Code coverage tests

This page documents the degree to which the PARI/GP source code is tested by our public test suite, distributed with the source distribution in directory src/test/. This is measured by the gcov utility; we then process gcov output using the lcov frond-end.

We test a few variants depending on Configure flags on the pari.math.u-bordeaux.fr machine (x86_64 architecture), and agregate them in the final report:

The target is to exceed 90% coverage for all mathematical modules (given that branches depending on DEBUGLEVEL or DEBUGMEM are not covered). This script is run to produce the results below.

LCOV - code coverage report
Current view: top level - kernel/none - mp.c (source / functions) Hit Total Coverage
Test: PARI/GP v2.18.1 lcov report (development 30213-f9b05da6c0) Lines: 1115 1153 96.7 %
Date: 2025-04-26 09:18:30 Functions: 69 70 98.6 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : #line 2 "../src/kernel/none/mp.c"
       2             : /* Copyright (C) 2000-2003 The PARI group.
       3             : 
       4             : This file is part of the PARI/GP package.
       5             : 
       6             : PARI/GP is free software; you can redistribute it and/or modify it under the
       7             : terms of the GNU General Public License as published by the Free Software
       8             : Foundation; either version 2 of the License, or (at your option) any later
       9             : version. It is distributed in the hope that it will be useful, but WITHOUT
      10             : ANY WARRANTY WHATSOEVER.
      11             : 
      12             : Check the License for details. You should have received a copy of it, along
      13             : with the package; see the file 'COPYING'. If not, write to the Free Software
      14             : Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */
      15             : 
      16             : /***********************************************************************/
      17             : /**                                                                   **/
      18             : /**                       MULTIPRECISION KERNEL                       **/
      19             : /**                                                                   **/
      20             : /***********************************************************************/
      21             : #include "pari.h"
      22             : #include "paripriv.h"
      23             : #include "../src/kernel/none/tune-gen.h"
      24             : 
      25             : void
      26         788 : pari_kernel_init(void) { }
      27             : void
      28         786 : pari_kernel_close(void) { }
      29             : const char *
      30           2 : pari_kernel_version(void) { return ""; }
      31             : 
      32             : /* NOTE: arguments of "spec" routines (muliispec, addiispec, etc.) aren't
      33             :  * GENs but pairs (long *a, long na) representing a list of digits (in basis
      34             :  * BITS_IN_LONG) : a[0], ..., a[na-1]. In order to facilitate splitting: no
      35             :  * need to reintroduce codewords. */
      36             : 
      37             : #define LIMBS(x)  ((x)+2)
      38             : #define NLIMBS(x) (lgefint(x)-2)
      39             : 
      40             : /* Normalize a nonnegative integer */
      41             : GEN
      42   851292963 : int_normalize(GEN x, long known_zero_words)
      43             : {
      44   851292963 :   long i, lx = lgefint(x);
      45             :   GEN x0;
      46   851292963 :   if (lx == 2) { x[1] = evalsigne(0) | evallgefint(2); return x; }
      47   851292963 :   if (!known_zero_words && x[2]) return x;
      48  3533401425 :   for (i = 2+known_zero_words; i < lx; i++)
      49  3465822531 :     if (x[i]) break;
      50   332086341 :   x0 = x; i -= 2; x += i;
      51   332086341 :   if (x0 == (GEN)avma) set_avma((pari_sp)x);
      52   199207680 :   else stackdummy((pari_sp)(x0+i), (pari_sp)x0);
      53   332086341 :   lx -= i;
      54   332086341 :   x[0] = evaltyp(t_INT) | evallg(lx);
      55   332086341 :   if (lx == 2) x[1] = evalsigne(0) | evallgefint(lx);
      56   264507447 :   else         x[1] = evalsigne(1) | evallgefint(lx);
      57   332086341 :   return x;
      58             : }
      59             : 
      60             : /***********************************************************************/
      61             : /**                                                                   **/
      62             : /**                      ADDITION / SUBTRACTION                       **/
      63             : /**                                                                   **/
      64             : /***********************************************************************/
      65             : 
      66             : GEN
      67     2247126 : setloop(GEN a)
      68             : {
      69     2247126 :   pari_sp av = avma;
      70     2247126 :   (void)cgetg(lgefint(a) + 3, t_VECSMALL);
      71     2247126 :   return icopy_avma(a, av); /* two cells of extra space before a */
      72             : }
      73             : 
      74             : /* we had a = setloop(?), then some incloops. Reset a to b */
      75             : GEN
      76      130656 : resetloop(GEN a, GEN b) {
      77      130656 :   long lb = lgefint(b);
      78      130656 :   a += lgefint(a) - lb;
      79      130656 :   a[0] = evaltyp(t_INT) | evallg(lb);
      80      130656 :   affii(b, a); return a;
      81             : }
      82             : 
      83             : /* assume a > 0, initialized by setloop. Do a++ */
      84             : static GEN
      85    34954581 : incpos(GEN a)
      86             : {
      87    34954581 :   long i, l = lgefint(a);
      88    34954584 :   for (i=l-1; i>1; i--)
      89    34954581 :     if (++a[i]) return a;
      90           3 :   l++; a--; /* use extra cell */
      91           3 :   a[0]=evaltyp(t_INT) | _evallg(l);
      92           3 :   a[1]=evalsigne(1) | evallgefint(l);
      93           3 :   a[2]=1; return a;
      94             : }
      95             : 
      96             : /* assume a < 0, initialized by setloop. Do a++ */
      97             : static GEN
      98       50013 : incneg(GEN a)
      99             : {
     100       50013 :   long i, l = lgefint(a)-1;
     101       50013 :   if (uel(a,l)--)
     102             :   {
     103       50010 :     if (l == 2 && !a[2])
     104             :     {
     105        1485 :       a++; /* save one cell */
     106        1485 :       a[0] = evaltyp(t_INT) | _evallg(2);
     107        1485 :       a[1] = evalsigne(0) | evallgefint(2);
     108             :     }
     109       50010 :     return a;
     110             :   }
     111           3 :   for (i = l-1;; i--) /* finishes since a[2] != 0 */
     112           3 :     if (uel(a,i)--) break;
     113           3 :   if (!a[2])
     114             :   {
     115           3 :     a++; /* save one cell */
     116           3 :     a[0] = evaltyp(t_INT) | _evallg(l);
     117           3 :     a[1] = evalsigne(-1) | evallgefint(l);
     118             :   }
     119           3 :   return a;
     120             : }
     121             : 
     122             : /* assume a initialized by setloop. Do a++ */
     123             : GEN
     124    35257065 : incloop(GEN a)
     125             : {
     126    35257065 :   switch(signe(a))
     127             :   {
     128      252471 :     case 0: a--; /* use extra cell */
     129      252471 :       a[0]=evaltyp(t_INT) | _evallg(3);
     130      252471 :       a[1]=evalsigne(1) | evallgefint(3);
     131      252471 :       a[2]=1; return a;
     132       50013 :     case -1: return incneg(a);
     133    34954581 :     default: return incpos(a);
     134             :   }
     135             : }
     136             : 
     137             : INLINE GEN
     138  2389385580 : adduispec(ulong s, GEN x, long nx)
     139             : {
     140  2389385580 :   GEN xd, zd = (GEN)avma;
     141             :   long lz;
     142             : 
     143  2389385580 :   if (nx == 1) return adduu(s, uel(x,0));
     144   877466025 :   lz = nx+3; (void)new_chunk(lz);
     145   877466025 :   xd = x + nx;
     146   877466025 :   *--zd = (ulong)*--xd + s;
     147   877466025 :   if ((ulong)*zd < s)
     148             :     for(;;)
     149             :     {
     150   263402418 :       if (xd == x) { *--zd = 1; break; } /* enlarge z */
     151   259692009 :       *--zd = ((ulong)*--xd) + 1;
     152   259692009 :       if (*zd) { lz--; break; }
     153             :     }
     154   620752422 :   else lz--;
     155  2175454917 :   while (xd > x) *--zd = *--xd;
     156   877466025 :   *--zd = evalsigne(1) | evallgefint(lz);
     157   877466025 :   *--zd = evaltyp(t_INT) | evallg(lz);
     158   877466025 :   return gc_const((pari_sp)zd, zd);
     159             : }
     160             : 
     161             : GEN
     162   491859555 : adduispec_offset(ulong s, GEN x, long offset, long nx)
     163             : {
     164   491859555 :   GEN xd = x+lgefint(x)-nx-offset;
     165   606147528 :   while (nx && *xd==0) {xd++; nx--;}
     166   491859555 :   if (!nx) return utoi(s);
     167   459733728 :   return adduispec(s,xd,nx);
     168             : }
     169             : 
     170             : static GEN
     171  4572364206 : addiispec(GEN x, GEN y, long nx, long ny)
     172             : {
     173             :   GEN xd, yd, zd;
     174  4572364206 :   long lz, i = -2;
     175             :   LOCAL_OVERFLOW;
     176             : 
     177  4572364206 :   if (nx < ny) swapspec(x,y, nx,ny);
     178  4572364206 :   if (ny == 1) return adduispec(*y,x,nx);
     179  2707839393 :   zd = (GEN)avma;
     180  2707839393 :   lz = nx+3; (void)new_chunk(lz);
     181  2707839393 :   xd = x + nx;
     182  2707839393 :   yd = y + ny;
     183  2707839393 :   zd[-1] = addll(xd[-1], yd[-1]);
     184             : #ifdef addllx8
     185  2411298922 :   for (  ; i-8 > -ny; i-=8)
     186  1508685791 :     addllx8(xd+i, yd+i, zd+i, overflow);
     187             : #endif
     188 38136247604 :   for (  ; i >= -ny; i--) zd[i] = addllx(xd[i], yd[i]);
     189  2707839393 :   if (overflow)
     190             :     for(;;)
     191             :     {
     192   550422789 :       if (i < -nx) { zd[i] = 1; i--; break; } /* enlarge z */
     193   367193094 :       zd[i] = uel(xd,i) + 1;
     194   367193094 :       if (zd[i]) { i--; lz--; break; }
     195    63481803 :       i--;
     196             :     }
     197  2220898407 :   else lz--;
     198 20542356666 :   for (; i >= -nx; i--) zd[i] = xd[i];
     199  2707839393 :   zd += i+1;
     200  2707839393 :   *--zd = evalsigne(1) | evallgefint(lz);
     201  2707839393 :   *--zd = evaltyp(t_INT) | evallg(lz);
     202  2707839393 :   return gc_const((pari_sp)zd, zd);
     203             : }
     204             : 
     205             : /* assume x >= s */
     206             : INLINE GEN
     207  1587892914 : subiuspec(GEN x, ulong s, long nx)
     208             : {
     209  1587892914 :   GEN xd, zd = (GEN)avma;
     210             :   long lz;
     211             :   LOCAL_OVERFLOW;
     212             : 
     213  1587892914 :   if (nx == 1) return utoi(x[0] - s);
     214             : 
     215   364081998 :   lz = nx+2; (void)new_chunk(lz);
     216   364081998 :   xd = x + nx;
     217   364081998 :   *--zd = subll(*--xd, s);
     218   364081998 :   if (overflow)
     219             :     for(;;)
     220             :     {
     221   161370519 :       *--zd = ((ulong)*--xd) - 1;
     222   161370519 :       if (*xd) break;
     223             :     }
     224   364081998 :   if (xd == x)
     225   266834175 :     while (*zd == 0) { zd++; lz--; } /* shorten z */
     226             :   else
     227  4743060762 :     do  *--zd = *--xd; while (xd > x);
     228   364081998 :   *--zd = evalsigne(1) | evallgefint(lz);
     229   364081998 :   *--zd = evaltyp(t_INT) | evallg(lz);
     230   364081998 :   return gc_const((pari_sp)zd, zd);
     231             : }
     232             : 
     233             : /* assume x > y */
     234             : static GEN
     235  3382659858 : subiispec(GEN x, GEN y, long nx, long ny)
     236             : {
     237             :   GEN xd,yd,zd;
     238  3382659858 :   long lz, i = -2;
     239             :   LOCAL_OVERFLOW;
     240             : 
     241  3382659858 :   if (ny==1) return subiuspec(x,*y,nx);
     242  1954395003 :   zd = (GEN)avma;
     243  1954395003 :   lz = nx+2; (void)new_chunk(lz);
     244  1954395003 :   xd = x + nx;
     245  1954395003 :   yd = y + ny;
     246  1954395003 :   zd[-1] = subll(xd[-1], yd[-1]);
     247             : #ifdef subllx8
     248  2184298345 :   for (  ; i-8 > -ny; i-=8)
     249  1532833344 :     subllx8(xd+i, yd+i, zd+i, overflow);
     250             : #endif
     251 34142554398 :   for (  ; i >= -ny; i--) zd[i] = subllx(xd[i], yd[i]);
     252  1954395003 :   if (overflow)
     253             :     for(;;)
     254             :     {
     255   991641735 :       zd[i] = uel(xd,i) - 1;
     256   991641735 :       if (xd[i--]) break;
     257             :     }
     258  1954395003 :   if (i>=-nx)
     259  4545381054 :     for (; i >= -nx; i--) zd[i] = xd[i];
     260             :   else
     261  2344893591 :     while (zd[i+1] == 0) { i++; lz--; } /* shorten z */
     262  1954395003 :   zd += i+1;
     263  1954395003 :   *--zd = evalsigne(1) | evallgefint(lz);
     264  1954395003 :   *--zd = evaltyp(t_INT) | evallg(lz);
     265  1954395003 :   return gc_const((pari_sp)zd, zd);
     266             : }
     267             : 
     268             : static void
     269   444314239 : roundr_up_ip(GEN x, long l)
     270             : {
     271   444314239 :   long i = l;
     272             :   for(;;)
     273             :   {
     274   445274980 :     if (++uel(x,--i)) break;
     275     1287942 :     if (i == 2) { x[2] = (long)HIGHBIT; shiftr_inplace(x, 1); break; }
     276             :   }
     277   444314239 : }
     278             : 
     279             : void
     280   320525793 : affir(GEN x, GEN y)
     281             : {
     282   320525793 :   const long s = signe(x), ly = lg(y);
     283             :   long lx, sh, i;
     284             : 
     285   320525793 :   if (!s)
     286             :   {
     287    31185198 :     y[1] = evalexpo(-bit_accuracy(ly));
     288    31185198 :     return;
     289             :   }
     290             : 
     291   289340595 :   lx = lgefint(x); sh = bfffo(x[2]);
     292   289340595 :   y[1] = evalsigne(s) | evalexpo(bit_accuracy(lx)-sh-1);
     293   289340595 :   if (sh) {
     294   284292597 :     if (lx <= ly)
     295             :     {
     296   748939722 :       for (i=lx; i<ly; i++) y[i]=0;
     297   203830758 :       shift_left(y,x,2,lx-1, 0,sh);
     298   203830758 :       return;
     299             :     }
     300    80461839 :     shift_left(y,x,2,ly-1, x[ly],sh);
     301             :     /* lx > ly: round properly */
     302    80461839 :     if ((uel(x,ly)<<sh) & HIGHBIT) roundr_up_ip(y, ly);
     303             :   }
     304             :   else {
     305     5047998 :     if (lx <= ly)
     306             :     {
     307     4681614 :       for (i=2; i<lx; i++) y[i]=x[i];
     308     3732465 :       for (   ; i<ly; i++) y[i]=0;
     309     1270461 :       return;
     310             :     }
     311     9519327 :     for (i=2; i<ly; i++) y[i]=x[i];
     312             :     /* lx > ly: round properly */
     313     3777537 :     if (uel(x,ly) & HIGHBIT) roundr_up_ip(y, ly);
     314             :   }
     315             : }
     316             : 
     317             : INLINE GEN
     318  1275317085 : shiftispec(GEN x, long nx, long n)
     319             : {
     320             :   long ny, i, m;
     321             :   GEN y, yd;
     322  1275317085 :   if (!n)  return icopyspec(x, nx);
     323             : 
     324  1188610017 :   if (n > 0)
     325             :   {
     326   731149005 :     GEN z = (GEN)avma;
     327   731149005 :     long d = dvmdsBIL(n, &m);
     328             : 
     329   731149005 :     ny = nx+d; y = new_chunk(ny + 2); yd = y + 2;
     330  6731159784 :     for ( ; d; d--) *--z = 0;
     331  1908144075 :     if (!m) for (i=0; i<nx; i++) yd[i]=x[i];
     332             :     else
     333             :     {
     334   710137992 :       const ulong sh = BITS_IN_LONG - m;
     335   710137992 :       shift_left(yd,x, 0,nx-1, 0,m);
     336   710137992 :       i = uel(x,0) >> sh;
     337             :       /* Extend y on the left? */
     338   710137992 :       if (i) { ny++; y = new_chunk(1); y[2] = i; }
     339             :     }
     340             :   }
     341             :   else
     342             :   {
     343   457461012 :     ny = nx - dvmdsBIL(-n, &m);
     344   457461012 :     if (ny<1) return gen_0;
     345   456198552 :     y = new_chunk(ny + 2); yd = y + 2;
     346   456198552 :     if (m) {
     347   277898688 :       shift_right(yd,x, 0,ny, 0,m);
     348   277898688 :       if (yd[0] == 0)
     349             :       {
     350    33237783 :         if (ny==1) return gc_const((pari_sp)(y+3), gen_0);
     351    25583100 :         ny--; set_avma((pari_sp)(++y));
     352             :       }
     353             :     } else {
     354  7431945717 :       for (i=0; i<ny; i++) yd[i]=x[i];
     355             :     }
     356             :   }
     357  1179692874 :   y[1] = evalsigne(1)|evallgefint(ny + 2);
     358  1179692874 :   y[0] = evaltyp(t_INT)|evallg(ny + 2); return y;
     359             : }
     360             : 
     361             : GEN
     362    48718818 : mantissa2nr(GEN x, long n)
     363             : { /*This is a kludge since x is not an integer*/
     364    48718818 :   long s = signe(x);
     365             :   GEN y;
     366             : 
     367    48718818 :   if(s == 0) return gen_0;
     368    48717900 :   y = shiftispec(x + 2, lg(x) - 2, n);
     369    48717900 :   if (signe(y)) setsigne(y, s);
     370    48717900 :   return y;
     371             : }
     372             : 
     373             : GEN
     374     2621976 : truncr(GEN x)
     375             : {
     376             :   long d,e,i,s,m;
     377             :   GEN y;
     378             : 
     379     2621976 :   if ((s=signe(x)) == 0 || (e=expo(x)) < 0) return gen_0;
     380     1099497 :   d = nbits2lg(e+1); m = remsBIL(e);
     381     1099497 :   if (d > lg(x)) pari_err_PREC( "truncr (precision loss in truncation)");
     382             : 
     383     1099494 :   y=cgeti(d); y[1] = evalsigne(s) | evallgefint(d);
     384     1099494 :   if (++m == BITS_IN_LONG)
     385         834 :     for (i=2; i<d; i++) y[i]=x[i];
     386             :   else
     387     1099140 :     shift_right(y,x, 2,d,0, BITS_IN_LONG - m);
     388     1099494 :   return y;
     389             : }
     390             : 
     391             : /* integral part */
     392             : GEN
     393     5246184 : floorr(GEN x)
     394             : {
     395             :   long d,e,i,lx,m;
     396             :   GEN y;
     397             : 
     398     5246184 :   if (signe(x) >= 0) return truncr(x);
     399     3155790 :   if ((e=expo(x)) < 0) return gen_m1;
     400     2634549 :   d = nbits2lg(e+1); m = remsBIL(e);
     401     2634549 :   lx=lg(x); if (d>lx) pari_err_PREC( "floorr (precision loss in truncation)");
     402     2634549 :   y = new_chunk(d);
     403     2634549 :   if (++m == BITS_IN_LONG)
     404             :   {
     405         501 :     for (i=2; i<d; i++) y[i]=x[i];
     406         210 :     i=d; while (i<lx && !x[i]) i++;
     407         174 :     if (i==lx) goto END;
     408             :   }
     409             :   else
     410             :   {
     411     2634375 :     shift_right(y,x, 2,d,0, BITS_IN_LONG - m);
     412     2634375 :     if (uel(x,d-1)<<m == 0)
     413             :     {
     414      316512 :       i=d; while (i<lx && !x[i]) i++;
     415       85230 :       if (i==lx) goto END;
     416             :     }
     417             :   }
     418             :   /* set y:=y+1 */
     419     2577030 :   for (i=d-1; i>=2; i--) { uel(y,i)++; if (y[i]) goto END; }
     420           0 :   y=new_chunk(1); y[2]=1; d++;
     421     2634549 : END:
     422     2634549 :   y[1] = evalsigne(-1) | evallgefint(d);
     423     2634549 :   y[0] = evaltyp(t_INT) | evallg(d); return y;
     424             : }
     425             : 
     426             : INLINE int
     427  4098786696 : cmpiispec(GEN x, GEN y, long lx, long ly)
     428             : {
     429             :   long i;
     430  4098786696 :   if (lx < ly) return -1;
     431  3807874386 :   if (lx > ly) return  1;
     432  3793356909 :   i = 0; while (i<lx && x[i]==y[i]) i++;
     433  3294138363 :   if (i==lx) return 0;
     434  3067286304 :   return (uel(x,i) > uel(y,i))? 1: -1;
     435             : }
     436             : 
     437             : INLINE int
     438   198584547 : equaliispec(GEN x, GEN y, long lx, long ly)
     439             : {
     440             :   long i;
     441   198584547 :   if (lx != ly) return 0;
     442   363317703 :   i = ly-1; while (i>=0 && x[i]==y[i]) i--;
     443   198502095 :   return i < 0;
     444             : }
     445             : 
     446             : /***********************************************************************/
     447             : /**                                                                   **/
     448             : /**                          MULTIPLICATION                           **/
     449             : /**                                                                   **/
     450             : /***********************************************************************/
     451             : /* assume ny > 0 */
     452             : INLINE GEN
     453  4809036840 : muluispec(ulong x, GEN y, long ny)
     454             : {
     455  4809036840 :   GEN yd, z = (GEN)avma;
     456  4809036840 :   long lz = ny+3;
     457             :   LOCAL_HIREMAINDER;
     458             : 
     459  4809036840 :   (void)new_chunk(lz);
     460  4809036840 :   yd = y + ny; *--z = mulll(x, *--yd);
     461 15389186991 :   while (yd > y) *--z = addmul(x,*--yd);
     462  4809036840 :   if (hiremainder) *--z = hiremainder; else lz--;
     463  4809036840 :   *--z = evalsigne(1) | evallgefint(lz);
     464  4809036840 :   *--z = evaltyp(t_INT) | evallg(lz);
     465  4809036840 :   return gc_const((pari_sp)z, z);
     466             : }
     467             : 
     468             : /* a + b*|Y| */
     469             : GEN
     470           0 : addumului(ulong a, ulong b, GEN Y)
     471             : {
     472             :   GEN yd,y,z;
     473             :   long ny,lz;
     474             :   LOCAL_HIREMAINDER;
     475             :   LOCAL_OVERFLOW;
     476             : 
     477           0 :   if (!b || !signe(Y)) return utoi(a);
     478             : 
     479           0 :   y = LIMBS(Y); z = (GEN)avma;
     480           0 :   ny = NLIMBS(Y);
     481           0 :   lz = ny+3;
     482             : 
     483           0 :   (void)new_chunk(lz);
     484           0 :   yd = y + ny; *--z = addll(a, mulll(b, *--yd));
     485           0 :   if (overflow) hiremainder++; /* can't overflow */
     486           0 :   while (yd > y) *--z = addmul(b,*--yd);
     487           0 :   if (hiremainder) *--z = hiremainder; else lz--;
     488           0 :   *--z = evalsigne(1) | evallgefint(lz);
     489           0 :   *--z = evaltyp(t_INT) | evallg(lz);
     490           0 :   return gc_const((pari_sp)z, z);
     491             : }
     492             : 
     493             : /***********************************************************************/
     494             : /**                                                                   **/
     495             : /**                          DIVISION                                 **/
     496             : /**                                                                   **/
     497             : /***********************************************************************/
     498             : 
     499             : ulong
     500  1407658350 : umodiu(GEN y, ulong x)
     501             : {
     502  1407658350 :   long sy=signe(y),ly,i;
     503             :   ulong xi;
     504             :   LOCAL_HIREMAINDER;
     505             : 
     506  1407658350 :   if (!x) pari_err_INV("umodiu",gen_0);
     507  1407658350 :   if (!sy) return 0;
     508  1103753172 :   ly = lgefint(y);
     509  1103753172 :   if (x <= uel(y,2))
     510             :   {
     511   332838717 :     hiremainder=0;
     512   332838717 :     if (ly==3)
     513             :     {
     514   302591793 :       hiremainder=uel(y,2)%x;
     515   302591793 :       if (!hiremainder) return 0;
     516   254063850 :       return (sy > 0)? hiremainder: x - hiremainder;
     517             :     }
     518             :   }
     519             :   else
     520             :   {
     521   770914455 :     if (ly==3) return (sy > 0)? uel(y,2): x - uel(y,2);
     522    97581375 :     hiremainder=uel(y,2); ly--; y++;
     523             :   }
     524   127828299 :   xi = get_Fl_red(x);
     525   905732916 :   for (i=2; i<ly; i++) (void)divll_pre(y[i],x,xi);
     526   127828299 :   if (!hiremainder) return 0;
     527   121864986 :   return (sy > 0)? hiremainder: x - hiremainder;
     528             : }
     529             : 
     530             : /* return |y| \/ x */
     531             : GEN
     532   278806557 : absdiviu_rem(GEN y, ulong x, ulong *rem)
     533             : {
     534             :   long ly,i;
     535             :   GEN z;
     536             :   ulong xi;
     537             :   LOCAL_HIREMAINDER;
     538             : 
     539   278806557 :   if (!x) pari_err_INV("absdiviu_rem",gen_0);
     540   278806557 :   if (!signe(y)) { *rem = 0; return gen_0; }
     541             : 
     542   258800718 :   ly = lgefint(y);
     543   258800718 :   if (x <= uel(y,2))
     544             :   {
     545   231511236 :     hiremainder=0;
     546   231511236 :     if (ly==3)
     547             :     {
     548   208036485 :       z = cgetipos(3);
     549   208036485 :       z[2] = divll(uel(y,2),x);
     550   208036485 :       *rem = hiremainder; return z;
     551             :     }
     552             :   }
     553             :   else
     554             :   {
     555    27289482 :     if (ly==3) { *rem = uel(y,2); return gen_0; }
     556     6813600 :     hiremainder = uel(y,2); ly--; y++;
     557             :   }
     558    30288351 :   xi = get_Fl_red(x);
     559    30288351 :   z = cgetipos(ly);
     560   164540673 :   for (i=2; i<ly; i++) z[i]=divll_pre(y[i],x,xi);
     561    30288351 :   *rem = hiremainder; return z;
     562             : }
     563             : 
     564             : GEN
     565    65060814 : divis_rem(GEN y, long x, long *rem)
     566             : {
     567    65060814 :   long sy=signe(y),ly,s,i;
     568             :   GEN z;
     569             :   ulong xi;
     570             :   LOCAL_HIREMAINDER;
     571             : 
     572    65060814 :   if (!x) pari_err_INV("divis_rem",gen_0);
     573    65060814 :   if (!sy) { *rem=0; return gen_0; }
     574    45955152 :   if (x<0) { s = -sy; x = -x; } else s = sy;
     575             : 
     576    45955152 :   ly = lgefint(y);
     577    45955152 :   if ((ulong)x <= uel(y,2))
     578             :   {
     579    31723251 :     hiremainder=0;
     580    31723251 :     if (ly==3)
     581             :     {
     582    31421574 :       z = cgeti(3); z[1] = evallgefint(3) | evalsigne(s);
     583    31421574 :       z[2] = divll(uel(y,2),x);
     584    31421574 :       if (sy<0) hiremainder = - ((long)hiremainder);
     585    31421574 :       *rem = (long)hiremainder; return z;
     586             :     }
     587             :   }
     588             :   else
     589             :   {
     590    14231901 :     if (ly==3) { *rem = itos(y); return gen_0; }
     591      256056 :     hiremainder = uel(y,2); ly--; y++;
     592             :   }
     593      557733 :   xi = get_Fl_red(x);
     594      557733 :   z = cgeti(ly); z[1] = evallgefint(ly) | evalsigne(s);
     595     2947848 :   for (i=2; i<ly; i++) z[i]=divll_pre(y[i],x,xi);
     596      557733 :   if (sy<0) hiremainder = - ((long)hiremainder);
     597      557733 :   *rem = (long)hiremainder; return z;
     598             : }
     599             : 
     600             : GEN
     601      721647 : divis(GEN y, long x)
     602             : {
     603      721647 :   long sy=signe(y),ly,s,i;
     604             :   ulong xi;
     605             :   GEN z;
     606             :   LOCAL_HIREMAINDER;
     607             : 
     608      721647 :   if (!x) pari_err_INV("divis",gen_0);
     609      721647 :   if (!sy) return gen_0;
     610      721611 :   if (x<0) { s = -sy; x = -x; } else s = sy;
     611             : 
     612      721611 :   ly = lgefint(y);
     613      721611 :   if ((ulong)x <= uel(y,2))
     614             :   {
     615      712572 :     hiremainder=0;
     616      712572 :     if (ly==3)
     617             :     {
     618      643170 :       z = cgeti(3); z[1] = evallgefint(3) | evalsigne(s);
     619      643170 :       z[2] = divll(y[2],x);
     620      643170 :       return z;
     621             :     }
     622             :   }
     623             :   else
     624             :   {
     625        9039 :     if (ly==3) return gen_0;
     626        8805 :     hiremainder=y[2]; ly--; y++;
     627             :   }
     628       78207 :   xi = get_Fl_red(x);
     629       78207 :   z = cgeti(ly); z[1] = evallgefint(ly) | evalsigne(s);
     630      593091 :   for (i=2; i<ly; i++) z[i]=divll_pre(y[i],x, xi);
     631       78207 :   return z;
     632             : }
     633             : 
     634             : GEN
     635   129485079 : divrr(GEN x, GEN y)
     636             : {
     637   129485079 :   long sx=signe(x), sy=signe(y), lx,ly,lr,e,i,j;
     638             :   ulong y0,y1;
     639             :   GEN r, r1;
     640             : 
     641   129485079 :   if (!sy) pari_err_INV("divrr",y);
     642   129485079 :   e = expo(x) - expo(y);
     643   129485079 :   if (!sx) return real_0_bit(e);
     644   129127245 :   if (sy<0) sx = -sx;
     645             : 
     646   129127245 :   lx=lg(x); ly=lg(y);
     647   129127245 :   if (ly==3)
     648             :   {
     649    23516181 :     ulong k = x[2], l = (lx>3)? x[3]: 0;
     650             :     LOCAL_HIREMAINDER;
     651    23516181 :     if (k < uel(y,2)) e--;
     652             :     else
     653             :     {
     654     6883794 :       l >>= 1; if (k&1) l |= HIGHBIT;
     655     6883794 :       k >>= 1;
     656             :     }
     657    23516181 :     hiremainder = k; k = divll(l,y[2]);
     658    23516181 :     if (hiremainder > (uel(y,2) >> 1) && !++k) { k = HIGHBIT; e++; }
     659    23516181 :     r = cgetg(3, t_REAL);
     660    23516181 :     r[1] = evalsigne(sx) | evalexpo(e);
     661    23516181 :     r[2] = k; return r;
     662             :   }
     663             : 
     664   105611064 :   lr = minss(lx,ly); r = new_chunk(lr);
     665   105611064 :   r1 = r-1;
     666   748975704 :   r1[1] = 0; for (i=2; i<lr; i++) r1[i]=x[i];
     667   105611064 :   r1[lr] = (lx>ly)? x[lr]: 0;
     668   105611064 :   y0 = y[2]; y1 = y[3];
     669   854586768 :   for (i=0; i<lr-1; i++)
     670             :   { /* r1 = r + (i-1), OK up to r1[2] (accesses at most r[lr]) */
     671             :     ulong k, qp;
     672             :     LOCAL_HIREMAINDER;
     673             :     LOCAL_OVERFLOW;
     674             : 
     675   748975704 :     if (uel(r1,1) == y0) { qp = ULONG_MAX; k = addll(y0,r1[2]); }
     676             :     else
     677             :     {
     678   747399921 :       if (uel(r1,1) > y0) /* can't happen if i=0 */
     679             :       {
     680           0 :         GEN y1 = y+1;
     681           0 :         j = lr-i; r1[j] = subll(r1[j],y1[j]);
     682           0 :         for (j--; j>0; j--) r1[j] = subllx(r1[j],y1[j]);
     683           0 :         j=i; do uel(r,--j)++; while (j && !uel(r,j));
     684             :       }
     685   747399921 :       hiremainder = r1[1]; overflow = 0;
     686   747399921 :       qp = divll(r1[2],y0); k = hiremainder;
     687             :     }
     688   748975704 :     j = lr-i+1;
     689   748975704 :     if (!overflow)
     690             :     {
     691             :       long k3, k4;
     692   747722946 :       k3 = mulll(qp,y1);
     693   747722946 :       if (j == 3) /* i = lr - 2 maximal, r1[3] undefined -> 0 */
     694   105543561 :         k4 = subll(hiremainder,k);
     695             :       else
     696             :       {
     697   642179385 :         k3 = subll(k3, r1[3]);
     698   642179385 :         k4 = subllx(hiremainder,k);
     699             :       }
     700   990730706 :       while (!overflow && k4) { qp--; k3 = subll(k3,y1); k4 = subllx(k4,y0); }
     701             :     }
     702   748975704 :     if (j<ly) (void)mulll(qp,y[j]); else { hiremainder = 0 ; j = ly; }
     703  4962159117 :     for (j--; j>1; j--)
     704             :     {
     705  4213183413 :       r1[j] = subll(r1[j], addmul(qp,y[j]));
     706  4213183413 :       hiremainder += overflow;
     707             :     }
     708   748975704 :     if (uel(r1,1) != hiremainder)
     709             :     {
     710      596505 :       if (uel(r1,1) < hiremainder)
     711             :       {
     712      596505 :         qp--;
     713      596505 :         j = lr-i-(lr-i>=ly); r1[j] = addll(r1[j], y[j]);
     714     3336804 :         for (j--; j>1; j--) r1[j] = addllx(r1[j], y[j]);
     715             :       }
     716             :       else
     717             :       {
     718           0 :         r1[1] -= hiremainder;
     719           0 :         while (r1[1])
     720             :         {
     721           0 :           qp++; if (!qp) { j=i; do uel(r,--j)++; while (j && !r[j]); }
     722           0 :           j = lr-i-(lr-i>=ly); r1[j] = subll(r1[j],y[j]);
     723           0 :           for (j--; j>1; j--) r1[j] = subllx(r1[j],y[j]);
     724           0 :           r1[1] -= overflow;
     725             :         }
     726             :       }
     727             :     }
     728   748975704 :     *++r1 = qp;
     729             :   }
     730             :   /* i = lr-1 */
     731             :   /* round correctly */
     732   105611064 :   if (uel(r1,1) > (y0>>1))
     733             :   {
     734    51864660 :     j=i; do uel(r,--j)++; while (j && !r[j]);
     735             :   }
     736   748975704 :   r1 = r-1; for (j=i; j>=2; j--) r[j]=r1[j];
     737   105611064 :   if (r[0] == 0) e--;
     738    45948471 :   else if (r[0] == 1) { shift_right(r,r, 2,lr, 1,1); }
     739             :   else { /* possible only when rounding up to 0x2 0x0 ... */
     740           6 :     r[2] = (long)HIGHBIT; e++;
     741             :   }
     742   105611064 :   r[0] = evaltyp(t_REAL)|evallg(lr);
     743   105611064 :   r[1] = evalsigne(sx) | evalexpo(e);
     744   105611064 :   return r;
     745             : }
     746             : 
     747             : GEN
     748   113500974 : divri(GEN x, GEN y)
     749             : {
     750   113500974 :   long lx, s = signe(y);
     751             :   pari_sp av;
     752             :   GEN z;
     753             : 
     754   113500974 :   if (!s) pari_err_INV("divri",y);
     755   113500974 :   if (!signe(x)) return real_0_bit(expo(x) - expi(y));
     756   113331228 :   if (!is_bigint(y)) {
     757    89113542 :     GEN z = divru(x, y[2]);
     758    89113542 :     if (s < 0) togglesign(z);
     759    89113542 :     return z;
     760             :   }
     761    24217686 :   lx = lg(x); z = cgetg(lx, t_REAL); av = avma;
     762    24217686 :   affrr(divrr(x, itor(y, lg2prec(lx+1))), z);
     763    24217686 :   return gc_const(av, z);
     764             : }
     765             : 
     766             : /* Integer division x / y: such that sign(r) = sign(x)
     767             :  *   if z = ONLY_REM return remainder, otherwise return quotient
     768             :  *   if z != NULL set *z to remainder
     769             :  *   *z is the last object on stack (and can be disposed of with cgiv
     770             :  * If *z is zero, we put gen_0 here and no copy.
     771             :  * space needed: lx + ly */
     772             : GEN
     773  1671314826 : dvmdii(GEN x, GEN y, GEN *z)
     774             : {
     775  1671314826 :   long sx = signe(x), sy = signe(y);
     776  1671314826 :   long lx, ly = lgefint(y), lz, i, j, sh, lq, lr;
     777             :   pari_sp av;
     778             :   ulong y0,y0i,y1, *xd,*rd,*qd;
     779             :   GEN q, r, r1;
     780             : 
     781  1671314826 :   if (!sx)
     782             :   {
     783    52961784 :     if (ly < 3) pari_err_INV("dvmdii",gen_0);
     784    52961781 :     if (!z || z == ONLY_REM) return gen_0;
     785    32205201 :     *z=gen_0; return gen_0;
     786             :   }
     787  1618353042 :   if (ly <= 3)
     788             :   {
     789             :     ulong rem;
     790   651531069 :     if (ly < 3) pari_err_INV("dvmdii",gen_0);
     791   651531069 :     if (z == ONLY_REM)
     792             :     {
     793   445374519 :       rem = umodiu(x,uel(y,2));
     794   445374519 :       if (!rem) return gen_0;
     795   402964671 :       return (sx < 0)? utoineg(uel(y,2) - rem): utoipos(rem);
     796             :     }
     797   206156550 :     q = absdiviu_rem(x, uel(y,2), &rem);
     798   206156550 :     if (sx != sy) togglesign(q);
     799   206156550 :     if (!z) return q;
     800   202931553 :     if (!rem) *z = gen_0;
     801    57281508 :     else *z = sx < 0? utoineg(rem): utoipos(rem);
     802   202931553 :     return q;
     803             :   }
     804   966821973 :   lx=lgefint(x);
     805   966821973 :   lz=lx-ly;
     806   966821973 :   if (lz <= 0)
     807             :   {
     808   440366862 :     if (lz == 0)
     809             :     {
     810   334413666 :       for (i=2; i<lx; i++)
     811   333787131 :         if (x[i] != y[i])
     812             :         {
     813   317471697 :           if (uel(x,i) > uel(y,i)) goto DIVIDE;
     814    44701197 :           goto TRIVIAL;
     815             :         }
     816      626535 :       if (z == ONLY_REM) return gen_0;
     817       65814 :       if (z) *z = gen_0;
     818       65814 :       if (sx < 0) sy = -sy;
     819       65814 :       return stoi(sy);
     820             :     }
     821   122268630 : TRIVIAL:
     822   166969827 :     if (z == ONLY_REM) return icopy(x);
     823     2163063 :     if (z) *z = icopy(x);
     824     2163063 :     return gen_0;
     825             :   }
     826   526455111 : DIVIDE: /* quotient is nonzero */
     827   799225611 :   av=avma; if (sx<0) sy = -sy;
     828   799225611 :   r1 = new_chunk(lx); sh = bfffo(y[2]);
     829   799225611 :   if (sh)
     830             :   { /* normalize so that highbit(y) = 1 (shift left x and y by sh bits)*/
     831   790306080 :     const ulong m = BITS_IN_LONG - sh;
     832   790306080 :     r = new_chunk(ly);
     833   790306080 :     shift_left(r, y,2,ly-1, 0,sh); y = r;
     834   790306080 :     shift_left(r1,x,2,lx-1, 0,sh);
     835   790306080 :     r1[1] = uel(x,2) >> m;
     836             :   }
     837             :   else
     838             :   {
     839    95127831 :     r1[1] = 0; for (j=2; j<lx; j++) r1[j] = x[j];
     840             :   }
     841   799225611 :   x = r1;
     842   799225611 :   y0 = y[2]; y0i = get_Fl_red(y0);
     843   799225611 :   y1 = y[3];
     844  3264224913 :   for (i=0; i<=lz; i++)
     845             :   { /* r1 = x + i */
     846             :     ulong k, qp;
     847             :     LOCAL_HIREMAINDER;
     848             :     LOCAL_OVERFLOW;
     849             : 
     850  2464999302 :     if (uel(r1,1) == y0)
     851             :     {
     852       49749 :       qp = ULONG_MAX; k = addll(y0,r1[2]);
     853             :     }
     854             :     else
     855             :     {
     856  2464949553 :       hiremainder = r1[1]; overflow = 0;
     857  2464949553 :       qp = divll_pre(r1[2],y0,y0i); k = hiremainder;
     858             :     }
     859  2464999302 :     if (!overflow)
     860             :     {
     861  2464949145 :       long k3 = subll(mulll(qp,y1), r1[3]);
     862  2464949145 :       long k4 = subllx(hiremainder,k);
     863  3006125908 :       while (!overflow && k4) { qp--; k3 = subll(k3,y1); k4 = subllx(k4,y0); }
     864             :     }
     865  2464999302 :     hiremainder = 0; j = ly;
     866 63799441413 :     for (j--; j>1; j--)
     867             :     {
     868 61334442111 :       r1[j] = subll(r1[j], addmul(qp,y[j]));
     869 61334442111 :       hiremainder += overflow;
     870             :     }
     871  2464999302 :     if (uel(r1,1) < hiremainder)
     872             :     {
     873     5931406 :       qp--;
     874     5931406 :       j = ly-1; r1[j] = addll(r1[j],y[j]);
     875    31280652 :       for (j--; j>1; j--) r1[j] = addllx(r1[j],y[j]);
     876             :     }
     877  2464999302 :     *++r1 = qp;
     878             :   }
     879             : 
     880   799225611 :   lq = lz+2;
     881   799225611 :   if (!z)
     882             :   {
     883     2808330 :     qd = (ulong*)av;
     884     2808330 :     xd = (ulong*)(x + lq);
     885     2808330 :     if (x[1]) { lz++; lq++; }
     886    34968915 :     while (lz--) *--qd = *--xd;
     887     2808330 :     *--qd = evalsigne(sy) | evallgefint(lq);
     888     2808330 :     *--qd = evaltyp(t_INT) | evallg(lq);
     889     2808330 :     return gc_const((pari_sp)qd, (GEN)qd);
     890             :   }
     891             : 
     892   888438585 :   j=lq; while (j<lx && !x[j]) j++;
     893   796417281 :   lz = lx-j;
     894   796417281 :   if (z == ONLY_REM)
     895             :   {
     896   516687504 :     if (lz==0) return gc_const(av, gen_0);
     897   507369852 :     rd = (ulong*)av; lr = lz+2;
     898   507369852 :     xd = (ulong*)(x + lx);
     899   541081473 :     if (!sh) while (lz--) *--rd = *--xd;
     900             :     else
     901             :     { /* shift remainder right by sh bits */
     902   499221753 :       const ulong shl = BITS_IN_LONG - sh;
     903             :       ulong l;
     904   499221753 :       xd--;
     905  1497803343 :       while (--lz) /* fill r[3..] */
     906             :       {
     907   998581590 :         l = *xd >> sh;
     908   998581590 :         *--rd = l | (*--xd << shl);
     909             :       }
     910   499221753 :       l = *xd >> sh;
     911   499221753 :       if (l) *--rd = l; else lr--;
     912             :     }
     913   507369852 :     *--rd = evalsigne(sx) | evallgefint(lr);
     914   507369852 :     *--rd = evaltyp(t_INT) | evallg(lr);
     915   507369852 :     return gc_const((pari_sp)rd, (GEN)rd);
     916             :   }
     917             : 
     918   279729777 :   lr = lz+2;
     919   279729777 :   rd = NULL; /* gcc -Wall */
     920   279729777 :   if (lz)
     921             :   { /* non zero remainder: initialize rd */
     922   275068578 :     xd = (ulong*)(x + lx);
     923   275068578 :     if (!sh)
     924             :     {
     925      572136 :       rd = (ulong*)avma; (void)new_chunk(lr);
     926     5761080 :       while (lz--) *--rd = *--xd;
     927             :     }
     928             :     else
     929             :     { /* shift remainder right by sh bits */
     930   274496442 :       const ulong shl = BITS_IN_LONG - sh;
     931             :       ulong l;
     932   274496442 :       rd = (ulong*)x; /* overwrite shifted y */
     933   274496442 :       xd--;
     934  1223230170 :       while (--lz)
     935             :       {
     936   948733728 :         l = *xd >> sh;
     937   948733728 :         *--rd = l | (*--xd << shl);
     938             :       }
     939   274496442 :       l = *xd >> sh;
     940   274496442 :       if (l) *--rd = l; else lr--;
     941             :     }
     942   275068578 :     *--rd = evalsigne(sx) | evallgefint(lr);
     943   275068578 :     *--rd = evaltyp(t_INT) | evallg(lr);
     944   275068578 :     rd += lr;
     945             :   }
     946   279729777 :   qd = (ulong*)av;
     947   279729777 :   xd = (ulong*)(x + lq);
     948   279729777 :   if (x[1]) lq++;
     949   874962522 :   j = lq-2; while (j--) *--qd = *--xd;
     950   279729777 :   *--qd = evalsigne(sy) | evallgefint(lq);
     951   279729777 :   *--qd = evaltyp(t_INT) | evallg(lq);
     952   279729777 :   q = (GEN)qd;
     953   279729777 :   if (lr==2) *z = gen_0;
     954             :   else
     955             :   { /* rd has been properly initialized: we had lz > 0 */
     956  1873444296 :     while (lr--) *--qd = *--rd;
     957   275068578 :     *z = (GEN)qd;
     958             :   }
     959   279729777 :   return gc_const((pari_sp)qd, q);
     960             : }
     961             : 
     962             : /* Montgomery reduction.
     963             :  * N has k words, assume T >= 0 has less than 2k.
     964             :  * Return res := T / B^k mod N, where B = 2^BIL
     965             :  * such that 0 <= res < T/B^k + N  and  res has less than k words */
     966             : GEN
     967    36737337 : red_montgomery(GEN T, GEN N, ulong inv)
     968             : {
     969             :   pari_sp av;
     970             :   GEN Te, Td, Ne, Nd, scratch;
     971    36737337 :   ulong i, j, m, t, d, k = NLIMBS(N);
     972             :   int carry;
     973             :   LOCAL_HIREMAINDER;
     974             :   LOCAL_OVERFLOW;
     975             : 
     976    36737337 :   if (k == 0) return gen_0;
     977    36737337 :   d = NLIMBS(T); /* <= 2*k */
     978    36737337 :   if (d == 0) return gen_0;
     979             : #ifdef DEBUG
     980             :   if (d > 2*k) pari_err_BUG("red_montgomery");
     981             : #endif
     982    36737328 :   if (k == 1)
     983             :   { /* as below, special cased for efficiency */
     984      163341 :     ulong n = uel(N,2);
     985      163341 :     if (d == 1) {
     986      163194 :       hiremainder = uel(T,2);
     987      163194 :       m = hiremainder * inv;
     988      163194 :       (void)addmul(m, n); /* t + m*n = 0 */
     989      163194 :       return utoi(hiremainder);
     990             :     } else { /* d = 2 */
     991         147 :       hiremainder = uel(T,3);
     992         147 :       m = hiremainder * inv;
     993         147 :       (void)addmul(m, n); /* t + m*n = 0 */
     994         147 :       t = addll(hiremainder, uel(T,2));
     995         147 :       if (overflow) t -= n; /* t > n doesn't fit in 1 word */
     996         147 :       return utoi(t);
     997             :     }
     998             :   }
     999             :   /* assume k >= 2 */
    1000    36573987 :   av = avma; scratch = new_chunk(k<<1); /* >= k + 2: result fits */
    1001             : 
    1002             :   /* copy T to scratch space (pad with zeroes to 2k words) */
    1003    36573987 :   Td = (GEN)av;
    1004    36573987 :   Te = T + (d+2);
    1005   810094839 :   for (i=0; i < d     ; i++) *--Td = *--Te;
    1006    62086605 :   for (   ; i < (k<<1); i++) *--Td = 0;
    1007             : 
    1008    36573987 :   Te = (GEN)av; /* 1 beyond end of current T mantissa (in scratch) */
    1009    36573987 :   Ne = N + k+2; /* 1 beyond end of N mantissa */
    1010             : 
    1011    36573987 :   carry = 0;
    1012   436090722 :   for (i=0; i<k; i++) /* set T := T/B nod N, k times */
    1013             :   {
    1014   399516735 :     Td = Te; /* one beyond end of (new) T mantissa */
    1015   399516735 :     Nd = Ne;
    1016   399516735 :     hiremainder = *--Td;
    1017   399516735 :     m = hiremainder * inv; /* solve T + m N = O(B) */
    1018             : 
    1019             :     /* set T := (T + mN) / B */
    1020   399516735 :     Te = Td;
    1021   399516735 :     (void)addmul(m, *--Nd); /* = 0 */
    1022  6662926071 :     for (j=1; j<k; j++)
    1023             :     {
    1024  6263409336 :       t = addll(addmul(m, *--Nd), *--Td);
    1025  6263409336 :       *Td = t;
    1026  6263409336 :       hiremainder += overflow;
    1027             :     }
    1028   399516735 :     t = addll(hiremainder, *--Td); *Td = t + carry;
    1029   399516735 :     carry = (overflow || (carry && *Td == 0));
    1030             :   }
    1031    36573987 :   if (carry)
    1032             :   { /* Td > N overflows (k+1 words), set Td := Td - N */
    1033      384435 :     Td = Te;
    1034      384435 :     Nd = Ne;
    1035      384435 :     t = subll(*--Td, *--Nd); *Td = t;
    1036     7176597 :     while (Td > scratch) { t = subllx(*--Td, *--Nd); *Td = t; }
    1037             :   }
    1038             : 
    1039             :   /* copy result */
    1040    36573987 :   Td = (GEN)av;
    1041    40372947 :   while (*scratch == 0 && Te > scratch) scratch++; /* strip leading 0s */
    1042   432291762 :   while (Te > scratch) *--Td = *--Te;
    1043    36573987 :   k = (GEN)av - Td; if (!k) return gc_const(av, gen_0);
    1044    36573987 :   k += 2;
    1045    36573987 :   *--Td = evalsigne(1) | evallgefint(k);
    1046    36573987 :   *--Td = evaltyp(t_INT) | evallg(k);
    1047             : #ifdef DEBUG
    1048             : {
    1049             :   long l = NLIMBS(N), s = BITS_IN_LONG*l;
    1050             :   GEN R = int2n(s);
    1051             :   GEN res = remii(mulii(T, Fp_inv(R, N)), N);
    1052             :   if (k > lgefint(N)
    1053             :     || !equalii(remii(Td,N),res)
    1054             :     || cmpii(Td, addii(shifti(T, -s), N)) >= 0) pari_err_BUG("red_montgomery");
    1055             : }
    1056             : #endif
    1057    36573987 :   return gc_const((pari_sp)Td, Td);
    1058             : }
    1059             : 
    1060             : /* EXACT INTEGER DIVISION */
    1061             : 
    1062             : /* assume xy>0, the division is exact and y is odd. Destroy x */
    1063             : static GEN
    1064    29512044 : diviuexact_i(GEN x, ulong y)
    1065             : {
    1066             :   long i, lz, lx;
    1067             :   ulong q, yinv;
    1068             :   GEN z, z0, x0, x0min;
    1069             : 
    1070    29512044 :   if (y == 1) return icopy(x);
    1071    23753835 :   lx = lgefint(x);
    1072    23753835 :   if (lx == 3)
    1073             :   {
    1074      849078 :     q = uel(x,2) / y;
    1075      849078 :     if (!q) pari_err_OP("exact division", x, utoi(y));
    1076      849078 :     return utoipos(q);
    1077             :   }
    1078    22904757 :   yinv = invmod2BIL(y);
    1079    22904757 :   lz = (y <= uel(x,2)) ? lx : lx-1;
    1080    22904757 :   z = new_chunk(lz);
    1081    22904757 :   z0 = z + lz;
    1082    22904757 :   x0 = x + lx; x0min = x + lx-lz+2;
    1083             : 
    1084    83397501 :   while (x0 > x0min)
    1085             :   {
    1086    60492744 :     *--z0 = q = yinv*uel(--x0,0); /* i-th quotient */
    1087    60492744 :     if (!q) continue;
    1088             :     /* x := x - q * y */
    1089             :     { /* update neither lowest word (could set it to 0) nor highest ones */
    1090    59963271 :       GEN x1 = x0 - 1;
    1091             :       LOCAL_HIREMAINDER;
    1092    59963271 :       (void)mulll(q,y);
    1093    59963271 :       if (hiremainder)
    1094             :       {
    1095    48044196 :         if (uel(x1,0) < hiremainder)
    1096             :         {
    1097      140112 :           uel(x1,0) -= hiremainder;
    1098      148449 :           do uel(--x1,0)--; while (uel(x1,0) == ULONG_MAX);
    1099             :         }
    1100             :         else
    1101    47904084 :           uel(x1,0) -= hiremainder;
    1102             :       }
    1103             :     }
    1104             :   }
    1105    22904757 :   i=2; while(!z[i]) i++;
    1106    22904757 :   z += i-2; lz -= i-2;
    1107    22904757 :   z[0] = evaltyp(t_INT)|evallg(lz);
    1108    22904757 :   z[1] = evalsigne(1)|evallg(lz);
    1109    22904757 :   if (lz == 2) pari_err_OP("exact division", x, utoi(y));
    1110    22904757 :   return gc_const((pari_sp)z, z);
    1111             : }
    1112             : 
    1113             : /* assume y != 0 and the division is exact */
    1114             : GEN
    1115    28476120 : diviuexact(GEN x, ulong y)
    1116             : {
    1117             :   pari_sp av;
    1118    28476120 :   long lx, vy, s = signe(x);
    1119             :   GEN z;
    1120             : 
    1121    28476120 :   if (!s) return gen_0;
    1122    27629661 :   if (y == 1) return icopy(x);
    1123    24635454 :   lx = lgefint(x);
    1124    24635454 :   if (lx == 3) {
    1125    20344452 :     ulong q = uel(x,2) / y;
    1126    20344452 :     if (!q) pari_err_OP("exact division", x, utoi(y));
    1127    20344452 :     return (s > 0)? utoipos(q): utoineg(q);
    1128             :   }
    1129     4291002 :   av = avma; (void)new_chunk(lx); vy = vals(y);
    1130     4291002 :   if (vy) {
    1131     1713636 :     y >>= vy;
    1132     1713636 :     if (y == 1) { set_avma(av); return shifti(x, -vy); }
    1133      805233 :     x = shifti(x, -vy);
    1134      805233 :     if (lx == 3) {
    1135           0 :       ulong q = uel(x,2) / y;
    1136           0 :       set_avma(av);
    1137           0 :       if (!q) pari_err_OP("exact division", x, utoi(y));
    1138           0 :       return (s > 0)? utoipos(q): utoineg(q);
    1139             :     }
    1140     2577366 :   } else x = icopy(x);
    1141     3382599 :   set_avma(av);
    1142     3382599 :   z = diviuexact_i(x, y);
    1143     3382599 :   setsigne(z, s); return z;
    1144             : }
    1145             : 
    1146             : /* Find z such that x=y*z, knowing that y | x (unchecked)
    1147             :  * Method: y0 z0 = x0 mod B = 2^BITS_IN_LONG ==> z0 = 1/y0 mod B.
    1148             :  *    Set x := (x - z0 y) / B, updating only relevant words, and repeat */
    1149             : GEN
    1150   390661989 : diviiexact(GEN x, GEN y)
    1151             : {
    1152   390661989 :   long lx, ly, lz, vy, i, ii, sx = signe(x), sy = signe(y);
    1153             :   pari_sp av;
    1154             :   ulong y0inv,q;
    1155             :   GEN z;
    1156             : 
    1157   390661989 :   if (!sy) pari_err_INV("diviiexact",gen_0);
    1158   390661989 :   if (!sx) return gen_0;
    1159   322543005 :   lx = lgefint(x);
    1160   322543005 :   if (lx == 3) {
    1161   259448136 :     q = uel(x,2) / uel(y,2);
    1162   259448136 :     if (!q) pari_err_OP("exact division", x, y);
    1163   259448136 :     return (sx+sy) ? utoipos(q): utoineg(q);
    1164             :   }
    1165    63094869 :   vy = vali(y); av = avma;
    1166    63094869 :   (void)new_chunk(lx); /* enough room for z */
    1167    63094869 :   if (vy)
    1168             :   { /* make y odd */
    1169    32246580 :     y = shifti(y,-vy);
    1170    32246580 :     x = shifti(x,-vy); lx = lgefint(x);
    1171             :   }
    1172    30848289 :   else x = icopy(x); /* necessary because we destroy x */
    1173    63094869 :   set_avma(av); /* will erase our x,y when exiting */
    1174             :   /* now y is odd */
    1175    63094869 :   ly = lgefint(y);
    1176    63094869 :   if (ly == 3)
    1177             :   {
    1178    26129445 :     z = diviuexact_i(x,uel(y,2)); /* x != 0 */
    1179    26129445 :     setsigne(z, (sx+sy)? 1: -1); return z;
    1180             :   }
    1181    36965424 :   y0inv = invmod2BIL(y[ly-1]);
    1182    58326495 :   i=2; while (i<ly && y[i]==x[i]) i++;
    1183    36965424 :   lz = (i==ly || uel(y,i) < uel(x,i)) ? lx-ly+3 : lx-ly+2;
    1184    36965424 :   z = new_chunk(lz);
    1185             : 
    1186    36965424 :   y += ly - 1; /* now y[-i] = i-th word of y */
    1187   173149464 :   for (ii=lx-1,i=lz-1; i>=2; i--,ii--)
    1188             :   {
    1189             :     long limj;
    1190             :     LOCAL_HIREMAINDER;
    1191             :     LOCAL_OVERFLOW;
    1192             : 
    1193   136184040 :     z[i] = q = y0inv*uel(x,ii); /* i-th quotient */
    1194   136184040 :     if (!q) continue;
    1195             : 
    1196             :     /* x := x - q * y */
    1197   136052262 :     (void)mulll(q,y[0]); limj = maxss(lx - lz, ii+3-ly);
    1198             :     { /* update neither lowest word (could set it to 0) nor highest ones */
    1199   136052262 :       GEN x0 = x + (ii - 1), y0 = y - 1, xlim = x + limj;
    1200  2310051297 :       for (; x0 >= xlim; x0--, y0--)
    1201             :       {
    1202  2173999035 :         *x0 = subll(*x0, addmul(q,*y0));
    1203  2173999035 :         hiremainder += overflow;
    1204             :       }
    1205   136052262 :       if (hiremainder && limj != lx - lz)
    1206             :       {
    1207    72092880 :         if ((ulong)*x0 < hiremainder)
    1208             :         {
    1209      831369 :           *x0 -= hiremainder;
    1210      831387 :           do (*--x0)--; while ((ulong)*x0 == ULONG_MAX);
    1211             :         }
    1212             :         else
    1213    71261511 :           *x0 -= hiremainder;
    1214             :       }
    1215             :     }
    1216             :   }
    1217    36965424 :   i=2; while(!z[i]) i++;
    1218    36965424 :   z += i-2; lz -= (i-2);
    1219    36965424 :   z[0] = evaltyp(t_INT)|evallg(lz);
    1220    36965424 :   z[1] = evalsigne((sx+sy)? 1: -1) | evallg(lz);
    1221    36965424 :   if (lz == 2) pari_err_OP("exact division", x, y);
    1222    36965424 :   return gc_const((pari_sp)z, z);
    1223             : }
    1224             : 
    1225             : /* assume yz != and yz | x */
    1226             : GEN
    1227      149898 : diviuuexact(GEN x, ulong y, ulong z)
    1228             : {
    1229             :   long tmp[4];
    1230             :   ulong t;
    1231             :   LOCAL_HIREMAINDER;
    1232      149898 :   t = mulll(y, z);
    1233      149898 :   if (!hiremainder) return diviuexact(x, t);
    1234           0 :   tmp[0] = evaltyp(t_INT)|_evallg(4);
    1235           0 :   tmp[1] = evalsigne(1)|evallgefint(4);
    1236           0 :   tmp[2] = hiremainder;
    1237           0 :   tmp[3] = t;
    1238           0 :   return diviiexact(x, tmp);
    1239             : }
    1240             : 
    1241             : /********************************************************************/
    1242             : /**                                                                **/
    1243             : /**               INTEGER MULTIPLICATION (BASECASE)                **/
    1244             : /**                                                                **/
    1245             : /********************************************************************/
    1246             : /* nx >= ny = num. of digits of x, y (not GEN, see mulii) */
    1247             : INLINE GEN
    1248  5199216126 : muliispec_basecase(GEN x, GEN y, long nx, long ny)
    1249             : {
    1250             :   GEN z2e,z2d,yd,xd,ye,zd;
    1251             :   long p1,lz;
    1252             :   LOCAL_HIREMAINDER;
    1253             : 
    1254  5199216126 :   if (ny == 1) return muluispec((ulong)*y, x, nx);
    1255  1129314264 :   if (ny == 0) return gen_0;
    1256  1128096465 :   zd = (GEN)avma; lz = nx+ny+2;
    1257  1128096465 :   (void)new_chunk(lz);
    1258  1128096465 :   xd = x + nx;
    1259  1128096465 :   yd = y + ny;
    1260  1128096465 :   ye = yd; p1 = *--xd;
    1261             : 
    1262  1128096465 :   *--zd = mulll(p1, *--yd); z2e = zd;
    1263  9455354517 :   while (yd > y) *--zd = addmul(p1, *--yd);
    1264  1128096465 :   *--zd = hiremainder;
    1265             : 
    1266 10810737375 :   while (xd > x)
    1267             :   {
    1268             :     LOCAL_OVERFLOW;
    1269  9682640910 :     yd = ye; p1 = *--xd;
    1270             : 
    1271  9682640910 :     z2d = --z2e;
    1272  9682640910 :     *z2d = addll(mulll(p1, *--yd), *z2d); z2d--;
    1273 >12306*10^7 :     while (yd > y)
    1274             :     {
    1275 >11338*10^7 :       hiremainder += overflow;
    1276 >11338*10^7 :       *z2d = addll(addmul(p1, *--yd), *z2d); z2d--;
    1277             :     }
    1278  9682640910 :     *--zd = hiremainder + overflow;
    1279             :   }
    1280  1128096465 :   if (*zd == 0) { zd++; lz--; } /* normalize */
    1281  1128096465 :   *--zd = evalsigne(1) | evallgefint(lz);
    1282  1128096465 :   *--zd = evaltyp(t_INT) | evallg(lz);
    1283  1128096465 :   return gc_const((pari_sp)zd, zd);
    1284             : }
    1285             : 
    1286             : INLINE GEN
    1287   928113927 : sqrispec_basecase(GEN x, long nx)
    1288             : {
    1289             :   GEN z2e,z2d,yd,xd,zd,x0,z0;
    1290             :   long p1,lz;
    1291             :   LOCAL_HIREMAINDER;
    1292             :   LOCAL_OVERFLOW;
    1293             : 
    1294   928113927 :   if (nx == 1) return sqru((ulong)*x);
    1295   627678324 :   if (nx == 0) return gen_0;
    1296   223614711 :   zd = (GEN)avma; lz = (nx+1) << 1;
    1297   223614711 :   z0 = new_chunk(lz);
    1298   223614711 :   if (nx == 1)
    1299             :   {
    1300           0 :     *--zd = mulll(*x, *x);
    1301           0 :     *--zd = hiremainder; goto END;
    1302             :   }
    1303   223614711 :   xd = x + nx;
    1304             : 
    1305             :   /* compute double products --> zd */
    1306   223614711 :   p1 = *--xd; yd = xd; --zd;
    1307   223614711 :   *--zd = mulll(p1, *--yd); z2e = zd;
    1308  1355624118 :   while (yd > x) *--zd = addmul(p1, *--yd);
    1309   223614711 :   *--zd = hiremainder;
    1310             : 
    1311   223614711 :   x0 = x+1;
    1312  1355624118 :   while (xd > x0)
    1313             :   {
    1314             :     LOCAL_OVERFLOW;
    1315  1132009407 :     p1 = *--xd; yd = xd;
    1316             : 
    1317  1132009407 :     z2e -= 2; z2d = z2e;
    1318  1132009407 :     *z2d = addll(mulll(p1, *--yd), *z2d); z2d--;
    1319 10555383444 :     while (yd > x)
    1320             :     {
    1321  9423374037 :       hiremainder += overflow;
    1322  9423374037 :       *z2d = addll(addmul(p1, *--yd), *z2d); z2d--;
    1323             :     }
    1324  1132009407 :     *--zd = hiremainder + overflow;
    1325             :   }
    1326             :   /* multiply zd by 2 (put result in zd - 1) */
    1327   223614711 :   zd[-1] = ((*zd & HIGHBIT) != 0);
    1328   223614711 :   shift_left(zd, zd, 0, (nx<<1)-3, 0, 1);
    1329             : 
    1330             :   /* add the squares */
    1331   223614711 :   xd = x + nx; zd = z0 + lz;
    1332   223614711 :   p1 = *--xd;
    1333   223614711 :   zd--; *zd = mulll(p1,p1);
    1334   223614711 :   zd--; *zd = addll(hiremainder, *zd);
    1335  1579238829 :   while (xd > x)
    1336             :   {
    1337  1355624118 :     p1 = *--xd;
    1338  1355624118 :     zd--; *zd = addll(mulll(p1,p1)+ overflow, *zd);
    1339  1355624118 :     zd--; *zd = addll(hiremainder + overflow, *zd);
    1340             :   }
    1341             : 
    1342   223614711 : END:
    1343   223614711 :   if (*zd == 0) { zd++; lz--; } /* normalize */
    1344   223614711 :   *--zd = evalsigne(1) | evallgefint(lz);
    1345   223614711 :   *--zd = evaltyp(t_INT) | evallg(lz);
    1346   223614711 :   return gc_const((pari_sp)zd, zd);
    1347             : }
    1348             : 
    1349             : /********************************************************************/
    1350             : /**                                                                **/
    1351             : /**               INTEGER MULTIPLICATION (FFT)                     **/
    1352             : /**                                                                **/
    1353             : /********************************************************************/
    1354             : 
    1355             : /*
    1356             :  Compute parameters for FFT:
    1357             :    len: result length
    1358             :    k: FFT depth.
    1359             :    n: number of blocks (2^k)
    1360             :    bs: block size
    1361             :    mod: Modulus is M=2^(BIL*mod)+1
    1362             :    ord: order of 2 in Z/MZ.
    1363             :  We must have:
    1364             :    bs*n >= l
    1365             :    2^(BIL*mod) > nb*2^(2*BIL*bs)
    1366             :    2^k | 2*BIL*mod
    1367             : */
    1368             : static void
    1369       85290 : mulliifft_params(long len, long *k, long *mod, long *bs, long *n, ulong *ord)
    1370             : {
    1371             :   long r;
    1372       85290 :   *k = expu((3*len)>>2)-3;
    1373             :   do {
    1374       85293 :     (*k)--;
    1375       85293 :     r  = *k-(TWOPOTBITS_IN_LONG+2);
    1376       85293 :     *n = 1L<<*k;
    1377       85293 :     *bs = (len+*n-1)>>*k;
    1378       85293 :     *mod= 2**bs+1;
    1379       85293 :     if (r>0)
    1380        5181 :       *mod=((*mod+(1L<<r)-1)>>r)<<r;
    1381       85293 :   } while(*mod>=3**bs);
    1382       85290 :   *ord= 4**mod*BITS_IN_LONG;
    1383       85290 : }
    1384             : 
    1385             : /* Zf_: arithmetic in ring Z/MZ where M= 2^(BITS_IN_LONG*mod)+1
    1386             :  * for some mod.
    1387             :  * Do not garbage collect.
    1388             :  */
    1389             : 
    1390             : static GEN
    1391   187658496 : Zf_add(GEN a, GEN b, GEN M)
    1392             : {
    1393   187658496 :   GEN y, z = addii(a,b);
    1394   187658496 :   long mod = lgefint(M)-3;
    1395   187658496 :   long l = NLIMBS(z);
    1396   187658496 :   if (l<=mod) return z;
    1397    72714114 :   y = subiu(z, 1);
    1398    72714114 :   if (NLIMBS(y)<=mod) return z;
    1399    72714114 :   return int_normalize(y,1);
    1400             : }
    1401             : 
    1402             : static GEN
    1403   191070978 : Zf_sub(GEN a, GEN b, GEN M)
    1404             : {
    1405   191070978 :   GEN z = subii(a,b);
    1406   191070978 :   return signe(z)>=0? z: addii(M,z);
    1407             : }
    1408             : 
    1409             : /* destroy z */
    1410             : static GEN
    1411   399271983 : Zf_red_destroy(GEN z, GEN M)
    1412             : {
    1413   399271983 :   long mod = lgefint(M)-3;
    1414   399271983 :   long l = NLIMBS(z);
    1415             :   GEN y;
    1416   399271983 :   if (l<=mod) return z;
    1417   177220563 :   y = shifti(z, -mod*BITS_IN_LONG);
    1418   177220563 :   z = int_normalize(z, NLIMBS(y));
    1419   177220563 :   y = Zf_red_destroy(y, M);
    1420   177220563 :   z = subii(z, y);
    1421   177220563 :   if (signe(z)<0) z = addii(z, M);
    1422   177220563 :   return z;
    1423             : }
    1424             : 
    1425             : INLINE GEN
    1426   206264028 : Zf_shift(GEN a, ulong s, GEN M) { return Zf_red_destroy(shifti(a, s), M); }
    1427             : 
    1428             : /*
    1429             :  Multiply by sqrt(2)^s
    1430             :  We use the formula sqrt(2)=z_8*(1-z_4)) && z_8=2^(ord/16) [2^(ord/4)+1]
    1431             : */
    1432             : 
    1433             : static GEN
    1434   187658496 : Zf_mulsqrt2(GEN a, ulong s, ulong ord, GEN M)
    1435             : {
    1436   187658496 :   ulong hord = ord>>1;
    1437   187658496 :   if (!signe(a)) return gen_0;
    1438   183651672 :   if (odd(s)) /* Multiply by 2^(s/2) */
    1439             :   {
    1440     3412482 :     GEN az8  = Zf_shift(a,   ord>>4, M);
    1441     3412482 :     GEN az83 = Zf_shift(az8, ord>>3, M);
    1442     3412482 :     a = Zf_sub(az8, az83, M);
    1443     3412482 :     s--;
    1444             :   }
    1445   183651672 :   if (s < hord)
    1446   136430355 :     return Zf_shift(a, s>>1, M);
    1447             :   else
    1448    47221317 :     return subii(M,Zf_shift(a, (s-hord)>>1, M));
    1449             : }
    1450             : 
    1451             : INLINE GEN
    1452      448896 : Zf_sqr(GEN a, GEN M) { return Zf_red_destroy(sqri(a), M); }
    1453             : 
    1454             : INLINE GEN
    1455    15338496 : Zf_mul(GEN a, GEN b, GEN M) { return Zf_red_destroy(mulii(a,b), M); }
    1456             : 
    1457             : /* In place, bit reversing FFT */
    1458             : static void
    1459    30956967 : muliifft_dit(ulong o, ulong ord, GEN M, GEN FFT, long d, long step)
    1460             : {
    1461    30956967 :   pari_sp av = avma;
    1462             :   long i;
    1463    30956967 :   ulong j, no = (o<<1)%ord;
    1464    30956967 :   long hstep=step>>1;
    1465   155404263 :   for (i = d+1, j = 0; i <= d+hstep; ++i, j =(j+o)%ord)
    1466             :   {
    1467   124447296 :     GEN a = Zf_add(gel(FFT,i), gel(FFT,i+hstep), M);
    1468   124447296 :     GEN b = Zf_mulsqrt2(Zf_sub(gel(FFT,i), gel(FFT,i+hstep), M), j, ord, M);
    1469   124447296 :     affii(a,gel(FFT,i));
    1470   124447296 :     affii(b,gel(FFT,i+hstep));
    1471   124447296 :     set_avma(av);
    1472             :   }
    1473    30956967 :   if (hstep>1)
    1474             :   {
    1475    15394023 :     muliifft_dit(no, ord, M, FFT, d, hstep);
    1476    15394023 :     muliifft_dit(no, ord, M, FFT, d+hstep, hstep);
    1477             :   }
    1478    30956967 : }
    1479             : 
    1480             : /* In place, bit reversed FFT, inverse of muliifft_dit */
    1481             : static void
    1482    15702102 : muliifft_dis(ulong o, ulong ord, GEN M, GEN FFT, long d, long step)
    1483             : {
    1484    15702102 :   pari_sp av = avma;
    1485             :   long i;
    1486    15702102 :   ulong j, no = (o<<1)%ord;
    1487    15702102 :   long hstep=step>>1;
    1488    15702102 :   if (hstep>1)
    1489             :   {
    1490     7808406 :     muliifft_dis(no, ord, M, FFT, d, hstep);
    1491     7808406 :     muliifft_dis(no, ord, M, FFT, d+hstep, hstep);
    1492             :   }
    1493    78913302 :   for (i = d+1, j = 0; i <= d+hstep; ++i, j =(j+o)%ord)
    1494             :   {
    1495    63211200 :     GEN z = Zf_mulsqrt2(gel(FFT,i+hstep), j, ord, M);
    1496    63211200 :     GEN a = Zf_add(gel(FFT,i), z, M);
    1497    63211200 :     GEN b = Zf_sub(gel(FFT,i), z, M);
    1498    63211200 :     affii(a,gel(FFT,i));
    1499    63211200 :     affii(b,gel(FFT,i+hstep));
    1500    63211200 :     set_avma(av);
    1501             :   }
    1502    15702102 : }
    1503             : 
    1504             : static GEN
    1505      168921 : muliifft_spliti(GEN a, long na, long bs, long n, long mod)
    1506             : {
    1507      168921 :   GEN ap = a+na-1;
    1508      168921 :   GEN c  = cgetg(n+1, t_VEC);
    1509             :   long i,j;
    1510    31294809 :   for(i=1;i<=n;i++)
    1511             :   {
    1512    31125888 :     GEN z = cgeti(mod+3);
    1513    31125888 :     if (na)
    1514             :     {
    1515    15326127 :       long m = minss(bs, na), v=0;
    1516    15326127 :       GEN zp, aa=ap-m+1;
    1517    83251410 :       while (!*aa && v<m) {aa++; v++;}
    1518    15326127 :       zp = z+m-v+1;
    1519   381514206 :       for (j=v; j < m; j++)
    1520   366188079 :         *zp-- = *ap--;
    1521    15326127 :       ap -= v; na -= m;
    1522    15326127 :       z[1] = evalsigne(m!=v) | evallgefint(m-v+2);
    1523             :     } else
    1524    15799761 :       z[1] = evalsigne(0) | evallgefint(2);
    1525    31125888 :     gel(c, i) = z;
    1526             :   }
    1527      168921 :   return c;
    1528             : }
    1529             : 
    1530             : static GEN
    1531       85290 : muliifft_unspliti(GEN V, long bs, long len)
    1532             : {
    1533       85290 :   long s, i, j, l = lg(V);
    1534       85290 :   GEN a = cgeti(len);
    1535       85290 :   a[1] = evalsigne(1)|evallgefint(len);
    1536   440997075 :   for(i=2;i<len;i++)
    1537   440911785 :     a[i] = 0;
    1538    15872682 :   for(i=1, s=0; i<l; i++, s+=bs)
    1539             :   {
    1540    15787392 :     GEN  u = gel(V,i);
    1541    15787392 :     if (signe(u))
    1542             :     {
    1543    15211731 :       GEN ap = int_W(a,s);
    1544    15211731 :       GEN up = int_LSW(u);
    1545    15211731 :       long lu = NLIMBS(u);
    1546             :       LOCAL_OVERFLOW;
    1547    15211731 :       *ap = addll(*ap, *up--); ap--;
    1548   862324044 :       for (j=1; j<lu; j++)
    1549   847112313 :        { *ap = addllx(*ap, *up--); ap--; }
    1550    15214287 :       while (overflow)
    1551        2556 :        { *ap = addll(*ap, 1); ap--; }
    1552             :     }
    1553             :   }
    1554       85290 :   return int_normalize(a,0);
    1555             : }
    1556             : 
    1557             : static GEN
    1558        1659 : sqrispec_fft(GEN a, long na)
    1559             : {
    1560        1659 :   pari_sp av, ltop = avma;
    1561        1659 :   long len = 2*na;
    1562             :   long k, mod, bs, n;
    1563             :   GEN  FFT, M;
    1564             :   long i;
    1565             :   ulong o, ord;
    1566             : 
    1567        1659 :   mulliifft_params(len,&k,&mod,&bs,&n,&ord);
    1568        1659 :   o = ord>>k;
    1569        1659 :   M = int2n(mod*BITS_IN_LONG);
    1570        1659 :   M[2+mod] = 1;
    1571        1659 :   FFT = muliifft_spliti(a, na, bs, n, mod);
    1572        1659 :   muliifft_dit(o, ord, M, FFT, 0, n);
    1573        1659 :   av = avma;
    1574      450555 :   for(i=1; i<=n; i++)
    1575             :   {
    1576      448896 :     affii(Zf_sqr(gel(FFT,i), M), gel(FFT,i));
    1577      448896 :     set_avma(av);
    1578             :   }
    1579        1659 :   muliifft_dis(ord-o, ord, M, FFT, 0, n);
    1580      450555 :   for(i=1; i<=n; i++)
    1581             :   {
    1582      448896 :     affii(Zf_shift(gel(FFT,i), (ord>>1)-k, M), gel(FFT,i));
    1583      448896 :     set_avma(av);
    1584             :   }
    1585        1659 :   return gc_INT(ltop, muliifft_unspliti(FFT,bs,2+len));
    1586             : }
    1587             : 
    1588             : static GEN
    1589       83631 : muliispec_fft(GEN a, GEN b, long na, long nb)
    1590             : {
    1591       83631 :   pari_sp av, av2, ltop = avma;
    1592       83631 :   long len = na+nb;
    1593             :   long k, mod, bs, n;
    1594             :   GEN FFT, FFTb, M;
    1595             :   long i;
    1596             :   ulong o, ord;
    1597             : 
    1598       83631 :   mulliifft_params(len,&k,&mod,&bs,&n,&ord);
    1599       83631 :   o = ord>>k;
    1600       83631 :   M = int2n(mod*BITS_IN_LONG);
    1601       83631 :   M[2+mod] = 1;
    1602       83631 :   FFT = muliifft_spliti(a, na, bs, n, mod);
    1603       83631 :   av=avma;
    1604       83631 :   muliifft_dit(o, ord, M, FFT, 0, n);
    1605       83631 :   FFTb = muliifft_spliti(b, nb, bs, n, mod);
    1606       83631 :   av2 = avma;
    1607       83631 :   muliifft_dit(o, ord, M, FFTb, 0, n);
    1608    15422127 :   for(i=1; i<=n; i++)
    1609             :   {
    1610    15338496 :     affii(Zf_mul(gel(FFT,i), gel(FFTb,i), M), gel(FFT,i));
    1611    15338496 :     set_avma(av2);
    1612             :   }
    1613       83631 :   set_avma(av);
    1614       83631 :   muliifft_dis(ord-o, ord, M, FFT, 0, n);
    1615    15422127 :   for(i=1; i<=n; i++)
    1616             :   {
    1617    15338496 :     affii(Zf_shift(gel(FFT,i),(ord>>1)-k,M), gel(FFT,i));
    1618    15338496 :     set_avma(av);
    1619             :   }
    1620       83631 :   return gc_INT(ltop, muliifft_unspliti(FFT,bs,2+len));
    1621             : }
    1622             : 
    1623             : /********************************************************************/
    1624             : /**                                                                **/
    1625             : /**               INTEGER MULTIPLICATION (KARATSUBA)               **/
    1626             : /**                                                                **/
    1627             : /********************************************************************/
    1628             : 
    1629             : /* return (x shifted left d words) + y. Assume d > 0, x > 0 and y >= 0 */
    1630             : static GEN
    1631   704270652 : addshiftw(GEN x, GEN y, long d)
    1632             : {
    1633   704270652 :   GEN z,z0,y0,yd, zd = (GEN)avma;
    1634   704270652 :   long a,lz,ly = lgefint(y);
    1635             : 
    1636   704270652 :   z0 = new_chunk(d);
    1637   704270652 :   a = ly-2; yd = y+ly;
    1638   704270652 :   if (a >= d)
    1639             :   {
    1640 12707316654 :     y0 = yd-d; while (yd > y0) *--zd = *--yd; /* copy last d words of y */
    1641   699720489 :     a -= d;
    1642   699720489 :     if (a)
    1643   467340426 :       z = addiispec(LIMBS(x), LIMBS(y), NLIMBS(x), a);
    1644             :     else
    1645   232380063 :       z = icopy(x);
    1646             :   }
    1647             :   else
    1648             :   {
    1649    16648863 :     y0 = yd-a; while (yd > y0) *--zd = *--yd; /* copy last a words of y */
    1650    69657453 :     while (zd > z0) *--zd = 0;    /* complete with 0s */
    1651     4550163 :     z = icopy(x);
    1652             :   }
    1653   704270652 :   lz = lgefint(z)+d;
    1654   704270652 :   z[1] = evalsigne(1) | evallgefint(lz);
    1655   704270652 :   z[0] = evaltyp(t_INT) | evallg(lz); return z;
    1656             : }
    1657             : 
    1658             : /* Fast product (Karatsuba) of integers. a and b are "special" GENs
    1659             :  * c,c0,c1,c2 are genuine GENs.
    1660             :  */
    1661             : GEN
    1662  5426141082 : muliispec(GEN a, GEN b, long na, long nb)
    1663             : {
    1664             :   GEN a0,c,c0;
    1665             :   long n0, n0a, i;
    1666             :   pari_sp av;
    1667             : 
    1668  5426141082 :   if (na < nb) swapspec(a,b, na,nb);
    1669  5426141082 :   if (nb < MULII_KARATSUBA_LIMIT) return muliispec_basecase(a,b,na,nb);
    1670   226924956 :   if (nb >= MULII_FFT_LIMIT)      return muliispec_fft(a,b,na,nb);
    1671   226841325 :   i=(na>>1); n0=na-i; na=i;
    1672   226841325 :   av=avma; a0=a+na; n0a=n0;
    1673   340243788 :   while (n0a && !*a0) { a0++; n0a--; }
    1674             : 
    1675   226841325 :   if (n0a && nb > n0)
    1676   223351743 :   { /* nb <= na <= n0 */
    1677             :     GEN b0,c1,c2;
    1678             :     long n0b;
    1679             : 
    1680   223351743 :     nb -= n0;
    1681   223351743 :     c = muliispec(a,b,na,nb);
    1682   223351743 :     b0 = b+nb; n0b = n0;
    1683   321639213 :     while (n0b && !*b0) { b0++; n0b--; }
    1684   223351743 :     if (n0b)
    1685             :     {
    1686   222586539 :       c0 = muliispec(a0,b0, n0a,n0b);
    1687             : 
    1688   222586539 :       c2 = addiispec(a0,a, n0a,na);
    1689   222586539 :       c1 = addiispec(b0,b, n0b,nb);
    1690   222586539 :       c1 = muliispec(LIMBS(c1),LIMBS(c2), NLIMBS(c1),NLIMBS(c2));
    1691   222586539 :       c2 = addiispec(LIMBS(c0),LIMBS(c),  NLIMBS(c0),NLIMBS(c));
    1692             : 
    1693   222586539 :       c1 = subiispec(LIMBS(c1),LIMBS(c2), NLIMBS(c1),NLIMBS(c2));
    1694             :     }
    1695             :     else
    1696             :     {
    1697      765204 :       c0 = gen_0;
    1698      765204 :       c1 = muliispec(a0,b, n0a,nb);
    1699             :     }
    1700   223351743 :     c = addshiftw(c,c1, n0);
    1701             :   }
    1702             :   else
    1703             :   {
    1704     3489582 :     c = muliispec(a,b,na,nb);
    1705     3489582 :     c0 = muliispec(a0,b,n0a,nb);
    1706             :   }
    1707   226841325 :   return gc_INT(av, addshiftw(c,c0, n0));
    1708             : }
    1709             : GEN
    1710      166566 : muluui(ulong x, ulong y, GEN z)
    1711             : {
    1712      166566 :   long t, s = signe(z);
    1713             :   GEN r;
    1714             :   LOCAL_HIREMAINDER;
    1715             : 
    1716      166566 :   if (!x || !y || !signe(z)) return gen_0;
    1717      166269 :   t = mulll(x,y);
    1718      166269 :   if (!hiremainder)
    1719      166269 :     r = muluispec(t, z+2, lgefint(z)-2);
    1720             :   else
    1721             :   {
    1722             :     long tmp[2];
    1723           0 :     tmp[0] = hiremainder;
    1724           0 :     tmp[1] = t;
    1725           0 :     r = muliispec(z+2,tmp,lgefint(z)-2,2);
    1726             :   }
    1727      166269 :   setsigne(r,s); return r;
    1728             : }
    1729             : 
    1730             : #define sqrispec_mirror sqrispec
    1731             : #define muliispec_mirror muliispec
    1732             : 
    1733             : /* x % (2^n), assuming n >= 0 */
    1734             : GEN
    1735    19702815 : remi2n(GEN x, long n)
    1736             : {
    1737    19702815 :   long hi,l,k,lx,ly, sx = signe(x);
    1738             :   GEN z, xd, zd;
    1739             : 
    1740    19702815 :   if (!sx || !n) return gen_0;
    1741             : 
    1742    19679310 :   k = dvmdsBIL(n, &l);
    1743    19679310 :   lx = lgefint(x);
    1744    19679310 :   if (lx < k+3) return icopy(x);
    1745             : 
    1746    19292469 :   xd = x + (lx-k-1);
    1747             :   /* x = |_|...|#|1|...|k| : copy the last l bits of # and the last k words
    1748             :    *            ^--- initial xd  */
    1749    19292469 :   hi = ((ulong)*xd) & ((1UL<<l)-1); /* last l bits of # = top bits of result */
    1750    19292469 :   if (!hi)
    1751             :   { /* strip leading zeroes from result */
    1752     1391364 :     xd++; while (k && !*xd) { k--; xd++; }
    1753     1361142 :     if (!k) return gen_0;
    1754      600975 :     ly = k+2; xd--;
    1755             :   }
    1756             :   else
    1757    17931327 :     ly = k+3;
    1758             : 
    1759    18532302 :   zd = z = cgeti(ly);
    1760    18532302 :   *++zd = evalsigne(sx) | evallgefint(ly);
    1761    18532302 :   if (hi) *++zd = hi;
    1762   102722385 :   for ( ;k; k--) *++zd = *++xd;
    1763    18532302 :   return z;
    1764             : }
    1765             : 
    1766             : GEN
    1767   938053002 : sqrispec(GEN a, long na)
    1768             : {
    1769             :   GEN a0,c;
    1770             :   long n0, n0a, i;
    1771             :   pari_sp av;
    1772             : 
    1773   938053002 :   if (na < SQRI_KARATSUBA_LIMIT) return sqrispec_basecase(a,na);
    1774     9939075 :   if (na >= SQRI_FFT_LIMIT) return sqrispec_fft(a,na);
    1775     9937416 :   i=(na>>1); n0=na-i; na=i;
    1776     9937416 :   av=avma; a0=a+na; n0a=n0;
    1777    14932608 :   while (n0a && !*a0) { a0++; n0a--; }
    1778     9937416 :   c = sqrispec(a,na);
    1779     9937416 :   if (n0a)
    1780             :   {
    1781     9928518 :     GEN t, c1, c0 = sqrispec(a0,n0a);
    1782             : #if 0
    1783             :     c1 = shifti(muliispec(a0,a, n0a,na),1);
    1784             : #else /* faster */
    1785     9928518 :     t = addiispec(a0,a,n0a,na);
    1786     9928518 :     t = sqrispec(LIMBS(t),NLIMBS(t));
    1787     9928518 :     c1= addiispec(LIMBS(c0),LIMBS(c), NLIMBS(c0), NLIMBS(c));
    1788     9928518 :     c1= subiispec(LIMBS(t),LIMBS(c1), NLIMBS(t), NLIMBS(c1));
    1789             : #endif
    1790     9928518 :     c = addshiftw(c,c1, n0);
    1791     9928518 :     c = addshiftw(c,c0, n0);
    1792             :   }
    1793             :   else
    1794        8898 :     c = addshiftw(c,gen_0,n0<<1);
    1795     9937416 :   return gc_INT(av, c);
    1796             : }
    1797             : 
    1798             : /********************************************************************/
    1799             : /**                                                                **/
    1800             : /**                    KARATSUBA SQUARE ROOT                       **/
    1801             : /**      adapted from Paul Zimmermann's implementation of          **/
    1802             : /**      his algorithm in GMP (mpn_sqrtrem)                        **/
    1803             : /**                                                                **/
    1804             : /********************************************************************/
    1805             : 
    1806             : /* Square roots table */
    1807             : static const unsigned char approx_tab[192] = {
    1808             :   128,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,
    1809             :   143,144,144,145,146,147,148,149,150,150,151,152,153,154,155,155,
    1810             :   156,157,158,159,160,160,161,162,163,163,164,165,166,167,167,168,
    1811             :   169,170,170,171,172,173,173,174,175,176,176,177,178,178,179,180,
    1812             :   181,181,182,183,183,184,185,185,186,187,187,188,189,189,190,191,
    1813             :   192,192,193,193,194,195,195,196,197,197,198,199,199,200,201,201,
    1814             :   202,203,203,204,204,205,206,206,207,208,208,209,209,210,211,211,
    1815             :   212,212,213,214,214,215,215,216,217,217,218,218,219,219,220,221,
    1816             :   221,222,222,223,224,224,225,225,226,226,227,227,228,229,229,230,
    1817             :   230,231,231,232,232,233,234,234,235,235,236,236,237,237,238,238,
    1818             :   239,240,240,241,241,242,242,243,243,244,244,245,245,246,246,247,
    1819             :   247,248,248,249,249,250,250,251,251,252,252,253,253,254,254,255
    1820             : };
    1821             : 
    1822             : /* N[0], assume N[0] >= 2^(BIL-2).
    1823             :  * Return r,s such that s^2 + r = N, 0 <= r <= 2s */
    1824             : static void
    1825    94687737 : p_sqrtu1(ulong *N, ulong *ps, ulong *pr)
    1826             : {
    1827    94687737 :   ulong prec, r, s, q, u, n0 = N[0];
    1828             : 
    1829    94687737 :   q = n0 >> (BITS_IN_LONG - 8);
    1830             :   /* 2^6 = 64 <= q < 256 = 2^8 */
    1831    94687737 :   s = approx_tab[q - 64];                                /* 128 <= s < 255 */
    1832    94687737 :   r = (n0 >> (BITS_IN_LONG - 16)) - s * s;                /* r <= 2*s */
    1833    94687737 :   if (r > (s << 1)) { r -= (s << 1) | 1; s++; }
    1834             : 
    1835             :   /* 8-bit approximation from the high 8-bits of N[0] */
    1836    94687737 :   prec = 8;
    1837    94687737 :   n0 <<= 2 * prec;
    1838   284063211 :   while (2 * prec < BITS_IN_LONG)
    1839             :   { /* invariant: s has prec bits, and r <= 2*s */
    1840   189375474 :     r = (r << prec) + (n0 >> (BITS_IN_LONG - prec));
    1841   189375474 :     n0 <<= prec;
    1842   189375474 :     u = 2 * s;
    1843   189375474 :     q = r / u; u = r - q * u;
    1844   189375474 :     s = (s << prec) + q;
    1845   189375474 :     u = (u << prec) + (n0 >> (BITS_IN_LONG - prec));
    1846   189375474 :     q = q * q;
    1847   189375474 :     r = u - q;
    1848   189375474 :     if (u < q) { s--; r += (s << 1) | 1; }
    1849   189375474 :     n0 <<= prec;
    1850   189375474 :     prec = 2 * prec;
    1851             :   }
    1852    94687737 :   *ps = s;
    1853    94687737 :   *pr = r;
    1854    94687737 : }
    1855             : 
    1856             : /* N[0..1], assume N[0] >= 2^(BIL-2).
    1857             :  * Return 1 if remainder overflows, 0 otherwise */
    1858             : static int
    1859    91985496 : p_sqrtu2(ulong *N, ulong *ps, ulong *pr)
    1860             : {
    1861    91985496 :   ulong cc, qhl, r, s, q, u, n1 = N[1];
    1862             :   LOCAL_OVERFLOW;
    1863             : 
    1864    91985496 :   p_sqrtu1(N, &s, &r); /* r <= 2s */
    1865   137605458 :   qhl = 0; while (r >= s) { qhl++; r -= s; }
    1866             :   /* now r < s < 2^(BIL/2) */
    1867    91985496 :   r = (r << BITS_IN_HALFULONG) | (n1 >> BITS_IN_HALFULONG);
    1868    91985496 :   u = s << 1;
    1869    91985496 :   q = r / u; u = r - q * u;
    1870    91985496 :   q += (qhl & 1) << (BITS_IN_HALFULONG - 1);
    1871    91985496 :   qhl >>= 1;
    1872             :   /* (initial r)<<(BIL/2) + n1>>(BIL/2) = (qhl<<(BIL/2) + q) * 2s + u */
    1873    91985496 :   s = ((s + qhl) << BITS_IN_HALFULONG) + q;
    1874    91985496 :   cc = u >> BITS_IN_HALFULONG;
    1875    91985496 :   r = (u << BITS_IN_HALFULONG) | (n1 & LOWMASK);
    1876    91985496 :   r = subll(r, q * q);
    1877    91985496 :   cc -= overflow + qhl;
    1878             :   /* now subtract 2*q*2^(BIL/2) + 2^BIL if qhl is set */
    1879    91985496 :   if ((long)cc < 0)
    1880             :   {
    1881    23472189 :     if (s) {
    1882    23419161 :       r = addll(r, s);
    1883    23419161 :       cc += overflow;
    1884    23419161 :       s--;
    1885             :     } else {
    1886       53028 :       cc++;
    1887       53028 :       s = ~0UL;
    1888             :     }
    1889    23472189 :     r = addll(r, s);
    1890    23472189 :     cc += overflow;
    1891             :   }
    1892    91985496 :   *ps = s;
    1893    91985496 :   *pr = r; return cc;
    1894             : }
    1895             : 
    1896             : static void
    1897    90924714 : xmpn_zero(GEN x, long n)
    1898             : {
    1899   695325138 :   while (--n >= 0) x[n]=0;
    1900    90924714 : }
    1901             : static void
    1902  1068383172 : xmpn_copy(GEN z, GEN x, long n)
    1903             : {
    1904  1068383172 :   long k = n;
    1905  4198937577 :   while (--k >= 0) z[k] = x[k];
    1906  1068383172 : }
    1907             : /* a[0..la-1] * 2^(lb BIL) | b[0..lb-1] */
    1908             : static GEN
    1909   468423300 : catii(GEN a, long la, GEN b, long lb)
    1910             : {
    1911   468423300 :   long l = la + lb + 2;
    1912   468423300 :   GEN z = cgetipos(l);
    1913   468423300 :   xmpn_copy(LIMBS(z), a, la);
    1914   468423300 :   xmpn_copy(LIMBS(z) + la, b, lb);
    1915   468423300 :   return int_normalize(z, 0);
    1916             : }
    1917             : 
    1918             : /* sqrt n[0..1], assume n normalized */
    1919             : static GEN
    1920    91710672 : sqrtispec2(GEN n, GEN *pr)
    1921             : {
    1922             :   ulong s, r;
    1923    91710672 :   int hi = p_sqrtu2((ulong*)n, &s, &r);
    1924    91710672 :   GEN S = utoi(s);
    1925    91710672 :   *pr = hi? uutoi(1,r): utoi(r);
    1926    91710672 :   return S;
    1927             : }
    1928             : 
    1929             : /* sqrt n[0], _dont_ assume n normalized */
    1930             : static GEN
    1931     2702241 : sqrtispec1_sh(GEN n, GEN *pr)
    1932             : {
    1933             :   GEN S;
    1934     2702241 :   ulong r, s, u0 = uel(n,0);
    1935     2702241 :   int sh = bfffo(u0) & ~1UL;
    1936     2702241 :   if (sh) u0 <<= sh;
    1937     2702241 :   p_sqrtu1(&u0, &s, &r);
    1938             :   /* s^2 + r = u0, s < 2^(BIL/2). Rescale back:
    1939             :    * 2^(2k) n = S^2 + R
    1940             :    * so 2^(2k) n = (S - s0)^2 + (2*S*s0 - s0^2 + R), s0 = S mod 2^k. */
    1941     2702241 :   if (sh) {
    1942     1630353 :     int k = sh >> 1;
    1943     1630353 :     ulong s0 = s & ((1L<<k) - 1);
    1944     1630353 :     r += s * (s0<<1);
    1945     1630353 :     s >>= k;
    1946     1630353 :     r >>= sh;
    1947             :   }
    1948     2702241 :   S = utoi(s);
    1949     2702241 :   if (pr) *pr = utoi(r);
    1950     2702241 :   return S;
    1951             : }
    1952             : 
    1953             : /* sqrt n[0..1], _dont_ assume n normalized */
    1954             : static GEN
    1955      274824 : sqrtispec2_sh(GEN n, GEN *pr)
    1956             : {
    1957             :   GEN S;
    1958      274824 :   ulong U[2], r, s, u0 = uel(n,0), u1 = uel(n,1);
    1959      274824 :   int hi, sh = bfffo(u0) & ~1UL;
    1960      274824 :   if (sh) {
    1961      246855 :     u0 = (u0 << sh) | (u1 >> (BITS_IN_LONG-sh));
    1962      246855 :     u1 <<= sh;
    1963             :   }
    1964      274824 :   U[0] = u0;
    1965      274824 :   U[1] = u1; hi = p_sqrtu2(U, &s, &r);
    1966             :   /* s^2 + R = u0|u1. Rescale back:
    1967             :    * 2^(2k) n = S^2 + R
    1968             :    * so 2^(2k) n = (S - s0)^2 + (2*S*s0 - s0^2 + R), s0 = S mod 2^k. */
    1969      274824 :   if (sh) {
    1970      246855 :     int k = sh >> 1;
    1971      246855 :     ulong s0 = s & ((1L<<k) - 1);
    1972             :     LOCAL_HIREMAINDER;
    1973             :     LOCAL_OVERFLOW;
    1974      246855 :     r = addll(r, mulll(s, (s0<<1)));
    1975      246855 :     if (overflow) hiremainder++;
    1976      246855 :     hiremainder += hi; /* + 0 or 1 */
    1977      246855 :     s >>= k;
    1978      246855 :     r = (r>>sh) | (hiremainder << (BITS_IN_LONG-sh));
    1979      246855 :     hi = (hiremainder & (1L<<sh));
    1980             :   }
    1981      274824 :   S = utoi(s);
    1982      274824 :   if (pr) *pr = hi? uutoi(1,r): utoi(r);
    1983      274824 :   return S;
    1984             : }
    1985             : 
    1986             : /* Let N = N[0..2n-1]. Return S (and set R) s.t S^2 + R = N, 0 <= R <= 2S
    1987             :  * Assume N normalized */
    1988             : static GEN
    1989   325922322 : sqrtispec(GEN N, long n, GEN *r)
    1990             : {
    1991             :   GEN S, R, q, z, u;
    1992             :   long l, h;
    1993             : 
    1994   325922322 :   if (n == 1) return sqrtispec2(N, r);
    1995   234211650 :   l = n >> 1;
    1996   234211650 :   h = n - l; /* N = a3(h) | a2(h) | a1(l) | a0(l words) */
    1997   234211650 :   S = sqrtispec(N, h, &R); /* S^2 + R = a3|a2 */
    1998             : 
    1999   234211650 :   z = catii(LIMBS(R), NLIMBS(R), N + 2*h, l); /* = R | a1(l) */
    2000   234211650 :   q = dvmdii(z, shifti(S,1), &u);
    2001   234211650 :   z = catii(LIMBS(u), NLIMBS(u), N + n + h, l); /* = u | a0(l) */
    2002             : 
    2003   234211650 :   S = addshiftw(S, q, l);
    2004   234211650 :   R = subii(z, sqri(q));
    2005   234211650 :   if (signe(R) < 0)
    2006             :   {
    2007    40027875 :     GEN S2 = shifti(S,1);
    2008    40027875 :     R = addis(subiispec(LIMBS(S2),LIMBS(R), NLIMBS(S2),NLIMBS(R)), -1);
    2009    40027875 :     S = addis(S, -1);
    2010             :   }
    2011   234211650 :   *r = R; return S;
    2012             : }
    2013             : 
    2014             : /* Return S (and set R) s.t S^2 + R = N, 0 <= R <= 2S.
    2015             :  * As for dvmdii, R is last on stack and guaranteed to be gen_0 in case the
    2016             :  * remainder is 0. R = NULL is allowed. */
    2017             : GEN
    2018     3763578 : sqrtremi(GEN N, GEN *r)
    2019             : {
    2020             :   pari_sp av;
    2021     3763578 :   GEN S, R, n = N+2;
    2022     3763578 :   long k, l2, ln = NLIMBS(N);
    2023             :   int sh;
    2024             : 
    2025     3763578 :   if (ln <= 2)
    2026             :   {
    2027     2977620 :     if (ln == 2) return sqrtispec2_sh(n, r);
    2028     2702796 :     if (ln == 1) return sqrtispec1_sh(n, r);
    2029         555 :     if (r) *r = gen_0;
    2030         555 :     return gen_0;
    2031             :   }
    2032      785958 :   av = avma;
    2033      785958 :   sh = bfffo(n[0]) >> 1;
    2034      785958 :   l2 = (ln + 1) >> 1;
    2035      785958 :   if (sh || (ln & 1)) { /* normalize n, so that n[0] >= 2^BIL / 4 */
    2036      785280 :     GEN s0, t = new_chunk(ln + 1);
    2037      785280 :     t[ln] = 0;
    2038      785280 :     if (sh)
    2039      783450 :       shift_left(t, n, 0,ln-1, 0, sh << 1);
    2040             :     else
    2041        1830 :       xmpn_copy(t, n, ln);
    2042      785280 :     S = sqrtispec(t, l2, &R); /* t normalized, 2 * l2 words */
    2043             :     /* Rescale back:
    2044             :      * 2^(2k) n = S^2 + R, k = sh + (ln & 1)*BIL/2
    2045             :      * so 2^(2k) n = (S - s0)^2 + (2*S*s0 - s0^2 + R), s0 = S mod 2^k. */
    2046      785280 :     k = sh + (ln & 1) * (BITS_IN_LONG/2);
    2047      785280 :     s0 = remi2n(S, k);
    2048      785280 :     R = addii(shifti(R,-1), mulii(s0, S));
    2049      785280 :     R = shifti(R, 1 - (k<<1));
    2050      785280 :     S = shifti(S, -k);
    2051             :   }
    2052             :   else
    2053         678 :     S = sqrtispec(n, l2, &R);
    2054             : 
    2055      785958 :   if (!r) { set_avma((pari_sp)S); return gc_INT(av, S); }
    2056      722325 :   *r = R; return gc_all(av, 2, &S, r);
    2057             : }
    2058             : 
    2059             : /* compute sqrt(|a|), assuming a != 0 */
    2060             : 
    2061             : #if 1
    2062             : GEN
    2063    90924714 : sqrtr_abs(GEN x)
    2064             : {
    2065    90924714 :   long l = lg(x) - 2, e = expo(x), er = e>>1;
    2066    90924714 :   GEN b, c, res = cgetg(2 + l, t_REAL);
    2067    90924714 :   res[1] = evalsigne(1) | evalexpo(er);
    2068    90924714 :   if (e&1) {
    2069    40610028 :     b = new_chunk(l << 1);
    2070    40610028 :     xmpn_copy(b, x+2, l);
    2071    40610028 :     xmpn_zero(b + l,l);
    2072    40610028 :     b = sqrtispec(b, l, &c);
    2073    40610028 :     xmpn_copy(res+2, b+2, l);
    2074    40610028 :     if (cmpii(c, b) > 0) roundr_up_ip(res, l+2);
    2075             :   } else {
    2076             :     ulong u;
    2077    50314686 :     b = new_chunk(2 + (l << 1));
    2078    50314686 :     shift_left(b+1, x+2, 0,l-1, 0, BITS_IN_LONG-1);
    2079    50314686 :     b[0] = uel(x,2)>>1;
    2080    50314686 :     xmpn_zero(b + l+1,l+1);
    2081    50314686 :     b = sqrtispec(b, l+1, &c);
    2082    50314686 :     xmpn_copy(res+2, b+2, l);
    2083    50314686 :     u = uel(b,l+2);
    2084    50314686 :     if ( u&HIGHBIT || (u == ~HIGHBIT && cmpii(c,b) > 0))
    2085    24823002 :       roundr_up_ip(res, l+2);
    2086             :   }
    2087    90924714 :   return gc_const((pari_sp)res, res);
    2088             : }
    2089             : 
    2090             : #else /* use t_REAL: currently much slower (quadratic division) */
    2091             : 
    2092             : #ifdef LONG_IS_64BIT
    2093             : /* 64 bits of b = sqrt(a[0] * 2^64 + a[1])  [ up to 1ulp ] */
    2094             : static ulong
    2095             : sqrtu2(ulong *a)
    2096             : {
    2097             :   ulong c, b = dblmantissa( sqrt((double)a[0]) );
    2098             :   LOCAL_HIREMAINDER;
    2099             :   LOCAL_OVERFLOW;
    2100             : 
    2101             :   /* > 32 correct bits, 1 Newton iteration to reach 64 */
    2102             :   if (b <= a[0]) return HIGHBIT | (a[0] >> 1);
    2103             :   hiremainder = a[0]; c = divll(a[1], b);
    2104             :   return (addll(c, b) >> 1) | HIGHBIT;
    2105             : }
    2106             : /* 64 bits of sqrt(a[0] * 2^63) */
    2107             : static ulong
    2108             : sqrtu2_1(ulong *a)
    2109             : {
    2110             :   ulong t[2];
    2111             :   t[0] = (a[0] >> 1);
    2112             :   t[1] = (a[0] << (BITS_IN_LONG-1)) | (a[1] >> 1);
    2113             :   return sqrtu2(t);
    2114             : }
    2115             : #else
    2116             : /* 32 bits of sqrt(a[0] * 2^32) */
    2117             : static ulong
    2118             : sqrtu2(ulong *a)   { return dblmantissa( sqrt((double)a[0]) ); }
    2119             : /* 32 bits of sqrt(a[0] * 2^31) */
    2120             : static ulong
    2121             : sqrtu2_1(ulong *a) { return dblmantissa( sqrt(2. * a[0]) ); }
    2122             : #endif
    2123             : 
    2124             : GEN
    2125             : sqrtr_abs(GEN x)
    2126             : {
    2127             :   long l1, i, l = lg(x), ex = expo(x);
    2128             :   GEN a, t, y = cgetg(l, t_REAL);
    2129             :   pari_sp av, av0 = avma;
    2130             : 
    2131             :   a = rtor(x, lg2prec(l+1));
    2132             :   t = cgetg(l+1, t_REAL);
    2133             :   if (ex & 1) { /* odd exponent */
    2134             :     a[1] = evalsigne(1) | _evalexpo(1);
    2135             :     t[2] = (long)sqrtu2((ulong*)a + 2);
    2136             :   } else { /* even exponent */
    2137             :     a[1] = evalsigne(1) | _evalexpo(0);
    2138             :     t[2] = (long)sqrtu2_1((ulong*)a + 2);
    2139             :   }
    2140             :   t[1] = evalsigne(1) | _evalexpo(0);
    2141             :   for (i = 3; i <= l; i++) t[i] = 0;
    2142             : 
    2143             :   /* |x| = 2^(ex/2) a, t ~ sqrt(a) */
    2144             :   l--; l1 = 1; av = avma;
    2145             :   while (l1 < l) { /* let t := (t + a/t)/2 */
    2146             :     l1 <<= 1; if (l1 > l) l1 = l;
    2147             :     setlg(a, l1 + 2);
    2148             :     setlg(t, l1 + 2);
    2149             :     affrr(addrr(t, divrr(a,t)), t); shiftr_inplace(t, -1);
    2150             :     set_avma(av);
    2151             :   }
    2152             :   affrr(t,y); shiftr_inplace(y, (ex>>1));
    2153             :   return gc_const(av0, y);
    2154             : }
    2155             : 
    2156             : #endif
    2157             : 
    2158             : /*******************************************************************
    2159             :  *                                                                 *
    2160             :  *                           Base Conversion                       *
    2161             :  *                                                                 *
    2162             :  *******************************************************************/
    2163             : 
    2164             : static void
    2165      736128 : convi_dac(GEN x, ulong l, ulong *res)
    2166             : {
    2167      736128 :   pari_sp ltop=avma;
    2168             :   ulong m;
    2169             :   GEN x1,x2;
    2170      736128 :   if (l==1) { *res=itou(x); return; }
    2171      349119 :   m=l>>1;
    2172      349119 :   x1=dvmdii(x,powuu(1000000000UL,m),&x2);
    2173      349119 :   convi_dac(x1,l-m,res+m);
    2174      349119 :   convi_dac(x2,m,res);
    2175      349119 :   set_avma(ltop);
    2176             : }
    2177             : 
    2178             : /* convert integer --> base 10^9 [not memory clean] */
    2179             : ulong *
    2180      317011 : convi(GEN x, long *l)
    2181             : {
    2182      317011 :   long lz, lx = lgefint(x);
    2183             :   ulong *z;
    2184      317011 :   if (lx == 3 && uel(x,2) < 1000000000UL) {
    2185      279121 :     z = (ulong*)new_chunk(1);
    2186      279121 :     *z = x[2];
    2187      279121 :     *l = 1; return z+1;
    2188             :   }
    2189       37890 :   lz = 1 + (long)bit_accuracy_mul(lx, LOG10_2/9);
    2190       37890 :   z = (ulong*)new_chunk(lz);
    2191       37890 :   convi_dac(x,(ulong)lz,z);
    2192       67953 :   while (z[lz-1]==0) lz--;
    2193       37890 :   *l=lz; return z+lz;
    2194             : }
    2195             : 

Generated by: LCOV version 1.16