Line data Source code
1 : /* Copyright (C) 2000 The PARI group.
2 :
3 : This file is part of the PARI/GP package.
4 :
5 : PARI/GP is free software; you can redistribute it and/or modify it under the
6 : terms of the GNU General Public License as published by the Free Software
7 : Foundation; either version 2 of the License, or (at your option) any later
8 : version. It is distributed in the hope that it will be useful, but WITHOUT
9 : ANY WARRANTY WHATSOEVER.
10 :
11 : Check the License for details. You should have received a copy of it, along
12 : with the package; see the file 'COPYING'. If not, write to the Free Software
13 : Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */
14 :
15 : /* Self-Initializing Multi-Polynomial Quadratic Sieve, based on code developed
16 : * as part of the LiDIA project.
17 : *
18 : * Original version: Thomas Papanikolaou and Xavier Roblot
19 : * Extensively modified by The PARI group.
20 : * Support for class group computations by Bill Allombert */
21 : /* Notation commonly used in this file, and sketch of algorithm:
22 : *
23 : * Given an odd integer N > 1 to be factored, we throw in a small odd squarefree
24 : * multiplier k so as to make kN = 1 mod 4 and to have many small primes over
25 : * which X^2 - kN splits. We compute a factor base FB of such primes then
26 : * look for values x0 such that Q0(x0) = x0^2 - kN can be decomposed over FB,
27 : * up to a possible factor dividing k and a possible "large prime". Relations
28 : * involving the latter can be combined into full relations which don't; full
29 : * relations, by Gaussian elimination over F2 for the exponent vectors lead us
30 : * to an expression X^2 - Y^2 divisible by N and hopefully to a nontrivial
31 : * splitting when we compute gcd(X + Y, N). Note that this can never
32 : * split prime powers.
33 : *
34 : * Candidates x0 are found by sieving along arithmetic progressions modulo the
35 : * small primes in FB and evaluation of candidates picks out those x0 where
36 : * many of these progressions coincide, resulting in a highly divisible Q0(x0).
37 : *
38 : * The Multi-Polynomial version improves this by choosing a modest subset of
39 : * FB primes (let A be their product) and forcing these to divide Q0(x).
40 : * Write Q(x) = Q0(2Ax + B) = (2Ax + B)^2 - kN = 4A(Ax^2 + Bx + C), where B is
41 : * suitably chosen. For each A, there are 2^omega_A possible values for B
42 : * but we'll use only half of these, since the other half is easily covered by
43 : * exploiting the symmetry x -> -x of the original Q0. The "Self-Initializating"
44 : * bit refers to the fact that switching from one B to the next is fast, whereas
45 : * switching to the next A involves some recomputation (C is never needed).
46 : * Thus we quickly run through many polynomials sharing the same A.
47 : *
48 : * The sieve ranges over values x0 such that |x0| < M (we use x = x0 + M
49 : * as array subscript). The coefficients A are chosen so that A*M ~ sqrt(kN).
50 : * Then |B| is bounded by ~ (j+4)*A, and |C| = -C ~ (M/4)*sqrt(kN), so
51 : * Q(x0)/(4A) takes values roughly between -|C| and 3|C|.
52 : *
53 : * Refinements. We do not use the smallest FB primes for sieving, incorporating
54 : * them only after selecting candidates). The substitution of 2Ax+B into
55 : * X^2 - kN, with odd B, forces 2 to occur; when kN is 1 mod 8, it occurs at
56 : * least to the 3rd power; when kN = 5 mod 8, it occurs exactly to the 2nd
57 : * power. We never sieve on 2 and always pull out the power of 2 directly. The
58 : * prime factors of k show up whenever 2Ax + B has a factor in common with k;
59 : * we don't sieve on these either but easily recognize them in a candidate. */
60 :
61 : #include "paricfg.h"
62 : #ifdef HAS_SSE2
63 : #include <emmintrin.h>
64 : #endif
65 :
66 : #include "pari.h"
67 : #include "paripriv.h"
68 :
69 : #define DEBUGLEVEL DEBUGLEVEL_mpqs
70 :
71 : /** DEBUG **/
72 : /* #define MPQS_DEBUG_VERBOSE 1 */
73 :
74 : /* Faster but slowdown hnfadd too much */
75 : /* #define CLASSGROUP_LARGE_PRIME */
76 : #include "mpqs.h"
77 :
78 : #define REL_OFFSET 20
79 : #define REL_MASK ((1UL<<REL_OFFSET)-1)
80 : #define MAX_PE_PAIR 60
81 :
82 : #ifdef HAS_SSE2
83 : #define EXT0(a) ((ulong)__builtin_ia32_vec_ext_v2di((__v2di)(a), 0))
84 : #define EXT1(a) ((ulong)__builtin_ia32_vec_ext_v2di((__v2di)(a), 1))
85 : #define TEST(a) (EXT0(a) || EXT1(a))
86 : typedef __v2di mpqs_bit_array;
87 : const mpqs_bit_array mpqs_mask = { (long) 0x8080808080808080L, (long) 0x8080808080808080UL };
88 : #else
89 : /* Use ulong for the bit arrays */
90 : typedef ulong mpqs_bit_array;
91 : #define TEST(a) (a)
92 :
93 : #ifdef LONG_IS_64BIT
94 : const mpqs_bit_array mpqs_mask = 0x8080808080808080UL;
95 : #else
96 : const mpqs_bit_array mpqs_mask = 0x80808080UL;
97 : #endif
98 : #endif
99 :
100 25440 : static GEN rel_Y(GEN c) { return gel(c,1); }
101 25440 : static GEN rel_p(GEN c) { return gel(c,2); }
102 :
103 : static void
104 393217 : frel_add(hashtable *frel, GEN R)
105 : {
106 393217 : ulong h = hash_GEN(R);
107 393217 : if (!hash_search2(frel, (void*)R, h))
108 393210 : hash_insert2(frel, (void*)R, (void*)1, h);
109 393217 : }
110 :
111 : /*********************************************************************/
112 : /** INITIAL SIZING **/
113 : /*********************************************************************/
114 : /* # of decimal digits of argument */
115 : static long
116 9905 : decimal_len(GEN N)
117 9905 : { pari_sp av = avma; return gc_long(av, 1+logint(N, utoipos(10))); }
118 :
119 : /* To be called after choosing k and putting kN into the handle:
120 : * Pick up the parameters for given size of kN in decimal digits and fill in
121 : * the handle. Return 0 when kN is too large, 1 when we're ok. */
122 : static int
123 3318 : mpqs_set_parameters(mpqs_handle_t *h)
124 : {
125 : long s, D;
126 : const mpqs_parameterset_t *P;
127 :
128 3318 : h->digit_size_kN = D = decimal_len(absi(h->kN));
129 3318 : if (D > MPQS_MAX_DIGIT_SIZE_KN) return 0;
130 3318 : P = &(mpqs_parameters[maxss(0, D - 9)]);
131 3318 : h->tolerance = P->tolerance;
132 3318 : h->lp_scale = P->lp_scale;
133 : /* make room for prime factors of k if any: */
134 3318 : h->size_of_FB = s = P->size_of_FB + h->_k->omega_k;
135 : /* for the purpose of Gauss elimination etc., prime factors of k behave
136 : * like real FB primes, so take them into account when setting the goal: */
137 3318 : h->target_rels = (s >= 200 ? s + 10 : (mpqs_int32_t)(s * 1.05));
138 3318 : h->M = P->M;
139 3318 : h->omega_A = P->omega_A;
140 3318 : h->no_B = 1UL << (P->omega_A - 1);
141 3318 : h->pmin_index1 = P->pmin_index1;
142 : /* certain subscripts into h->FB should also be offset by omega_k: */
143 3318 : h->index0_FB = 3 + h->_k->omega_k;
144 3318 : if (DEBUGLEVEL >= 5)
145 : {
146 0 : err_printf("MPQS: kN = %Ps\n", h->kN);
147 0 : err_printf("MPQS: kN has %ld decimal digits\n", D);
148 0 : err_printf("\t(estimated memory needed: %4.1fMBy)\n",
149 0 : (s + 1)/8388608. * h->target_rels);
150 : }
151 3318 : return 1;
152 : }
153 :
154 : /*********************************************************************/
155 : /** OBJECT HOUSEKEEPING **/
156 : /*********************************************************************/
157 :
158 : /* factor base constructor. Really a home-grown memalign(3c) underneath.
159 : * We don't want FB entries to straddle L1 cache line boundaries, and
160 : * malloc(3c) only guarantees alignment adequate for all primitive data
161 : * types of the platform ABI - typically to 8 or 16 byte boundaries.
162 : * Also allocate the inv_A_H array.
163 : * The FB array pointer is returned for convenience */
164 : static mpqs_FB_entry_t *
165 3318 : mpqs_FB_ctor(mpqs_handle_t *h)
166 : {
167 : /* leave room for slots 0, 1, and sentinel slot at the end of the array */
168 3318 : long size_FB_chunk = (h->size_of_FB + 3) * sizeof(mpqs_FB_entry_t);
169 : /* like FB, except this one does not have a sentinel slot at the end */
170 3318 : long size_IAH_chunk = (h->size_of_FB + 2) * sizeof(mpqs_inv_A_H_t);
171 3318 : h->FB = (mpqs_FB_entry_t *) stack_malloc_align(size_FB_chunk, 64);
172 3318 : h->inv_A_H = (mpqs_inv_A_H_t *) stack_malloc_align(size_IAH_chunk, 64);
173 3318 : return h->FB;
174 : }
175 :
176 : /* sieve array constructor; also allocates the candidates array
177 : * and temporary storage for relations under construction */
178 : static void
179 3318 : mpqs_sieve_array_ctor(mpqs_handle_t *h)
180 : {
181 3318 : long size = (h->M << 1) + 1;
182 3318 : mpqs_int32_t size_of_FB = h->size_of_FB;
183 :
184 3318 : h->sieve_array = (unsigned char *) stack_calloc_align(size, sizeof(mpqs_mask));
185 3318 : h->sieve_array_end = h->sieve_array + size - 2;
186 3318 : h->sieve_array_end[1] = 255; /* sentinel */
187 3318 : h->candidates = (long *)stack_malloc(MPQS_CANDIDATE_ARRAY_SIZE * sizeof(long));
188 : /* whereas mpqs_self_init() uses size_of_FB+1, we just use the size as
189 : * it is, not counting FB[1], to start off the following estimate */
190 3318 : if (size_of_FB > MAX_PE_PAIR) size_of_FB = MAX_PE_PAIR;
191 : /* and for tracking which primes occur in the current relation: */
192 3318 : h->relaprimes = (long *) stack_malloc((size_of_FB << 1) * sizeof(long));
193 3318 : }
194 :
195 : /* allocate GENs for current polynomial and self-initialization scratch data */
196 : static void
197 3318 : mpqs_poly_ctor(mpqs_handle_t *h)
198 : {
199 3318 : mpqs_int32_t i, w = h->omega_A;
200 3318 : h->per_A_pr = (mpqs_per_A_prime_t *)
201 3318 : stack_calloc(w * sizeof(mpqs_per_A_prime_t));
202 : /* A is the product of w primes, each below word size.
203 : * |B| <= (w + 4) * A, so can have at most one word more
204 : * H holds residues modulo A: the same size as used for A is sufficient. */
205 3318 : h->A = cgeti(w + 2);
206 3318 : h->B = cgeti(w + 3);
207 14156 : for (i = 0; i < w; i++) h->per_A_pr[i]._H = cgeti(w + 2);
208 3318 : }
209 :
210 : /*********************************************************************/
211 : /** FACTOR BASE SETUP **/
212 : /*********************************************************************/
213 : /* fill in the best-guess multiplier k for N. We force kN = 1 mod 4.
214 : * Caller should proceed to fill in kN
215 : * See Knuth-Schroeppel function in
216 : * Robert D. Silverman
217 : * The multiple polynomial quadratic sieve
218 : * Math. Comp. 48 (1987), 329-339
219 : * https://www.ams.org/journals/mcom/1987-48-177/S0025-5718-1987-0866119-8/
220 : */
221 : static ulong
222 3290 : mpqs_find_k(mpqs_handle_t *h)
223 : {
224 3290 : const pari_sp av = avma;
225 3290 : const long N_mod_8 = mod8(h->N), N_mod_4 = N_mod_8 & 3;
226 3290 : long dl = decimal_len(h->N);
227 3290 : long D = maxss(0, minss(dl,MPQS_MAX_DIGIT_SIZE_KN)-9);
228 3290 : long MPQS_MULTIPLIER_SEARCH_DEPTH = mpqs_parameters[D].size_of_FB;
229 : forprime_t S;
230 : struct {
231 : const mpqs_multiplier_t *_k;
232 : long np; /* number of primes in factorbase so far for this k */
233 : double value; /* the larger, the better */
234 : } cache[MPQS_POSSIBLE_MULTIPLIERS];
235 3290 : ulong MPQS_NB_MULTIPLIERS = dl < 40 ? 5 : MPQS_POSSIBLE_MULTIPLIERS;
236 : ulong p, i, nbk;
237 :
238 32773 : for (i = nbk = 0; i < numberof(cand_multipliers); i++)
239 : {
240 32773 : const mpqs_multiplier_t *cand_k = &cand_multipliers[i];
241 32773 : long k = cand_k->k;
242 : double v;
243 32773 : if ((k & 3) != N_mod_4) continue; /* want kN = 1 (mod 4) */
244 17120 : v = -log((double)k)/2;
245 17120 : if ((k & 7) == N_mod_8) v += M_LN2; /* kN = 1 (mod 8) */
246 17120 : cache[nbk].np = 0;
247 17120 : cache[nbk]._k = cand_k;
248 17120 : cache[nbk].value = v;
249 17120 : if (++nbk == MPQS_NB_MULTIPLIERS) break; /* enough */
250 : }
251 : /* next test is an impossible situation: kills spurious gcc-5.1 warnings
252 : * "array subscript is above array bounds" */
253 3290 : if (nbk > MPQS_POSSIBLE_MULTIPLIERS) nbk = MPQS_POSSIBLE_MULTIPLIERS;
254 3290 : u_forprime_init(&S, 2, ULONG_MAX);
255 717982 : while ( (p = u_forprime_next(&S)) )
256 : {
257 717982 : long kroNp = kroiu(h->N, p), seen = 0;
258 717982 : if (!kroNp) return p;
259 5940312 : for (i = 0; i < nbk; i++)
260 : {
261 : long krokp;
262 5222330 : if (cache[i].np > MPQS_MULTIPLIER_SEARCH_DEPTH) continue;
263 4886983 : seen++;
264 4886983 : krokp = krouu(cache[i]._k->k % p, p);
265 4886983 : if (krokp == kroNp) /* kronecker(k*N, p)=1 */
266 : {
267 2435210 : cache[i].value += 2*log((double) p)/p;
268 2435210 : cache[i].np++;
269 2451773 : } else if (krokp == 0)
270 : {
271 18880 : cache[i].value += log((double) p)/p;
272 18880 : cache[i].np++;
273 : }
274 : }
275 717982 : if (!seen) break; /* we're gone through SEARCH_DEPTH primes for all k */
276 : }
277 3290 : if (!p) pari_err_OVERFLOW("mpqs_find_k [ran out of primes]");
278 : {
279 3290 : long best_i = 0;
280 3290 : double v = cache[0].value;
281 17120 : for (i = 1; i < nbk; i++)
282 13830 : if (cache[i].value > v) { best_i = i; v = cache[i].value; }
283 3290 : h->_k = cache[best_i]._k; return gc_ulong(av,0);
284 : }
285 : }
286 :
287 : /* Create a factor base of 'size' primes p_i such that legendre(k*N, p_i) != -1
288 : * We could have shifted subscripts down from their historical arrangement,
289 : * but this seems too risky for the tiny potential gain in memory economy.
290 : * The real constraint is that the subscripts of anything which later shows
291 : * up at the Gauss stage must be nonnegative, because the exponent vectors
292 : * there use the same subscripts to refer to the same FB entries. Thus in
293 : * particular, the entry representing -1 could be put into FB[0], but could
294 : * not be moved to FB[-1] (although mpqs_FB_ctor() could be easily adapted
295 : * to support negative subscripts).-- The historically grown layout is:
296 : * FB[0] is unused.
297 : * FB[1] is not explicitly used but stands for -1.
298 : * FB[2] contains 2 (always).
299 : * Before we are called, the size_of_FB field in the handle will already have
300 : * been adjusted by _k->omega_k, so there's room for the primes dividing k,
301 : * which when present will occupy FB[3] and following.
302 : * The "real" odd FB primes begin at FB[h->index0_FB].
303 : * FB[size_of_FB+1] is the last prime p_i.
304 : * FB[size_of_FB+2] is a sentinel to simplify some of our loops.
305 : * Thus we allocate size_of_FB+3 slots for FB.
306 : *
307 : * If a prime factor of N is found during the construction, it is returned
308 : * in f, otherwise f = 0. */
309 :
310 : /* returns the FB array pointer for convenience */
311 : static mpqs_FB_entry_t *
312 3318 : mpqs_create_FB(mpqs_handle_t *h, ulong *f)
313 : {
314 3318 : mpqs_FB_entry_t *FB = mpqs_FB_ctor(h);
315 3318 : const pari_sp av = avma;
316 3318 : mpqs_int32_t size = h->size_of_FB;
317 : long i;
318 3318 : mpqs_uint32_t k = h->_k->k;
319 : forprime_t S;
320 :
321 3318 : h->largest_FB_p = 0; /* -Wall */
322 3318 : FB[1].fbe_p = -1;
323 3318 : FB[2].fbe_p = 2;
324 : /* the fbe_logval and the fbe_sqrt_kN for 2 are never used */
325 3318 : FB[2].fbe_flags = MPQS_FBE_CLEAR;
326 5669 : for (i = 3; i < h->index0_FB; i++)
327 : { /* this loop executes h->_k->omega_k = 0, 1, or 2 times */
328 2351 : mpqs_uint32_t kp = (ulong)h->_k->kp[i-3];
329 2351 : if (MPQS_DEBUGLEVEL >= 7) err_printf(",<%lu>", (ulong)kp);
330 2351 : FB[i].fbe_p = kp;
331 : /* we could flag divisors of k here, but no need so far */
332 2351 : FB[i].fbe_flags = MPQS_FBE_CLEAR;
333 2351 : FB[i].fbe_flogp = (float)log2((double) kp);
334 2351 : FB[i].fbe_sqrt_kN = 0;
335 : }
336 3318 : (void)u_forprime_init(&S, 3, ULONG_MAX);
337 706650 : while (i < size + 2)
338 : {
339 703332 : ulong p = u_forprime_next(&S);
340 703332 : if (p > k || k % p)
341 : {
342 700981 : ulong kNp = umodiu(h->kN, p);
343 700981 : long kr = krouu(kNp, p);
344 700981 : if (kr >= 0)
345 : {
346 358680 : FB[i].fbe_flags = MPQS_FBE_CLEAR;
347 358680 : if (kr == 0)
348 : {
349 105 : if (f) { *f = p; return FB; }
350 105 : if (Z_lval(h->kN, p) > 1) continue;
351 98 : FB[i].fbe_flags = MPQS_FBE_DIVIDES_N;
352 : }
353 358673 : FB[i].fbe_p = (mpqs_uint32_t) p;
354 : /* dyadic logarithm of p; single precision suffices */
355 358673 : FB[i].fbe_flogp = (float)log2((double)p);
356 : /* cannot yet fill in fbe_logval because the scaling multiplier
357 : * depends on the largest prime in FB, as yet unknown */
358 :
359 : /* x such that x^2 = kN (mod p_i) */
360 358673 : FB[i++].fbe_sqrt_kN = (mpqs_uint32_t)Fl_sqrt(kNp, p);
361 : }
362 : }
363 : }
364 3318 : set_avma(av);
365 3318 : if (MPQS_DEBUGLEVEL >= 7)
366 : {
367 0 : err_printf("MPQS: FB [-1,2");
368 0 : for (i = 3; i < h->index0_FB; i++) err_printf(",<%lu>", FB[i].fbe_p);
369 0 : for (; i < size + 2; i++) err_printf(",%lu", FB[i].fbe_p);
370 0 : err_printf("]\n");
371 : }
372 :
373 3318 : FB[i].fbe_p = 0; /* sentinel */
374 3318 : h->largest_FB_p = FB[i-1].fbe_p; /* at subscript size_of_FB + 1 */
375 :
376 : /* locate the smallest prime that will be used for sieving */
377 6162 : for (i = h->index0_FB; FB[i].fbe_p != 0; i++)
378 6162 : if (FB[i].fbe_p >= h->pmin_index1) break;
379 3318 : h->index1_FB = i;
380 : /* with our parameters this will never fall off the end of the FB */
381 3318 : if (f) *f = 0;
382 3318 : return FB;
383 : }
384 :
385 : /*********************************************************************/
386 : /** MISC HELPER FUNCTIONS **/
387 : /*********************************************************************/
388 :
389 : /* Effect of the following: multiplying the base-2 logarithm of some
390 : * quantity by log_multiplier will rescale something of size
391 : * log2 ( sqrt(kN) * M / (largest_FB_prime)^tolerance )
392 : * to 232. Note that sqrt(kN) * M is just A*M^2, the value our polynomials
393 : * take at the outer edges of the sieve interval. The scale here leaves
394 : * a little wiggle room for accumulated rounding errors from the approximate
395 : * byte-sized scaled logarithms for the factor base primes which we add up
396 : * in the sieving phase.-- The threshold is then chosen so that a point in
397 : * the sieve has to reach a result which, under the same scaling, represents
398 : * log2 ( sqrt(kN) * M / (largest_FB_prime)^tolerance )
399 : * in order to be accepted as a candidate. */
400 : /* The old formula was...
401 : * log_multiplier =
402 : * 127.0 / (0.5 * log2 (handle->dkN) + log2((double)M)
403 : * - tolerance * log2((double)handle->largest_FB_p));
404 : * and we used to use this with a constant threshold of 128. */
405 :
406 : /* NOTE: We used to divide log_multiplier by an extra factor 2, and in
407 : * compensation we were multiplying by 2 when the fbe_logp fields were being
408 : * filled in, making all those bytes even. Tradeoff: the extra bit of
409 : * precision is helpful, but interferes with a possible sieving optimization
410 : * (artificially shift right the logp's of primes in A, and just run over both
411 : * arithmetical progressions (which coincide in this case) instead of
412 : * skipping the second one, to avoid the conditional branch in the
413 : * mpqs_sieve() loops). We could still do this, but might lose a little bit
414 : * accuracy for those primes. Probably no big deal. */
415 : static void
416 3318 : mpqs_set_sieve_threshold(mpqs_handle_t *h)
417 : {
418 3318 : mpqs_FB_entry_t *FB = h->FB;
419 : double log_maxval, log_multiplier;
420 : long i;
421 :
422 3318 : h->l2sqrtkN = 0.5 * log2(h->dkN);
423 3318 : h->l2M = log2((double)h->M);
424 3318 : log_maxval = h->l2sqrtkN + h->l2M - MPQS_A_FUDGE;
425 3318 : log_multiplier = 232.0 / log_maxval;
426 3318 : h->sieve_threshold = (unsigned char) (log_multiplier *
427 3318 : (log_maxval - h->tolerance * log2((double)h->largest_FB_p))) + 1;
428 : /* That "+ 1" really helps - we may want to tune towards somewhat smaller
429 : * tolerances (or introduce self-tuning one day)... */
430 :
431 : /* If this turns out to be <128, scream loudly.
432 : * That means that the FB or the tolerance or both are way too
433 : * large for the size of kN. (Normally, the threshold should end
434 : * up in the 150...170 range.) */
435 3318 : if (h->sieve_threshold < 128) {
436 0 : h->sieve_threshold = 128;
437 0 : pari_warn(warner,
438 : "MPQS: sizing out of tune, FB size or tolerance\n\ttoo large");
439 : }
440 3318 : if (DEBUGLEVEL >= 5)
441 0 : err_printf("MPQS: sieve threshold: %ld\n",h->sieve_threshold);
442 : /* Now fill in the byte-sized approximate scaled logarithms of p_i */
443 3318 : if (DEBUGLEVEL >= 5)
444 0 : err_printf("MPQS: computing logarithm approximations for p_i in FB\n");
445 361991 : for (i = h->index0_FB; i < h->size_of_FB + 2; i++)
446 358673 : FB[i].fbe_logval = (unsigned char) (log_multiplier * FB[i].fbe_flogp);
447 3318 : }
448 :
449 : /* Given the partially populated handle, find the optimum place in the FB
450 : * to pick prime factors for A from. The lowest admissible subscript is
451 : * index0_FB, but unless kN is very small, we stay away a bit from that.
452 : * The highest admissible is size_of_FB + 1, where the largest FB prime
453 : * resides. The ideal corner is about (sqrt(kN)/M) ^ (1/omega_A),
454 : * so that A will end up of size comparable to sqrt(kN)/M; experimentally
455 : * it seems desirable to stay slightly below this. Moreover, the selection
456 : * of the individual primes happens to err on the large side, for which we
457 : * compensate a bit, using the (small positive) quantity MPQS_A_FUDGE.
458 : * We rely on a few auxiliary fields in the handle to be already set by
459 : * mqps_set_sieve_threshold() before we are called.
460 : * Return 1 on success, and 0 otherwise. */
461 : static int
462 3318 : mpqs_locate_A_range(mpqs_handle_t *h)
463 : {
464 : /* i will be counted up to the desirable index2_FB + 1, and omega_A is never
465 : * less than 3, and we want
466 : * index2_FB - (omega_A - 1) + 1 >= index0_FB + omega_A - 3,
467 : * so: */
468 3318 : long i = h->index0_FB + 2*(h->omega_A) - 4;
469 : double l2_target_pA;
470 3318 : mpqs_FB_entry_t *FB = h->FB;
471 :
472 3318 : h->l2_target_A = (h->l2sqrtkN - h->l2M - MPQS_A_FUDGE);
473 3318 : l2_target_pA = h->l2_target_A / h->omega_A;
474 :
475 : /* find the sweet spot, normally shouldn't take long */
476 41074 : while (FB[i].fbe_p && FB[i].fbe_flogp <= l2_target_pA) i++;
477 :
478 : /* check whether this hasn't walked off the top end... */
479 : /* The following should actually NEVER happen. */
480 3318 : if (i > h->size_of_FB - 3)
481 : { /* this isn't going to work at all. */
482 0 : pari_warn(warner,
483 : "MPQS: sizing out of tune, FB too small or\n\tway too few primes in A");
484 0 : return 0;
485 : }
486 3318 : h->index2_FB = i - 1; return 1;
487 : /* assert: index0_FB + (omega_A - 3) [the lowest FB subscript used in primes
488 : * for A] + (omega_A - 2) <= index2_FB [the subscript from which the choice
489 : * of primes for A starts, putting omega_A - 1 of them at or below index2_FB,
490 : * and the last and largest one above, cf. mpqs_si_choose_primes]. Moreover,
491 : * index2_FB indicates the last prime below the ideal size, unless (when kN
492 : * is tiny) the ideal size was too small to use. */
493 : }
494 :
495 : /*********************************************************************/
496 : /** SELF-INITIALIZATION **/
497 : /*********************************************************************/
498 :
499 : #ifdef MPQS_DEBUG
500 : /* Debug-only helper routine: check correctness of the root z mod p_i
501 : * by evaluating A * z^2 + B * z + C mod p_i (which should be 0). */
502 : static void
503 : check_root(mpqs_handle_t *h, GEN mC, long p, long start)
504 : {
505 : pari_sp av = avma;
506 : long z = start - ((long)(h->M) % p);
507 : if (umodiu(subii(mulsi(z, addii(h->B, mulsi(z, h->A))), mC), p))
508 : {
509 : err_printf("MPQS: p = %ld\n", p);
510 : err_printf("MPQS: A = %Ps\n", h->A);
511 : err_printf("MPQS: B = %Ps\n", h->B);
512 : err_printf("MPQS: C = %Ps\n", negi(mC));
513 : err_printf("MPQS: z = %ld\n", z);
514 : pari_err_BUG("MPQS: self_init: found wrong polynomial");
515 : }
516 : set_avma(av);
517 : }
518 : #endif
519 :
520 : /* Increment *x > 0 to a larger value which has the same number of 1s in its
521 : * binary representation. Wraparound can be detected by the caller as long as
522 : * we keep total_no_of_primes_for_A strictly less than BITS_IN_LONG.
523 : *
524 : * Changed switch to increment *x in all cases to the next larger number
525 : * which (a) has the same count of 1 bits and (b) does not arise from the
526 : * old value by moving a single 1 bit one position to the left (which was
527 : * undesirable for the sieve). --GN based on discussion with TP */
528 : INLINE void
529 9337 : mpqs_increment(mpqs_uint32_t *x)
530 : {
531 9337 : mpqs_uint32_t r1_mask, r01_mask, slider=1UL;
532 :
533 9337 : switch (*x & 0x1F)
534 : { /* 32-way computed jump handles 22 out of 32 cases */
535 106 : case 29:
536 106 : (*x)++; break; /* shifts a single bit, but we postprocess this case */
537 0 : case 26:
538 0 : (*x) += 2; break; /* again */
539 6282 : case 1: case 3: case 6: case 9: case 11:
540 : case 17: case 19: case 22: case 25: case 27:
541 6282 : (*x) += 3; return;
542 105 : case 20:
543 105 : (*x) += 4; break; /* again */
544 287 : case 5: case 12: case 14: case 21:
545 287 : (*x) += 5; return;
546 1538 : case 2: case 7: case 13: case 18: case 23:
547 1538 : (*x) += 6; return;
548 0 : case 10:
549 0 : (*x) += 7; return;
550 0 : case 8:
551 0 : (*x) += 8; break; /* and again */
552 310 : case 4: case 15:
553 310 : (*x) += 12; return;
554 709 : default: /* 0, 16, 24, 28, 30, 31 */
555 : /* isolate rightmost 1 */
556 709 : r1_mask = ((*x ^ (*x - 1)) + 1) >> 1;
557 : /* isolate rightmost 1 which has a 0 to its left */
558 709 : r01_mask = ((*x ^ (*x + r1_mask)) + r1_mask) >> 2;
559 : /* simple cases. Both of these shift a single bit one position to the
560 : left, and will need postprocessing */
561 709 : if (r1_mask == r01_mask) { *x += r1_mask; break; }
562 688 : if (r1_mask == 1) { *x += r01_mask; break; }
563 : /* General case: add r01_mask, kill off as many 1 bits as possible to its
564 : * right while at the same time filling in 1 bits from the LSB. */
565 557 : if (r1_mask == 2) { *x += (r01_mask>>1) + 1; return; }
566 895 : while (r01_mask > r1_mask && slider < r1_mask)
567 : {
568 592 : r01_mask >>= 1; slider <<= 1;
569 : }
570 303 : *x += r01_mask + slider - 1;
571 303 : return;
572 : }
573 : /* post-process cases which couldn't be finalized above */
574 363 : r1_mask = ((*x ^ (*x - 1)) + 1) >> 1;
575 363 : r01_mask = ((*x ^ (*x + r1_mask)) + r1_mask) >> 2;
576 363 : if (r1_mask == r01_mask) { *x += r1_mask; return; }
577 356 : if (r1_mask == 1) { *x += r01_mask; return; }
578 225 : if (r1_mask == 2) { *x += (r01_mask>>1) + 1; return; }
579 259 : while (r01_mask > r1_mask && slider < r1_mask)
580 : {
581 140 : r01_mask >>= 1; slider <<= 1;
582 : }
583 119 : *x += r01_mask + slider - 1;
584 : }
585 :
586 : /* self-init (1): advancing the bit pattern, and choice of primes for A.
587 : * On first call, h->bin_index = 0. On later occasions, we need to begin
588 : * by clearing the MPQS_FBE_DIVIDES_A bit in the fbe_flags of the former
589 : * prime factors of A (use per_A_pr to find them). Upon successful return, that
590 : * array will have been filled in, and the flag bits will have been turned on
591 : * again in the right places.
592 : * Return 1 when all is fine and 0 when we found we'd be using more bits to
593 : * the left in bin_index than we have matching primes in the FB. In the latter
594 : * case, bin_index will be zeroed out, index2_FB will be incremented by 2,
595 : * index2_moved will be turned on; the caller, after checking that index2_FB
596 : * has not become too large, should just call us again, which then succeeds:
597 : * we'll start again with a right-justified sequence of 1 bits in bin_index,
598 : * now interpreted as selecting primes relative to the new index2_FB. */
599 : INLINE int
600 12725 : mpqs_si_choose_primes(mpqs_handle_t *h, GEN missing_primes)
601 : {
602 12725 : mpqs_FB_entry_t *FB = h->FB;
603 12725 : mpqs_per_A_prime_t *per_A_pr = h->per_A_pr;
604 12725 : double l2_last_p = h->l2_target_A;
605 12725 : mpqs_int32_t omega_A = h->omega_A;
606 : int i, j, v2, prev_last_p_idx;
607 12725 : int room = h->index2_FB - h->index0_FB - omega_A + 4;
608 : /* The notion of room here (cf mpqs_locate_A_range() above) is the number
609 : * of primes at or below index2_FB which are eligible for A. We need
610 : * >= omega_A - 1 of them, and it is guaranteed by mpqs_locate_A_range() that
611 : * this many are available: the lowest FB slot used for A is never less than
612 : * index0_FB + omega_A - 3. When omega_A = 3 (very small kN), we allow
613 : * ourselves to reach all the way down to index0_FB; otherwise, we keep away
614 : * from it by at least one position. For omega_A >= 4 this avoids situations
615 : * where the selection of the smaller primes here has advanced to a lot of
616 : * very small ones, and the single last larger one has soared away to bump
617 : * into the top end of the FB. */
618 : mpqs_uint32_t room_mask;
619 : mpqs_int32_t p;
620 : ulong bits;
621 :
622 : /* XXX also clear the index_j field here? */
623 12725 : if (h->bin_index == 0)
624 : { /* first time here, or after increasing index2_FB, initialize to a pattern
625 : * of omega_A - 1 consecutive 1 bits. Caller has ensured that there are
626 : * enough primes for this in the FB below index2_FB. */
627 3388 : h->bin_index = (1UL << (omega_A - 1)) - 1;
628 3388 : prev_last_p_idx = 0;
629 : }
630 : else
631 : { /* clear out old flags */
632 47229 : for (i = 0; i < omega_A; i++) MPQS_FLG(i) &= ~MPQS_FBE_DIVIDES_A;
633 9337 : prev_last_p_idx = MPQS_I(omega_A-1);
634 :
635 9337 : if (room > 30) room = 30;
636 9337 : room_mask = ~((1UL << room) - 1);
637 :
638 : /* bump bin_index to next acceptable value. If index2_moved is off, call
639 : * mpqs_increment() once; otherwise, repeat until there's something in the
640 : * least significant 2 bits - to ensure that we never re-use an A which
641 : * we'd used before increasing index2_FB - but also stop if something shows
642 : * up in the forbidden bits on the left where we'd run out of bits or walk
643 : * beyond index0_FB + omega_A - 3. */
644 9337 : mpqs_increment(&h->bin_index);
645 9337 : if (h->index2_moved)
646 : {
647 38 : while ((h->bin_index & (room_mask | 0x3)) == 0)
648 0 : mpqs_increment(&h->bin_index);
649 : }
650 : /* did we fall off the edge on the left? */
651 9337 : if ((h->bin_index & room_mask) != 0)
652 : { /* Yes. Turn on the index2_moved flag in the handle */
653 70 : h->index2_FB += 2; /* caller to check this isn't too large!!! */
654 70 : h->index2_moved = 1;
655 70 : h->bin_index = 0;
656 70 : if (MPQS_DEBUGLEVEL >= 5)
657 0 : err_printf("MPQS: wrapping, more primes for A now chosen near FB[%ld] = %ld\n",
658 0 : (long)h->index2_FB,
659 0 : (long)FB[h->index2_FB].fbe_p);
660 70 : return 0; /* back off - caller should retry */
661 : }
662 : }
663 : /* assert: we aren't occupying any of the room_mask bits now, and if
664 : * index2_moved had already been on, at least one of the two LSBs is on */
665 12655 : bits = h->bin_index;
666 12655 : if (MPQS_DEBUGLEVEL >= 6)
667 0 : err_printf("MPQS: new bit pattern for primes for A: 0x%lX\n", bits);
668 :
669 : /* map bits to FB subscripts, counting downward with bit 0 corresponding
670 : * to index2_FB, and accumulate logarithms against l2_last_p */
671 12655 : j = h->index2_FB;
672 12655 : v2 = vals((long)bits);
673 12655 : if (v2) { j -= v2; bits >>= v2; }
674 36047 : for (i = omega_A - 2; i >= 0; i--)
675 : {
676 36047 : MPQS_I(i) = j;
677 36047 : l2_last_p -= MPQS_LP(i);
678 36047 : if (MPQS_FLG(i) & MPQS_FBE_DIVIDES_N) return 0; /*Retry*/
679 35900 : MPQS_FLG(i) |= MPQS_FBE_DIVIDES_A;
680 35900 : bits &= ~1UL;
681 35900 : if (!bits) break; /* i = 0 */
682 23392 : v2 = vals((long)bits); /* > 0 */
683 23392 : bits >>= v2; j -= v2;
684 : }
685 12508 : if (missing_primes)
686 : {
687 231 : long lm = lg(missing_primes)-1;
688 231 : j = missing_primes[1+(h->bin_index%lm)];
689 231 : j += h->index0_FB-1;
690 231 : if (h->two_is_norm) j--;
691 231 : if (FB[j].fbe_flags & MPQS_FBE_DIVIDES_A) return 0; /* Retry */
692 231 : p = FB[j].fbe_p;
693 : } else
694 : {
695 : /* Choose the larger prime. Note we keep index2_FB <= size_of_FB - 3 */
696 157066 : for (j = h->index2_FB + 1; (p = FB[j].fbe_p); j++)
697 156961 : if (!(FB[j].fbe_flags & MPQS_FBE_DIVIDES_N) && FB[j].fbe_flogp > l2_last_p)
698 12172 : break;
699 : /* The following trick avoids generating a large proportion of duplicate
700 : * relations when the last prime falls into an area where there are large
701 : * gaps from one FB prime to the next, and would otherwise often be repeated
702 : * (so that successive A's would wind up too similar to each other). While
703 : * this trick isn't perfect, it gets rid of a major part of the potential
704 : * duplication. */
705 12277 : if (p && j == prev_last_p_idx) { j++; p = FB[j].fbe_p; }
706 : }
707 12508 : MPQS_I(omega_A - 1) = p? j: h->size_of_FB + 1;
708 12508 : if (MPQS_FLG(omega_A - 1) & MPQS_FBE_DIVIDES_N) return 0; /*Retry*/
709 12508 : MPQS_FLG(omega_A - 1) |= MPQS_FBE_DIVIDES_A;
710 :
711 12508 : if (MPQS_DEBUGLEVEL >= 6)
712 : {
713 0 : err_printf("MPQS: chose primes for A");
714 0 : for (i = 0; i < omega_A; i++)
715 0 : err_printf(" FB[%ld]=%ld%s", (long)MPQS_I(i), (long)MPQS_AP(i),
716 0 : i < omega_A - 1 ? "," : "\n");
717 : }
718 12508 : return 1;
719 : }
720 :
721 : /* There are 4 parts to self-initialization, exercised at different times:
722 : * - choosing a new sqfree coef. A (selecting its prime factors, FB bookkeeping)
723 : * - doing the actual computations attached to a new A
724 : * - choosing a new B keeping the same A (much simpler)
725 : * - a small common bit that needs to happen in both cases.
726 : * As to the first item, the scheme works as follows: pick omega_A - 1 prime
727 : * factors for A below the index2_FB point which marks their ideal size, and
728 : * one prime above this point, choosing the latter so log2(A) ~ l2_target_A.
729 : * Lower prime factors are chosen using bit patterns of constant weight,
730 : * gradually moving away from index2_FB towards smaller FB subscripts.
731 : * If this bumps into index0_FB (for very small input), back up by increasing
732 : * index2_FB by two, and from then on choosing only bit patterns with either or
733 : * both of their bottom bits set, so at least one of the omega_A - 1 smaller
734 : * prime factor will be beyond the original index2_FB point. In this way we
735 : * avoid re-using the same A. (The choice of the upper "flyer" prime is
736 : * constrained by the size of the FB, which normally should never a problem.
737 : * For tiny kN, we might have to live with a nonoptimal choice.)
738 : *
739 : * Mathematically, we solve a quadratic (over F_p for each prime p in the FB
740 : * which doesn't divide A), a linear equation for each prime p | A, and
741 : * precompute differences between roots mod p so we can adjust the roots
742 : * quickly when we change B. See Thomas Sosnowski's Diplomarbeit. */
743 : /* compute coefficients of sieving polynomial for self initializing variant.
744 : * Coefficients A and B are set (preallocated GENs) and several tables are
745 : * updated. */
746 : static int
747 144729 : mpqs_self_init(mpqs_handle_t *h, GEN missing_primes)
748 : {
749 144729 : const ulong size_of_FB = h->size_of_FB + 1;
750 144729 : mpqs_FB_entry_t *FB = h->FB;
751 144729 : mpqs_inv_A_H_t *inv_A_H = h->inv_A_H;
752 144729 : const pari_sp av = avma;
753 144729 : GEN p1, A = h->A, B = h->B, mC;
754 144729 : mpqs_per_A_prime_t *per_A_pr = h->per_A_pr;
755 : long i, j;
756 :
757 : #ifdef MPQS_DEBUG
758 : err_printf("MPQS DEBUG: enter self init, avma = 0x%lX\n", (ulong)avma);
759 : #endif
760 144729 : if (++h->index_j == (mpqs_uint32_t)h->no_B)
761 : { /* all the B's have been used, choose new A; this is indicated by setting
762 : * index_j to 0 */
763 8840 : h->index_j = 0;
764 8840 : h->index_i++; /* count finished A's */
765 : }
766 :
767 144729 : if (missing_primes || h->index_j == 0)
768 12508 : { /* compute first polynomial with new A */
769 : GEN a, b, A2;
770 : int err;
771 12725 : while((err=mpqs_si_choose_primes(h, missing_primes))<=0)
772 : {
773 : /* Ran out of room towards small primes, and index2_FB was raised. */
774 217 : if (err < 0) return 0;
775 217 : if (size_of_FB - h->index2_FB < 4) return 0; /* Fail */
776 : }
777 : /* bin_index and per_A_pr now populated with consistent values */
778 :
779 : /* compute A = product of omega_A primes given by bin_index */
780 12508 : a = b = NULL;
781 60650 : for (i = 0; i < h->omega_A; i++)
782 : {
783 48142 : ulong p = MPQS_AP(i);
784 48142 : a = a? muliu(a, p): utoipos(p);
785 : }
786 12508 : affii(a, A);
787 : /* Compute H[i], 0 <= i < omega_A. Also compute the initial
788 : * B = sum(v_i*H[i]), by taking all v_i = +1
789 : * TODO: following needs to be changed later for segmented FB and sieve
790 : * interval, where we'll want to precompute several B's. */
791 60650 : for (i = 0; i < h->omega_A; i++)
792 : {
793 48142 : ulong p = MPQS_AP(i);
794 48142 : GEN t = divis(A, (long)p);
795 48142 : t = remii(mulii(t, muluu(Fl_inv(umodiu(t, p), p), MPQS_SQRT(i))), A);
796 48142 : affii(t, MPQS_H(i));
797 48142 : b = b? addii(b, t): t;
798 : }
799 12508 : if (mod2(h->kN))
800 : {
801 : /* ensure b = 1 mod 4 */
802 12193 : if (mod2(b) == 0)
803 5891 : b = addii(b, mului(mod4(A), A)); /* B += (A % 4) * A; */
804 : }
805 : else
806 : {
807 : /* ensure b = 0 mod 2 */
808 315 : if (mod2(b) != 0)
809 210 : b = addii(b, A);
810 : }
811 12508 : affii(b, B); set_avma(av);
812 :
813 12508 : A2 = shifti(A, 1);
814 : /* compute the roots z1, z2, of the polynomial Q(x) mod p_j and
815 : * initialize start1[i] with the first value p_i | Q(z1 + i p_j)
816 : * initialize start2[i] with the first value p_i | Q(z2 + i p_j)
817 : * The following loop does The Right Thing for primes dividing k (where
818 : * sqrt_kN is 0 mod p). Primes dividing A are skipped here, and are handled
819 : * further down in the common part of SI. */
820 4258352 : for (j = 3; (ulong)j <= size_of_FB; j++)
821 : {
822 : ulong s, mb, t, m, p, iA2, iA;
823 4245844 : if (FB[j].fbe_flags & MPQS_FBE_DIVIDES_A) continue;
824 4197702 : p = (ulong)FB[j].fbe_p;
825 4197702 : m = h->M % p;
826 4197702 : iA2 = Fl_inv(umodiu(A2, p), p); /* = 1/(2*A) mod p_j */
827 4197702 : iA = iA2 << 1; if (iA > p) iA -= p;
828 4197702 : mb = umodiu(B, p); if (mb) mb = p - mb; /* mb = -B mod p */
829 4197702 : s = FB[j].fbe_sqrt_kN;
830 4197702 : t = Fl_add(m, Fl_mul(Fl_sub(mb, s, p), iA2, p), p);
831 4197702 : FB[j].fbe_start1 = (mpqs_int32_t)t;
832 4197702 : FB[j].fbe_start2 = (mpqs_int32_t)Fl_add(t, Fl_mul(s, iA, p), p);
833 25148429 : for (i = 0; i < h->omega_A - 1; i++)
834 : {
835 20950727 : ulong h = umodiu(MPQS_H(i), p);
836 20950727 : MPQS_INV_A_H(i,j) = Fl_mul(h, iA, p); /* 1/A * H[i] mod p_j */
837 : }
838 : }
839 : }
840 : else
841 : { /* no "real" computation -- use recursive formula */
842 : /* The following exploits that B is the sum of omega_A terms +-H[i]. Each
843 : * time we switch to a new B, we choose a new pattern of signs; the
844 : * precomputation of the inv_A_H array allows us to change the two
845 : * arithmetic progressions equally fast. The choice of sign patterns does
846 : * not follow the bit pattern of the ordinal number of B in the current
847 : * cohort; rather, we use a Gray code, changing only one sign each time.
848 : * When the i-th rightmost bit of the new ordinal number index_j of B is 1,
849 : * the sign of H[i] is changed; the next bit to the left tells us whether
850 : * we should be adding or subtracting the difference term. We never need to
851 : * change the sign of H[omega_A-1] (the topmost one), because that would
852 : * just give us the same sieve items Q(x) again with the opposite sign
853 : * of x. This is why we only precomputed inv_A_H up to i = omega_A - 2. */
854 132221 : ulong p, v2 = vals(h->index_j); /* new starting positions for sieving */
855 132221 : j = h->index_j >> v2;
856 132221 : p1 = shifti(MPQS_H(v2), 1);
857 132221 : if (j & 2)
858 : { /* j = 3 mod 4 */
859 86671824 : for (j = 3; (ulong)j <= size_of_FB; j++)
860 : {
861 86612058 : if (FB[j].fbe_flags & MPQS_FBE_DIVIDES_A) continue;
862 86252762 : p = (ulong)FB[j].fbe_p;
863 86252762 : FB[j].fbe_start1 = Fl_sub(FB[j].fbe_start1, MPQS_INV_A_H(v2,j), p);
864 86252762 : FB[j].fbe_start2 = Fl_sub(FB[j].fbe_start2, MPQS_INV_A_H(v2,j), p);
865 : }
866 59766 : p1 = addii(B, p1);
867 : }
868 : else
869 : { /* j = 1 mod 4 */
870 91074113 : for (j = 3; (ulong)j <= size_of_FB; j++)
871 : {
872 91001658 : if (FB[j].fbe_flags & MPQS_FBE_DIVIDES_A) continue;
873 90593038 : p = (ulong)FB[j].fbe_p;
874 90593038 : FB[j].fbe_start1 = Fl_add(FB[j].fbe_start1, MPQS_INV_A_H(v2,j), p);
875 90593038 : FB[j].fbe_start2 = Fl_add(FB[j].fbe_start2, MPQS_INV_A_H(v2,j), p);
876 : }
877 72455 : p1 = subii(B, p1);
878 : }
879 132221 : affii(p1, B);
880 : }
881 :
882 : /* p=2 is a special case. start1[2], start2[2] are never looked at,
883 : * so don't bother setting them. */
884 :
885 : /* compute zeros of polynomials that have only one zero mod p since p | A */
886 144729 : mC = diviiexact(subii(h->kN, sqri(B)), shifti(A, 2)); /* coefficient -C */
887 960787 : for (i = 0; i < h->omega_A; i++)
888 : {
889 816058 : ulong p = MPQS_AP(i), s = h->M + Fl_div(umodiu(mC, p), umodiu(B, p), p);
890 816058 : FB[MPQS_I(i)].fbe_start1 = FB[MPQS_I(i)].fbe_start2 = (mpqs_int32_t)(s % p);
891 : }
892 : #ifdef MPQS_DEBUG
893 : for (j = 3; j <= size_of_FB; j++)
894 : {
895 : check_root(h, mC, FB[j].fbe_p, FB[j].fbe_start1);
896 : check_root(h, mC, FB[j].fbe_p, FB[j].fbe_start2);
897 : }
898 : #endif
899 144729 : if (MPQS_DEBUGLEVEL >= 6)
900 0 : err_printf("MPQS: chose Q_%ld(x) = %Ps x^2 %c %Ps x + C\n",
901 0 : (long) h->index_j, h->A,
902 0 : signe(h->B) < 0? '-': '+', absi_shallow(h->B));
903 144729 : set_avma(av);
904 : #ifdef MPQS_DEBUG
905 : err_printf("MPQS DEBUG: leave self init, avma = 0x%lX\n", (ulong)avma);
906 : #endif
907 144729 : return 1;
908 : }
909 :
910 : /*********************************************************************/
911 : /** THE SIEVE **/
912 : /*********************************************************************/
913 : /* p4 = 4*p, logp ~ log(p), B/E point to the beginning/end of a sieve array */
914 : INLINE void
915 820151 : mpqs_sieve_p(unsigned char *B, unsigned char *E, long p4, long p,
916 : unsigned char logp)
917 : {
918 820151 : unsigned char *e = E - p4;
919 : /* Unrolled loop. It might be better to let the compiler worry about this
920 : * kind of optimization, based on its knowledge of whatever useful tricks the
921 : * machine instruction set architecture is offering */
922 19802348 : while (e - B >= 0) /* signed comparison */
923 : {
924 18982197 : (*B) += logp, B += p;
925 18982197 : (*B) += logp, B += p;
926 18982197 : (*B) += logp, B += p;
927 18982197 : (*B) += logp, B += p;
928 : }
929 2798463 : while (E - B >= 0) (*B) += logp, B += p;
930 820151 : }
931 :
932 : INLINE void
933 127064707 : mpqs_sieve_p1(unsigned char *B, unsigned char *E, long s1, long s2,
934 : unsigned char logp)
935 : {
936 569914097 : while (E - B >= 0)
937 : {
938 483157067 : (*B) += logp, B += s1;
939 483157067 : if (E - B < 0) break;
940 442849390 : (*B) += logp, B += s2;
941 : }
942 127064707 : }
943 :
944 : INLINE void
945 53228702 : mpqs_sieve_p2(unsigned char *B, unsigned char *E, long p4, long s1, long s2,
946 : unsigned char logp)
947 : {
948 53228702 : unsigned char *e = E - p4;
949 : /* Unrolled loop. It might be better to let the compiler worry about this
950 : * kind of optimization, based on its knowledge of whatever useful tricks the
951 : * machine instruction set architecture is offering */
952 796182335 : while (e - B >= 0) /* signed comparison */
953 : {
954 742953633 : (*B) += logp, B += s1;
955 742953633 : (*B) += logp, B += s2;
956 742953633 : (*B) += logp, B += s1;
957 742953633 : (*B) += logp, B += s2;
958 742953633 : (*B) += logp, B += s1;
959 742953633 : (*B) += logp, B += s2;
960 742953633 : (*B) += logp, B += s1;
961 742953633 : (*B) += logp, B += s2;
962 : }
963 163418060 : while (E - B >= 0) {(*B) += logp, B += s1; if (E - B < 0) break; (*B) += logp, B += s2;}
964 53228702 : }
965 : static void
966 144729 : mpqs_sieve(mpqs_handle_t *h)
967 : {
968 144729 : long p, l = h->index1_FB;
969 144729 : mpqs_FB_entry_t *FB = &(h->FB[l]);
970 144729 : unsigned char *S = h->sieve_array, *Send = h->sieve_array_end;
971 144729 : long size = h->M << 1, size4 = size >> 3;
972 144729 : memset((void*)S, 0, size * sizeof(unsigned char));
973 54192623 : for ( ; (p = FB->fbe_p) && p <= size4; FB++) /* l++ */
974 : {
975 54047894 : unsigned char logp = FB->fbe_logval;
976 54047894 : long s1 = FB->fbe_start1, s2 = FB->fbe_start2;
977 : /* sieve with FB[l] from start1[l], and from start2[l] if s1 != s2 */
978 54047894 : if (s1 == s2) mpqs_sieve_p(S + s1, Send, p << 2, p, logp);
979 : else
980 : {
981 53228702 : if (s1>s2) lswap(s1,s2)
982 53228702 : mpqs_sieve_p2(S + s1, Send, p << 2, s2-s1,p+s1-s2, logp);
983 : }
984 : }
985 127210395 : for ( ; (p = FB->fbe_p) && p <= size; FB++) /* l++ */
986 : {
987 127065666 : unsigned char logp = FB->fbe_logval;
988 127065666 : long s1 = FB->fbe_start1, s2 = FB->fbe_start2;
989 : /* sieve with FB[l] from start1[l], and from start2[l] if s1 != s2 */
990 127065666 : if (s1 == s2) mpqs_sieve_p(S + s1, Send, p << 2, p, logp);
991 : else
992 : {
993 127064707 : if (s1>s2) lswap(s1,s2)
994 127064707 : mpqs_sieve_p1(S + s1, Send, s2-s1, p+s1-s2, logp);
995 : }
996 : }
997 144729 : for ( ; (p = FB->fbe_p); FB++)
998 : {
999 0 : unsigned char logp = FB->fbe_logval;
1000 0 : long s1 = FB->fbe_start1, s2 = FB->fbe_start2;
1001 0 : if (s1 < size) S[s1] += logp;
1002 0 : if (s2!=s1 && s2 < size) S[s2] += logp;
1003 : }
1004 144729 : }
1005 :
1006 : /* Could use the fact that 4 | M, but let the compiler worry about unrolling. */
1007 : static long
1008 144729 : mpqs_eval_sieve(mpqs_handle_t *h)
1009 : {
1010 144729 : long x = 0, count = 0, M2 = h->M << 1;
1011 144729 : unsigned char t = h->sieve_threshold;
1012 144729 : unsigned char *S = h->sieve_array;
1013 144729 : mpqs_bit_array * U = (mpqs_bit_array *) S;
1014 144729 : long *cand = h->candidates;
1015 144729 : const long sizemask = sizeof(mpqs_mask);
1016 :
1017 : /* Exploiting the sentinel, we don't need to check for x < M2 in the inner
1018 : * while loop; more than makes up for the lack of explicit unrolling. */
1019 10871123 : while (count < MPQS_CANDIDATE_ARRAY_SIZE - 1)
1020 : {
1021 : long j, y;
1022 507452125 : while (!TEST(U[x]&mpqs_mask)) x++;
1023 10871123 : y = x*sizemask;
1024 169298155 : for (j=0; j<sizemask; j++, y++)
1025 : {
1026 158571761 : if (y >= M2)
1027 144729 : { cand[count] = 0; return count; }
1028 158427032 : if (S[y]>=t)
1029 539731 : cand[count++] = y;
1030 : }
1031 10726394 : x++;
1032 : }
1033 0 : cand[count] = 0; return count;
1034 : }
1035 :
1036 : /*********************************************************************/
1037 : /** CONSTRUCTING RELATIONS **/
1038 : /*********************************************************************/
1039 :
1040 : /* only used for debugging */
1041 : static void
1042 0 : split_relp(GEN rel, GEN *prelp, GEN *prelc)
1043 : {
1044 0 : long j, l = lg(rel);
1045 : GEN relp, relc;
1046 0 : *prelp = relp = cgetg(l, t_VECSMALL);
1047 0 : *prelc = relc = cgetg(l, t_VECSMALL);
1048 0 : for (j=1; j<l; j++)
1049 : {
1050 0 : relc[j] = rel[j] >> REL_OFFSET;
1051 0 : relp[j] = rel[j] & REL_MASK;
1052 : }
1053 0 : }
1054 :
1055 : #ifdef MPQS_DEBUG
1056 : static GEN
1057 : mpqs_factorback(mpqs_handle_t *h, GEN relp)
1058 : {
1059 : GEN N = h->N, Q = gen_1;
1060 : long j, l = lg(relp);
1061 : for (j = 1; j < l; j++)
1062 : {
1063 : long e = relp[j] >> REL_OFFSET, i = relp[j] & REL_MASK;
1064 : if (i == 1) Q = Fp_neg(Q,N); /* special case -1 */
1065 : else Q = Fp_mul(Q, Fp_pows(utoipos(h->FB[i].fbe_p), e, N), N);
1066 : }
1067 : return Q;
1068 : }
1069 : static void
1070 : mpqs_check_rel(mpqs_handle_t *h, GEN c, ulong q, long mode)
1071 : {
1072 : pari_sp av = avma;
1073 : GEN Y = rel_Y(c), Qx_2 = remii(sqri(Y), h->N), rhs;
1074 : if (mode == MPQS_MODE_CLASSGROUP)
1075 : {
1076 : if (signe(Y)==0 || q!=1) { set_avma(av); return; }
1077 : q = 4;
1078 : }
1079 : rhs = Fp_mulu(mpqs_factorback(h, rel_p(c)), q, h->N);
1080 : if (!equalii(Qx_2, rhs))
1081 : {
1082 : GEN relpp, relpc;
1083 : split_relp(rel_p(c), &relpp, &relpc);
1084 : err_printf("MPQS: %Ps : %Ps %Ps\n", Y, relpp,relpc);
1085 : err_printf("\tQx_2 = %Ps\n", Qx_2);
1086 : err_printf("\t rhs = %Ps\n", rhs);
1087 : pari_err_BUG(q ? "MPQS: wrong large prime relation found"
1088 : : "MPQS: wrong full relation found");
1089 : }
1090 : PRINT_IF_VERBOSE(q? "\b(;)": "\b(:)");
1091 : set_avma(av);
1092 : }
1093 : #endif
1094 :
1095 : static void
1096 366585 : rel_to_ei(GEN ei, GEN relp)
1097 : {
1098 366585 : long j, l = lg(relp);
1099 5317752 : for (j=1; j<l; j++)
1100 : {
1101 4951167 : long e = relp[j] >> REL_OFFSET, i = relp[j] & REL_MASK;
1102 4951167 : ei[i] += e;
1103 : }
1104 366585 : }
1105 :
1106 : static void
1107 0 : rel_add_ei(mpqs_handle_t *h, GEN ei, GEN relp, GEN b)
1108 : {
1109 0 : long j, l = lg(relp);
1110 0 : for (j = 1; j < l; j++)
1111 : {
1112 0 : long e = relp[j] >> REL_OFFSET, i = relp[j] & REL_MASK;
1113 0 : ulong p = h->FB[i].fbe_p;
1114 0 : ei[i] += umodiu(b, p<<1) > p ? -e :e;
1115 : }
1116 0 : }
1117 :
1118 : static void
1119 0 : rel_sub_ei(mpqs_handle_t *h, GEN ei, GEN relp, GEN b)
1120 : {
1121 0 : long j, l = lg(relp);
1122 0 : for (j = 1; j < l; j++)
1123 : {
1124 0 : long e = relp[j] >> REL_OFFSET, i = relp[j] & REL_MASK;
1125 0 : ulong p = h->FB[i].fbe_p;
1126 0 : ei[i] -= umodiu(b, p<<1) > p ? -e :e;
1127 : }
1128 0 : }
1129 :
1130 : static void
1131 7678988 : mpqs_add_factor(GEN relp, long *i, ulong ei, ulong pi)
1132 7678988 : { relp[++*i] = pi | (ei << REL_OFFSET); }
1133 :
1134 : static int
1135 12720 : zv_is_even(GEN V)
1136 : {
1137 12720 : long i, l = lg(V);
1138 1098145 : for (i=1; i<l; i++)
1139 1097559 : if (odd(uel(V,i))) return 0;
1140 586 : return 1;
1141 : }
1142 :
1143 : static GEN
1144 12720 : combine_large_primes(mpqs_handle_t *h, ulong q, GEN rel1, GEN rel2, int mode)
1145 : {
1146 12720 : GEN new_Y, new_Y1, Y1 = rel_Y(rel1), Y2 = rel_Y(rel2);
1147 12720 : long l, lei = h->size_of_FB + 1, nb = 0;
1148 : GEN ei, relp, iq;
1149 :
1150 12720 : if (!invmod(utoi(q), h->N, &iq)) return equalii(iq, h->N)? NULL: iq; /* rare */
1151 12720 : ei = zero_zv(lei);
1152 12720 : if (mode == MPQS_MODE_CLASSGROUP)
1153 : {
1154 0 : rel_add_ei(h, ei, rel_p(rel1), Y1);
1155 0 : if (umodiu(Y1, q) == umodiu(Y2,q))
1156 0 : rel_sub_ei(h, ei, rel_p(rel2), Y2);
1157 : else
1158 0 : rel_add_ei(h, ei, rel_p(rel2), Y2);
1159 0 : new_Y = gen_0;
1160 : }
1161 : else
1162 : {
1163 12720 : rel_to_ei(ei, rel_p(rel1));
1164 12720 : rel_to_ei(ei, rel_p(rel2));
1165 12720 : if (zv_is_even(ei)) return NULL;
1166 12134 : new_Y = modii(mulii(mulii(Y1, Y2), iq), h->N);
1167 12134 : new_Y1 = subii(h->N, new_Y);
1168 12134 : if (abscmpii(new_Y1, new_Y) < 0) new_Y = new_Y1;
1169 : }
1170 12134 : relp = cgetg(MAX_PE_PAIR+1,t_VECSMALL);
1171 12134 : if (odd(ei[1])) mpqs_add_factor(relp, &nb, 1, 1);
1172 20934649 : for (l = 2; l <= lei; l++)
1173 20922515 : if (ei[l]) mpqs_add_factor(relp, &nb, ei[l],l);
1174 12134 : setlg(relp, nb+1);
1175 12134 : if (DEBUGLEVEL >= 6)
1176 : {
1177 : GEN relpp, relpc, rel1p, rel1c, rel2p, rel2c;
1178 0 : split_relp(relp,&relpp,&relpc);
1179 0 : split_relp(rel1,&rel1p,&rel1c);
1180 0 : split_relp(rel2,&rel2p,&rel2c);
1181 0 : err_printf("MPQS: combining\n");
1182 0 : err_printf(" {%Ps @ %Ps : %Ps}\n", q, Y1, rel1p, rel1c);
1183 0 : err_printf(" * {%Ps @ %Ps : %Ps}\n", q, Y2, rel2p, rel2c);
1184 0 : err_printf(" == {%Ps, %Ps}\n", relpp, relpc);
1185 : }
1186 : #ifdef MPQS_DEBUG
1187 : if (mode == MPQS_MODE_FACTOR)
1188 : {
1189 : pari_sp av1 = avma;
1190 : if (!equalii(modii(sqri(new_Y), h->N), mpqs_factorback(h, relp)))
1191 : pari_err_BUG("MPQS: combined large prime relation is false");
1192 : set_avma(av1);
1193 : }
1194 : #endif
1195 12134 : return mkvec2(new_Y, relp);
1196 : }
1197 :
1198 : /* nc candidates */
1199 : static GEN
1200 135046 : mpqs_eval_cand(mpqs_handle_t *h, long nc, hashtable *frel, hashtable *lprel, int mode)
1201 : {
1202 135046 : mpqs_FB_entry_t *FB = h->FB;
1203 135046 : GEN A = h->A, B = h->B;
1204 135046 : long *relaprimes = h->relaprimes, *candidates = h->candidates;
1205 : long pi, i;
1206 : int pii;
1207 135046 : mpqs_per_A_prime_t *per_A_pr = h->per_A_pr;
1208 135046 : int two_bad = h->two_is_bad;
1209 :
1210 674777 : for (i = 0; i < nc; i++)
1211 : {
1212 539731 : pari_sp btop = avma;
1213 539731 : GEN Qx, Qx_part, Y, relp = cgetg(MAX_PE_PAIR+1,t_VECSMALL);
1214 539731 : long powers_of_2, p, x = candidates[i], nb = 0;
1215 539731 : int relaprpos = 0;
1216 : long k;
1217 539731 : unsigned char thr = h->sieve_array[x];
1218 : /* Y = 2*A*x + B, Qx = Y^2/(4*A) = Q(x) */
1219 539731 : Y = addii(mulis(A, 2 * (x - h->M)), B);
1220 539731 : Qx = subii(sqri(Y), h->kN); /* != 0 since N not a square and (N,k) = 1 */
1221 539731 : if (signe(Qx) < 0)
1222 : {
1223 283810 : setabssign(Qx);
1224 283810 : mpqs_add_factor(relp, &nb, 1, 1); /* i = 1, ei = 1, pi */
1225 : }
1226 : /* Qx > 0, divide by powers of 2; we're really dealing with 4*A*Q(x), so we
1227 : * always have at least 2^2 here, and at least 2^3 when kN = 1 mod 4 */
1228 539731 : powers_of_2 = two_bad ? 2 : vali(Qx);
1229 539731 : Qx = shifti(Qx, -powers_of_2);
1230 539731 : if (mode == MPQS_MODE_CLASSGROUP)
1231 : {
1232 11025 : if (powers_of_2!=2)
1233 5789 : mpqs_add_factor(relp, &nb, powers_of_2 - 2, 2);
1234 : }
1235 : else
1236 528706 : mpqs_add_factor(relp, &nb, powers_of_2, 2); /* i = 1, ei = 1, pi */
1237 : /* When N is small, it may happen that N | Qx outright. In any case, when
1238 : * no extensive prior trial division / Rho / ECM was attempted, gcd(Qx,N)
1239 : * may turn out to be a nontrivial factor of N (not in FB or we'd have
1240 : * found it already, but possibly smaller than the large prime bound). This
1241 : * is too rare to check for here in the inner loop, but it will be caught
1242 : * if such an LP relation is ever combined with another. */
1243 :
1244 : /* Pass 1 over odd primes in FB: pick up all possible divisors of Qx
1245 : * including those sitting in k or in A, and remember them in relaprimes.
1246 : * Do not yet worry about possible repeated factors, these will be found in
1247 : * the Pass 2. Pass 1 recognizes divisors of A by their corresponding flags
1248 : * bit in the FB entry. (Divisors of k are ignored at this stage.)
1249 : * We construct a preliminary table of FB subscripts and "exponents" of FB
1250 : * primes which divide Qx. (We store subscripts, not the primes themselves.)
1251 : * We distinguish three cases:
1252 : * 0) prime in A which does not divide Qx/A,
1253 : * 1) prime not in A which divides Qx/A,
1254 : * 2) prime in A which divides Qx/A.
1255 : * Cases 1 and 2 need checking for repeated factors, kind 0 doesn't.
1256 : * Cases 0 and 1 contribute 1 to the exponent in the relation, case 2
1257 : * contributes 2.
1258 : * Factors in common with k are simpler: if they occur, they occur
1259 : * exactly to the first power, and this makes no difference in Pass 1,
1260 : * so they behave just like every normal odd FB prime. */
1261 2697715 : for (Qx_part = A, pi = 3; pi< h->index1_FB; pi++)
1262 : {
1263 2157984 : ulong p = FB[pi].fbe_p;
1264 2157984 : long xp = x % p;
1265 : /* Here we used that MPQS_FBE_DIVIDES_A = 1. */
1266 :
1267 2157984 : if (xp == FB[pi].fbe_start1 || xp == FB[pi].fbe_start2)
1268 : { /* p divides Q(x)/A and possibly A, case 2 or 3 */
1269 543332 : ulong ei = FB[pi].fbe_flags & MPQS_FBE_DIVIDES_A;
1270 543332 : relaprimes[relaprpos++] = pi;
1271 543332 : relaprimes[relaprpos++] = 1 + ei;
1272 543332 : Qx_part = muliu(Qx_part, p);
1273 : }
1274 : }
1275 316182697 : for ( ; thr && (p = FB[pi].fbe_p); pi++)
1276 : {
1277 315642966 : long xp = x % p;
1278 : /* Here we used that MPQS_FBE_DIVIDES_A = 1. */
1279 :
1280 315642966 : if (xp == FB[pi].fbe_start1 || xp == FB[pi].fbe_start2)
1281 : { /* p divides Q(x)/A and possibly A, case 2 or 3 */
1282 3454735 : ulong ei = FB[pi].fbe_flags & MPQS_FBE_DIVIDES_A;
1283 3454735 : relaprimes[relaprpos++] = pi;
1284 3454735 : relaprimes[relaprpos++] = 1 + ei;
1285 3454735 : Qx_part = muliu(Qx_part, p);
1286 3454735 : thr -= FB[pi].fbe_logval;
1287 : }
1288 : }
1289 3175083 : for (k = 0; k< h->omega_A; k++)
1290 : {
1291 2635352 : long pi = MPQS_I(k);
1292 2635352 : ulong p = FB[pi].fbe_p;
1293 2635352 : long xp = x % p;
1294 2635352 : if (!(xp == FB[pi].fbe_start1 || xp == FB[pi].fbe_start2))
1295 : { /* p divides A but does not divide Q(x)/A, case 1 */
1296 2556307 : relaprimes[relaprpos++] = pi;
1297 2556307 : relaprimes[relaprpos++] = 0;
1298 : }
1299 : }
1300 : /* We have accumulated the known factors of Qx except for possible repeated
1301 : * factors and for possible large primes. Divide off what we have.
1302 : * This is faster than dividing off A and each prime separately. */
1303 539731 : Qx = diviiexact(Qx, Qx_part);
1304 :
1305 : #ifdef MPQS_DEBUG
1306 : err_printf("MPQS DEBUG: eval loop 3, avma = 0x%lX\n", (ulong)avma);
1307 : #endif
1308 : /* Pass 2: deal with repeated factors and store tentative relation. At this
1309 : * point, the only primes which can occur again in the adjusted Qx are
1310 : * those in relaprimes which are followed by 1 or 2. We must pick up those
1311 : * followed by a 0, too. */
1312 : PRINT_IF_VERBOSE("a");
1313 7094105 : for (pii = 0; pii < relaprpos; pii += 2)
1314 : {
1315 6554374 : ulong r, ei = relaprimes[pii+1];
1316 : GEN q;
1317 :
1318 6554374 : pi = relaprimes[pii];
1319 : /* p | k (identified by its index before index0_FB)* or p | A (ei = 0) */
1320 6554374 : if ((mpqs_int32_t)pi < h->index0_FB || ei == 0)
1321 : {
1322 2614441 : mpqs_add_factor(relp, &nb, 1, pi);
1323 2614441 : continue;
1324 : }
1325 3939933 : p = FB[pi].fbe_p;
1326 : /* p might still divide the current adjusted Qx. Try it. */
1327 3939933 : switch(cmpiu(Qx, p))
1328 : {
1329 89637 : case 0: ei++; Qx = gen_1; break;
1330 1254227 : case 1:
1331 1254227 : q = absdiviu_rem(Qx, p, &r);
1332 1341368 : while (r == 0) { ei++; Qx = q; q = absdiviu_rem(Qx, p, &r); }
1333 1254227 : break;
1334 : }
1335 3939933 : mpqs_add_factor(relp, &nb, ei, pi);
1336 : }
1337 :
1338 : #ifdef MPQS_DEBUG
1339 : err_printf("MPQS DEBUG: eval loop 4, avma = 0x%lX\n", (ulong)avma);
1340 : #endif
1341 : PRINT_IF_VERBOSE("\bb");
1342 539731 : setlg(relp, nb+1);
1343 539731 : if (is_pm1(Qx))
1344 : {
1345 381083 : GEN rel = gerepilecopy(btop, mkvec2(absi_shallow(Y), relp));
1346 : #ifdef MPQS_DEBUG
1347 : mpqs_check_rel(h, rel, 1, mode);
1348 : #endif
1349 381083 : frel_add(frel, rel);
1350 : }
1351 158648 : else if (cmpiu(Qx, h->lp_bound) <= 0 && (mode!=MPQS_MODE_CLASSGROUP
1352 : #ifdef CLASSGROUP_LARGE_PRIME
1353 : /* primes dividing the index are excluded from FB, so they can still divide Qx.
1354 : Add a crude check */
1355 : || is_pm1(gcdii(h->N, Qx))
1356 : #endif
1357 : ))
1358 145974 : {
1359 145974 : ulong q = itou(Qx);
1360 145974 : GEN rel = mkvec2(absi_shallow(Y), relp);
1361 145974 : GEN col = hash_haskey_GEN(lprel, (void*)q);
1362 : #ifdef MPQS_DEBUG
1363 : mpqs_check_rel(h, rel, q, mode);
1364 : #endif
1365 145974 : if (!col) /* relation up to large prime */
1366 133254 : hash_insert(lprel, (void*)q, (void*)gerepilecopy(btop,rel));
1367 12720 : else if ((rel = combine_large_primes(h, q, rel, col, mode)))
1368 : {
1369 12134 : if (typ(rel) == t_INT) return rel; /* very unlikely */
1370 : #ifdef MPQS_DEBUG
1371 : mpqs_check_rel(h, rel, 1, mode);
1372 : #endif
1373 12134 : frel_add(frel, gerepilecopy(btop,rel));
1374 : }
1375 : else
1376 586 : set_avma(btop);
1377 : }
1378 : else
1379 : { /* TODO: check for double large prime */
1380 : PRINT_IF_VERBOSE("\b.");
1381 12674 : set_avma(btop);
1382 : }
1383 : }
1384 : PRINT_IF_VERBOSE("\n");
1385 135046 : return NULL;
1386 : }
1387 :
1388 : /*********************************************************************/
1389 : /** FROM RELATIONS TO DIVISORS **/
1390 : /*********************************************************************/
1391 :
1392 : static GEN
1393 10465 : rels_to_pairs(mpqs_handle_t *h, GEN relp)
1394 : {
1395 10465 : long j, k, l = lg(relp);
1396 10465 : GEN P = cgetg(l, t_VECSMALL), E = cgetg(l, t_VECSMALL);
1397 125643 : for (j = 1, k = 1; j < l; j++)
1398 : {
1399 115178 : long e = relp[j] >> REL_OFFSET, i = relp[j] & REL_MASK;
1400 115178 : P[k] = i==1 ? -1: h->FB[i].fbe_p;
1401 115178 : E[k++] = e;
1402 : }
1403 10465 : setlg(P,k); setlg(E,k);
1404 10465 : return mkvec2(P,E);
1405 : }
1406 :
1407 : static GEN
1408 336 : rels_to_quad(mpqs_handle_t *h, GEN rel)
1409 : {
1410 336 : long i, cols = lg(rel)-1;
1411 : GEN m, idx;
1412 336 : idx = gen_indexsort(rel, (void *) cmp_universal, cmp_nodata);
1413 336 : m = cgetg(cols+1, t_VEC);
1414 10801 : for (i = 1; i <= cols; i++)
1415 : {
1416 10465 : GEN r = gel(rel, idx[i]), re = gel(r,2);
1417 10465 : GEN R = rels_to_pairs(h, re);
1418 10465 : gel(m, i) = mkvec2(gel(r, 1), R);
1419 : }
1420 336 : return m;
1421 : }
1422 :
1423 : /* create an F2m from a relations list */
1424 : static GEN
1425 3380 : rels_to_F2Ms(GEN rel)
1426 : {
1427 3380 : long i, cols = lg(rel)-1;
1428 3380 : GEN m = cgetg(cols+1, t_VEC);
1429 390355 : for (i = 1; i <= cols; i++)
1430 : {
1431 386975 : GEN relp = gmael(rel,i,2), rel2;
1432 386975 : long j, l = lg(relp), o = 0, k;
1433 5536801 : for (j = 1; j < l; j++)
1434 5149826 : if (odd(relp[j] >> REL_OFFSET)) o++;
1435 386975 : rel2 = cgetg(o+1, t_VECSMALL);
1436 5536801 : for (j = 1, k = 1; j < l; j++)
1437 5149826 : if (odd(relp[j] >> REL_OFFSET))
1438 4738390 : rel2[k++] = relp[j] & REL_MASK;
1439 386975 : gel(m, i) = rel2;
1440 : }
1441 3380 : return m;
1442 : }
1443 :
1444 : static int
1445 7282 : split(GEN *D, long *e)
1446 : {
1447 : ulong mask;
1448 : long flag;
1449 7282 : if (MR_Jaeschke(*D)) { *e = 1; return 1; } /* probable prime */
1450 547 : if (Z_issquareall(*D, D))
1451 : { /* squares could cost us a lot of time */
1452 168 : if (DEBUGLEVEL >= 5) err_printf("MPQS: decomposed a square\n");
1453 168 : *e = 2; return 1;
1454 : }
1455 379 : mask = 7;
1456 : /* 5th/7th powers aren't worth the trouble. OTOH once we have the hooks for
1457 : * dealing with cubes, higher powers can be handled essentially for free) */
1458 379 : if ((flag = is_357_power(*D, D, &mask)))
1459 : {
1460 14 : if (DEBUGLEVEL >= 5)
1461 0 : err_printf("MPQS: decomposed a %s power\n", uordinal(flag));
1462 14 : *e = flag; return 1;
1463 : }
1464 365 : *e = 0; return 0; /* known composite */
1465 : }
1466 :
1467 : /* return a GEN structure containing NULL but safe for gerepileupto */
1468 : static GEN
1469 3380 : mpqs_solve_linear_system(mpqs_handle_t *h, hashtable *frel)
1470 : {
1471 3380 : mpqs_FB_entry_t *FB = h->FB;
1472 3380 : pari_sp av = avma;
1473 3380 : GEN rels = hash_keys_GEN(frel), N = h->N, r, c, res, ei, M, Ker;
1474 : long i, j, nrows, rlast, rnext, rmax, rank;
1475 :
1476 3380 : M = rels_to_F2Ms(rels);
1477 3380 : Ker = F2Ms_ker(M, h->size_of_FB+1); rank = lg(Ker)-1;
1478 3380 : if (DEBUGLEVEL >= 4)
1479 : {
1480 0 : if (DEBUGLEVEL >= 7)
1481 0 : err_printf("\\\\ MPQS RELATION MATRIX\nFREL=%Ps\nKERNEL=%Ps\n",M, Ker);
1482 0 : err_printf("MPQS: Gauss done: kernel has rank %ld, taking gcds...\n", rank);
1483 : }
1484 3380 : if (!rank)
1485 : { /* trivial kernel; main loop may look for more relations */
1486 0 : if (DEBUGLEVEL >= 3)
1487 0 : pari_warn(warner, "MPQS: no solutions found from linear system solver");
1488 0 : return gc_NULL(av); /* no factors found */
1489 : }
1490 :
1491 : /* Expect up to 2^rank pairwise coprime factors, but a kernel basis vector
1492 : * may not contribute to the decomposition; r stores the factors and c what
1493 : * we know about them (0: composite, 1: probably prime, >= 2: proper power) */
1494 3380 : ei = cgetg(h->size_of_FB + 2, t_VECSMALL);
1495 3380 : rmax = logint(N, utoi(3));
1496 3380 : if (rank <= BITS_IN_LONG-2)
1497 3357 : rmax = minss(rmax, 1L<<rank); /* max # of factors we can hope for */
1498 3380 : r = cgetg(rmax+1, t_VEC);
1499 3380 : c = cgetg(rmax+1, t_VECSMALL);
1500 3380 : rnext = rlast = 1;
1501 3380 : nrows = lg(M)-1;
1502 9020 : for (i = 1; i <= rank; i++)
1503 : { /* loop over kernel basis */
1504 8916 : GEN X = gen_1, Y_prod = gen_1, X_plus_Y, D;
1505 8916 : pari_sp av2 = avma, av3;
1506 8916 : long done = 0; /* # probably-prime factors or powers whose bases we won't
1507 : * handle any further */
1508 8916 : memset((void *)(ei+1), 0, (h->size_of_FB + 1) * sizeof(long));
1509 1003088 : for (j = 1; j <= nrows; j++)
1510 994172 : if (F2m_coeff(Ker, j, i))
1511 : {
1512 341145 : GEN R = gel(rels,j);
1513 341145 : Y_prod = gerepileuptoint(av2, remii(mulii(Y_prod, gel(R,1)), N));
1514 341145 : rel_to_ei(ei, gel(R,2));
1515 : }
1516 8916 : av3 = avma;
1517 935236 : for (j = 2; j <= h->size_of_FB + 1; j++)
1518 926320 : if (ei[j])
1519 : {
1520 584603 : GEN q = utoipos(FB[j].fbe_p);
1521 584603 : if (ei[j] & 1) pari_err_BUG("MPQS (relation is a nonsquare)");
1522 584603 : X = remii(mulii(X, Fp_powu(q, (ulong)ei[j]>>1, N)), N);
1523 584603 : X = gerepileuptoint(av3, X);
1524 : }
1525 8916 : if (MPQS_DEBUGLEVEL >= 1 && !dvdii(subii(sqri(X), sqri(Y_prod)), N))
1526 : {
1527 0 : err_printf("MPQS: X^2 - Y^2 != 0 mod N\n");
1528 0 : err_printf("\tindex i = %ld\n", i);
1529 0 : pari_warn(warner, "MPQS: wrong relation found after Gauss");
1530 : }
1531 : /* At this point, gcd(X-Y, N) * gcd(X+Y, N) = N:
1532 : * 1) N | X^2 - Y^2, so it divides the LHS;
1533 : * 2) let P be any prime factor of N. If P | X-Y and P | X+Y, then P | 2X
1534 : * But X is a product of powers of FB primes => coprime to N.
1535 : * Hence we work with gcd(X+Y, N) alone. */
1536 8916 : X_plus_Y = addii(X, Y_prod);
1537 8916 : if (rnext == 1)
1538 : { /* we still haven't decomposed, and want both a gcd and its cofactor. */
1539 8284 : D = gcdii(X_plus_Y, N);
1540 8284 : if (is_pm1(D) || equalii(D,N)) { set_avma(av2); continue; }
1541 : /* got something that works */
1542 3290 : if (DEBUGLEVEL >= 5)
1543 0 : err_printf("MPQS: splitting N after %ld kernel vector%s\n",
1544 : i+1, (i? "s" : ""));
1545 3290 : gel(r,1) = diviiexact(N, D);
1546 3290 : gel(r,2) = D;
1547 3290 : rlast = rnext = 3;
1548 3290 : if (split(&gel(r,1), &c[1])) done++;
1549 3290 : if (split(&gel(r,2), &c[2])) done++;
1550 3290 : if (done == 2 || rmax == 2) break;
1551 365 : if (DEBUGLEVEL >= 5)
1552 0 : err_printf("MPQS: got two factors, looking for more...\n");
1553 : }
1554 : else
1555 : { /* we already have factors */
1556 2247 : for (j = 1; j < rnext; j++)
1557 : { /* loop over known-composite factors */
1558 : /* skip probable primes and also roots of pure powers: they are a lot
1559 : * smaller than N and should be easy to deal with later */
1560 1615 : if (c[j]) { done++; continue; }
1561 632 : av3 = avma; D = gcdii(X_plus_Y, gel(r,j));
1562 632 : if (is_pm1(D) || equalii(D, gel(r,j))) { set_avma(av3); continue; }
1563 : /* got one which splits this factor */
1564 351 : if (DEBUGLEVEL >= 5)
1565 0 : err_printf("MPQS: resplitting a factor after %ld kernel vectors\n",
1566 : i+1);
1567 351 : gel(r,j) = diviiexact(gel(r,j), D);
1568 351 : gel(r,rnext) = D;
1569 351 : if (split(&gel(r,j), &c[j])) done++;
1570 : /* Don't increment done: happens later when we revisit c[rnext] during
1571 : * the present inner loop. */
1572 351 : (void)split(&gel(r,rnext), &c[rnext]);
1573 351 : if (++rnext > rmax) break; /* all possible factors seen */
1574 : } /* loop over known composite factors */
1575 :
1576 632 : if (rnext > rlast)
1577 : {
1578 351 : if (DEBUGLEVEL >= 5)
1579 0 : err_printf("MPQS: got %ld factors%s\n", rlast - 1,
1580 : (done < rlast ? ", looking for more..." : ""));
1581 351 : rlast = rnext;
1582 : }
1583 : /* break out if we have rmax factors or all current factors are probable
1584 : * primes or tiny roots from pure powers */
1585 632 : if (rnext > rmax || done == rnext - 1) break;
1586 : }
1587 : }
1588 3380 : if (rnext == 1) return gc_NULL(av); /* no factors found */
1589 :
1590 : /* normal case: convert to ifac format as described in ifactor1.c (value,
1591 : * exponent, class [unknown, known composite, known prime]) */
1592 3290 : rlast = rnext - 1; /* # of distinct factors found */
1593 3290 : res = cgetg(3*rlast + 1, t_VEC);
1594 3290 : if (DEBUGLEVEL >= 6) err_printf("MPQS: wrapping up %ld factors\n", rlast);
1595 10221 : for (i = j = 1; i <= rlast; i++, j += 3)
1596 : {
1597 6931 : long C = c[i];
1598 6931 : icopyifstack(gel(r,i), gel(res,j)); /* factor */
1599 6931 : gel(res,j+1) = C <= 1? gen_1: utoipos(C); /* exponent */
1600 6931 : gel(res,j+2) = C ? NULL: gen_0; /* unknown or known composite */
1601 6931 : if (DEBUGLEVEL >= 6)
1602 0 : err_printf("\tpackaging %ld: %Ps ^%ld (%s)\n", i, gel(r,i),
1603 0 : itos(gel(res,j+1)), (C? "unknown": "composite"));
1604 : }
1605 3290 : return res;
1606 : }
1607 :
1608 : /*********************************************************************/
1609 : /** MAIN ENTRY POINT AND DRIVER ROUTINE **/
1610 : /*********************************************************************/
1611 : static void
1612 7 : toolarge()
1613 7 : { pari_warn(warner, "MPQS: number too big to be factored with MPQS,\n\tgiving up"); }
1614 :
1615 : static void
1616 0 : mpqs_status(mpqs_handle_t *h, mpqs_FB_entry_t *FB)
1617 : {
1618 0 : err_printf("MPQS: sieving interval = [%ld, %ld]\n", -(long)h->M, (long)h->M);
1619 : /* that was a little white lie, we stop one position short at the top */
1620 0 : err_printf("MPQS: size of factor base = %ld\n", (long)h->size_of_FB);
1621 0 : err_printf("MPQS: striving for %ld relations\n", (long)h->target_rels);
1622 0 : err_printf("MPQS: coefficients A will be built from %ld primes each\n",
1623 0 : (long)h->omega_A);
1624 0 : err_printf("MPQS: primes for A to be chosen near FB[%ld] = %ld\n",
1625 0 : (long)h->index2_FB, (long)FB[h->index2_FB].fbe_p);
1626 0 : err_printf("MPQS: smallest prime used for sieving FB[%ld] = %ld\n",
1627 0 : (long)h->index1_FB, (long)FB[h->index1_FB].fbe_p);
1628 0 : err_printf("MPQS: largest prime in FB = %ld\n", (long)h->largest_FB_p);
1629 0 : err_printf("MPQS: bound for `large primes' = %ld\n", (long)h->lp_bound);
1630 0 : if (DEBUGLEVEL >= 5)
1631 0 : err_printf("MPQS: sieve threshold = %u\n", (unsigned int)h->sieve_threshold);
1632 0 : err_printf("MPQS: computing relations:");
1633 0 : }
1634 :
1635 : /* Factors N using the self-initializing multipolynomial quadratic sieve
1636 : * (SIMPQS). Returns one of the two factors, or (usually) a vector of factors
1637 : * and exponents and information about which ones are still composite, or NULL
1638 : * when we can't seem to make any headway. */
1639 : GEN
1640 3297 : mpqs(GEN N)
1641 : {
1642 3297 : const long size_N = decimal_len(N);
1643 : mpqs_handle_t H;
1644 : GEN fact; /* will in the end hold our factor(s) */
1645 : mpqs_FB_entry_t *FB; /* factor base */
1646 : double dbg_target, DEFEAT;
1647 : ulong p;
1648 : pari_timer T;
1649 : hashtable lprel, frel;
1650 3297 : pari_sp av = avma;
1651 :
1652 3297 : if (DEBUGLEVEL >= 4) err_printf("MPQS: number to factor N = %Ps\n", N);
1653 3297 : if (size_N > MPQS_MAX_DIGIT_SIZE_KN) { toolarge(); return NULL; }
1654 3290 : if (DEBUGLEVEL >= 4)
1655 : {
1656 0 : timer_start(&T);
1657 0 : err_printf("MPQS: factoring number of %ld decimal digits\n", size_N);
1658 : }
1659 3290 : H.N = N;
1660 3290 : H.two_is_norm = 0; /* Not used */
1661 3290 : H.two_is_bad = 0;
1662 3290 : H.bin_index = 0;
1663 3290 : H.index_i = 0;
1664 3290 : H.index_j = 0;
1665 3290 : H.index2_moved = 0;
1666 3290 : p = mpqs_find_k(&H);
1667 3290 : if (p) return gc_utoipos(av,p);
1668 3290 : if (DEBUGLEVEL >= 5)
1669 0 : err_printf("MPQS: found multiplier %ld for N\n", H._k->k);
1670 3290 : H.kN = muliu(N, H._k->k);
1671 3290 : if (!mpqs_set_parameters(&H)) { toolarge(); return NULL; }
1672 :
1673 3290 : if (DEBUGLEVEL >= 5)
1674 0 : err_printf("MPQS: creating factor base and allocating arrays...\n");
1675 3290 : FB = mpqs_create_FB(&H, &p);
1676 3290 : if (p) return gc_utoipos(av, p);
1677 3290 : mpqs_sieve_array_ctor(&H);
1678 3290 : mpqs_poly_ctor(&H);
1679 :
1680 3290 : H.lp_bound = minss(H.largest_FB_p, MPQS_LP_BOUND);
1681 : /* don't allow large primes to have room for two factors both bigger than
1682 : * what the FB contains (...yet!) */
1683 3290 : H.lp_bound *= minss(H.lp_scale, H.largest_FB_p - 1);
1684 3290 : H.dkN = gtodouble(H.kN);
1685 : /* compute the threshold and fill in the byte-sized scaled logarithms */
1686 3290 : mpqs_set_sieve_threshold(&H);
1687 3290 : if (!mpqs_locate_A_range(&H)) return NULL;
1688 3290 : if (DEBUGLEVEL >= 4)
1689 0 : mpqs_status(&H, FB);
1690 : /* main loop which
1691 : * - computes polynomials and their zeros (SI)
1692 : * - does the sieving
1693 : * - tests candidates of the sieve array */
1694 :
1695 : /* Let (A, B_i) the current pair of coeffs. If i == 0 a new A is generated */
1696 3290 : H.index_j = (mpqs_uint32_t)-1; /* increment below will have it start at 0 */
1697 :
1698 3290 : dbg_target = H.target_rels / 100.;
1699 3290 : DEFEAT = H.target_rels * 1.5;
1700 3290 : hash_init_GEN(&frel, H.target_rels, gequal, 1);
1701 3290 : hash_init_ulong(&lprel,H.target_rels, 1);
1702 : for(;;)
1703 140256 : {
1704 : long tc;
1705 : /* self initialization: compute polynomial and its zeros */
1706 143546 : if (!mpqs_self_init(&H, NULL))
1707 : { /* have run out of primes for A; give up */
1708 0 : if (DEBUGLEVEL >= 2)
1709 0 : err_printf("MPQS: Ran out of primes for A, giving up.\n");
1710 0 : return gc_NULL(av);
1711 : }
1712 143546 : mpqs_sieve(&H);
1713 143546 : tc = mpqs_eval_sieve(&H);
1714 143546 : if (DEBUGLEVEL >= 6)
1715 0 : err_printf("MPQS: found %lu candidate%s\n", tc, (tc==1? "" : "s"));
1716 143546 : if (tc)
1717 : {
1718 133863 : fact = mpqs_eval_cand(&H, tc, &frel, &lprel, MPQS_MODE_FACTOR);
1719 133863 : if (fact)
1720 : { /* factor found during combining */
1721 0 : if (DEBUGLEVEL >= 4)
1722 : {
1723 0 : err_printf("\nMPQS: split N whilst combining, time = %ld ms\n",
1724 : timer_delay(&T));
1725 0 : err_printf("MPQS: found factor = %Ps\n", fact);
1726 : }
1727 0 : return gerepileupto(av, fact);
1728 : }
1729 : }
1730 143546 : if (DEBUGLEVEL >= 4 && frel.nb > dbg_target)
1731 : {
1732 0 : err_printf(" %ld%%", 100*frel.nb/ H.target_rels);
1733 0 : if (DEBUGLEVEL >= 5) err_printf(" (%ld ms)", timer_delay(&T));
1734 0 : dbg_target += H.target_rels / 100.;
1735 : }
1736 143546 : if (frel.nb < (ulong)H.target_rels) continue; /* main loop */
1737 :
1738 3380 : if (DEBUGLEVEL >= 4)
1739 : {
1740 0 : timer_start(&T);
1741 0 : err_printf("\nMPQS: starting Gauss over F_2 on %ld distinct relations\n",
1742 : frel.nb);
1743 : }
1744 3380 : fact = mpqs_solve_linear_system(&H, &frel);
1745 3380 : if (fact)
1746 : { /* solution found */
1747 3290 : if (DEBUGLEVEL >= 4)
1748 : {
1749 0 : err_printf("\nMPQS: time in Gauss and gcds = %ld ms\n",timer_delay(&T));
1750 0 : if (typ(fact) == t_INT) err_printf("MPQS: found factor = %Ps\n", fact);
1751 : else
1752 : {
1753 0 : long j, nf = (lg(fact)-1)/3;
1754 0 : err_printf("MPQS: found %ld factors =\n", nf);
1755 0 : for (j = 1; j <= nf; j++)
1756 0 : err_printf("\t%Ps%s\n", gel(fact,3*j-2), (j < nf)? ",": "");
1757 : }
1758 : }
1759 3290 : return gerepileupto(av, fact);
1760 : }
1761 90 : if (DEBUGLEVEL >= 4)
1762 : {
1763 0 : err_printf("\nMPQS: time in Gauss and gcds = %ld ms\n",timer_delay(&T));
1764 0 : err_printf("MPQS: no factors found.\n");
1765 0 : if (frel.nb < DEFEAT)
1766 0 : err_printf("\nMPQS: restarting sieving ...\n");
1767 : else
1768 0 : err_printf("\nMPQS: giving up.\n");
1769 : }
1770 90 : if (frel.nb >= DEFEAT) return gc_NULL(av);
1771 90 : H.target_rels += 10;
1772 : }
1773 : }
1774 :
1775 : int
1776 28 : mpqs_class_init(mpqs_handle_t *H, GEN D, long L)
1777 : {
1778 : mpqs_FB_entry_t *FB; /* factor base */
1779 28 : ulong d = Mod16(D);
1780 28 : H->N = D;
1781 28 : H->two_is_norm = !(d==0 || d==4 || d==5 || d==13);
1782 28 : H->two_is_bad = d==0 || d==4;
1783 28 : H->bin_index = 0;
1784 28 : H->index_i = 0;
1785 28 : H->index_j = 0;
1786 28 : H->index2_moved = 0;
1787 28 : H->_k = &cand_multipliers[0];
1788 28 : H->kN = D;
1789 28 : if (!mpqs_set_parameters(H)) { toolarge(); return 0; }
1790 28 : H->size_of_FB = L + !H->two_is_norm;
1791 28 : if (DEBUGLEVEL >= 5)
1792 0 : err_printf("MPQS: creating factor base and allocating arrays...\n");
1793 28 : FB = mpqs_create_FB(H, NULL);
1794 28 : mpqs_sieve_array_ctor(H);
1795 28 : mpqs_poly_ctor(H);
1796 :
1797 : #ifdef CLASSGROUP_LARGE_PRIME
1798 : H->lp_bound = minss(H->largest_FB_p, MPQS_LP_BOUND);
1799 : /* don't allow large primes to have room for two factors both bigger than
1800 : * what the FB contains (...yet!) */
1801 : H->lp_bound *= minss(H->lp_scale, H->largest_FB_p - 1);
1802 : #else
1803 28 : H->lp_bound = H->largest_FB_p;
1804 : #endif
1805 :
1806 28 : H->dkN = gtodouble(absi(H->kN));
1807 : /* compute the threshold and fill in the byte-sized scaled logarithms */
1808 28 : mpqs_set_sieve_threshold(H);
1809 28 : if (!mpqs_locate_A_range(H)) return 0;
1810 28 : if (DEBUGLEVEL >= 4)
1811 0 : mpqs_status(H, FB);
1812 28 : return 1;
1813 : }
1814 :
1815 : GEN
1816 336 : mpqs_class_rels(mpqs_handle_t *H, ulong nb, GEN missing_primes)
1817 : {
1818 336 : pari_sp av = avma;
1819 : pari_timer T;
1820 : double dbg_target;
1821 : hashtable lprel, frel;
1822 336 : H->index_j = (mpqs_uint32_t)-1; /* increment below will have it start at 0 */
1823 336 : H->target_rels = nb;
1824 336 : if (DEBUGLEVEL >= 4)
1825 : {
1826 0 : err_printf("MPQS: striving for %ld relations\n", (long)H->target_rels);
1827 0 : err_printf("MPQS: computing relations:");
1828 : }
1829 336 : dbg_target = H->target_rels / 100.;
1830 336 : hash_init_GEN(&frel, H->target_rels, gequal, 1);
1831 336 : hash_init_ulong(&lprel,H->target_rels, 1);
1832 336 : if (DEBUGLEVEL >= 5)
1833 0 : timer_start(&T);
1834 336 : if (missing_primes && lg(missing_primes)==1)
1835 119 : missing_primes = NULL;
1836 336 : if (DEBUGLEVEL >= 5 && missing_primes)
1837 0 : err_printf("MPQS: %ld remaining primes\n",lg(missing_primes)-1);
1838 : for (;;)
1839 847 : {
1840 1183 : long tc, err = mpqs_self_init(H, missing_primes);
1841 1183 : if (err==0)
1842 : { /* have run out of primes for A; give up */
1843 0 : if (DEBUGLEVEL >= 2)
1844 0 : err_printf("MPQS: Ran out of primes for A, giving up.\n");
1845 0 : return NULL;
1846 1183 : } else if (err==-1)
1847 0 : return NULL;
1848 1183 : mpqs_sieve(H);
1849 1183 : tc = mpqs_eval_sieve(H);
1850 1183 : if (DEBUGLEVEL >= 6)
1851 0 : err_printf("MPQS: found %lu candidate%s\n", tc, (tc==1? "" : "s"));
1852 1183 : if (tc)
1853 1183 : mpqs_eval_cand(H, tc, &frel, &lprel, MPQS_MODE_CLASSGROUP);
1854 1183 : if (DEBUGLEVEL >= 4 && frel.nb > dbg_target)
1855 : {
1856 0 : err_printf(" %ld%%", 100*frel.nb/ H->target_rels);
1857 0 : if (DEBUGLEVEL >= 5) err_printf(" (%ld ms)", timer_delay(&T));
1858 0 : dbg_target += H->target_rels / 100.;
1859 : }
1860 1183 : if (frel.nb < nb) continue; /* main loop */
1861 336 : break;
1862 : }
1863 336 : if (DEBUGLEVEL >= 4) err_printf("\n");
1864 336 : return gerepilecopy(av, rels_to_quad(H, hash_keys_GEN(&frel)));
1865 : }
|