe[i]/f1) * Fl_inv(frob/f1,n)) % n;
    4658             :     }
    4659             :     else
    4660          77 :       yi = localcomplete(rnf, pl2, cnd, auts, j++, n, hfe[i], &v);
    4661        1785 :     gel(y,i) = yi;
    4662        1785 :     gcoeff(prcnd,i,2) = stoi(e + v);
    4663             :   }
    4664        1064 :   for (; i<lgcols(prcnd); i++) gel(y,i) = gen_1;
    4665         413 :   gen_sort_inplace(forbid, (void*)&cmp_prime_ideal, &cmp_nodata, NULL);
    4666         413 :   data = mkvec2(rnf,forbid);
    4667         413 :   b = factoredextchinesetest(nf,prcnd,y,pl,&fa,data,testsplits);
    4668             : 
    4669         413 :   al = cgetg(12, t_VEC);
    4670         413 :   gel(al,10)= gen_0; /* must be set first */
    4671         413 :   gel(al,1) = rnf;
    4672         413 :   gel(al,2) = auts;
    4673         413 :   gel(al,3) = basistoalg(nf,b);
    4674         413 :   gel(al,4) = hi;
    4675             :   /* add primes | disc or b with trivial Hasse invariant to hf */
    4676         413 :   Lpr = gel(prcnd,1); y = b;
    4677         413 :   (void)nfmakecoprime(nf, &y, Lpr);
    4678         413 :   Lpr = shallowconcat(Lpr, gel(idealfactor(nf,y), 1));
    4679         413 :   settyp(Lpr,t_VEC);
    4680         413 :   hf = shallowconcat(hfe, const_vecsmall(lg(Lpr)-lg(hfe), 0));
    4681         413 :   perm = gen_indexsort(Lpr, (void*)&cmp_prime_ideal, &cmp_nodata);
    4682         413 :   gel(al,5) = mkvec2(vecpermute(Lpr,perm), vecsmallpermute(hf,perm));
    4683         413 :   gel(al,6) = mkvec2(gen_0,gen_0);
    4684         413 :   gel(al,7) = matid(D);
    4685         413 :   gel(al,8) = matid(D); /* TODO modify 7, 8 et 9 once LLL added */
    4686         413 :   gel(al,9) = algnatmultable(al,D);
    4687         413 :   gel(al,11)= algtracebasis(al);
    4688             : 
    4689         413 :   if (n==2) alg_insert_quatconj(al);
    4690         413 :   if (flag & al_MAXORD) al = alg_maximal_primes(al, prV_primes(Lpr));
    4691         413 :   return gerepilecopy(av, al);
    4692             : }
    4693             : 
    4694             : GEN
    4695           0 : alg_complete(GEN rnf, GEN aut, GEN hf, GEN hi, long flag)
    4696             : {
    4697           0 :   long n = rnf_get_degree(rnf);
    4698           0 :   rnfcomplete(rnf);
    4699           0 :   return alg_complete0(rnf, aut, hasseconvert(hf,n), hasseconvert(hi,n), flag);
    4700             : }
    4701             : 
    4702             : void
    4703        2254 : checkhasse(GEN nf, GEN hf, GEN hi, long n)
    4704             : {
    4705             :   GEN Lpr, Lh;
    4706             :   long i, sum;
    4707        2254 :   if (typ(hf) != t_VEC || lg(hf) != 3) pari_err_TYPE("checkhasse [hf]", hf);
    4708        2247 :   Lpr = gel(hf,1);
    4709        2247 :   Lh = gel(hf,2);
    4710        2247 :   if (typ(Lpr) != t_VEC) pari_err_TYPE("checkhasse [Lpr]", Lpr);
    4711        2247 :   if (typ(Lh) != t_VECSMALL) pari_err_TYPE("checkhasse [Lh]", Lh);
    4712        2247 :   if (typ(hi) != t_VECSMALL) pari_err_TYPE("checkhasse [hi]", hi);
    4713        2247 :   if ((nf && lg(hi) != nf_get_r1(nf)+1))
    4714           7 :     pari_err_DOMAIN("checkhasse [hi should have r1 components]","#hi","!=",stoi(nf_get_r1(nf)),stoi(lg(hi)-1));
    4715        2240 :   if (lg(Lpr) != lg(Lh))
    4716           7 :     pari_err_DIM("checkhasse [Lpr and Lh should have same length]");
    4717        9660 :   for (i=1; i<lg(Lpr); i++) checkprid(gel(Lpr,i));
    4718        2233 :   if (lg(gen_sort_uniq(Lpr, (void*)cmp_prime_ideal, cmp_nodata)) < lg(Lpr))
    4719           7 :     pari_err(e_MISC, "error in checkhasse [duplicate prime ideal]");
    4720        2226 :   sum = 0;
    4721        9639 :   for (i=1; i<lg(Lh); i++) sum = (sum+Lh[i])%n;
    4722        5278 :   for (i=1; i<lg(hi); i++) {
    4723        3066 :       if (hi[i] && 2*hi[i] != n) pari_err_DOMAIN("checkhasse", "Hasse invariant at real place [must be 0 or 1/2]", "!=", n%2? gen_0 : stoi(n/2), stoi(hi[i]));
    4724        3052 :       sum = (sum+hi[i])%n;
    4725             :   }
    4726        2212 :   if (sum<0) sum = n+sum;
    4727        2212 :   if (sum != 0)
    4728           7 :     pari_err_DOMAIN("checkhasse","sum(Hasse invariants)","!=",gen_0,Lh);
    4729        2205 : }
    4730             : 
    4731             : static GEN
    4732         511 : hassecoprime(GEN hf, GEN hi, long n)
    4733             : {
    4734         511 :   pari_sp av = avma;
    4735             :   long l, i, j, lk, inv;
    4736             :   GEN fa, P,E, res, hil, hfl;
    4737         511 :   hi = hasseconvert(hi, n);
    4738         497 :   hf = hasseconvert(hf, n);
    4739         476 :   checkhasse(NULL,hf,hi,n);
    4740         434 :   fa = factoru(n);
    4741         434 :   P = gel(fa,1); l = lg(P);
    4742         434 :   E = gel(fa,2);
    4743         434 :   res = cgetg(l,t_VEC);
    4744         875 :   for (i=1; i<l; i++) {
    4745         441 :     lk = upowuu(P[i],E[i]);
    4746         441 :     inv = Fl_invsafe((n/lk)%lk, lk);
    4747         441 :     hil = gcopy(hi);
    4748         441 :     hfl = gcopy(hf);
    4749             : 
    4750         441 :     if (P[i] == 2)
    4751         896 :       for (j=1; j<lg(hil); j++) hil[j] = hi[j]==0 ? 0 : lk/2;
    4752             :     else
    4753         203 :       for (j=1; j<lg(hil); j++) hil[j] = 0;
    4754        2590 :     for (j=1; j<lgcols(hfl); j++) gel(hfl,2)[j] = (gel(hf,2)[j]*inv)%lk;
    4755         441 :     hfl = hassereduce(hfl);
    4756         441 :     gel(res,i) = mkvec3(hfl,hil,utoi(lk));
    4757             :   }
    4758             : 
    4759         434 :   return gerepilecopy(av, res);
    4760             : }
    4761             : 
    4762             : /* no garbage collection */
    4763             : static GEN
    4764         140 : genefrob(GEN nf, GEN gal, GEN r)
    4765             : {
    4766             :   long i;
    4767         140 :   GEN g = identity_perm(nf_get_degree(nf)), fa = Z_factor(r), p, pr, frob;
    4768         217 :   for (i=1; i<lgcols(fa); i++) {
    4769          77 :     p = gcoeff(fa,i,1);
    4770          77 :     pr = idealprimedec(nf, p);
    4771          77 :     pr = gel(pr,1);
    4772          77 :     frob = idealfrobenius(nf, gal, pr);
    4773          77 :     g = perm_mul(g, perm_pow(frob, gcoeff(fa,i,2)));
    4774             :   }
    4775         140 :   return g;
    4776             : }
    4777             : 
    4778             : static GEN
    4779         413 : rnfcycaut(GEN rnf)
    4780             : {
    4781         413 :   GEN nf2 = obj_check(rnf, rnf_NFABS);
    4782             :   GEN L, alpha, pol, salpha, s, sj, polabs, k, X, pol0, nf;
    4783             :   long i, d, j;
    4784         413 :   d = rnf_get_degree(rnf);
    4785         413 :   L = galoisconj(nf2,NULL);
    4786         413 :   alpha = lift_shallow(rnf_get_alpha(rnf));
    4787         413 :   pol = rnf_get_pol(rnf);
    4788         413 :   k = rnf_get_k(rnf);
    4789         413 :   polabs = rnf_get_polabs(rnf);
    4790         413 :   nf = rnf_get_nf(rnf);
    4791         413 :   pol0 = nf_get_pol(nf);
    4792         413 :   X = RgX_rem(pol_x(varn(pol0)), pol0);
    4793             : 
    4794             :   /* TODO check mod prime of degree 1 */
    4795         624 :   for (i=1; i<lg(L); i++) {
    4796         624 :     s = gel(L,i);
    4797         624 :     salpha = RgX_RgXQ_eval(alpha,s,polabs);
    4798         624 :     if (!gequal(alpha,salpha)) continue;
    4799             : 
    4800         553 :     s = lift_shallow(rnfeltabstorel(rnf,s));
    4801         553 :     sj = s = gsub(s, gmul(k,X));
    4802        1092 :     for (j=1; !gequal0(gsub(sj,pol_x(varn(s)))); j++)
    4803         539 :       sj = RgX_RgXQ_eval(sj,s,pol);
    4804         553 :     if (j<d) continue;
    4805         413 :     return s;
    4806             :   }
    4807             :   return NULL; /*LCOV_EXCL_LINE*/
    4808             : }
    4809             : 
    4810             : /* returns the smallest prime not in P */
    4811             : static GEN
    4812          84 : extraprime(GEN P)
    4813             : {
    4814             :   forprime_t T;
    4815             :   GEN p;
    4816          84 :   forprime_init(&T, gen_2, NULL);
    4817          98 :   while ((p = forprime_next(&T))) if (!ZV_search(P, p)) break;
    4818          84 :   return p;
    4819             : }
    4820             : 
    4821             : /* true nf */
    4822             : GEN
    4823         525 : alg_hasse(GEN nf, long n, GEN hf, GEN hi, long var, long flag)
    4824             : {
    4825         525 :   pari_sp av = avma;
    4826         525 :   GEN primary, al = gen_0, al2, rnf, hil, hfl, Ld, pl, pol, Lpr, aut, Lpr2, Ld2;
    4827             :   long i, lk, j, maxdeg;
    4828         525 :   dbg_printf(1)("alg_hasse\n");
    4829         525 :   if (n<=1) pari_err_DOMAIN("alg_hasse", "degree", "<=", gen_1, stoi(n));
    4830         511 :   primary = hassecoprime(hf, hi, n);
    4831         854 :   for (i=1; i<lg(primary); i++) {
    4832         441 :     lk = itos(gmael(primary,i,3));
    4833         441 :     hfl = gmael(primary,i,1);
    4834         441 :     hil = gmael(primary,i,2);
    4835         441 :     checkhasse(nf, hfl, hil, lk);
    4836         434 :     dbg_printf(1)("alg_hasse: i=%d hf=%Ps hi=%Ps lk=%d\n", i, hfl, hil, lk);
    4837             : 
    4838         434 :     if (lg(gel(hfl,1))>1 || lk%2==0) {
    4839         427 :       maxdeg = 1;
    4840         427 :       Lpr = gel(hfl,1);
    4841         427 :       Ld = gcopy(gel(hfl,2));
    4842        2226 :       for (j=1; j<lg(Ld); j++)
    4843             :       {
    4844        1799 :         Ld[j] = lk/ugcd(lk,Ld[j]);
    4845        1799 :         maxdeg = maxss(Ld[j],maxdeg);
    4846             :       }
    4847         427 :       pl = leafcopy(hil);
    4848        1064 :       for (j=1; j<lg(pl); j++) if(pl[j])
    4849             :       {
    4850         259 :         pl[j] = -1;
    4851         259 :         maxdeg = maxss(maxdeg,2);
    4852             :       }
    4853             : 
    4854         427 :       Lpr2 = Lpr;
    4855         427 :       Ld2 = Ld;
    4856         427 :       if (maxdeg<lk)
    4857             :       {
    4858         154 :         if (maxdeg==1 && lk==2 && lg(pl)>1) pl[1] = -1;
    4859             :         else
    4860             :         {
    4861          84 :           GEN p = extraprime(prV_primes(Lpr));
    4862          84 :           Lpr2 = vec_append(Lpr2, idealprimedec_galois(nf, p));
    4863          84 :           Ld2 = vecsmall_append(Ld2, lk);
    4864             :         }
    4865             :       }
    4866             : 
    4867         427 :       dbg_printf(2)("alg_hasse: calling nfgrunwaldwang Lpr=%Ps Pd=%Ps pl=%Ps\n",
    4868             :           Lpr, Ld, pl);
    4869         427 :       pol = nfgrunwaldwang(nf, Lpr2, Ld2, pl, var);
    4870         413 :       dbg_printf(2)("alg_hasse: calling rnfinit(%Ps)\n", pol);
    4871         413 :       rnf = rnfinit0(nf,pol,1);
    4872         413 :       dbg_printf(2)("alg_hasse: computing automorphism\n");
    4873         413 :       aut = rnfcycaut(rnf);
    4874         413 :       dbg_printf(2)("alg_hasse: calling alg_complete\n");
    4875         413 :       al2 = alg_complete0(rnf, aut, hfl, hil, flag);
    4876             :     }
    4877           7 :     else al2 = alg_matrix(nf, lk, var, flag);
    4878             : 
    4879         420 :     if (i==1) al = al2;
    4880           7 :     else      al = algtensor(al,al2,flag);
    4881             :   }
    4882         413 :   return gerepilecopy(av,al);
    4883             : }
    4884             : 
    4885             : /** CYCLIC ALGEBRA WITH GIVEN HASSE INVARIANTS **/
    4886             : 
    4887             : /* no garbage collection */
    4888             : static GEN
    4889         140 : subcycloindep(GEN nf, long n, long v, GEN *pr)
    4890             : {
    4891             :   pari_sp av;
    4892             :   forprime_t S;
    4893             :   ulong p;
    4894         140 :   u_forprime_arith_init(&S, 1, ULONG_MAX, 1, n);
    4895         140 :   av = avma;
    4896         147 :   while ((p = u_forprime_next(&S)))
    4897             :   {
    4898         147 :     ulong r = pgener_Fl(p);
    4899         147 :     GEN pol = galoissubcyclo(utoipos(p), utoipos(Fl_powu(r,n,p)), 0, v);
    4900         147 :     GEN fa = nffactor(nf, pol);
    4901         147 :     if (lgcols(fa) == 2) { *pr = utoipos(r); return pol; }
    4902           7 :     set_avma(av);
    4903             :   }
    4904             :   pari_err_BUG("subcycloindep (no suitable prime = 1(mod n))"); /*LCOV_EXCL_LINE*/
    4905             :   *pr = NULL; return NULL; /*LCOV_EXCL_LINE*/
    4906             : }
    4907             : 
    4908             : GEN
    4909         147 : alg_matrix(GEN nf, long n, long v, long flag)
    4910             : {
    4911         147 :   pari_sp av = avma;
    4912             :   GEN pol, gal, rnf, cyclo, g, r, aut;
    4913         147 :   dbg_printf(1)("alg_matrix\n");
    4914         147 :   if (n<=0) pari_err_DOMAIN("alg_matrix", "n", "<=", gen_0, stoi(n));
    4915         140 :   pol = subcycloindep(nf, n, v, &r);
    4916         140 :   rnf = rnfinit(nf, pol);
    4917         140 :   cyclo = nfinit(pol, nf_get_prec(nf));
    4918         140 :   gal = galoisinit(cyclo, NULL);
    4919         140 :   g = genefrob(cyclo,gal,r);
    4920         140 :   aut = galoispermtopol(gal,g);
    4921         140 :   return gerepileupto(av, alg_cyclic(rnf, aut, gen_1, flag));
    4922             : }
    4923             : 
    4924             : static GEN
    4925          28 : alg_hilbert_asquare(GEN nf, GEN a, GEN sa, GEN b, long v, long flag)
    4926             : {
    4927             :   GEN mt, al, ord, z1, z2, den, invol;
    4928          28 :   long d = nf_get_degree(nf), i;
    4929          28 :   mt = mkvec4(
    4930             :       matid(4),
    4931             :       mkmat4(
    4932             :         mkcol4(gen_0,gen_1,gen_0,gen_0),
    4933             :         mkcol4(a,gen_0,gen_0,gen_0),
    4934             :         mkcol4(gen_0,gen_0,gen_0,gen_1),
    4935             :         mkcol4(gen_0,gen_0,a,gen_0)
    4936             :       ),
    4937             :       mkmat4(
    4938             :         mkcol4(gen_0,gen_0,gen_1,gen_0),
    4939             :         mkcol4(gen_0,gen_0,gen_0,gen_m1),
    4940             :         mkcol4(b,gen_0,gen_0,gen_0),
    4941             :         mkcol4(gen_0,gneg(b),gen_0,gen_0)
    4942             :       ),
    4943             :       mkmat4(
    4944             :         mkcol4(gen_0,gen_0,gen_0,gen_1),
    4945             :         mkcol4(gen_0,gen_0,gneg(a),gen_0),
    4946             :         mkcol4(gen_0,b,gen_0,gen_0),
    4947             :         mkcol4(gneg(gmul(a,b)),gen_0,gen_0,gen_0)
    4948             :       )
    4949             :   );
    4950          28 :   al = alg_csa_table(nf, mt, v, al_NOSPLITTING);
    4951             : 
    4952             :   /* set trivial Hasse invariants */
    4953          28 :   gel(al,4) = zero_zv(nf_get_r1(nf));
    4954          28 :   gel(al,5) = mkvec2(cgetg(1,t_VEC),cgetg(1,t_VECSMALL));
    4955             : 
    4956             :   /* remember special case */
    4957          28 :   sa = basistoalg(nf,sa);
    4958          28 :   gmael(al,6,1) = mkvec3(a,b,sa);
    4959          28 :   invol = matid(4*d);
    4960         196 :   for (i=d+1; i<lg(invol); i++) gcoeff(invol,i,i) = gen_m1;
    4961          28 :   gmael(al,6,2) = invol;
    4962             : 
    4963          28 :   if (flag & al_MAXORD)
    4964             :   {
    4965          28 :     ord = cgetg(4,t_VEC);
    4966             : 
    4967          28 :     z1 = mkfracss(1,2); /* 1/2 */
    4968          28 :     z2 = gmul2n(ginv(sa),-1); /* 1/(2*sa) */
    4969             :     /* (1+i/sa)/2 */
    4970          28 :     gel(ord,1) = algleftmultable(al,mkcol4(z1,z2,gen_0,gen_0));
    4971             :     /* (j-ij/sa)/2 */
    4972          28 :     gel(ord,2) = algleftmultable(al,mkcol4(gen_0,gen_0,z1,gneg(z2)));
    4973          28 :     z1 = basistoalg(nf,nfdiv(nf,z1,b));
    4974          28 :     z2 = basistoalg(nf,nfdiv(nf,z2,b));
    4975             :     /* (j/b + ij/(b*sa))/2 */
    4976          28 :     gel(ord,3) = algleftmultable(al,mkcol4(gen_0,gen_0,z1,z2));
    4977             : 
    4978             :     /* multiply by nf.zk == d first vectors of natural basis */
    4979         112 :     for (i=1; i<=3; i++) gel(ord,i) = vecslice(gel(ord,i),1,d);
    4980             : 
    4981          28 :     ord = shallowmatconcat(ord);
    4982          28 :     ord = Q_remove_denom(ord, &den);
    4983          28 :     ord = hnfmodid(ord, den);
    4984          28 :     ord = ZM_Z_div(ord, den);
    4985          28 :     al = alg_change_overorder_shallow(al, ord);
    4986             :   }
    4987             :   /* could take splitting field == nf */
    4988          28 :   computesplitting(al, 2, v, flag);
    4989          28 :   return al;
    4990             : }
    4991             : 
    4992             : GEN
    4993         658 : alg_hilbert(GEN nf, GEN a, GEN b, long v, long flag)
    4994             : {
    4995         658 :   pari_sp av = avma;
    4996             :   GEN rnf, aut, rnfpol, sa;
    4997         658 :   dbg_printf(1)("alg_hilbert\n");
    4998         658 :   if (gequal0(a)) pari_err_DOMAIN("alg_hilbert", "a", "=", gen_0, a);
    4999         651 :   if (gequal0(b)) pari_err_DOMAIN("alg_hilbert", "b", "=", gen_0, b);
    5000         644 :   if (!isint1(Q_denom(algtobasis(nf,a))))
    5001           7 :     pari_err_DOMAIN("alg_hilbert", "denominator(a)", "!=", gen_1,a);
    5002         637 :   if (!isint1(Q_denom(algtobasis(nf,b))))
    5003           7 :     pari_err_DOMAIN("alg_hilbert", "denominator(b)", "!=", gen_1,b);
    5004         630 :   if (nfissquare(nf,a,&sa))
    5005          28 :     return gerepilecopy(av, alg_hilbert_asquare(nf,a,sa,b,v,flag));
    5006             : 
    5007         602 :   if (v < 0) v = 0;
    5008         602 :   rnfpol = deg2pol_shallow(gen_1, gen_0, gneg(basistoalg(nf,a)), v);
    5009         602 :   if (!(flag & al_FACTOR)) rnfpol = mkvec2(rnfpol, stoi(1<<20));
    5010         602 :   rnf = rnfinit(nf, rnfpol);
    5011         602 :   aut = gneg(pol_x(v));
    5012         602 :   return gerepileupto(av, alg_cyclic(rnf, aut, b, flag));
    5013             : }
    5014             : 
    5015             : /* shortcut for alg_hasse in quaternion case */
    5016             : static GEN
    5017          77 : alg_quatramif(GEN nf, GEN Lpr, GEN hi, long var, long flag)
    5018             : {
    5019          77 :   pari_sp av = avma;
    5020          77 :   GEN hf = mkvec2(Lpr, const_vecsmall(lg(Lpr)-1,1));
    5021          77 :   return gerepileupto(av, alg_hasse(nf, 2, hf, hi, var, flag));
    5022             : }
    5023             : 
    5024             : /* return a structure representing the algebra of real numbers */
    5025             : static GEN
    5026          28 : mk_R()
    5027             : {
    5028          28 :   pari_sp av = avma;
    5029             :   GEN al;
    5030          28 :   al = zerovec(11);
    5031          28 :   gel(al,1) = stor(1, LOWDEFAULTPREC);
    5032          28 :   gel(al,2) = mkvec(gel(al,1));
    5033          28 :   gel(al,3) = gen_1;
    5034          28 :   gel(al,4) = mkvecsmall(0);
    5035          28 :   gel(al,6) = mkvec2(gen_0,matid(1));
    5036          28 :   gel(al,8) = gel(al,7) = matid(1);
    5037          28 :   gel(al,9) = mkvec(matid(1));
    5038          28 :   return gerepilecopy(av,al);
    5039             : }
    5040             : /* return a structure representing the algebra of complex numbers */
    5041             : static GEN
    5042          21 : mk_C()
    5043             : {
    5044          21 :   pari_sp av = avma;
    5045             :   GEN al, I;
    5046          21 :   al = zerovec(11);
    5047          21 :   I = gen_I();
    5048          21 :   gel(al,1) = I;
    5049          21 :   gel(al,2) = mkvec(I);
    5050          21 :   gel(al,3) = gen_1;
    5051          21 :   gel(al,4) = cgetg(1,t_VECSMALL);
    5052          21 :   gel(al,6) = mkvec2(gen_0,mkmat22(gen_1,gen_0,gen_0,gen_m1));
    5053          21 :   gel(al,8) = gel(al,7) = matid(2);
    5054          21 :   gel(al,9) = mkvec2(
    5055             :     matid(2),
    5056             :     mkmat22(gen_0,gen_m1,gen_1,gen_0)
    5057             :   );
    5058          21 :   return gerepilecopy(av,al);
    5059             : }
    5060             : /* return a structure representing the Hamilton quaternion algebra */
    5061             : static GEN
    5062          56 : mk_H()
    5063             : {
    5064          56 :   pari_sp av = avma;
    5065             :   GEN al, I;
    5066          56 :   al = zerovec(11);
    5067          56 :   I = gen_I();
    5068          56 :   gel(al,1) = I;
    5069          56 :   gel(al,2) = mkvec(gconj(I));
    5070          56 :   gel(al,3) = gen_m1;
    5071          56 :   gel(al,4) = mkvecsmall(1);
    5072          56 :   gel(al,6) = mkvec2(gen_0, H_invol(NULL));
    5073          56 :   gel(al,8) = gel(al,7) = matid(4);
    5074          56 :   gel(al,9) = mkvec4(
    5075             :     matid(4),
    5076             :     H_tomatrix(I,1),
    5077             :     H_tomatrix(mkcol4(gen_0,gen_0,gen_1,gen_0),1),
    5078             :     H_tomatrix(mkcol4(gen_0,gen_0,gen_0,gen_1),1)
    5079             :   );
    5080          56 :   return gerepilecopy(av,al);
    5081             : }
    5082             : 
    5083             : GEN
    5084        1995 : alginit(GEN A, GEN B, long v, long flag)
    5085             : {
    5086             :   long w;
    5087        1995 :   if (typ(A) == t_COMPLEX) return mk_C();
    5088        1974 :   if (typ(A) == t_REAL)
    5089             :   {
    5090          91 :     if (is_scalar_t(typ(B)) && gequal0(B)) return mk_R();
    5091          63 :     if (typ(B) == t_FRAC && gequal(B, mkfrac(gen_1,gen_2))) return mk_H();
    5092           7 :     pari_err_DOMAIN("alginit", "real Hasse invariant [must be 0 or 1/2]", "", NULL, B);
    5093             :   }
    5094        1883 :   switch(nftyp(A))
    5095             :   {
    5096        1624 :     case typ_NF:
    5097        1624 :       if (v<0) v=0;
    5098        1624 :       w = gvar(nf_get_pol(A));
    5099        1624 :       if (varncmp(v,w)>=0) pari_err_PRIORITY("alginit", pol_x(v), ">=", w);
    5100        1610 :       switch(typ(B))
    5101             :       {
    5102             :         long nB;
    5103         140 :         case t_INT: return alg_matrix(A, itos(B), v, flag);
    5104        1463 :         case t_VEC:
    5105        1463 :           nB = lg(B)-1;
    5106        1463 :           if (nB && typ(gel(B,1)) == t_MAT) return alg_csa_table(A,B,v,flag);
    5107             :           switch(nB)
    5108             :           {
    5109         735 :             case 2:
    5110         735 :               if (typ(gel(B,1)) == t_VEC)
    5111          77 :                 return alg_quatramif(A, gel(B,1), gel(B,2), v, flag);
    5112         658 :               return alg_hilbert(A, gel(B,1), gel(B,2), v, flag);
    5113         455 :             case 3:
    5114         455 :               if (typ(gel(B,1))!=t_INT)
    5115           7 :                   pari_err_TYPE("alginit [degree should be an integer]", gel(B,1));
    5116         448 :               return alg_hasse(A, itos(gel(B,1)), gel(B,2), gel(B,3), v,
    5117             :                                                                       flag);
    5118             :           }
    5119             :       }
    5120          14 :       pari_err_TYPE("alginit", B); break;
    5121             : 
    5122         245 :     case typ_RNF:
    5123         245 :       if (typ(B) != t_VEC || lg(B) != 3) pari_err_TYPE("alginit", B);
    5124         231 :       return alg_cyclic(A, gel(B,1), gel(B,2), flag);
    5125             :   }
    5126          14 :   pari_err_TYPE("alginit", A);
    5127             :   return NULL;/*LCOV_EXCL_LINE*/
    5128             : }
    5129             : 
    5130             : /* assumes al CSA or CYCLIC */
    5131             : static GEN
    5132        1652 : algnatmultable(GEN al, long D)
    5133             : {
    5134             :   GEN res, x;
    5135             :   long i;
    5136        1652 :   res = cgetg(D+1,t_VEC);
    5137       17738 :   for (i=1; i<=D; i++) {
    5138       16086 :     x = algnattoalg(al,col_ei(D,i));
    5139       16086 :     gel(res,i) = algZmultable(al,x);
    5140             :   }
    5141        1652 :   return res;
    5142             : }
    5143             : 
    5144         168 : static int normfact_is_partial(GEN nf, GEN x, GEN fax)
    5145             : {
    5146             :   long i;
    5147             :   GEN nfx;
    5148         168 :   nfx = RgM_shallowcopy(fax);
    5149         434 :   for (i=1; i<lg(gel(nfx,1)); i++)
    5150         266 :     gcoeff(nfx,i,1) = idealnorm(nf, gcoeff(nfx,i,1));
    5151         168 :   nfx = factorback(nfx);
    5152         168 :   return !gequal(idealnorm(nf, x), nfx);
    5153             : }
    5154             : /* no garbage collection */
    5155             : static void
    5156         973 : algcomputehasse(GEN al, long flag)
    5157             : {
    5158             :   int partialfact;
    5159             :   long r1, k, n, m, m1, m2, m3, i, m23, m123;
    5160             :   GEN rnf, nf, b, fab, disc2, cnd, fad, auts, pr, pl, perm, y, hi, PH, H, L;
    5161             : 
    5162         973 :   rnf = alg_get_splittingfield(al);
    5163         973 :   n = rnf_get_degree(rnf);
    5164         973 :   nf = rnf_get_nf(rnf);
    5165         973 :   b = alg_get_b(al);
    5166         973 :   r1 = nf_get_r1(nf);
    5167         973 :   auts = alg_get_auts(al);
    5168         973 :   (void)alg_get_abssplitting(al);
    5169             : 
    5170         973 :   y = nfpolsturm(nf, rnf_get_pol(rnf), NULL);
    5171         973 :   pl = cgetg(r1+1, t_VECSMALL);
    5172             :   /* real places where rnf/nf ramifies */
    5173        2170 :   for (k = 1; k <= r1; k++) pl[k] = !signe(gel(y,k));
    5174             : 
    5175             :   /* infinite Hasse invariants */
    5176         973 :   if (odd(n)) hi = const_vecsmall(r1, 0);
    5177             :   else
    5178             :   {
    5179         805 :     GEN s = nfsign(nf, b);
    5180         805 :     hi = cgetg(r1+1, t_VECSMALL);
    5181        1834 :     for (k = 1; k<=r1; k++) hi[k] = (s[k] && pl[k]) ? (n/2) : 0;
    5182             :   }
    5183         973 :   gel(al,4) = hi;
    5184             : 
    5185         973 :   partialfact = 0;
    5186         973 :   if (flag & al_FACTOR)
    5187         868 :     fab = idealfactor(nf, b);
    5188             :   else {
    5189         105 :     fab = idealfactor_limit(nf, b, 1<<20);
    5190             :     /* does not report whether factorisation was partial; check it */
    5191         105 :     partialfact = normfact_is_partial(nf, b, fab);
    5192             :   }
    5193             : 
    5194         973 :   disc2 = rnf_get_idealdisc(rnf);
    5195         973 :   L = nfmakecoprime(nf, &disc2, gel(fab,1));
    5196         973 :   m = lg(L)-1;
    5197             :   /* m1 = #{pr|b: pr \nmid disc}, m3 = #{pr|b: pr | disc} */
    5198         973 :   perm = cgetg(m+1, t_VECSMALL);
    5199        1771 :   for (i=1, m1=m, k=1; k<=m; k++)
    5200         798 :     if (signe(gel(L,k))) perm[m1--] = k; else perm[i++] = k;
    5201         973 :   m3 = m - m1;
    5202             : 
    5203             :   /* disc2 : factor of disc coprime to b */
    5204         973 :   if (flag & al_FACTOR)
    5205         868 :     fad = idealfactor(nf, disc2);
    5206             :   else {
    5207         105 :     fad = idealfactor_limit(nf, disc2, 1<<20);
    5208         105 :     partialfact = partialfact || normfact_is_partial(nf, disc2, fad);
    5209             :   }
    5210             : 
    5211             :   /* if factorisation is partial, do not compute Hasse invariants */
    5212             :   /* we could compute their sum at composite factors */
    5213         973 :   if (partialfact)
    5214             :   {
    5215          49 :     if (!(flag & al_MAXORD))
    5216             :     {
    5217          42 :       gel(al,5) = gen_0;
    5218          49 :       return;
    5219             :     }
    5220             :     /* but transmit list of factors found for computation of maximal order */
    5221           7 :     PH = prV_primes(shallowconcat(gel(fab,1), gel(fad,1)));
    5222           7 :     gel(al,5) = mkvec2(PH, gen_0);;
    5223           7 :     return;
    5224             :   }
    5225             : 
    5226             :   /* m2 : number of prime factors of disc not dividing b */
    5227         924 :   m2 = nbrows(fad);
    5228         924 :   m23 = m2+m3;
    5229         924 :   m123 = m1+m2+m3;
    5230             : 
    5231             :   /* initialize the possibly ramified primes (hasse) and the factored conductor of rnf/nf (cnd) */
    5232         924 :   cnd = zeromatcopy(m23,2);
    5233         924 :   PH = cgetg(m123+1, t_VEC); /* ramified primes */
    5234         924 :   H = cgetg(m123+1, t_VECSMALL); /* Hasse invariant */
    5235             :   /* compute Hasse invariant at primes that are unramified in rnf/nf */
    5236        1561 :   for (k=1; k<=m1; k++) {/* pr | b, pr \nmid disc */
    5237         637 :     long frob, e, j = perm[k];
    5238         637 :     pr = gcoeff(fab,j,1);
    5239         637 :     e = itos(gcoeff(fab,j,2));
    5240         637 :     frob = cyclicrelfrob(rnf, auts, pr);
    5241         637 :     gel(PH,k) = pr;
    5242         637 :     H[k] = Fl_mul(frob, e, n);
    5243             :   }
    5244             :   /* compute Hasse invariant at primes that are ramified in rnf/nf */
    5245        1897 :   for (k=1; k<=m2; k++) {/* pr \nmid b, pr | disc */
    5246         973 :     pr = gcoeff(fad,k,1);
    5247         973 :     gel(PH,k+m1) = pr;
    5248         973 :     gcoeff(cnd,k,1) = pr;
    5249         973 :     gcoeff(cnd,k,2) = gcoeff(fad,k,2);
    5250             :   }
    5251        1001 :   for (k=1; k<=m3; k++) { /* pr | (b, disc) */
    5252          77 :     long j = perm[k+m1];
    5253          77 :     pr = gcoeff(fab,j,1);
    5254          77 :     gel(PH,k+m1+m2) = pr;
    5255          77 :     gcoeff(cnd,k+m2,1) = pr;
    5256          77 :     gcoeff(cnd,k+m2,2) = gel(L,j);
    5257             :   }
    5258         924 :   gel(cnd,2) = gdiventgs(gel(cnd,2), eulerphiu(n));
    5259        1974 :   for (k=1; k<=m23; k++) H[k+m1] = localhasse(rnf, cnd, pl, auts, b, k);
    5260         924 :   perm = gen_indexsort(PH, (void*)&cmp_prime_ideal, &cmp_nodata);
    5261         924 :   gel(al,5) = mkvec2(vecpermute(PH,perm),vecsmallpermute(H,perm));
    5262         924 :   checkhasse(nf, alg_get_hasse_f(al), alg_get_hasse_i(al), n);
    5263             : }
    5264             : 
    5265             : static GEN
    5266        1442 : alg_maximal_primes(GEN al, GEN P)
    5267             : {
    5268        1442 :   pari_sp av = avma;
    5269        1442 :   long l = lg(P), i;
    5270        4745 :   for (i=1; i<l; i++)
    5271             :   {
    5272        3303 :     if (i != 1) al = gerepilecopy(av, al);
    5273        3303 :     al = alg_pmaximal(al,gel(P,i));
    5274             :   }
    5275        1442 :   return al;
    5276             : }
    5277             : 
    5278             : GEN
    5279         987 : alg_cyclic(GEN rnf, GEN aut, GEN b, long flag)
    5280             : {
    5281         987 :   pari_sp av = avma;
    5282             :   GEN al, nf;
    5283             :   long D, n, d;
    5284         987 :   dbg_printf(1)("alg_cyclic\n");
    5285         987 :   checkrnf(rnf); nf = rnf_get_nf(rnf);
    5286         987 :   b = nf_to_scalar_or_basis(nf, b);
    5287         980 :   if (typ(b) == t_FRAC || (typ(b) == t_COL && !RgV_is_ZV(b)))
    5288           7 :     pari_err_DOMAIN("alg_cyclic", "denominator(b)", "!=", gen_1,b);
    5289             : 
    5290         973 :   n = rnf_get_degree(rnf);
    5291         973 :   d = nf_get_degree(nf);
    5292         973 :   D = d*n*n;
    5293             : 
    5294         973 :   al = cgetg(12,t_VEC);
    5295         973 :   gel(al,10)= gen_0; /* must be set first */
    5296         973 :   gel(al,1) = rnf;
    5297         973 :   gel(al,2) = allauts(rnf, aut);
    5298         973 :   gel(al,3) = basistoalg(nf,b);
    5299         973 :   rnf_build_nfabs(rnf, nf_get_prec(nf));
    5300         973 :   gel(al,6) = mkvec2(gen_0,gen_0);
    5301         973 :   gel(al,7) = matid(D);
    5302         973 :   gel(al,8) = matid(D); /* TODO modify 7, 8 et 9 once LLL added */
    5303         973 :   gel(al,9) = algnatmultable(al,D);
    5304         973 :   gel(al,11)= algtracebasis(al);
    5305             : 
    5306         973 :   if (n==2) alg_insert_quatconj(al);
    5307             : 
    5308         973 :   algcomputehasse(al, flag);
    5309             : 
    5310         973 :   if (flag & al_MAXORD) {
    5311         854 :     GEN hf = alg_get_hasse_f(al), pr = gel(hf,1);
    5312         854 :     if (typ(gel(hf,2)) == t_INT) /* factorisation was partial */
    5313           7 :       gel(al,5) = gen_0;
    5314         847 :     else pr = prV_primes(pr);
    5315         854 :     al = alg_maximal_primes(al, pr);
    5316             :   }
    5317         973 :   return gerepilecopy(av, al);
    5318             : }
    5319             : 
    5320             : static int
    5321         623 : ismaximalsubfield(GEN al, GEN x, GEN d, long v, GEN *pt_minpol)
    5322             : {
    5323         623 :   GEN cp = algbasischarpoly(al, x, v), lead;
    5324         623 :   if (!ispower(cp, d, pt_minpol)) return 0;
    5325         623 :   lead = leading_coeff(*pt_minpol);
    5326         623 :   if (isintm1(lead)) *pt_minpol = gneg(*pt_minpol);
    5327         623 :   return ZX_is_irred(*pt_minpol);
    5328             : }
    5329             : 
    5330             : static GEN
    5331         266 : findmaximalsubfield(GEN al, GEN d, long v)
    5332             : {
    5333         266 :   long count, nb=2, i, N = alg_get_absdim(al), n = nf_get_degree(alg_get_center(al));
    5334         266 :   GEN x, minpol, maxc = gen_1;
    5335             : 
    5336         385 :   for (i=n+1; i<=N; i+=n) {
    5337         595 :     for (count=0; count<2 && i+count<=N; count++) {
    5338         476 :       x = col_ei(N,i+count);
    5339         476 :       if (ismaximalsubfield(al, x, d, v, &minpol)) return mkvec2(x,minpol);
    5340             :     }
    5341             :   }
    5342             : 
    5343             :   while(1) {
    5344         147 :     x = zerocol(N);
    5345         588 :     for (count=0; count<nb; count++)
    5346             :     {
    5347         441 :       i = random_Fl(N)+1;
    5348         441 :       gel(x,i) = addiu(randomi(maxc),1);
    5349         441 :       if (random_bits(1)) gel(x,i) = negi(gel(x,i));
    5350             :     }
    5351         147 :     if (ismaximalsubfield(al, x, d, v, &minpol)) return mkvec2(x,minpol);
    5352          63 :     if (!random_bits(3)) maxc = addiu(maxc,1);
    5353          63 :     if (nb<N) nb++;
    5354             :   }
    5355             : 
    5356             :   return NULL; /* LCOV_EXCL_LINE */
    5357             : }
    5358             : 
    5359             : static GEN
    5360         266 : frobeniusform(GEN al, GEN x)
    5361             : {
    5362             :   GEN M, FP, P, Pi;
    5363             : 
    5364             :   /* /!\ has to be the *right* multiplication table */
    5365         266 :   M = algbasisrightmultable(al, x);
    5366             : 
    5367         266 :   FP = matfrobenius(M,2,0); /* M = P^(-1)*F*P */
    5368         266 :   P = gel(FP,2);
    5369         266 :   Pi = RgM_inv(P);
    5370         266 :   return mkvec2(P, Pi);
    5371             : }
    5372             : 
    5373             : static void
    5374         266 : computesplitting(GEN al, long d, long v, long flag)
    5375             : {
    5376         266 :   GEN subf, x, pol, polabs, basis, P, Pi, nf = alg_get_center(al), rnf, Lbasis, Lbasisinv, Q, pows;
    5377         266 :   long i, n = nf_get_degree(nf), nd = n*d, N = alg_get_absdim(al), j, j2;
    5378             : 
    5379         266 :   subf = findmaximalsubfield(al, utoipos(d), v);
    5380         266 :   x = gel(subf, 1);
    5381         266 :   polabs = gel(subf, 2);
    5382             : 
    5383             :   /* Frobenius form to obtain L-vector space structure */
    5384         266 :   basis = frobeniusform(al, x);
    5385         266 :   P = gel(basis, 1);
    5386         266 :   Pi = gel(basis, 2);
    5387             : 
    5388             :   /* construct rnf of splitting field */
    5389         266 :   pol = gel(nffactor(nf,polabs),1);
    5390         301 :   for (i=1; i<lg(pol); i++)
    5391             :     /* select relative factor that vanishes on x */
    5392         301 :     if (gequal0(algpoleval(al, gel(pol,i), x)))
    5393             :     {
    5394         266 :       pol = gel(pol,i);
    5395         266 :       break;
    5396             :     }
    5397         266 :   if (typ(pol) != t_POL) pari_err_BUG("computesplitting (no valid factor)");
    5398         266 :   if (!(flag & al_FACTOR)) pol = mkvec2(pol, stoi(1<<20));
    5399         266 :   gel(al,1) = rnf = rnfinit(nf, pol);
    5400             :   /* since pol is irreducible over Q, we have k=0 in rnf. */
    5401         266 :   if (!gequal0(rnf_get_k(rnf)))
    5402             :     pari_err_BUG("computesplitting (k!=0)"); /*LCOV_EXCL_LINE*/
    5403         266 :   rnf_build_nfabs(rnf, nf_get_prec(nf));
    5404             : 
    5405             :   /* construct splitting data */
    5406         266 :   Lbasis = cgetg(d+1, t_MAT);
    5407         735 :   for (j=j2=1; j<=d; j++, j2+=nd)
    5408         469 :     gel(Lbasis,j) = gel(Pi,j2);
    5409             : 
    5410         266 :   Q = zeromatcopy(d,N);
    5411         266 :   pows = pol_x_powers(nd,v);
    5412         735 :   for (i=j=1; j<=N; j+=nd, i++)
    5413        2156 :   for (j2=0; j2<nd; j2++)
    5414        1687 :     gcoeff(Q,i,j+j2) = mkpolmod(gel(pows,j2+1),polabs);
    5415         266 :   Lbasisinv = RgM_mul(Q,P);
    5416             : 
    5417         266 :   gel(al,3) = mkvec3(x,Lbasis,Lbasisinv);
    5418         266 : }
    5419             : 
    5420             : /* assumes that mt defines a central simple algebra over nf */
    5421             : GEN
    5422         294 : alg_csa_table(GEN nf, GEN mt0, long v, long flag)
    5423             : {
    5424         294 :   pari_sp av = avma;
    5425             :   GEN al, mt;
    5426         294 :   long n, D, d2 = lg(mt0)-1, d = usqrt(d2);
    5427         294 :   dbg_printf(1)("alg_csa_table\n");
    5428             : 
    5429         294 :   mt = check_relmt(nf,mt0);
    5430         280 :   if (!mt) pari_err_TYPE("alg_csa_table", mt0);
    5431         273 :   n = nf_get_degree(nf);
    5432         273 :   D = n*d2;
    5433         273 :   if (d*d != d2)
    5434           7 :     pari_err_DOMAIN("alg_csa_table","(nonsquare) dimension","!=",stoi(d*d),mt);
    5435             : 
    5436         266 :   al = cgetg(12, t_VEC);
    5437         266 :   gel(al,10) = gen_0; /* must be set first */
    5438         266 :   gel(al,1) = zerovec(12); gmael(al,1,10) = nf;
    5439         266 :   gmael(al,1,1) = gpowgs(pol_x(0), d); /* placeholder before splitting field */
    5440         266 :   gel(al,2) = mt;
    5441         266 :   gel(al,3) = gen_0; /* placeholder */
    5442         266 :   gel(al,4) = gel(al,5) = gen_0; /* TODO Hasse invariants if flag&al_FACTOR */
    5443         266 :   gel(al,6) = mkvec2(gen_0,gen_0);
    5444         266 :   gel(al,7) = matid(D);
    5445         266 :   gel(al,8) = matid(D);
    5446         266 :   gel(al,9) = algnatmultable(al,D);
    5447         266 :   gel(al,11)= algtracebasis(al);
    5448         266 :   if (flag & al_MAXORD) al = alg_maximal(al);
    5449         266 :   if (!(flag & al_NOSPLITTING)) computesplitting(al, d, v, flag);
    5450         266 :   return gerepilecopy(av, al);
    5451             : }
    5452             : 
    5453             : static GEN
    5454       60349 : algtableinit_i(GEN mt0, GEN p)
    5455             : {
    5456             :   GEN al, mt;
    5457             :   long i, n;
    5458             : 
    5459       60349 :   if (p && !signe(p)) p = NULL;
    5460       60349 :   mt = check_mt(mt0,p);
    5461       60349 :   if (!mt) pari_err_TYPE("algtableinit", mt0);
    5462       60342 :   if (!p && !isint1(Q_denom(mt0)))
    5463           7 :     pari_err_DOMAIN("algtableinit", "denominator(mt)", "!=", gen_1, mt0);
    5464       60335 :   n = lg(mt)-1;
    5465       60335 :   al = cgetg(12, t_VEC);
    5466      362010 :   for (i=1; i<=5; i++) gel(al,i) = gen_0;
    5467       60335 :   gel(al,6) = mkvec2(gen_0, gen_0);
    5468       60335 :   gel(al,7) = matid(n);
    5469       60335 :   gel(al,8) = matid(n);
    5470       60335 :   gel(al,9) = mt;
    5471       60335 :   gel(al,10) = p? p: gen_0;
    5472       60335 :   gel(al,11) = algtracebasis(al);
    5473       60335 :   return al;
    5474             : }
    5475             : GEN
    5476        6223 : algtableinit(GEN mt0, GEN p)
    5477             : {
    5478        6223 :   pari_sp av = avma;
    5479        6223 :   if (p)
    5480             :   {
    5481        6041 :     if (typ(p) != t_INT) pari_err_TYPE("algtableinit",p);
    5482        6034 :     if (signe(p) && !BPSW_psp(p)) pari_err_PRIME("algtableinit",p);
    5483             :   }
    5484        6202 :   return gerepilecopy(av, algtableinit_i(mt0, p));
    5485             : }
    5486             : 
    5487             : /** REPRESENTATIONS OF GROUPS **/
    5488             : 
    5489             : static GEN
    5490         294 : list_to_regular_rep(GEN elts, long n)
    5491             : {
    5492             :   GEN reg, elts2, g;
    5493             :   long i,j;
    5494         294 :   elts = shallowcopy(elts);
    5495         294 :   gen_sort_inplace(elts, (void*)&vecsmall_lexcmp, &cmp_nodata, NULL);
    5496         294 :   reg = cgetg(n+1, t_VEC);
    5497         294 :   gel(reg,1) = identity_perm(n);
    5498        3857 :   for (i=2; i<=n; i++) {
    5499        3563 :     g = perm_inv(gel(elts,i));
    5500        3563 :     elts2 = cgetg(n+1, t_VEC);
    5501       74543 :     for (j=1; j<=n; j++) gel(elts2,j) = perm_mul(g,gel(elts,j));
    5502        3563 :     gen_sort_inplace(elts2, (void*)&vecsmall_lexcmp, &cmp_nodata, &gel(reg,i));
    5503             :   }
    5504         294 :   return reg;
    5505             : }
    5506             : 
    5507             : static GEN
    5508        3857 : matrix_perm(GEN perm, long n)
    5509             : {
    5510             :   GEN m;
    5511             :   long j;
    5512        3857 :   m = cgetg(n+1, t_MAT);
    5513       78694 :   for (j=1; j<=n; j++) {
    5514       74837 :     gel(m,j) = col_ei(n,perm[j]);
    5515             :   }
    5516        3857 :   return m;
    5517             : }
    5518             : 
    5519             : GEN
    5520         847 : conjclasses_algcenter(GEN cc, GEN p)
    5521             : {
    5522         847 :   GEN mt, elts = gel(cc,1), conjclass = gel(cc,2), rep = gel(cc,3), card;
    5523         847 :   long i, nbcl = lg(rep)-1, n = lg(elts)-1;
    5524             :   pari_sp av;
    5525             : 
    5526         847 :   card = zero_Flv(nbcl);
    5527       14819 :   for (i=1; i<=n; i++) card[conjclass[i]]++;
    5528             : 
    5529             :   /* multiplication table of the center of Z[G] (class functions) */
    5530         847 :   mt = cgetg(nbcl+1,t_VEC);
    5531        7217 :   for (i=1;i<=nbcl;i++) gel(mt,i) = zero_Flm_copy(nbcl,nbcl);
    5532         847 :   av = avma;
    5533        7217 :   for (i=1;i<=nbcl;i++)
    5534             :   {
    5535        6370 :     GEN xi = gel(elts,rep[i]), mi = gel(mt,i);
    5536             :     long j,k;
    5537      132244 :     for (j=1;j<=n;j++)
    5538             :     {
    5539      125874 :       GEN xj = gel(elts,j);
    5540      125874 :       k = vecsearch(elts, perm_mul(xi,xj), NULL);
    5541      125874 :       ucoeff(mi, conjclass[k], conjclass[j])++;
    5542             :     }
    5543       70238 :     for (k=1; k<=nbcl; k++)
    5544      852362 :       for (j=1; j<=nbcl; j++)
    5545             :       {
    5546      788494 :         ucoeff(mi,k,j) *= card[i];
    5547      788494 :         ucoeff(mi,k,j) /= card[k];
    5548             :       }
    5549        6370 :     set_avma(av);
    5550             :   }
    5551        7217 :   for (i=1;i<=nbcl;i++) gel(mt,i) = Flm_to_ZM(gel(mt,i));
    5552         847 :   return algtableinit_i(mt,p);
    5553             : }
    5554             : 
    5555             : GEN
    5556         329 : alggroupcenter(GEN G, GEN p, GEN *pcc)
    5557             : {
    5558         329 :   pari_sp av = avma;
    5559         329 :   GEN cc = group_to_cc(G), al = conjclasses_algcenter(cc, p);
    5560         315 :   if (!pcc) return gerepilecopy(av,al);
    5561           7 :   *pcc = cc; return gc_all(av, 2, &al, pcc);
    5562             : }
    5563             : 
    5564             : static GEN
    5565         294 : groupelts_algebra(GEN elts, GEN p)
    5566             : {
    5567         294 :   pari_sp av = avma;
    5568             :   GEN mt;
    5569         294 :   long i, n = lg(elts)-1;
    5570         294 :   elts = list_to_regular_rep(elts,n);
    5571         294 :   mt = cgetg(n+1, t_VEC);
    5572        4151 :   for (i=1; i<=n; i++) gel(mt,i) = matrix_perm(gel(elts,i),n);
    5573         294 :   return gerepilecopy(av, algtableinit_i(mt,p));
    5574             : }
    5575             : 
    5576             : GEN
    5577         329 : alggroup(GEN gal, GEN p)
    5578             : {
    5579         329 :   GEN elts = checkgroupelts(gal);
    5580         294 :   return groupelts_algebra(elts, p);
    5581             : }
    5582             : 
    5583             : /** MAXIMAL ORDER **/
    5584             : 
    5585             : static GEN
    5586       94935 : mattocol(GEN M, long n)
    5587             : {
    5588       94935 :   GEN C = cgetg(n*n+1, t_COL);
    5589             :   long i,j,ic;
    5590       94935 :   ic = 1;
    5591     1680858 :   for (i=1; i<=n; i++)
    5592    41492940 :   for (j=1; j<=n; j++, ic++) gel(C,ic) = gcoeff(M,i,j);
    5593       94935 :   return C;
    5594             : }
    5595             : 
    5596             : /* Ip is a lift of a left O/pO-ideal where O is the integral basis of al */
    5597             : static GEN
    5598        8774 : algleftordermodp(GEN al, GEN Ip, GEN p)
    5599             : {
    5600        8774 :   pari_sp av = avma;
    5601             :   GEN I, Ii, M, mt, K, imi, p2;
    5602             :   long n, i;
    5603        8774 :   n = alg_get_absdim(al);
    5604        8774 :   mt = alg_get_multable(al);
    5605        8774 :   p2 = sqri(p);
    5606             : 
    5607        8774 :   I = ZM_hnfmodid(Ip, p);
    5608        8774 :   Ii = ZM_inv(I,NULL);
    5609             : 
    5610        8774 :   M = cgetg(n+1, t_MAT);
    5611      103709 :   for (i=1; i<=n; i++) {
    5612       94935 :     imi = FpM_mul(Ii, FpM_mul(gel(mt,i), I, p2), p2);
    5613       94935 :     imi = ZM_Z_divexact(imi, p);
    5614       94935 :     gel(M,i) = mattocol(imi, n);
    5615             :   }
    5616        8774 :   K = FpM_ker(M, p);
    5617        8774 :   if (lg(K)==1) { set_avma(av); return matid(n); }
    5618        3589 :   K = ZM_hnfmodid(K,p);
    5619             : 
    5620        3589 :   return gerepileupto(av, ZM_Z_div(K,p));
    5621             : }
    5622             : 
    5623             : static GEN
    5624       14597 : alg_ordermodp(GEN al, GEN p)
    5625             : {
    5626             :   GEN alp;
    5627       14597 :   long i, N = alg_get_absdim(al);
    5628       14597 :   alp = cgetg(12, t_VEC);
    5629      131373 :   for (i=1; i<=8; i++) gel(alp,i) = gen_0;
    5630       14597 :   gel(alp,9) = cgetg(N+1, t_VEC);
    5631      154598 :   for (i=1; i<=N; i++) gmael(alp,9,i) = FpM_red(gmael(al,9,i), p);
    5632       14597 :   gel(alp,10) = p;
    5633       14597 :   gel(alp,11) = cgetg(N+1, t_VEC);
    5634      154598 :   for (i=1; i<=N; i++) gmael(alp,11,i) = Fp_red(gmael(al,11,i), p);
    5635             : 
    5636       14597 :   return alp;
    5637             : }
    5638             : 
    5639             : static GEN
    5640        6892 : algpradical_i(GEN al, GEN p, GEN zprad, GEN projs)
    5641             : {
    5642        6892 :   pari_sp av = avma;
    5643        6892 :   GEN alp = alg_ordermodp(al, p), liftrad, projrad, alq, alrad, res, Lalp, radq;
    5644             :   long i;
    5645        6892 :   if (lg(zprad)==1) {
    5646        4754 :     liftrad = NULL;
    5647        4754 :     projrad = NULL;
    5648             :   }
    5649             :   else {
    5650        2138 :     alq = alg_quotient(alp, zprad, 1);
    5651        2138 :     alp = gel(alq,1);
    5652        2138 :     projrad = gel(alq,2);
    5653        2138 :     liftrad = gel(alq,3);
    5654             :   }
    5655             : 
    5656        6892 :   if (projs) {
    5657        1399 :     if (projrad) {
    5658          28 :       projs = gcopy(projs);
    5659          84 :       for (i=1; i<lg(projs); i++)
    5660          56 :         gel(projs,i) = FpM_FpC_mul(projrad, gel(projs,i), p);
    5661             :     }
    5662        1399 :     Lalp = alg_centralproj(alp, projs, 1);
    5663             : 
    5664        1399 :     alrad = cgetg(lg(Lalp),t_VEC);
    5665        4597 :     for (i=1; i<lg(Lalp); i++) {
    5666        3198 :       alq = gel(Lalp,i);
    5667        3198 :       radq = algradical(gel(alq,1));
    5668        3198 :       if (gequal0(radq))
    5669        1832 :         gel(alrad,i) = cgetg(1,t_MAT);
    5670             :       else {
    5671        1366 :         radq = FpM_mul(gel(alq,3),radq,p);
    5672        1366 :         gel(alrad,i) = radq;
    5673             :       }
    5674             :     }
    5675        1399 :     alrad = shallowmatconcat(alrad);
    5676        1399 :     alrad = FpM_image(alrad,p);
    5677             :   }
    5678        5493 :   else alrad = algradical(alp);
    5679             : 
    5680        6892 :   if (!gequal0(alrad)) {
    5681        5465 :     if (liftrad) alrad = FpM_mul(liftrad, alrad, p);
    5682        5465 :     res = shallowmatconcat(mkvec2(alrad, zprad));
    5683        5465 :     res = FpM_image(res,p);
    5684             :   }
    5685        1427 :   else res = lg(zprad)==1 ? gen_0 : zprad;
    5686        6892 :   return gerepilecopy(av, res);
    5687             : }
    5688             : 
    5689             : static GEN
    5690        4947 : algpdecompose0(GEN al, GEN prad, GEN p, GEN projs)
    5691             : {
    5692        4947 :   pari_sp av = avma;
    5693        4947 :   GEN alp, quo, ss, liftm = NULL, projm = NULL, dec, res, I, Lss, deci;
    5694             :   long i, j;
    5695             : 
    5696        4947 :   alp = alg_ordermodp(al, p);
    5697        4947 :   if (!gequal0(prad)) {
    5698        4003 :     quo = alg_quotient(alp, prad, 1);
    5699        4003 :     ss = gel(quo,1);
    5700        4003 :     projm = gel(quo,2);
    5701        4003 :     liftm = gel(quo,3);
    5702             :   }
    5703         944 :   else ss = alp;
    5704             : 
    5705        4947 :   if (projs) {
    5706        1237 :     if (projm) {
    5707        2810 :       for (i=1; i<lg(projs); i++)
    5708        1950 :         gel(projs,i) = FpM_FpC_mul(projm, gel(projs,i), p);
    5709             :     }
    5710        1237 :     Lss = alg_centralproj(ss, projs, 1);
    5711             : 
    5712        1237 :     dec = cgetg(lg(Lss),t_VEC);
    5713        4090 :     for (i=1; i<lg(Lss); i++) {
    5714        2853 :       gel(dec,i) = algsimpledec_ss(gmael(Lss,i,1), 1);
    5715        2853 :       deci = gel(dec,i);
    5716        6482 :       for (j=1; j<lg(deci); j++)
    5717        3629 :        gmael(deci,j,3) = FpM_mul(gmael(Lss,i,3), gmael(deci,j,3), p);
    5718             :     }
    5719        1237 :     dec = shallowconcat1(dec);
    5720             :   }
    5721        3710 :   else dec = algsimpledec_ss(ss,1);
    5722             : 
    5723        4947 :   res = cgetg(lg(dec),t_VEC);
    5724       13637 :   for (i=1; i<lg(dec); i++) {
    5725        8690 :     I = gmael(dec,i,3);
    5726        8690 :     if (liftm) I = FpM_mul(liftm,I,p);
    5727        8690 :     I = shallowmatconcat(mkvec2(I,prad));
    5728        8690 :     gel(res,i) = I;
    5729             :   }
    5730             : 
    5731        4947 :   return gerepilecopy(av, res);
    5732             : }
    5733             : 
    5734             : /* finds a nontrivial ideal of O/prad or gen_0 if there is none. */
    5735             : static GEN
    5736        1644 : algpdecompose_i(GEN al, GEN p, GEN zprad, GEN projs)
    5737             : {
    5738        1644 :   pari_sp av = avma;
    5739        1644 :   GEN prad = algpradical_i(al,p,zprad,projs);
    5740        1644 :   return gerepileupto(av, algpdecompose0(al, prad, p, projs));
    5741             : }
    5742             : 
    5743             : /* ord is assumed to be in hnf wrt the integral basis of al. */
    5744             : /* assumes that alg_get_invbasis(al) is integral. */
    5745             : static GEN
    5746        3617 : alg_change_overorder_shallow(GEN al, GEN ord)
    5747             : {
    5748             :   GEN al2, mt, iord, mtx, den, den2, div, invol;
    5749             :   long i, n;
    5750        3617 :   n = alg_get_absdim(al);
    5751             : 
    5752        3617 :   iord = QM_inv(ord);
    5753        3617 :   al2 = shallowcopy(al);
    5754             : 
    5755        3617 :   invol = alg_get_invol(al);
    5756        3617 :   if (typ(invol) == t_MAT) gmael(al2,6,2) = QM_mul(iord, QM_mul(invol,ord));
    5757             : 
    5758        3617 :   ord = Q_remove_denom(ord,&den);
    5759             : 
    5760        3617 :   gel(al2,7) = Q_remove_denom(gel(al,7), &den2);
    5761        3617 :   if (den2) div = mulii(den,den2);
    5762        1253 :   else      div = den;
    5763        3617 :   gel(al2,7) = ZM_Z_div(ZM_mul(gel(al2,7), ord), div);
    5764             : 
    5765        3617 :   gel(al2,8) = ZM_mul(iord, gel(al,8));
    5766             : 
    5767        3617 :   mt = cgetg(n+1,t_VEC);
    5768        3617 :   gel(mt,1) = matid(n);
    5769        3617 :   div = sqri(den);
    5770       40767 :   for (i=2; i<=n; i++) {
    5771       37150 :     mtx = algbasismultable(al,gel(ord,i));
    5772       37150 :     gel(mt,i) = ZM_mul(iord, ZM_mul(mtx, ord));
    5773       37150 :     gel(mt,i) = ZM_Z_divexact(gel(mt,i), div);
    5774             :   }
    5775        3617 :   gel(al2,9) = mt;
    5776             : 
    5777        3617 :   gel(al2,11) = algtracebasis(al2);
    5778             : 
    5779        3617 :   return al2;
    5780             : }
    5781             : 
    5782             : static GEN
    5783       37018 : algeltfromnf_i(GEN al, GEN x)
    5784             : {
    5785       37018 :   GEN nf = alg_get_center(al);
    5786             :   long n;
    5787       37018 :   switch(alg_type(al)) {
    5788       31334 :     case al_CYCLIC:
    5789       31334 :       n = alg_get_degree(al);
    5790       31334 :       break;
    5791        5684 :     case al_CSA:
    5792        5684 :       n = alg_get_dim(al);
    5793        5684 :       break;
    5794             :     default: return NULL; /*LCOV_EXCL_LINE*/
    5795             :   }
    5796       37018 :   return algalgtobasis(al, scalarcol(basistoalg(nf, x), n));
    5797             : }
    5798             : 
    5799             : GEN
    5800        5138 : algeltfromnf(GEN al, GEN x)
    5801             : {
    5802        5138 :   pari_sp av = avma;
    5803        5138 :   checkalg(al);
    5804        5131 :   return gerepileupto(av, algeltfromnf_i(al,x));
    5805             : }
    5806             : 
    5807             : /* x is an ideal of the center in hnf form */
    5808             : static GEN
    5809        6892 : algeltfromnf_hnf(GEN al, GEN x)
    5810             : {
    5811             :   GEN res;
    5812             :   long i;
    5813        6892 :   res = cgetg(lg(x), t_MAT);
    5814       19938 :   for (i=1; i<lg(x); i++) gel(res,i) = algeltfromnf_i(al, gel(x,i));
    5815        6892 :   return res;
    5816             : }
    5817             : 
    5818             : /* assumes al is CSA or CYCLIC */
    5819             : static GEN
    5820        3303 : algcenter_precompute(GEN al, GEN p)
    5821             : {
    5822        3303 :   GEN fa, pdec, nfprad, projs, nf = alg_get_center(al);
    5823             :   long i, np;
    5824             : 
    5825        3303 :   pdec = idealprimedec(nf, p);
    5826        3303 :   settyp(pdec, t_COL);
    5827        3303 :   np = lg(pdec)-1;
    5828        3303 :   fa = mkmat2(pdec, const_col(np, gen_1));
    5829        3303 :   if (dvdii(nf_get_disc(nf), p))
    5830         679 :     nfprad = idealprodprime(nf, pdec);
    5831             :   else
    5832        2624 :     nfprad = scalarmat_shallow(p, nf_get_degree(nf));
    5833        3303 :   fa = idealchineseinit(nf, fa);
    5834        3303 :   projs = cgetg(np+1, t_VEC);
    5835        7461 :   for (i=1; i<=np; i++) gel(projs, i) = idealchinese(nf, fa, vec_ei(np,i));
    5836        3303 :   return mkvec2(nfprad, projs);
    5837             : }
    5838             : 
    5839             : static GEN
    5840        6892 : algcenter_prad(GEN al, GEN p, GEN pre)
    5841             : {
    5842             :   GEN nfprad, zprad, mtprad;
    5843             :   long i;
    5844        6892 :   nfprad = gel(pre,1);
    5845        6892 :   zprad = algeltfromnf_hnf(al, nfprad);
    5846        6892 :   zprad = FpM_image(zprad, p);
    5847        6892 :   mtprad = cgetg(lg(zprad), t_VEC);
    5848        9577 :   for (i=1; i<lg(zprad); i++) gel(mtprad, i) = algbasismultable(al, gel(zprad,i));
    5849        6892 :   mtprad = shallowmatconcat(mtprad);
    5850        6892 :   zprad = FpM_image(mtprad, p);
    5851        6892 :   return zprad;
    5852             : }
    5853             : 
    5854             : static GEN
    5855        6892 : algcenter_p_projs(GEN al, GEN p, GEN pre)
    5856             : {
    5857             :   GEN projs, zprojs;
    5858             :   long i;
    5859        6892 :   projs = gel(pre,2);
    5860        6892 :   zprojs = cgetg(lg(projs), t_VEC);
    5861       15583 :   for (i=1; i<lg(projs); i++) gel(zprojs,i) = FpC_red(algeltfromnf_i(al, gel(projs,i)),p);
    5862        6892 :   return zprojs;
    5863             : }
    5864             : 
    5865             : /* al is assumed to be simple */
    5866             : static GEN
    5867        3303 : alg_pmaximal(GEN al, GEN p)
    5868             : {
    5869             :   pari_sp av;
    5870        3303 :   long n = alg_get_absdim(al);
    5871        3303 :   GEN id = matid(n), al2 = al, prad, lord = gen_0, dec, zprad, projs, pre;
    5872             : 
    5873        3303 :   dbg_printf(0)("Round 2 (noncommutative) at p=%Ps, dim=%d\n", p, n);
    5874        3303 :   pre = algcenter_precompute(al,p); av = avma;
    5875             :   while (1) {
    5876        5248 :     zprad = algcenter_prad(al2, p, pre);
    5877        5248 :     projs = algcenter_p_projs(al2, p, pre);
    5878        5248 :     if (lg(projs) == 2) projs = NULL;
    5879        5248 :     prad = algpradical_i(al2,p,zprad,projs);
    5880        5248 :     if (typ(prad) == t_INT) break;
    5881        5206 :     lord = algleftordermodp(al2,prad,p);
    5882        5206 :     if (!cmp_universal(lord,id)) break;
    5883        1945 :     al2 = gerepilecopy(av, alg_change_overorder_shallow(al2,lord));
    5884             :   }
    5885             : 
    5886        3303 :   dec = algpdecompose0(al2,prad,p,projs); av = avma;
    5887        4947 :   while (lg(dec) > 2) {
    5888             :     long i;
    5889        4260 :     for (i = 1; i < lg(dec); i++) {
    5890        3568 :       GEN I = gel(dec,i);
    5891        3568 :       lord = algleftordermodp(al2,I,p);
    5892        3568 :       if (cmp_universal(lord,id)) break;
    5893             :     }
    5894        2336 :     if (i==lg(dec)) break;
    5895        1644 :     al2 = gerepilecopy(av, alg_change_overorder_shallow(al2,lord));
    5896        1644 :     zprad = algcenter_prad(al2, p, pre);
    5897        1644 :     projs = algcenter_p_projs(al2, p, pre);
    5898        1644 :     if (lg(projs) == 2) projs = NULL;
    5899        1644 :     dec = algpdecompose_i(al2,p,zprad,projs);
    5900             :   }
    5901        3303 :   return al2;
    5902             : }
    5903             : 
    5904             : static GEN
    5905       15432 : algtracematrix(GEN al)
    5906             : {
    5907             :   GEN M, mt;
    5908             :   long n, i, j;
    5909       15432 :   n = alg_get_absdim(al);
    5910       15432 :   mt = alg_get_multable(al);
    5911       15432 :   M = cgetg(n+1, t_MAT);
    5912      114958 :   for (i=1; i<=n; i++)
    5913             :   {
    5914       99526 :     gel(M,i) = cgetg(n+1,t_MAT);
    5915      751118 :     for (j=1; j<=i; j++)
    5916      651592 :       gcoeff(M,j,i) = gcoeff(M,i,j) = algabstrace(al,gmael(mt,i,j));
    5917             :   }
    5918       15432 :   return M;
    5919             : }
    5920             : static GEN
    5921         567 : algdisc_i(GEN al) { return ZM_det(algtracematrix(al)); }
    5922             : GEN
    5923         364 : algdisc(GEN al)
    5924             : {
    5925         364 :   pari_sp av = avma;
    5926         364 :   checkalg(al);
    5927         364 :   if (alg_type(al) == al_REAL) pari_err_TYPE("algdisc [real algebra]", al);
    5928         343 :   return gerepileuptoint(av, algdisc_i(al));
    5929             : }
    5930             : static GEN
    5931         224 : alg_maximal(GEN al)
    5932             : {
    5933         224 :   GEN fa = absZ_factor(algdisc_i(al));
    5934         224 :   return alg_maximal_primes(al, gel(fa,1));
    5935             : }
    5936             : 
    5937             : /** LATTICES **/
    5938             : 
    5939             : /*
    5940             :  Convention: lattice = [I,t] representing t*I, where
    5941             :  - I integral nonsingular upper-triangular matrix representing a lattice over
    5942             :    the integral basis of the algebra, and
    5943             :  - t>0 either an integer or a rational number.
    5944             : 
    5945             :  Recommended and returned by the functions below:
    5946             :  - I HNF and primitive
    5947             : */
    5948             : 
    5949             : /* TODO use hnfmodid whenever possible using a*O <= I <= O
    5950             :  * for instance a = ZM_det_triangular(I) */
    5951             : 
    5952             : static GEN
    5953       64351 : primlat(GEN lat)
    5954             : {
    5955             :   GEN m, t, c;
    5956       64351 :   m = alglat_get_primbasis(lat);
    5957       64351 :   t = alglat_get_scalar(lat);
    5958       64351 :   m = Q_primitive_part(m,&c);
    5959       64351 :   if (c) return mkvec2(m,gmul(t,c));
    5960       54817 :   return lat;
    5961             : }
    5962             : 
    5963             : /* assumes the lattice contains d * integral basis, d=0 allowed */
    5964             : GEN
    5965       53487 : alglathnf(GEN al, GEN m, GEN d)
    5966             : {
    5967       53487 :   pari_sp av = avma;
    5968             :   long N,i,j;
    5969             :   GEN m2, c;
    5970       53487 :   if (!d) d = gen_0;
    5971       53487 :   checkalg(al);
    5972       53487 :   if (alg_type(al) == al_REAL) pari_err_TYPE("alglathnf [real algebra]", al);
    5973       53480 :   N = alg_get_absdim(al);
    5974       53480 :   if (!d) d = gen_0;
    5975       53480 :   if (typ(m) == t_VEC) m = matconcat(m);
    5976       53480 :   if (typ(m) == t_COL) m = algleftmultable(al,m);
    5977       53480 :   if (typ(m) != t_MAT) pari_err_TYPE("alglathnf",m);
    5978       53473 :   if (typ(d) != t_FRAC && typ(d) != t_INT) pari_err_TYPE("alglathnf",d);
    5979       53473 :   if (lg(m)-1 < N || lg(gel(m,1))-1 != N) pari_err_DIM("alglathnf");
    5980      480935 :   for (i=1; i<=N; i++)
    5981     7185192 :     for (j=1; j<lg(m); j++)
    5982     6757702 :       if (typ(gcoeff(m,i,j)) != t_FRAC && typ(gcoeff(m,i,j)) != t_INT)
    5983           7 :         pari_err_TYPE("alglathnf", gcoeff(m,i,j));
    5984       53438 :   m2 = Q_primitive_part(m,&c);
    5985       53438 :   if (!c) c = gen_1;
    5986       53438 :   if (!signe(d)) d = detint(m2);
    5987       45593 :   else           d = gdiv(d,c); /* should be an integer */
    5988       53438 :   if (!signe(d)) pari_err_INV("alglathnf [m does not have full rank]", m2);
    5989       53424 :   m2 = ZM_hnfmodid(m2,d);
    5990       53424 :   return gerepilecopy(av, mkvec2(m2,c));
    5991             : }
    5992             : 
    5993             : static GEN
    5994       11683 : prepare_multipliers(GEN *a, GEN *b)
    5995             : {
    5996             :   GEN na, nb, da, db, d;
    5997       11683 :   na = numer_i(*a); da = denom_i(*a);
    5998       11683 :   nb = numer_i(*b); db = denom_i(*b);
    5999       11683 :   na = mulii(na,db);
    6000       11683 :   nb = mulii(nb,da);
    6001       11683 :   d = gcdii(na,nb);
    6002       11683 :   *a = diviiexact(na,d);
    6003       11683 :   *b = diviiexact(nb,d);
    6004       11683 :   return gdiv(d, mulii(da,db));
    6005             : }
    6006             : 
    6007             : static GEN
    6008       11683 : prepare_lat(GEN m1, GEN t1, GEN m2, GEN t2)
    6009             : {
    6010       11683 :   GEN d = prepare_multipliers(&t1, &t2);
    6011       11683 :   m1 = ZM_Z_mul(m1,t1);
    6012       11683 :   m2 = ZM_Z_mul(m2,t2);
    6013       11683 :   return mkvec3(m1,m2,d);
    6014             : }
    6015             : 
    6016             : static GEN
    6017       11697 : alglataddinter(GEN al, GEN lat1, GEN lat2, GEN *sum, GEN *inter)
    6018             : {
    6019             :   GEN d, m1, m2, t1, t2, M, prep, d1, d2, ds, di, K;
    6020       11697 :   checkalg(al);
    6021       11697 :   if (alg_type(al) == al_REAL)
    6022          14 :     pari_err_TYPE("alglataddinter [real algebra]", al);
    6023       11683 :   checklat(al,lat1);
    6024       11683 :   checklat(al,lat2);
    6025             : 
    6026       11683 :   m1 = alglat_get_primbasis(lat1);
    6027       11683 :   t1 = alglat_get_scalar(lat1);
    6028       11683 :   m2 = alglat_get_primbasis(lat2);
    6029       11683 :   t2 = alglat_get_scalar(lat2);
    6030       11683 :   prep = prepare_lat(m1, t1, m2, t2);
    6031       11683 :   m1 = gel(prep,1);
    6032       11683 :   m2 = gel(prep,2);
    6033       11683 :   d = gel(prep,3);
    6034       11683 :   M = matconcat(mkvec2(m1,m2));
    6035       11683 :   d1 = ZM_det_triangular(m1);
    6036       11683 :   d2 = ZM_det_triangular(m2);
    6037       11683 :   ds = gcdii(d1,d2);
    6038       11683 :   if (inter)
    6039             :   {
    6040        7616 :     di = diviiexact(mulii(d1,d2),ds);
    6041        7616 :     if (equali1(di))
    6042             :     {
    6043         140 :       *inter = matid(lg(m1)-1);
    6044         140 :       if (sum) *sum = matid(lg(m1)-1);
    6045             :     }
    6046             :     else
    6047             :     {
    6048        7476 :       K = matkermod(M,di,sum);
    6049        7476 :       K = rowslice(K,1,lg(m1));
    6050        7476 :       *inter = hnfmodid(FpM_mul(m1,K,di),di);
    6051        7476 :       if (sum) *sum = hnfmodid(*sum,ds);
    6052             :     }
    6053             :   }
    6054        4067 :   else *sum = hnfmodid(M,ds);
    6055       11683 :   return d;
    6056             : }
    6057             : 
    6058             : GEN
    6059        4109 : alglatinter(GEN al, GEN lat1, GEN lat2, GEN* psum)
    6060             : {
    6061        4109 :   pari_sp av = avma;
    6062             :   GEN inter, d;
    6063        4109 :   d = alglataddinter(al, lat1, lat2, psum, &inter);
    6064        4102 :   inter = primlat(mkvec2(inter, d));
    6065        4102 :   if (!psum) return gerepilecopy(av, inter);
    6066          28 :   *psum = primlat(mkvec2(*psum,d));
    6067          28 :   return gc_all(av, 2, &inter, psum);
    6068             : }
    6069             : 
    6070             : GEN
    6071        7588 : alglatadd(GEN al, GEN lat1, GEN lat2, GEN* pinter)
    6072             : {
    6073        7588 :   pari_sp av = avma;
    6074             :   GEN sum, d;
    6075        7588 :   d = alglataddinter(al, lat1, lat2, &sum, pinter);
    6076        7581 :   sum = primlat(mkvec2(sum, d));
    6077        7581 :   if (!pinter) return gerepilecopy(av, sum);
    6078        3514 :   *pinter = primlat(mkvec2(*pinter,d));
    6079        3514 :   return gc_all(av, 2, &sum, pinter);
    6080             : }
    6081             : 
    6082             : /* TODO version that returns the quotient as abelian group? */
    6083             : /* return matrices to convert coordinates from one to other? */
    6084             : int
    6085       33495 : alglatsubset(GEN al, GEN lat1, GEN lat2, GEN* pindex)
    6086             : {
    6087       33495 :   pari_sp av = avma;
    6088             :   int res;
    6089             :   GEN m1, m2, m2i, m, t;
    6090       33495 :   checkalg(al);
    6091       33495 :   if (alg_type(al) == al_REAL) pari_err_TYPE("alglatsubset [real algebra]", al);
    6092       33488 :   checklat(al,lat1);
    6093       33488 :   checklat(al,lat2);
    6094       33488 :   m1 = alglat_get_primbasis(lat1);
    6095       33488 :   m2 = alglat_get_primbasis(lat2);
    6096       33488 :   m2i = RgM_inv_upper(m2);
    6097       33488 :   t = gdiv(alglat_get_scalar(lat1), alglat_get_scalar(lat2));
    6098       33488 :   m = RgM_Rg_mul(RgM_mul(m2i,m1), t);
    6099       33488 :   res = RgM_is_ZM(m);
    6100       33488 :   if (!res || !pindex) return gc_int(av, res);
    6101        1757 :   *pindex = gerepileuptoint(av, mpabs(ZM_det_triangular(m)));
    6102        1757 :   return 1;
    6103             : }
    6104             : 
    6105             : GEN
    6106        5271 : alglatindex(GEN al, GEN lat1, GEN lat2)
    6107             : {
    6108        5271 :   pari_sp av = avma;
    6109             :   long N;
    6110             :   GEN res;
    6111        5271 :   checkalg(al);
    6112        5271 :   if (alg_type(al) == al_REAL) pari_err_TYPE("alglatindex [real algebra]", al);
    6113        5264 :   checklat(al,lat1);
    6114        5264 :   checklat(al,lat2);
    6115        5264 :   N = alg_get_absdim(al);
    6116        5264 :   res = alglat_get_scalar(lat1);
    6117        5264 :   res = gdiv(res, alglat_get_scalar(lat2));
    6118        5264 :   res = gpowgs(res, N);
    6119        5264 :   res = gmul(res,RgM_det_triangular(alglat_get_primbasis(lat1)));
    6120        5264 :   res = gdiv(res, RgM_det_triangular(alglat_get_primbasis(lat2)));
    6121        5264 :   res = gabs(res,0);
    6122        5264 :   return gerepilecopy(av, res);
    6123             : }
    6124             : 
    6125             : GEN
    6126       45612 : alglatmul(GEN al, GEN lat1, GEN lat2)
    6127             : {
    6128       45612 :   pari_sp av = avma;
    6129             :   long N,i;
    6130             :   GEN m1, m2, m, V, lat, t, d, dp;
    6131       45612 :   checkalg(al);
    6132       45612 :   if (alg_type(al) == al_REAL) pari_err_TYPE("alglatmul [real algebra]", al);
    6133       45605 :   if (typ(lat1)==t_COL)
    6134             :   {
    6135       19292 :     if (typ(lat2)==t_COL)
    6136           7 :       pari_err_TYPE("alglatmul [one of lat1, lat2 has to be a lattice]", lat2);
    6137       19285 :     checklat(al,lat2);
    6138       19285 :     lat1 = Q_remove_denom(lat1,&d);
    6139       19285 :     m = algbasismultable(al,lat1);
    6140       19285 :     m2 = alglat_get_primbasis(lat2);
    6141       19285 :     dp = mulii(detint(m),ZM_det_triangular(m2));
    6142       19285 :     m = ZM_mul(m,m2);
    6143       19285 :     t = alglat_get_scalar(lat2);
    6144       19285 :     if (d) t = gdiv(t,d);
    6145             :   }
    6146             :   else /* typ(lat1)!=t_COL */
    6147             :   {
    6148       26313 :     checklat(al,lat1);
    6149       26313 :     if (typ(lat2)==t_COL)
    6150             :     {
    6151       19285 :       lat2 = Q_remove_denom(lat2,&d);
    6152       19285 :       m = algbasisrightmultable(al,lat2);
    6153       19285 :       m1 = alglat_get_primbasis(lat1);
    6154       19285 :       dp = mulii(detint(m),ZM_det_triangular(m1));
    6155       19285 :       m = ZM_mul(m,m1);
    6156       19285 :       t = alglat_get_scalar(lat1);
    6157       19285 :       if (d) t = gdiv(t,d);
    6158             :     }
    6159             :     else /* typ(lat2)!=t_COL */
    6160             :     {
    6161        7028 :       checklat(al,lat2);
    6162        7021 :       N = alg_get_absdim(al);
    6163        7021 :       m1 = alglat_get_primbasis(lat1);
    6164        7021 :       m2 = alglat_get_primbasis(lat2);
    6165        7021 :       dp = mulii(ZM_det_triangular(m1), ZM_det_triangular(m2));
    6166        7021 :       V = cgetg(N+1,t_VEC);
    6167       63189 :       for (i=1; i<=N; i++) {
    6168       56168 :         gel(V,i) = algbasismultable(al,gel(m1,i));
    6169       56168 :         gel(V,i) = ZM_mul(gel(V,i),m2);
    6170             :       }
    6171        7021 :       m = matconcat(V);
    6172        7021 :       t = gmul(alglat_get_scalar(lat1), alglat_get_scalar(lat2));
    6173             :     }
    6174             :   }
    6175             : 
    6176       45591 :   lat = alglathnf(al,m,dp);
    6177       45591 :   gel(lat,2) = gmul(alglat_get_scalar(lat), t);
    6178       45591 :   lat = primlat(lat);
    6179       45591 :   return gerepilecopy(av, lat);
    6180             : }
    6181             : 
    6182             : int
    6183       17528 : alglatcontains(GEN al, GEN lat, GEN x, GEN *ptc)
    6184             : {
    6185       17528 :   pari_sp av = avma;
    6186             :   GEN m, t, sol;
    6187       17528 :   checkalg(al);
    6188       17528 :   if (alg_type(al) == al_REAL)
    6189           7 :     pari_err_TYPE("alglatcontains [real algebra]", al);
    6190       17521 :   checklat(al,lat);
    6191       17521 :   m = alglat_get_primbasis(lat);
    6192       17521 :   t = alglat_get_scalar(lat);
    6193       17521 :   x = RgC_Rg_div(x,t);
    6194       17521 :   if (!RgV_is_ZV(x)) return gc_bool(av,0);
    6195       17521 :   sol = hnf_solve(m,x);
    6196       17521 :   if (!sol) return gc_bool(av,0);
    6197        8771 :   if (!ptc) return gc_bool(av,1);
    6198        8764 :   *ptc = gerepilecopy(av, sol); return 1;
    6199             : }
    6200             : 
    6201             : GEN
    6202        8778 : alglatelement(GEN al, GEN lat, GEN c)
    6203             : {
    6204        8778 :   pari_sp av = avma;
    6205             :   GEN res;
    6206        8778 :   checkalg(al);
    6207        8778 :   if (alg_type(al) == al_REAL)
    6208           7 :     pari_err_TYPE("alglatelement [real algebra]", al);
    6209        8771 :   checklat(al,lat);
    6210        8771 :   if (typ(c)!=t_COL) pari_err_TYPE("alglatelement", c);
    6211        8764 :   res = ZM_ZC_mul(alglat_get_primbasis(lat),c);
    6212        8764 :   res = RgC_Rg_mul(res, alglat_get_scalar(lat));
    6213        8764 :   return gerepilecopy(av,res);
    6214             : }
    6215             : 
    6216             : /* idem QM_invimZ, knowing result is contained in 1/c*Z^n */
    6217             : static GEN
    6218        3535 : QM_invimZ_mod(GEN m, GEN c)
    6219             : {
    6220             :   GEN d, m0, K;
    6221        3535 :   m0 = Q_remove_denom(m, &d);
    6222        3535 :   if (d)    d = mulii(d,c);
    6223          35 :   else      d = c;
    6224        3535 :   K = matkermod(m0, d, NULL);
    6225        3535 :   if (lg(K)==1) K = scalarmat(d, lg(m)-1);
    6226        3493 :   else          K = hnfmodid(K, d);
    6227        3535 :   return RgM_Rg_div(K,c);
    6228             : }
    6229             : 
    6230             : /* If m is injective, computes a Z-basis of the submodule of elements whose
    6231             :  * image under m is integral */
    6232             : static GEN
    6233          14 : QM_invimZ(GEN m)
    6234             : {
    6235          14 :   return RgM_invimage(m, QM_ImQ_hnf(m));
    6236             : }
    6237             : 
    6238             : /* An isomorphism of R-modules M_{m,n}(R) -> R^{m*n} */
    6239             : static GEN
    6240       28322 : mat2col(GEN M, long m, long n)
    6241             : {
    6242             :   long i,j,k,p;
    6243             :   GEN C;
    6244       28322 :   p = m*n;
    6245       28322 :   C = cgetg(p+1,t_COL);
    6246      254702 :   for (i=1,k=1;i<=m;i++)
    6247     2036804 :     for (j=1;j<=n;j++,k++)
    6248     1810424 :       gel(C,k) = gcoeff(M,i,j);
    6249       28322 :   return C;
    6250             : }
    6251             : 
    6252             : static GEN
    6253        3535 : alglattransporter_i(GEN al, GEN lat1, GEN lat2, long right)
    6254             : {
    6255             :   GEN m1, m2, m2i, M, MT, mt, t1, t2, T, c;
    6256             :   long N, i;
    6257        3535 :   N = alg_get_absdim(al);
    6258        3535 :   m1 = alglat_get_primbasis(lat1);
    6259        3535 :   m2 = alglat_get_primbasis(lat2);
    6260        3535 :   m2i = RgM_inv_upper(m2);
    6261        3535 :   c = detint(m1);
    6262        3535 :   t1 = alglat_get_scalar(lat1);
    6263        3535 :   m1 = RgM_Rg_mul(m1,t1);
    6264        3535 :   t2 = alglat_get_scalar(lat2);
    6265        3535 :   m2i = RgM_Rg_div(m2i,t2);
    6266             : 
    6267        3535 :   MT = right? NULL: alg_get_multable(al);
    6268        3535 :   M = cgetg(N+1, t_MAT);
    6269       31815 :   for (i=1; i<=N; i++) {
    6270       28280 :     if (right) mt = algbasisrightmultable(al, vec_ei(N,i));
    6271       14168 :     else       mt = gel(MT,i);
    6272       28280 :     mt = RgM_mul(m2i,mt);
    6273       28280 :     mt = RgM_mul(mt,m1);
    6274       28280 :     gel(M,i) = mat2col(mt, N, N);
    6275             :   }
    6276             : 
    6277        3535 :   c = gdiv(t2,gmul(c,t1));
    6278        3535 :   c = denom_i(c);
    6279        3535 :   T = QM_invimZ_mod(M,c);
    6280        3535 :   return primlat(mkvec2(T,gen_1));
    6281             : }
    6282             : 
    6283             : /*
    6284             :    { x in al | x*lat1 subset lat2}
    6285             : */
    6286             : GEN
    6287        1778 : alglatlefttransporter(GEN al, GEN lat1, GEN lat2)
    6288             : {
    6289        1778 :   pari_sp av = avma;
    6290        1778 :   checkalg(al);
    6291        1778 :   if (alg_type(al) == al_REAL)
    6292           7 :     pari_err_TYPE("alglatlefttransporter [real algebra]", al);
    6293        1771 :   checklat(al,lat1);
    6294        1771 :   checklat(al,lat2);
    6295        1771 :   return gerepilecopy(av, alglattransporter_i(al,lat1,lat2,0));
    6296             : }
    6297             : 
    6298             : /*
    6299             :    { x in al | lat1*x subset lat2}
    6300             : */
    6301             : GEN
    6302        1771 : alglatrighttransporter(GEN al, GEN lat1, GEN lat2)
    6303             : {
    6304        1771 :   pari_sp av = avma;
    6305        1771 :   checkalg(al);
    6306        1771 :   if (alg_type(al) == al_REAL)
    6307           7 :     pari_err_TYPE("alglatrighttransporter [real algebra]", al);
    6308        1764 :   checklat(al,lat1);
    6309        1764 :   checklat(al,lat2);
    6310        1764 :   return gerepilecopy(av, alglattransporter_i(al,lat1,lat2,1));
    6311             : }
    6312             : 
    6313             : GEN
    6314          42 : algmakeintegral(GEN mt0, long maps)
    6315             : {
    6316          42 :   pari_sp av = avma;
    6317             :   long n,i;
    6318             :   GEN m,P,Pi,mt2,mt;
    6319          42 :   n = lg(mt0)-1;
    6320          42 :   mt = check_mt(mt0,NULL);
    6321          42 :   if (!mt) pari_err_TYPE("algmakeintegral", mt0);
    6322          21 :   if (isint1(Q_denom(mt0))) {
    6323           7 :     if (maps) mt = mkvec3(mt,matid(n),matid(n));
    6324           7 :     return gerepilecopy(av,mt);
    6325             :   }
    6326          14 :   dbg_printf(2)(" algmakeintegral: dim=%d, denom=%Ps\n", n, Q_denom(mt0));
    6327          14 :   m = cgetg(n+1,t_MAT);
    6328          56 :   for (i=1;i<=n;i++)
    6329          42 :     gel(m,i) = mat2col(gel(mt,i),n,n);
    6330          14 :   dbg_printf(2)(" computing order, dims m = %d x %d...\n", nbrows(m), lg(m)-1);
    6331          14 :   P = QM_invimZ(m);
    6332          14 :   dbg_printf(2)(" ...done.\n");
    6333          14 :   P = shallowmatconcat(mkvec2(col_ei(n,1),P));
    6334          14 :   P = hnf(P);
    6335          14 :   Pi = RgM_inv(P);
    6336          14 :   mt2 = change_Rgmultable(mt,P,Pi);
    6337          14 :   if (maps) mt2 = mkvec3(mt2,Pi,P); /* mt2, mt->mt2, mt2->mt */
    6338          14 :   return gerepilecopy(av,mt2);
    6339             : }
    6340             : 
    6341             : /** ORDERS **/
    6342             : 
    6343             : /*
    6344             :  * algmodpr data:
    6345             :  * 1. pr
    6346             :  * 2. Vecsmall([k,m]) s.t. target is M_k(F_p^m). /!\ m can differ from pr.f
    6347             :  * 3. t_FFELT 1 representing the finite field F_q
    6348             :  * 4. proj: O -> M_k(F_q)
    6349             :  * 5. lift: M_k(F_q) -> O
    6350             :  * 6. tau: anti uniformizer (left multiplication matrix)
    6351             :  * 7. T s.t. F_q = F_p[x]/T
    6352             :  */
    6353             : GEN
    6354        2793 : algmodprinit(GEN al, GEN pr, long v)
    6355             : {
    6356        2793 :   pari_sp av = avma;
    6357             :   GEN p, alp, g, Q, pro, lif, map, mapi, alpr, spl, data, nf, T, J, tau;
    6358             :   long tal, k, m;
    6359        2793 :   checkalg(al); checkprid(pr);
    6360        2779 :   tal = alg_type(al);
    6361        2779 :   if (tal!=al_CYCLIC && tal!=al_CSA)
    6362          21 :     pari_err_TYPE("algmodprinit [use alginit]", al);
    6363        2758 :   nf = alg_get_center(al);
    6364        2758 :   p = pr_get_p(pr);
    6365        2758 :   alp = alg_ordermodp(al, p);
    6366        2758 :   g = algeltfromnf_i(al, pr_get_gen(pr));
    6367        2758 :   g = algbasismultable(alp, g);
    6368        2758 :   g = FpM_image(g, p);
    6369        2758 :   alpr = alg_quotient(alp, g, 1);
    6370        2758 :   Q = gel(alpr, 1);
    6371        2758 :   pro = gel(alpr, 2);
    6372        2758 :   lif = gel(alpr, 3);
    6373        2758 :   J = algradical(Q); /* could skip if we knew the order is maximal at unramified pr */
    6374        2758 :   if (!gequal0(J))
    6375             :   {
    6376          21 :     Q = alg_quotient(Q, J, 1);
    6377          21 :     pro = ZM_mul(gel(Q,2), pro);
    6378          21 :     lif = ZM_mul(lif, gel(Q,3));
    6379          21 :     Q = gel(Q,1);
    6380             :   }
    6381        2758 :   spl = alg_finite_csa_split(Q, v);
    6382        2758 :   T = gel(spl, 1); /* t_POL, possibly of degree 1 */
    6383        2758 :   mapi = gel(spl, 3);
    6384        2758 :   map = gel(spl, 4);
    6385        2758 :   tau = pr_anti_uniformizer(nf, pr);
    6386        2758 :   m = degpol(T);
    6387        2758 :   k = lg(gmael(spl,2,1)) - 1;
    6388        2758 :   if (typ(tau) != t_INT) tau = algbasismultable(al,algeltfromnf_i(al,tau));
    6389        2758 :   data = mkvecn(7,
    6390             :     pr,
    6391             :     mkvecsmall2(k, m),
    6392             :     Tp_to_FF(T,p),
    6393             :     FpM_mul(map, pro, p),
    6394             :     FpM_mul(lif, mapi, p),
    6395             :     tau,
    6396             :     T
    6397             :   );
    6398        2758 :   return gerepilecopy(av, data);
    6399             : }
    6400             : 
    6401             : static int
    6402        2135 : checkalgmodpr_i(GEN data)
    6403             : {
    6404             :   GEN compo;
    6405        2135 :   if (typ(data)!=t_VEC || lg(data)!=8) return 0;
    6406        2121 :   checkprid(gel(data,1));
    6407        2114 :   compo = gel(data,2);
    6408        2114 :   if (typ(compo)!=t_VECSMALL || lg(compo)!=3) return 0;
    6409        2107 :   if (typ(gel(data,3))!=t_FFELT) return 0;
    6410        2100 :   if (typ(gel(data,4))!=t_MAT) return 0;
    6411        2093 :   if (typ(gel(data,5))!=t_MAT) return 0;
    6412        2086 :   compo = gel(data,6);
    6413        2086 :   if (typ(compo)!=t_MAT && (typ(compo)!=t_INT || !equali1(compo))) return 0;
    6414        2079 :   if (typ(gel(data,7))!=t_POL) return 0;
    6415        2072 :   return 1;
    6416             : }
    6417             : static void
    6418        2135 : checkalgmodpr(GEN data)
    6419             : {
    6420        2135 :   if(!checkalgmodpr_i(data))
    6421          56 :     pari_err_TYPE("checkalgmodpr [use algmodprinit()]", data);
    6422        2072 : }
    6423             : 
    6424             : /* x belongs to the stored order of al, no GC */
    6425             : static GEN
    6426        1708 : algmodpr_integral(GEN x, GEN data, long reduce)
    6427             : {
    6428             :   GEN res, T, p;
    6429        1708 :   long k, m, v = -1;
    6430        1708 :   T = algmodpr_get_T(data);
    6431        1708 :   if (T) v = varn(T);
    6432        1708 :   p = algmodpr_get_p(data);
    6433        1708 :   k = algmodpr_get_k(data);
    6434        1708 :   m = algmodpr_get_m(data);
    6435        1708 :   res = ZM_ZC_mul(algmodpr_get_proj(data), x);
    6436        1708 :   res = RgC_col2mat(res, k, m, v);
    6437        1708 :   return reduce? FqM_red(res, T, p) : res;
    6438             : }
    6439             : 
    6440             : /* x in basis form */
    6441             : static GEN
    6442        1729 : algmodpr_i(GEN x, GEN data)
    6443             : {
    6444             :   GEN T, p, res, den, tau;
    6445             :   long v, i, j;
    6446        1729 :   x = Q_remove_denom(x, &den);
    6447        1729 :   T = algmodpr_get_T(data);
    6448        1729 :   p = algmodpr_get_p(data);
    6449        1729 :   tau = algmodpr_get_tau(data);
    6450        1729 :   if (den)
    6451             :   {
    6452          35 :     v = Z_pvalrem(den, p, &den);
    6453          35 :     if (v && typ(tau)!=t_INT)
    6454             :     {
    6455             :       /* TODO not always better to exponentiate the matrix */
    6456          21 :       x = ZM_ZC_mul(ZM_powu(tau, v), x);
    6457          21 :       v -= ZV_pvalrem(x, p, &x);
    6458             :     }
    6459          35 :     if (v>0) pari_err_INV("algmodpr", mkintmod(gen_0,p));
    6460          21 :     if (v<0)
    6461             :     {
    6462           7 :       long k = algmodpr_get_k(data);
    6463           7 :       return zeromatcopy(k,k);
    6464             :     }
    6465          14 :     if (equali1(den)) den = NULL;
    6466             :   }
    6467        1708 :   res = algmodpr_integral(x, data, 0);
    6468        1708 :   if (den)
    6469             :   {
    6470           7 :     GEN d = Fp_inv(den, p);
    6471          21 :     for (j=1; j<lg(res); j++)
    6472          42 :       for (i=1; i<lg(res); i++)
    6473          28 :         gcoeff(res,i,j) = Fq_Fp_mul(gcoeff(res,i,j), d, T, p);
    6474             :   }
    6475        1701 :   else res = FqM_red(res, T, p);
    6476        1708 :   return res;
    6477             : }
    6478             : 
    6479             : static GEN
    6480          28 : algmodpr_mat(GEN al, GEN x, GEN data)
    6481             : {
    6482             :   GEN res, cx, c;
    6483             :   long i, j;
    6484          28 :   res = cgetg(lg(x),t_MAT);
    6485         133 :   for (j=1; j<lg(x); j++)
    6486             :   {
    6487         105 :     cx = gel(x,j);
    6488         105 :     c = cgetg(lg(cx), t_COL);
    6489         525 :     for (i=1; i<lg(cx); i++) gel(c,i) = algmodpr(al, gel(cx,i), data);
    6490         105 :     gel(res, j) = c;
    6491             :   }
    6492          28 :   return shallowmatconcat(res);
    6493             : }
    6494             : 
    6495             : GEN
    6496        1841 : algmodpr(GEN al, GEN x, GEN data)
    6497             : {
    6498        1841 :   pari_sp av = avma;
    6499             :   GEN res, ff;
    6500        1841 :   checkalgmodpr(data);
    6501        1785 :   if (typ(x) == t_MAT) return gerepilecopy(av, algmodpr_mat(al,x,data));
    6502        1757 :   x = algalgtobasis(al, x);
    6503        1729 :   res = algmodpr_i(x, data);
    6504        1715 :   ff = algmodpr_get_ff(data);
    6505        1715 :   return gerepilecopy(av, FqM_to_FFM(res,ff));
    6506             : }
    6507             : 
    6508             : static GEN
    6509         511 : algmodprlift_i(GEN x, GEN data)
    6510             : {
    6511         511 :   GEN lift, C, p, c, T = NULL;
    6512             :   long i, j, k, m;
    6513         511 :   lift = algmodpr_get_lift(data);
    6514         511 :   p = algmodpr_get_p(data);
    6515         511 :   k = algmodpr_get_k(data);
    6516         511 :   m = algmodpr_get_m(data); /* M_k(F_p^m) */
    6517         511 :   if (m > 1) T = algmodpr_get_T(data);
    6518         511 :   x = gcopy(x);
    6519        1561 :   for (i=1; i<=k; i++)
    6520        3689 :     for (j=1; j<=k; j++)
    6521             :     {
    6522        2639 :       c = gcoeff(x,i,j);
    6523        2639 :       if (typ(c) == t_FFELT)    gcoeff(x,i,j) = FF_to_FpXQ(c);
    6524         119 :       else if (m == 1)          gcoeff(x,i,j) = scalarpol(Rg_to_Fp(c,p), -1);
    6525          91 :       else                      gcoeff(x,i,j) = Rg_to_FpXQ(c, T, p);
    6526             :     }
    6527         504 :   C = RgM_mat2col(x, k, m);
    6528         504 :   return FpM_FpC_mul(lift, C, p);
    6529             : }
    6530             : 
    6531             : GEN
    6532         301 : algmodprlift(GEN al, GEN x, GEN data)
    6533             : {
    6534         301 :   pari_sp av = avma;
    6535             :   GEN res, blk;
    6536             :   long k, nc, nr, i, j;
    6537         301 :   checkalg(al);
    6538         294 :   checkalgmodpr(data);
    6539         287 :   k = algmodpr_get_k(data); /* M_k(F_p^m) */
    6540         287 :   if (typ(x) != t_MAT) pari_err_TYPE("algmodprlift [matrix x]",x);
    6541         280 :   if ((lg(x)-1)%k) pari_err_DIM("algmodprlift [matrix x, nb cols]");
    6542         273 :   nc = (lg(x)-1)/k;
    6543         273 :   if (!nc) return gerepileupto(av, zeromat(0,0));
    6544         266 :   if ((lgcols(x)-1)%k) pari_err_DIM("algmodprlift [matrix x, nb rows]");
    6545         259 :   nr = nbrows(x)/k;
    6546         259 :   if (nr==1 && nc==1) res = algmodprlift_i(x, data);
    6547             :   else
    6548             :   {
    6549          28 :     res = zeromatcopy(nr, nc);
    6550         119 :     for (i=1; i<=nr; i++)
    6551         371 :       for(j=1; j<=nc; j++)
    6552             :       {
    6553         280 :         blk = matslice(x, (i-1)*k+1, i*k, (j-1)*k+1, j*k);
    6554         280 :         gcoeff(res,i,j) = algmodprlift_i(blk, data);
    6555             :       }
    6556             :   }
    6557         252 :   return gerepilecopy(av, res);
    6558             : }
    6559             : 
    6560             : /* e in al such that e mod pr is a non-invertible idempotent of maximal rank */
    6561             : static GEN
    6562        2499 : eichleridempotent(GEN al, GEN pr)
    6563             : {
    6564             :   long i, k, n, nk, j;
    6565             :   GEN data, mapi, e;
    6566        2499 :   data = algmodprinit(al, pr, -1);
    6567        2492 :   mapi = algmodpr_get_lift(data);
    6568        2492 :   k = algmodpr_get_k(data);
    6569        2492 :   n = pr_get_f(pr);
    6570        2492 :   nk = n*(k+1);
    6571        2492 :   if (k==1) return zerocol(alg_get_absdim(al));
    6572        1820 :   e = gel(mapi,1+nk);
    6573        2681 :   for (i = 2, j = 1+2*nk; i < k; i++, j += nk) e = ZC_add(e,gel(mapi,j));
    6574        1820 :   return e;
    6575             : }
    6576             : 
    6577             : static GEN
    6578        2492 : mat_algeltfromnf(GEN al, GEN x)
    6579             : {
    6580        6244 :   pari_APPLY_type(t_MAT, algeltfromnf_i(al, gel(x,i)));
    6581             : }
    6582             : static GEN
    6583        2499 : eichlerprimepower_i(GEN al, GEN pr, long m, GEN prm)
    6584             : {
    6585             :   GEN p, e, polidem, Me, Mzk, nf, Mprm;
    6586             :   long ep, i;
    6587             :   ulong mask;
    6588        2499 :   polidem = mkpoln(4, gen_m2, utoi(3), gen_0, gen_0);
    6589        2499 :   p = pr_get_p(pr); ep = pr_get_e(pr);
    6590        2499 :   e = eichleridempotent(al, pr); /* ZC */
    6591        2492 :   mask = quadratic_prec_mask(m);
    6592        2492 :   i = 1;
    6593        6769 :   while (mask > 1)
    6594             :   {
    6595        4277 :     i *=2;
    6596        4277 :     if (mask & 1UL) i--;
    6597        4277 :     mask >>= 1;
    6598        4277 :     e = algpoleval(al, polidem, e);
    6599        4277 :     e = FpC_red(e, powiu(p,(i+ep-1)/ep));
    6600             :   }
    6601        2492 :   Me = algbasisrightmultable(al, e);
    6602        2492 :   nf = algcenter(al);
    6603        2492 :   Mzk = mat_algeltfromnf(al, nf_get_zk(nf));
    6604        2492 :   prm = idealtwoelt(nf, prm);
    6605        2492 :   Mprm = algbasismultable(al, algeltfromnf_i(al,gel(prm,2)));
    6606        2492 :   return hnfmodid(shallowmatconcat(mkvec3(Me,Mzk,Mprm)), gel(prm,1));
    6607             : }
    6608             : static GEN
    6609         546 : eichlerprimepower(GEN al, GEN pr, long m, GEN prm)
    6610             : {
    6611         546 :   pari_sp av = avma;
    6612         546 :   return gerepileupto(av, eichlerprimepower_i(al, pr, m, prm));
    6613             : }
    6614             : 
    6615             : GEN
    6616        2100 : algeichlerbasis(GEN al, GEN N)
    6617             : {
    6618        2100 :   pari_sp av = avma;
    6619        2100 :   GEN nf, faN, LH = NULL, Cpr = NULL, Cm = NULL, Lpp, M, H, pp, LH2;
    6620             :   long k, n, ih, lh, np;
    6621             : 
    6622        2100 :   checkalg(al);
    6623        2093 :   nf = alg_get_center(al);
    6624        2086 :   if (checkprid_i(N)) return eichlerprimepower(al,N,1,N);
    6625        2065 :   if (is_nf_factor(N))
    6626             :   {
    6627        2037 :     faN = sort_factor(shallowcopy(N), (void*)&cmp_prime_ideal, &cmp_nodata);
    6628        2037 :     N = factorbackprime(nf, gel(faN,1), gel(faN,2));
    6629             :   }
    6630          28 :   else faN = idealfactor(nf, N);
    6631        2051 :   n = nbrows(faN);
    6632        2051 :   if (!n) { set_avma(av); return matid(alg_get_absdim(al)); }
    6633        2044 :   if (n==1)
    6634             :   {
    6635        1953 :     GEN pr = gcoeff(faN,1,1), mZ = gcoeff(faN,1,2);
    6636        1953 :     long m = itos(mZ);
    6637        1953 :     return gerepileupto(av, eichlerprimepower_i(al, pr, m, N));
    6638             :   }
    6639             : 
    6640             :   /* collect prime power Eichler orders */
    6641          91 :   Lpp = cgetg(n+1,t_VEC);
    6642          91 :   LH2 = cgetg(n+1, t_VEC);
    6643          91 :   np = 0;
    6644          91 :   ih = 1;
    6645          91 :   lh = 1;
    6646         616 :   for (k = 1; k <= n; k++)
    6647             :   {
    6648         525 :     GEN pr = gcoeff(faN,k,1), mZ = gcoeff(faN,k,2), prm;
    6649         525 :     long m = itos(mZ);
    6650             : 
    6651         525 :     if (ih == lh) /* done with previous p, prepare next */
    6652             :     {
    6653         462 :       GEN p = pr_get_p(pr);
    6654         462 :       long k2 = k + 1;
    6655         462 :       np++;
    6656         462 :       gel(Lpp,np) = gen_0;
    6657         462 :       lh = 2;
    6658             :       /* count the pr|p in faN */
    6659         525 :       while (k2<=n && equalii(p,pr_get_p(gcoeff(faN,k2,1)))) { lh++; k2++; }
    6660         462 :       LH = cgetg(lh, t_VEC);
    6661         462 :       Cpr = cgetg(lh, t_VEC);
    6662         462 :       Cm = cgetg(lh, t_VEC);
    6663         462 :       ih = 1;
    6664             :     }
    6665         525 :     prm = idealpow(nf, pr, mZ);
    6666         525 :     H = eichlerprimepower(al, pr, m, prm);
    6667         525 :     pp = gcoeff(prm,1,1);
    6668         525 :     if (cmpii(pp,gel(Lpp,np)) > 0) gel(Lpp,np) = pp;
    6669         525 :     gel(LH,ih) = H;
    6670         525 :     gel(Cpr,ih) = pr;
    6671         525 :     gel(Cm,ih) = mZ;
    6672         525 :     ih++;
    6673             : 
    6674         525 :     if (ih == lh) /* done with this p */
    6675             :     {
    6676         462 :       if (lh == 2) gel(LH2,np) = gel(LH,1);
    6677             :       else
    6678             :       { /* put together the pr|p */
    6679          63 :         GEN U = gmael(idealchineseinit(nf, mkmat2(Cpr,Cm)),1,2);
    6680             :         long i;
    6681         189 :         for (i = 1; i < lh; i++)
    6682             :         {
    6683         126 :           GEN e = algeltfromnf_i(al, gel(U,i));
    6684         126 :           e = algbasismultable(al, e);
    6685         126 :           gel(LH,i) = ZM_mul(e, gel(LH,i));
    6686             :         }
    6687          63 :         gel(LH2,np) = hnfmodid(shallowmatconcat(LH), gel(Lpp,np));
    6688             :       }
    6689             :     }
    6690             :   }
    6691          91 :   if (np == 1) return gerepilecopy(av, gel(LH2,1));
    6692             :   /* put together all p */
    6693          84 :   setlg(Lpp,np+1);
    6694          84 :   setlg(LH2,np+1);
    6695          84 :   H = nmV_chinese_center(LH2, Lpp, &M);
    6696          84 :   return gerepileupto(av, hnfmodid(H, M));
    6697             : }
    6698             : 
    6699             : /** IDEALS **/

Generated by: LCOV version 1.16