Code coverage tests

This page documents the degree to which the PARI/GP source code is tested by our public test suite, distributed with the source distribution in directory src/test/. This is measured by the gcov utility; we then process gcov output using the lcov frond-end.

We test a few variants depending on Configure flags on the pari.math.u-bordeaux.fr machine (x86_64 architecture), and agregate them in the final report:

The target is to exceed 90% coverage for all mathematical modules (given that branches depending on DEBUGLEVEL or DEBUGMEM are not covered). This script is run to produce the results below.

LCOV - code coverage report
Current view: top level - basemath - modsym.c (source / functions) Hit Total Coverage
Test: PARI/GP v2.18.0 lcov report (development 29804-254f602fce) Lines: 2817 3018 93.3 %
Date: 2024-12-18 09:08:59 Functions: 296 302 98.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /* Copyright (C) 2011  The PARI group.
       2             : 
       3             : This file is part of the PARI/GP package.
       4             : 
       5             : PARI/GP is free software; you can redistribute it and/or modify it under the
       6             : terms of the GNU General Public License as published by the Free Software
       7             : Foundation; either version 2 of the License, or (at your option) any later
       8             : version. It is distributed in the hope that it will be useful, but WITHOUT
       9             : ANY WARRANTY WHATSOEVER.
      10             : 
      11             : Check the License for details. You should have received a copy of it, along
      12             : with the package; see the file 'COPYING'. If not, write to the Free Software
      13             : Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
      14             : 
      15             : #include "pari.h"
      16             : #include "paripriv.h"
      17             : 
      18             : #define DEBUGLEVEL DEBUGLEVEL_ms
      19             : 
      20             : /* Adapted from shp_package/moments by Robert Pollack
      21             :  * http://www.math.mcgill.ca/darmon/programs/shp/shp.html */
      22             : static GEN mskinit(ulong N, long k, long sign);
      23             : static GEN mshecke_i(GEN W, ulong p);
      24             : static GEN ZSl2_star(GEN v);
      25             : static GEN getMorphism(GEN W1, GEN W2, GEN v);
      26             : static GEN voo_act_Gl2Q(GEN g, long k);
      27             : 
      28             : /* Input: P^1(Z/NZ) (formed by create_p1mod)
      29             :    Output: # P^1(Z/NZ) */
      30             : static long
      31       16912 : p1_size(GEN p1N) { return lg(gel(p1N,1)) - 1; }
      32             : static ulong
      33    58034571 : p1N_get_N(GEN p1N) { return gel(p1N,3)[2]; }
      34             : static GEN
      35    26970132 : p1N_get_hash(GEN p1N) { return gel(p1N,2); }
      36             : static GEN
      37        4368 : p1N_get_fa(GEN p1N) { return gel(p1N,4); }
      38             : static GEN
      39        4256 : p1N_get_div(GEN p1N) { return gel(p1N,5); }
      40             : static GEN
      41    24172918 : p1N_get_invsafe(GEN p1N) { return gel(p1N,6); }
      42             : static GEN
      43     8018752 : p1N_get_inverse(GEN p1N) { return gel(p1N,7); }
      44             : 
      45             : /* ms-specific accessors */
      46             : /* W = msinit, return the output of msinit_N */
      47             : static GEN
      48     5446287 : get_msN(GEN W) { return lg(W) == 4? gel(W,1): W; }
      49             : static GEN
      50     3257100 : msN_get_p1N(GEN W) { return gel(W,1); }
      51             : static GEN
      52      213969 : msN_get_genindex(GEN W) { return gel(W,5); }
      53             : static GEN
      54    42388682 : msN_get_E2fromE1(GEN W) { return gel(W,7); }
      55             : static GEN
      56        1393 : msN_get_annT2(GEN W) { return gel(W,8); }
      57             : static GEN
      58        1393 : msN_get_annT31(GEN W) { return gel(W,9); }
      59             : static GEN
      60        1358 : msN_get_singlerel(GEN W) { return gel(W,10); }
      61             : static GEN
      62      926352 : msN_get_section(GEN W) { return gel(W,12); }
      63             : 
      64             : static GEN
      65      122003 : ms_get_p1N(GEN W) { return msN_get_p1N(get_msN(W)); }
      66             : static long
      67       96523 : ms_get_N(GEN W) { return p1N_get_N(ms_get_p1N(W)); }
      68             : static GEN
      69        1680 : ms_get_hashcusps(GEN W) { W = get_msN(W); return gel(W,16); }
      70             : static GEN
      71       29953 : ms_get_section(GEN W) { return msN_get_section(get_msN(W)); }
      72             : static GEN
      73      204050 : ms_get_genindex(GEN W) { return msN_get_genindex(get_msN(W)); }
      74             : static long
      75      199444 : ms_get_nbgen(GEN W) { return lg(ms_get_genindex(W))-1; }
      76             : static long
      77     2618315 : ms_get_nbE1(GEN W)
      78             : {
      79             :   GEN W11;
      80     2618315 :   W = get_msN(W); W11 = gel(W,11);
      81     2618315 :   return W11[4] - W11[3];
      82             : }
      83             : 
      84             : /* msk-specific accessors */
      85             : static long
      86         126 : msk_get_dim(GEN W) { return gmael(W,3,2)[2]; }
      87             : static GEN
      88       82516 : msk_get_basis(GEN W) { return gmael(W,3,1); }
      89             : static long
      90      130613 : msk_get_weight(GEN W) { return gmael(W,3,2)[1]; }
      91             : static long
      92       59724 : msk_get_sign(GEN W)
      93             : {
      94       59724 :   GEN t = gel(W,2);
      95       59724 :   return typ(t)==t_INT? 0: itos(gel(t,1));
      96             : }
      97             : static GEN
      98        3101 : msk_get_star(GEN W) { return gmael(W,2,2); }
      99             : static GEN
     100        3710 : msk_get_starproj(GEN W) { return gmael(W,2,3); }
     101             : 
     102             : static int
     103        2576 : is_Qevproj(GEN x)
     104        2576 : { return typ(x) == t_VEC && lg(x) == 5 && typ(gel(x,1)) == t_MAT; }
     105             : long
     106         224 : msdim(GEN W)
     107             : {
     108         224 :   if (is_Qevproj(W)) return lg(gel(W,1)) - 1;
     109         210 :   checkms(W);
     110         203 :   if (!msk_get_sign(W)) return msk_get_dim(W);
     111          91 :   return lg(gel(msk_get_starproj(W), 1)) - 1;
     112             : }
     113             : long
     114          14 : msgetlevel(GEN W) { checkms(W); return ms_get_N(W); }
     115             : long
     116          14 : msgetweight(GEN W) { checkms(W); return msk_get_weight(W); }
     117             : long
     118          28 : msgetsign(GEN W) { checkms(W); return msk_get_sign(W); }
     119             : 
     120             : void
     121       79135 : checkms(GEN W)
     122             : {
     123       79135 :   if (typ(W) != t_VEC || lg(W) != 4
     124       79135 :       || typ(gel(W,1)) != t_VEC || lg(gel(W,1)) != 17)
     125           7 :     pari_err_TYPE("checkms [please apply msinit]", W);
     126       79128 : }
     127             : 
     128             : /** MODULAR TO SYM **/
     129             : 
     130             : /* q a t_FRAC or t_INT */
     131             : static GEN
     132     2246944 : Q_log_init(ulong N, GEN q)
     133             : {
     134             :   long l, n;
     135             :   GEN Q;
     136             : 
     137     2246944 :   q = gboundcf(q, 0);
     138     2246944 :   l = lg(q);
     139     2246944 :   Q = cgetg(l, t_VECSMALL);
     140     2246944 :   Q[1] = 1;
     141    21386904 :   for (n=2; n <l; n++) Q[n] = umodiu(gel(q,n), N);
     142    19145098 :   for (n=3; n < l; n++)
     143    16898154 :     Q[n] = Fl_add(Fl_mul(Q[n], Q[n-1], N), Q[n-2], N);
     144     2246944 :   return Q;
     145             : }
     146             : 
     147             : /** INIT MODSYM STRUCTURE, WEIGHT 2 **/
     148             : 
     149             : /* num = [Gamma : Gamma_0(N)] = N * Prod_{p|N} (1+p^-1) */
     150             : static ulong
     151        4256 : count_Manin_symbols(ulong N, GEN P)
     152             : {
     153        4256 :   long i, l = lg(P);
     154        4256 :   ulong num = N;
     155       12019 :   for (i = 1; i < l; i++) { ulong p = P[i]; num *= p+1; num /= p; }
     156        4256 :   return num;
     157             : }
     158             : /* returns the list of "Manin symbols" (c,d) in (Z/NZ)^2, (c,d,N) = 1
     159             :  * generating H^1(X_0(N), Z) */
     160             : static GEN
     161        4256 : generatemsymbols(ulong N, ulong num, GEN divN)
     162             : {
     163        4256 :   GEN ret = cgetg(num+1, t_VEC);
     164        4256 :   ulong c, d, curn = 0;
     165             :   long i, l;
     166             :   /* generate Manin-symbols in two lists: */
     167             :   /* list 1: (c:1) for 0 <= c < N */
     168      358232 :   for (c = 0; c < N; c++) gel(ret, ++curn) = mkvecsmall2(c, 1);
     169        4256 :   if (N == 1) return ret;
     170             :   /* list 2: (c:d) with 1 <= c < N, c | N, 0 <= d < N, gcd(d,N) > 1, gcd(c,d)=1.
     171             :    * Furthermore, d != d0 (mod N/c) with c,d0 already in the list */
     172        4228 :   l = lg(divN) - 1;
     173             :   /* c = 1 first */
     174        4228 :   gel(ret, ++curn) = mkvecsmall2(1,0);
     175      349720 :   for (d = 2; d < N; d++)
     176      345492 :     if (ugcd(d,N) != 1UL)
     177      141806 :       gel(ret, ++curn) = mkvecsmall2(1,d);
     178             :   /* omit c = 1 (first) and c = N (last) */
     179       17969 :   for (i=2; i < l; i++)
     180             :   {
     181             :     ulong Novc, d0;
     182       13741 :     c = divN[i];
     183       13741 :     Novc = N / c;
     184      230118 :     for (d0 = 2; d0 <= Novc; d0++)
     185             :     {
     186      216377 :       ulong k, d = d0;
     187      216377 :       if (ugcd(d, Novc) == 1UL) continue;
     188      320397 :       for (k = 0; k < c; k++, d += Novc)
     189      286405 :         if (ugcd(c,d) == 1UL)
     190             :         {
     191       54320 :           gel(ret, ++curn) = mkvecsmall2(c,d);
     192       54320 :           break;
     193             :         }
     194             :     }
     195             :   }
     196        4228 :   if (curn != num) pari_err_BUG("generatemsymbols [wrong number of symbols]");
     197        4228 :   return ret;
     198             : }
     199             : 
     200             : static GEN
     201        4256 : inithashmsymbols(ulong N, GEN symbols)
     202             : {
     203        4256 :   GEN H = zerovec(N);
     204        4256 :   long k, l = lg(symbols);
     205             :   /* skip the (c:1), 0 <= c < N and (1:0) */
     206      200382 :   for (k=N+2; k < l; k++)
     207             :   {
     208      196126 :     GEN s = gel(symbols, k);
     209      196126 :     ulong c = s[1], d = s[2], Novc = N/c;
     210      196126 :     if (gel(H,c) == gen_0) gel(H,c) = const_vecsmall(Novc+1,0);
     211      196126 :     if (c != 1) { d %= Novc; if (!d) d = Novc; }
     212      196126 :     mael(H, c, d) = k;
     213             :   }
     214        4256 :   return H;
     215             : }
     216             : 
     217             : /** Helper functions for Sl2(Z) / Gamma_0(N) **/
     218             : /* M a 2x2 ZM in SL2(Z) */
     219             : GEN
     220     1275477 : SL2_inv_shallow(GEN M)
     221             : {
     222     1275477 :   GEN a = gcoeff(M,1,1), b = gcoeff(M,1,2);
     223     1275477 :   GEN c = gcoeff(M,2,1), d = gcoeff(M,2,2);
     224     1275477 :   retmkmat22(d,negi(b), negi(c),a);
     225             : }
     226             : /* SL2_inv(M)[2] */
     227             : static GEN
     228       41804 : SL2_inv2(GEN M)
     229             : {
     230       41804 :   GEN a = gcoeff(M,1,1), b = gcoeff(M,1,2);
     231       41804 :   return mkcol2(negi(b),a);
     232             : }
     233             : /* M a 2x2 mat2 in SL2(Z) */
     234             : static GEN
     235      886529 : sl2_inv(GEN M)
     236             : {
     237      886529 :   long a=coeff(M,1,1), b=coeff(M,1,2), c=coeff(M,2,1), d=coeff(M,2,2);
     238      886529 :   return mkvec2(mkvecsmall2(d, -c), mkvecsmall2(-b, a));
     239             : }
     240             : /* Return the mat2 [a,b; c,d], not a zm to avoid GP problems */
     241             : static GEN
     242     3136735 : mat2(long a, long b, long c, long d)
     243     3136735 : { return mkvec2(mkvecsmall2(a,c), mkvecsmall2(b,d)); }
     244             : static GEN
     245      633346 : mat2_to_ZM(GEN M)
     246             : {
     247      633346 :   GEN A = gel(M,1), B = gel(M,2);
     248      633346 :   retmkmat2(mkcol2s(A[1],A[2]), mkcol2s(B[1],B[2]));
     249             : }
     250             : 
     251             : /* Input: a = 2-vector = path = {r/s,x/y}
     252             :  * Output: either [r,x;s,y] or [-r,x;-s,y], whichever has determinant > 0 */
     253             : static GEN
     254      194327 : path_to_ZM(GEN a)
     255             : {
     256      194327 :   GEN v = gel(a,1), w = gel(a,2);
     257      194327 :   long r = v[1], s = v[2], x = w[1], y = w[2];
     258      194327 :   if (cmpii(mulss(r,y), mulss(x,s)) < 0) { r = -r; s = -s; }
     259      194327 :   return mkmat22s(r,x,s,y);
     260             : }
     261             : static GEN
     262     1954169 : path_to_zm(GEN a)
     263             : {
     264     1954169 :   GEN v = gel(a,1), w = gel(a,2);
     265     1954169 :   long r = v[1], s = v[2], x = w[1], y = w[2];
     266     1954169 :   if (cmpii(mulss(r,y), mulss(x,s)) < 0) { r = -r; s = -s; }
     267     1954169 :   return mat2(r,x,s,y);
     268             : }
     269             : /* path from c1 to c2 */
     270             : static GEN
     271     1124039 : mkpath(GEN c1, GEN c2) { return mat2(c1[1], c2[1], c1[2], c2[2]); }
     272             : static long
     273     1589847 : cc(GEN M) { GEN v = gel(M,1); return v[2]; }
     274             : static long
     275     1589847 : dd(GEN M) { GEN v = gel(M,2); return v[2]; }
     276             : 
     277             : /*Input: a,b = 2 paths, N = integer
     278             :  *Output: 1 if the a,b are \Gamma_0(N)-equivalent; 0 otherwise */
     279             : static int
     280      182798 : gamma_equiv(GEN a, GEN b, ulong N)
     281             : {
     282      182798 :   pari_sp av = avma;
     283      182798 :   GEN m = path_to_zm(a);
     284      182798 :   GEN n = path_to_zm(b);
     285      182798 :   GEN d = subii(mulss(cc(m),dd(n)), mulss(dd(m),cc(n)));
     286      182798 :   return gc_bool(av, umodiu(d, N) == 0);
     287             : }
     288             : /* Input: a,b = 2 paths that are \Gamma_0(N)-equivalent, N = integer
     289             :  * Output: M in \Gamma_0(N) such that Mb=a */
     290             : static GEN
     291       96425 : gamma_equiv_matrix(GEN a, GEN b)
     292             : {
     293       96425 :   GEN m = path_to_ZM(a);
     294       96425 :   GEN n = path_to_ZM(b);
     295       96425 :   return ZM_mul(m, SL2_inv_shallow(n));
     296             : }
     297             : 
     298             : /*************/
     299             : /* P^1(Z/NZ) */
     300             : /*************/
     301             : /* a != 0 in Z/NZ. Return v in (Z/NZ)^* such that av = gcd(a, N) (mod N)*/
     302             : static ulong
     303      551481 : Fl_inverse(ulong a, ulong N) { ulong g; return Fl_invgen(a,N,&g); }
     304             : 
     305             : /* Input: N = integer
     306             :  * Output: creates P^1(Z/NZ) = [symbols, H, N]
     307             :  *   symbols: list of vectors [x,y] that give a set of representatives
     308             :  *            of P^1(Z/NZ)
     309             :  *   H: an M by M grid whose value at the r,c-th place is the index of the
     310             :  *      "standard representative" equivalent to [r,c] occurring in the first
     311             :  *      list. If gcd(r,c,N) > 1 the grid has value 0. */
     312             : static GEN
     313        4256 : create_p1mod(ulong N)
     314             : {
     315        4256 :   GEN fa = factoru(N), div = divisorsu_fact(fa);
     316        4256 :   ulong i, nsym = count_Manin_symbols(N, gel(fa,1));
     317        4256 :   GEN symbols = generatemsymbols(N, nsym, div);
     318        4256 :   GEN H = inithashmsymbols(N,symbols);
     319        4256 :   GEN invsafe = cgetg(N, t_VECSMALL), inverse = cgetg(N, t_VECSMALL);
     320      353976 :   for (i = 1; i < N; i++)
     321             :   {
     322      349720 :     invsafe[i] = Fl_invsafe(i,N);
     323      349720 :     inverse[i] = Fl_inverse(i,N);
     324             :   }
     325        4256 :   return mkvecn(7, symbols, H, utoipos(N), fa, div, invsafe, inverse);
     326             : }
     327             : 
     328             : /* Let (c : d) in P1(Z/NZ).
     329             :  * If c = 0 return (0:1). If d = 0 return (1:0).
     330             :  * Else replace by (cu : du), where u in (Z/NZ)^* such that C := cu = gcd(c,N).
     331             :  * In create_p1mod(), (c : d) is represented by (C:D) where D = du (mod N/c)
     332             :  * is smallest such that gcd(C,D) = 1. Return (C : du mod N/c), which need
     333             :  * not belong to P1(Z/NZ) ! A second component du mod N/c = 0 is replaced by
     334             :  * N/c in this case to avoid problems with array indices */
     335             : static void
     336    26970132 : p1_std_form(long *pc, long *pd, GEN p1N)
     337             : {
     338    26970132 :   ulong N = p1N_get_N(p1N);
     339             :   ulong u;
     340    26970132 :   *pc = umodsu(*pc, N); if (!*pc) { *pd = 1; return; }
     341    24448039 :   *pd = umodsu(*pd, N); if (!*pd) { *pc = 1; return; }
     342    24172918 :   u = p1N_get_invsafe(p1N)[*pd];
     343    24172918 :   if (u) { *pc = Fl_mul(*pc,u,N); *pd = 1; return; } /* (d,N) = 1 */
     344             : 
     345     8018752 :   u = p1N_get_inverse(p1N)[*pc];
     346     8018752 :   if (u > 1) { *pc = Fl_mul(*pc,u,N); *pd = Fl_mul(*pd,u,N); }
     347             :   /* c | N */
     348     8018752 :   if (*pc != 1) *pd %= (N / *pc);
     349     8018752 :   if (!*pd) *pd = N / *pc;
     350             : }
     351             : 
     352             : /* Input: v = [x,y] = elt of P^1(Z/NZ) = class in Gamma_0(N) \ PSL2(Z)
     353             :  * Output: returns the index of the standard rep equivalent to v */
     354             : static long
     355    26970132 : p1_index(long x, long y, GEN p1N)
     356             : {
     357    26970132 :   ulong N = p1N_get_N(p1N);
     358    26970132 :   GEN H = p1N_get_hash(p1N);
     359             : 
     360    26970132 :   p1_std_form(&x, &y, p1N);
     361    26970132 :   if (y == 1) return x+1;
     362     8293873 :   if (y == 0) return N+1;
     363     8018752 :   if (mael(H,x,y) == 0) pari_err_BUG("p1_index");
     364     8018752 :   return mael(H,x,y);
     365             : }
     366             : 
     367             : /* Cusps for \Gamma_0(N) */
     368             : 
     369             : /* \sum_{d | N} \phi(gcd(d, N/d)), using multiplicativity. fa = factor(N) */
     370             : ulong
     371        4340 : mfnumcuspsu_fact(GEN fa)
     372             : {
     373        4340 :   GEN P = gel(fa,1), E = gel(fa,2);
     374        4340 :   long i, l = lg(P);
     375        4340 :   ulong T = 1;
     376       12201 :   for (i = 1; i < l; i++)
     377             :   {
     378        7861 :     long e = E[i], e2 = e >> 1; /* floor(E[i] / 2) */
     379        7861 :     ulong p = P[i];
     380        7861 :     if (odd(e))
     381        6559 :       T *= 2 * upowuu(p, e2);
     382             :     else
     383        1302 :       T *= (p+1) * upowuu(p, e2-1);
     384             :   }
     385        4340 :   return T;
     386             : }
     387             : ulong
     388           7 : mfnumcuspsu(ulong n)
     389           7 : { pari_sp av = avma; return gc_ulong(av, mfnumcuspsu_fact( factoru(n) )); }
     390             : /* \sum_{d | N} \phi(gcd(d, N/d)), using multiplicativity. fa = factor(N) */
     391             : GEN
     392          14 : mfnumcusps_fact(GEN fa)
     393             : {
     394          14 :   GEN P = gel(fa,1), E = gel(fa,2), T = gen_1;
     395          14 :   long i, l = lg(P);
     396          35 :   for (i = 1; i < l; i++)
     397             :   {
     398          21 :     GEN p = gel(P,i), c;
     399          21 :     long e = itos(gel(E,i)), e2 = e >> 1; /* floor(E[i] / 2) */
     400          21 :     if (odd(e))
     401           0 :       c = shifti(powiu(p, e2), 1);
     402             :     else
     403          21 :       c = mulii(addiu(p,1), powiu(p, e2-1));
     404          21 :     T = T? mulii(T, c): c;
     405             :   }
     406          14 :   return T? T: gen_1;
     407             : }
     408             : GEN
     409          21 : mfnumcusps(GEN n)
     410             : {
     411          21 :   pari_sp av = avma;
     412          21 :   GEN F = check_arith_pos(n,"mfnumcusps");
     413          21 :   if (!F)
     414             :   {
     415          14 :     if (lgefint(n) == 3) return utoi( mfnumcuspsu(n[2]) );
     416           7 :     F = absZ_factor(n);
     417             :   }
     418          14 :   return gerepileuptoint(av, mfnumcusps_fact(F));
     419             : }
     420             : 
     421             : /* to each cusp in \Gamma_0(N) P1(Q), represented by p/q, we associate a
     422             :  * unique index. Canonical representative: (1:0) or (p:q) with q | N, q < N,
     423             :  * p defined modulo d := gcd(N/q,q), (p,d) = 1.
     424             :  * Return [[N, nbcusps], H, cusps]*/
     425             : static GEN
     426        4256 : inithashcusps(GEN p1N)
     427             : {
     428        4256 :   ulong N = p1N_get_N(p1N);
     429        4256 :   GEN div = p1N_get_div(p1N), H = zerovec(N+1);
     430        4256 :   long k, ind, l = lg(div), ncusp = mfnumcuspsu_fact(p1N_get_fa(p1N));
     431        4256 :   GEN cusps = cgetg(ncusp+1, t_VEC);
     432             : 
     433        4256 :   gel(H,1) = mkvecsmall2(0/*empty*/, 1/* first cusp: (1:0) */);
     434        4256 :   gel(cusps, 1) = mkvecsmall2(1,0);
     435        4256 :   ind = 2;
     436       22225 :   for (k=1; k < l-1; k++) /* l-1: remove q = N */
     437             :   {
     438       17969 :     ulong p, q = div[k], d = ugcd(q, N/q);
     439       17969 :     GEN h = const_vecsmall(d+1,0);
     440       17969 :     gel(H,q+1) = h ;
     441       48034 :     for (p = 0; p < d; p++)
     442       30065 :       if (ugcd(p,d) == 1)
     443             :       {
     444       22925 :         h[p+1] = ind;
     445       22925 :         gel(cusps, ind) = mkvecsmall2(p,q);
     446       22925 :         ind++;
     447             :       }
     448             :   }
     449        4256 :   return mkvec3(mkvecsmall2(N,ind-1), H, cusps);
     450             : }
     451             : /* c = [p,q], (p,q) = 1, return a canonical representative for
     452             :  * \Gamma_0(N)(p/q) */
     453             : static GEN
     454      203469 : cusp_std_form(GEN c, GEN S)
     455             : {
     456      203469 :   long p, N = gel(S,1)[1], q = umodsu(c[2], N);
     457             :   ulong u, d;
     458      203469 :   if (q == 0) return mkvecsmall2(1, 0);
     459      201761 :   p = umodsu(c[1], N);
     460      201761 :   u = Fl_inverse(q, N);
     461      201761 :   q = Fl_mul(q,u, N);
     462      201761 :   d = ugcd(q, N/q);
     463      201761 :   return mkvecsmall2(Fl_div(p % d,u % d, d), q);
     464             : }
     465             : /* c = [p,q], (p,q) = 1, return the index of the corresponding cusp.
     466             :  * S from inithashcusps */
     467             : static ulong
     468      203469 : cusp_index(GEN c, GEN S)
     469             : {
     470             :   long p, q;
     471      203469 :   GEN H = gel(S,2);
     472      203469 :   c = cusp_std_form(c, S);
     473      203469 :   p = c[1]; q = c[2];
     474      203469 :   if (!mael(H,q+1,p+1)) pari_err_BUG("cusp_index");
     475      203469 :   return mael(H,q+1,p+1);
     476             : }
     477             : 
     478             : /* M a square invertible ZM, return a ZM iM such that iM M = M iM = d.Id */
     479             : static GEN
     480        3066 : ZM_inv_denom(GEN M)
     481             : {
     482        3066 :   GEN diM, iM = ZM_inv(M, &diM);
     483        3066 :   return mkvec2(iM, diM);
     484             : }
     485             : /* return M^(-1) v, dinv = ZM_inv_denom(M) OR Qevproj_init(M) */
     486             : static GEN
     487      744023 : ZC_apply_dinv(GEN dinv, GEN v)
     488             : {
     489             :   GEN x, c, iM;
     490      744023 :   if (lg(dinv) == 3)
     491             :   {
     492      665917 :     iM = gel(dinv,1);
     493      665917 :     c = gel(dinv,2);
     494             :   }
     495             :   else
     496             :   { /* Qevproj_init */
     497       78106 :     iM = gel(dinv,2);
     498       78106 :     c = gel(dinv,3);
     499       78106 :     v = typ(v) == t_MAT? rowpermute(v, gel(dinv,4))
     500       78106 :                        : vecpermute(v, gel(dinv,4));
     501             :   }
     502      744023 :   x = RgM_RgC_mul(iM, v);
     503      744023 :   if (!isint1(c)) x = RgC_Rg_div(x, c);
     504      744023 :   return x;
     505             : }
     506             : 
     507             : /* M an n x d ZM of rank d (basis of a Q-subspace), n >= d.
     508             :  * Initialize a projector on M */
     509             : GEN
     510        8225 : Qevproj_init(GEN M)
     511             : {
     512             :   GEN v, perm, MM, iM, diM;
     513        8225 :   v = ZM_indexrank(M); perm = gel(v,1);
     514        8225 :   MM = rowpermute(M, perm); /* square invertible */
     515        8225 :   iM = ZM_inv(MM, &diM);
     516        8225 :   return mkvec4(M, iM, diM, perm);
     517             : }
     518             : 
     519             : /* same with typechecks */
     520             : static GEN
     521         728 : Qevproj_init0(GEN M)
     522             : {
     523         728 :   switch(typ(M))
     524             :   {
     525         665 :     case t_VEC:
     526         665 :       if (lg(M) == 5) return M;
     527           0 :       break;
     528          49 :     case t_COL:
     529          49 :       M = mkmat(M);/*fall through*/
     530          56 :     case t_MAT:
     531          56 :       M = Q_primpart(M);
     532          56 :       RgM_check_ZM(M,"Qevproj_init");
     533          56 :       return Qevproj_init(M);
     534             :   }
     535           7 :   pari_err_TYPE("Qevproj_init",M);
     536             :   return NULL;/*LCOV_EXCL_LINE*/
     537             : }
     538             : 
     539             : /* T an n x n QM, pro = Qevproj_init(M), pro2 = Qevproj_init(M2); TM \subset M2.
     540             :  * Express these column vectors on M2's basis */
     541             : static GEN
     542        3661 : Qevproj_apply2(GEN T, GEN pro, GEN pro2)
     543             : {
     544        3661 :   GEN M = gel(pro,1), iM = gel(pro2,2), ciM = gel(pro2,3), perm = gel(pro2,4);
     545        3661 :   return RgM_Rg_div(RgM_mul(iM, RgM_mul(rowpermute(T,perm), M)), ciM);
     546             : }
     547             : /* T an n x n QM, stabilizing d-dimensional Q-vector space spanned by the
     548             :  * d columns of M, pro = Qevproj_init(M). Return dxd matrix of T acting on M */
     549             : GEN
     550        3031 : Qevproj_apply(GEN T, GEN pro) { return Qevproj_apply2(T, pro, pro); }
     551             : /* Qevproj_apply(T,pro)[,k] */
     552             : GEN
     553         819 : Qevproj_apply_vecei(GEN T, GEN pro, long k)
     554             : {
     555         819 :   GEN M = gel(pro,1), iM = gel(pro,2), ciM = gel(pro,3), perm = gel(pro,4);
     556         819 :   GEN v = RgM_RgC_mul(iM, RgM_RgC_mul(rowpermute(T,perm), gel(M,k)));
     557         819 :   return RgC_Rg_div(v, ciM);
     558             : }
     559             : 
     560             : static int
     561         434 : cmp_dim(void *E, GEN a, GEN b)
     562             : {
     563             :   long k;
     564             :   (void)E;
     565         434 :   a = gel(a,1);
     566         434 :   b = gel(b,1); k = lg(a)-lg(b);
     567         434 :   return k? ((k > 0)? 1: -1): 0;
     568             : }
     569             : 
     570             : /* FIXME: could use ZX_roots for deglim = 1 */
     571             : static GEN
     572         343 : ZX_factor_limit(GEN T, long deglim, long *pl)
     573             : {
     574         343 :   GEN fa = ZX_factor(T), P, E;
     575             :   long i, l;
     576         343 :   P = gel(fa,1); *pl = l = lg(P);
     577         343 :   if (deglim <= 0) return fa;
     578         224 :   E = gel(fa,2);
     579         567 :   for (i = 1; i < l; i++)
     580         406 :     if (degpol(gel(P,i)) > deglim) break;
     581         224 :   setlg(P,i);
     582         224 :   setlg(E,i); return fa;
     583             : }
     584             : 
     585             : /* Decompose the subspace H (Qevproj format) in simple subspaces.
     586             :  * Eg for H = msnew */
     587             : static GEN
     588         266 : mssplit_i(GEN W, GEN H, long deglim)
     589             : {
     590         266 :   ulong p, N = ms_get_N(W);
     591             :   long first, dim;
     592             :   forprime_t S;
     593         266 :   GEN T1 = NULL, T2 = NULL, V;
     594         266 :   dim = lg(gel(H,1))-1;
     595         266 :   V = vectrunc_init(dim+1);
     596         266 :   if (!dim) return V;
     597         259 :   (void)u_forprime_init(&S, 2, ULONG_MAX);
     598         259 :   vectrunc_append(V, H);
     599         259 :   first = 1; /* V[1..first-1] contains simple subspaces */
     600         399 :   while ((p = u_forprime_next(&S)))
     601             :   {
     602             :     GEN T;
     603             :     long j, lV;
     604         399 :     if (N % p == 0) continue;
     605         336 :     if (T1 && T2) {
     606          21 :       T = RgM_add(T1,T2);
     607          21 :       T2 = NULL;
     608             :     } else {
     609         315 :       T2 = T1;
     610         315 :       T1 = T = mshecke(W, p, NULL);
     611             :     }
     612         336 :     lV = lg(V);
     613         679 :     for (j = first; j < lV; j++)
     614             :     {
     615         343 :       pari_sp av = avma;
     616             :       long lP;
     617         343 :       GEN Vj = gel(V,j), P = gel(Vj,1);
     618         343 :       GEN TVj = Qevproj_apply(T, Vj); /* c T | V_j */
     619         343 :       GEN ch = QM_charpoly_ZX(TVj), fa = ZX_factor_limit(ch,deglim, &lP);
     620         343 :       GEN F = gel(fa, 1), E = gel(fa, 2);
     621         343 :       long k, lF = lg(F);
     622         343 :       if (lF == 2 && lP == 2)
     623             :       {
     624         168 :         if (equali1(gel(E,1)))
     625             :         { /* simple subspace */
     626         168 :           swap(gel(V,first), gel(V,j));
     627         168 :           first++;
     628             :         }
     629             :         else
     630           0 :           set_avma(av);
     631             :       }
     632         175 :       else if (lF == 1) /* discard V[j] */
     633           7 :       { swap(gel(V,j), gel(V,lg(V)-1)); setlg(V, lg(V)-1); }
     634             :       else
     635             :       { /* can split Vj */
     636             :         GEN pows;
     637         168 :         long D = 1;
     638         658 :         for (k = 1; k < lF; k++)
     639             :         {
     640         490 :           long d = degpol(gel(F,k));
     641         490 :           if (d > D) D = d;
     642             :         }
     643             :         /* remove V[j] */
     644         168 :         gel(V,j) = gel(V,lg(V)-1); setlg(V, lg(V)-1);
     645         168 :         pows = RgM_powers(TVj, minss((long)2*sqrt((double)D), D));
     646         658 :         for (k = 1; k < lF; k++)
     647             :         {
     648         490 :           GEN f = gel(F,k);
     649         490 :           GEN K = QM_ker( RgX_RgMV_eval(f, pows)) ; /* Ker f(TVj) */
     650         490 :           GEN p = vec_Q_primpart( RgM_mul(P, K) );
     651         490 :           vectrunc_append(V, Qevproj_init(p));
     652         490 :           if (lg(K) == 2 || isint1(gel(E,k)))
     653             :           { /* simple subspace */
     654         406 :             swap(gel(V,first), gel(V, lg(V)-1));
     655         406 :             first++;
     656             :           }
     657             :         }
     658         168 :         if (j < first) j = first;
     659             :       }
     660             :     }
     661         336 :     if (first >= lg(V)) {
     662         259 :       gen_sort_inplace(V, NULL, cmp_dim, NULL);
     663         259 :       return V;
     664             :     }
     665             :   }
     666           0 :   pari_err_BUG("subspaces not found");
     667             :   return NULL;/*LCOV_EXCL_LINE*/
     668             : }
     669             : GEN
     670         266 : mssplit(GEN W, GEN H, long deglim)
     671             : {
     672         266 :   pari_sp av = avma;
     673         266 :   checkms(W);
     674         266 :   if (!msk_get_sign(W))
     675           0 :     pari_err_DOMAIN("mssplit","abs(sign)","!=",gen_1,gen_0);
     676         266 :   if (!H) H = msnew(W);
     677         266 :   H = Qevproj_init0(H);
     678         266 :   return gerepilecopy(av, mssplit_i(W,H,deglim));
     679             : }
     680             : 
     681             : /* proV = Qevproj_init of a Hecke simple subspace, return [ a_n, n <= B ] */
     682             : static GEN
     683         245 : msqexpansion_i(GEN W, GEN proV, ulong B)
     684             : {
     685         245 :   ulong p, N = ms_get_N(W), sqrtB;
     686         245 :   long i, d, k = msk_get_weight(W);
     687             :   forprime_t S;
     688         245 :   GEN T1=NULL, T2=NULL, TV=NULL, ch=NULL, v, dTiv, Tiv, diM, iM, L;
     689         245 :   switch(B)
     690             :   {
     691           0 :     case 0: return cgetg(1,t_VEC);
     692           0 :     case 1: return mkvec(gen_1);
     693             :   }
     694         245 :   (void)u_forprime_init(&S, 2, ULONG_MAX);
     695         357 :   while ((p = u_forprime_next(&S)))
     696             :   {
     697             :     GEN T;
     698         357 :     if (N % p == 0) continue;
     699         266 :     if (T1 && T2)
     700             :     {
     701           0 :       T = RgM_add(T1,T2);
     702           0 :       T2 = NULL;
     703             :     }
     704             :     else
     705             :     {
     706         266 :       T2 = T1;
     707         266 :       T1 = T = mshecke(W, p, NULL);
     708             :     }
     709         266 :     TV = Qevproj_apply(T, proV); /* T | V */
     710         266 :     ch = QM_charpoly_ZX(TV);
     711         266 :     if (ZX_is_irred(ch)) break;
     712          21 :     ch = NULL;
     713             :   }
     714         245 :   if (!ch) pari_err_BUG("q-Expansion not found");
     715             :   /* T generates the Hecke algebra (acting on V) */
     716         245 :   d = degpol(ch);
     717         245 :   v = vec_ei(d, 1); /* take v = e_1 */
     718         245 :   Tiv = cgetg(d+1, t_MAT); /* Tiv[i] = T^(i-1)v */
     719         245 :   gel(Tiv, 1) = v;
     720         343 :   for (i = 2; i <= d; i++) gel(Tiv, i) = RgM_RgC_mul(TV, gel(Tiv,i-1));
     721         245 :   Tiv = Q_remove_denom(Tiv, &dTiv);
     722         245 :   iM = ZM_inv(Tiv, &diM);
     723         245 :   if (dTiv) diM = gdiv(diM, dTiv);
     724         245 :   L = const_vec(B,NULL);
     725         245 :   sqrtB = usqrt(B);
     726         245 :   gel(L,1) = d > 1? mkpolmod(gen_1,ch): gen_1;
     727        2471 :   for (p = 2; p <= B; p++)
     728             :   {
     729        2226 :     pari_sp av = avma;
     730             :     GEN T, u, Tv, ap, P;
     731             :     ulong m;
     732        2226 :     if (gel(L,p)) continue;  /* p not prime */
     733         819 :     T = mshecke(W, p, NULL);
     734         819 :     Tv = Qevproj_apply_vecei(T, proV, 1); /* Tp.v */
     735             :     /* Write Tp.v = \sum u_i T^i v */
     736         819 :     u = RgC_Rg_div(RgM_RgC_mul(iM, Tv), diM);
     737         819 :     ap = gerepilecopy(av, RgV_to_RgX(u, 0));
     738         819 :     if (d > 1)
     739         399 :       ap = mkpolmod(ap,ch);
     740             :     else
     741         420 :       ap = simplify_shallow(ap);
     742         819 :     gel(L,p) = ap;
     743         819 :     if (!(N % p))
     744         147 :     { /* p divides the level */
     745         147 :       ulong C = B/p;
     746         546 :       for (m=1; m<=C; m++)
     747         399 :         if (gel(L,m)) gel(L,m*p) = gmul(gel(L,m), ap);
     748         147 :       continue;
     749             :     }
     750         672 :     P = powuu(p,k-1);
     751         672 :     if (p <= sqrtB) {
     752         119 :       ulong pj, oldpj = 1;
     753         546 :       for (pj = p; pj <= B; oldpj=pj, pj *= p)
     754             :       {
     755         427 :         GEN apj = (pj==p)? ap
     756         427 :                          : gsub(gmul(ap,gel(L,oldpj)), gmul(P,gel(L,oldpj/p)));
     757         427 :         gel(L,pj) = apj;
     758        3136 :         for (m = B/pj; m > 1; m--)
     759        2709 :           if (gel(L,m) && m%p) gel(L,m*pj) = gmul(gel(L,m), apj);
     760             :       }
     761             :     } else {
     762         553 :       gel(L,p) = ap;
     763        1092 :       for (m = B/p; m > 1; m--)
     764         539 :         if (gel(L,m)) gel(L,m*p) = gmul(gel(L,m), ap);
     765             :     }
     766             :   }
     767         245 :   return L;
     768             : }
     769             : GEN
     770         259 : msqexpansion(GEN W, GEN proV, long B)
     771             : {
     772         259 :   pari_sp av = avma;
     773         259 :   checkms(W);
     774         259 :   if (B < 0) pari_err_DOMAIN("msqexpansion", "B", "<", gen_0, stoi(B));
     775         252 :   proV = Qevproj_init0(proV);
     776         245 :   return gerepilecopy(av, msqexpansion_i(W,proV,(ulong)B));
     777             : }
     778             : 
     779             : static GEN
     780         217 : Qevproj_apply0(GEN T, GEN pro)
     781             : {
     782         217 :   GEN iM = gel(pro,2), perm = gel(pro,4);
     783         217 :   return vec_Q_primpart(ZM_mul(iM, rowpermute(T,perm)));
     784             : }
     785             : /* T a ZC or ZM */
     786             : GEN
     787        4186 : Qevproj_down(GEN T, GEN pro)
     788             : {
     789        4186 :   GEN iM = gel(pro,2), ciM = gel(pro,3), perm = gel(pro,4);
     790        4186 :   if (typ(T) == t_COL)
     791        4186 :     return RgC_Rg_div(ZM_ZC_mul(iM, vecpermute(T,perm)), ciM);
     792             :   else
     793           0 :     return RgM_Rg_div(ZM_mul(iM, rowpermute(T,perm)), ciM);
     794             : }
     795             : 
     796             : static GEN
     797         287 : Qevproj_star(GEN W, GEN H)
     798             : {
     799         287 :   long s = msk_get_sign(W);
     800         287 :   if (s)
     801             :   { /* project on +/- component */
     802         217 :     GEN A = RgM_mul(msk_get_star(W), H);
     803         217 :     A = (s > 0)? gadd(A, H): gsub(A, H);
     804             :     /* Im(star + sign) = Ker(star - sign) */
     805         217 :     H = QM_image_shallow(A);
     806         217 :     H = Qevproj_apply0(H, msk_get_starproj(W));
     807             :   }
     808         287 :   return H;
     809             : }
     810             : 
     811             : static GEN
     812        5824 : Tp_matrices(ulong p)
     813             : {
     814        5824 :   GEN v = cgetg(p+2, t_VEC);
     815             :   ulong i;
     816       44429 :   for (i = 1; i <= p; i++) gel(v,i) = mat2(1, i-1, 0, p);
     817        5824 :   gel(v,i) = mat2(p, 0, 0, 1);
     818        5824 :   return v;
     819             : }
     820             : static GEN
     821         987 : Up_matrices(ulong p)
     822             : {
     823         987 :   GEN v = cgetg(p+1, t_VEC);
     824             :   ulong i;
     825        6300 :   for (i = 1; i <= p; i++) gel(v,i) = mat2(1, i-1, 0, p);
     826         987 :   return v;
     827             : }
     828             : 
     829             : /* M = N/p. Classes of Gamma_0(M) / Gamma_O(N) when p | M */
     830             : static GEN
     831         182 : NP_matrices(ulong M, ulong p)
     832             : {
     833         182 :   GEN v = cgetg(p+1, t_VEC);
     834             :   ulong i;
     835        1365 :   for (i = 1; i <= p; i++) gel(v,i) = mat2(1, 0, (i-1)*M, 1);
     836         182 :   return v;
     837             : }
     838             : /* M = N/p. Extra class of Gamma_0(M) / Gamma_O(N) when p \nmid M */
     839             : static GEN
     840          98 : NP_matrix_extra(ulong M, ulong p)
     841             : {
     842          98 :   long w,z, d = cbezout(p, -M, &w, &z);
     843          98 :   if (d != 1) return NULL;
     844          98 :   return mat2(w,z,M,p);
     845             : }
     846             : static GEN
     847         112 : WQ_matrix(long N, long Q)
     848             : {
     849         112 :   long w,z, d = cbezout(Q, N/Q, &w, &z);
     850         112 :   if (d != 1) return NULL;
     851         112 :   return mat2(Q,1,-N*z,Q*w);
     852             : }
     853             : 
     854             : GEN
     855         287 : msnew(GEN W)
     856             : {
     857         287 :   pari_sp av = avma;
     858         287 :   GEN S = mscuspidal(W, 0);
     859         287 :   ulong N = ms_get_N(W);
     860         287 :   long s = msk_get_sign(W), k = msk_get_weight(W);
     861         287 :   if (N > 1 && (!uisprime(N) || (k == 12 || k > 14)))
     862             :   {
     863         112 :     GEN p1N = ms_get_p1N(W), P = gel(p1N_get_fa(p1N), 1);
     864         112 :     long i, nP = lg(P)-1;
     865         112 :     GEN v = cgetg(2*nP + 1, t_COL);
     866         112 :     S = gel(S,1); /* Q basis */
     867         294 :     for (i = 1; i <= nP; i++)
     868             :     {
     869         182 :       pari_sp av = avma, av2;
     870         182 :       long M = N/P[i];
     871         182 :       GEN T1,Td, Wi = mskinit(M, k, s);
     872         182 :       GEN v1 = NP_matrices(M, P[i]);
     873         182 :       GEN vd = Up_matrices(P[i]);
     874             :       /* p^2 \nmid N */
     875         182 :       if (M % P[i])
     876             :       {
     877          98 :         v1 = vec_append(v1, NP_matrix_extra(M,P[i]));
     878          98 :         vd = vec_append(vd, WQ_matrix(N,P[i]));
     879             :       }
     880         182 :       T1 = getMorphism(W, Wi, v1);
     881         182 :       Td = getMorphism(W, Wi, vd);
     882         182 :       if (s)
     883             :       {
     884         168 :         T1 = Qevproj_apply2(T1, msk_get_starproj(W), msk_get_starproj(Wi));
     885         168 :         Td = Qevproj_apply2(Td, msk_get_starproj(W), msk_get_starproj(Wi));
     886             :       }
     887         182 :       av2 = avma;
     888         182 :       T1 = RgM_mul(T1,S);
     889         182 :       Td = RgM_mul(Td,S);  /* multiply by S = restrict to mscusp */
     890         182 :       gerepileallsp(av, av2, 2, &T1, &Td);
     891         182 :       gel(v,2*i-1) = T1;
     892         182 :       gel(v,2*i)   = Td;
     893             :     }
     894         112 :     S = ZM_mul(S, QM_ker(matconcat(v))); /* Snew */
     895         112 :     S = Qevproj_init(vec_Q_primpart(S));
     896             :   }
     897         287 :   return gerepilecopy(av, S);
     898             : }
     899             : 
     900             : /* Solve the Manin relations for a congruence subgroup \Gamma by constructing
     901             :  * a well-formed fundamental domain for the action of \Gamma on upper half
     902             :  * space. See
     903             :  * Pollack and Stevens, Overconvergent modular symbols and p-adic L-functions
     904             :  * Annales scientifiques de l'ENS 44, fascicule 1 (2011), 1-42
     905             :  * http://math.bu.edu/people/rpollack/Papers/Overconvergent_modular_symbols_and_padic_Lfunctions.pdf
     906             :  *
     907             :  * FIXME: Implemented for \Gamma = \Gamma_0(N) only. */
     908             : 
     909             : /* linked lists */
     910             : typedef struct list_t { GEN data; struct list_t *next; } list_t;
     911             : static list_t *
     912      188503 : list_new(GEN x)
     913             : {
     914      188503 :   list_t *L = (list_t*)stack_malloc(sizeof(list_t));
     915      188503 :   L->data = x;
     916      188503 :   L->next = NULL; return L;
     917             : }
     918             : static void
     919      184275 : list_insert(list_t *L, GEN x)
     920             : {
     921      184275 :   list_t *l = list_new(x);
     922      184275 :   l->next = L->next;
     923      184275 :   L->next = l;
     924      184275 : }
     925             : 
     926             : /*Input: N > 1, p1N = P^1(Z/NZ)
     927             :  *Output: a connected fundamental domain for the action of \Gamma_0(N) on
     928             :  *  upper half space.  When \Gamma_0(N) is torsion free, the domain has the
     929             :  *  property that all of its vertices are cusps.  When \Gamma_0(N) has
     930             :  *  three-torsion, 2 extra triangles need to be added.
     931             :  *
     932             :  * The domain is constructed by beginning with the triangle with vertices 0,1
     933             :  * and oo.  Each adjacent triangle is successively tested to see if it contains
     934             :  * points not \Gamma_0(N) equivalent to some point in our region.  If a
     935             :  * triangle contains new points, it is added to the region.  This process is
     936             :  * continued until the region can no longer be extended (and still be a
     937             :  * fundamental domain) by added an adjacent triangle.  The list of cusps
     938             :  * between 0 and 1 are then returned
     939             :  *
     940             :  * Precisely, the function returns a list such that the elements of the list
     941             :  * with odd index are the cusps in increasing order.  The even elements of the
     942             :  * list are either an "x" or a "t".  A "t" represents that there is an element
     943             :  * of order three such that its fixed point is in the triangle directly
     944             :  * adjacent to the our region with vertices given by the cusp before and after
     945             :  * the "t".  The "x" represents that this is not the case. */
     946             : enum { type_X, type_DO /* ? */, type_T };
     947             : static GEN
     948        4228 : form_list_of_cusps(ulong N, GEN p1N)
     949             : {
     950        4228 :   pari_sp av = avma;
     951        4228 :   long i, position, nbC = 2;
     952             :   GEN v, L;
     953             :   list_t *C, *c;
     954             :   /* Let t be the index of a class in PSL2(Z) / \Gamma in our fixed enumeration
     955             :    * v[t] != 0 iff it is the class of z tau^r for z a previous alpha_i
     956             :    * or beta_i.
     957             :    * For \Gamma = \Gamma_0(N), the enumeration is given by p1_index.
     958             :    * We write cl(gamma) = the class of gamma mod \Gamma */
     959        4228 :   v = const_vecsmall(p1_size(p1N), 0);
     960        4228 :   i = p1_index( 0, 1, p1N); v[i] = 1;
     961        4228 :   i = p1_index( 1,-1, p1N); v[i] = 2;
     962        4228 :   i = p1_index(-1, 0, p1N); v[i] = 3;
     963             :   /* the value is unused [debugging]: what matters is whether it is != 0 */
     964        4228 :   position = 4;
     965             :   /* at this point, Fund = R, v contains the classes of Id, tau, tau^2 */
     966             : 
     967        4228 :   C  = list_new(mkvecsmall3(0,1, type_X));
     968        4228 :   list_insert(C, mkvecsmall3(1,1,type_DO));
     969             :   /* C is a list of triples[a,b,t], where c = a/b is a cusp, and t is the type
     970             :    * of the path between c and the PREVIOUS cusp in the list, coded as
     971             :    *   type_DO = "?", type_X = "x", type_T = "t"
     972             :    * Initially, C = [0/1,"?",1/1]; */
     973             : 
     974             :   /* loop through the current set of cusps C and check to see if more cusps
     975             :    * should be added */
     976             :   for (;;)
     977       24633 :   {
     978       28861 :     int done = 1;
     979      824383 :     for (c = C; c; c = c->next)
     980             :     {
     981             :       GEN cusp1, cusp2, gam;
     982             :       long pos, b1, b2, b;
     983             : 
     984      824383 :       if (!c->next) break;
     985      795522 :       cusp1 = c->data; /* = a1/b1 */
     986      795522 :       cusp2 = (c->next)->data; /* = a2/b2 */
     987      795522 :       if (cusp2[3] != type_DO) continue;
     988             : 
     989             :       /* gam (oo -> 0) = (cusp2 -> cusp1), gam in PSL2(Z) */
     990      364322 :       gam = path_to_zm(mkpath(cusp2, cusp1)); /* = [a2,a1;b2,b1] */
     991             :       /* we have normalized the cusp representation so that a1 b2 - a2 b1 = 1 */
     992      364322 :       b1 = coeff(gam,2,1); b2 = coeff(gam,2,2);
     993             :       /* gam.1  = (a1 + a2) / (b1 + b2) */
     994      364322 :       b = b1 + b2;
     995             :       /* Determine whether the adjacent triangle *below* (cusp1->cusp2)
     996             :        * should be added */
     997      364322 :       pos = p1_index(b1,b2, p1N); /* did we see cl(gam) before ? */
     998      364322 :       if (v[pos])
     999      182798 :         cusp2[3] = type_X; /* NO */
    1000             :       else
    1001             :       { /* YES */
    1002             :         ulong B1, B2;
    1003      181524 :         v[pos] = position;
    1004      181524 :         i = p1_index(-(b1+b2), b1, p1N); v[i] = position+1;
    1005      181524 :         i = p1_index(b2, -(b1+b2), p1N); v[i] = position+2;
    1006             :         /* add cl(gam), cl(gam*TAU), cl(gam*TAU^2) to v */
    1007      181524 :         position += 3;
    1008             :         /* gam tau gam^(-1) in \Gamma ? */
    1009      181524 :         B1 = umodsu(b1, N);
    1010      181524 :         B2 = umodsu(b2, N);
    1011      181524 :         if ((Fl_sqr(B2,N) + Fl_sqr(B1,N) + Fl_mul(B1,B2,N)) % N == 0)
    1012        1477 :           cusp2[3] = type_T;
    1013             :         else
    1014             :         {
    1015      180047 :           long a1 = coeff(gam, 1,1), a2 = coeff(gam, 1,2);
    1016      180047 :           long a = a1 + a2; /* gcd(a,b) = 1 */
    1017      180047 :           list_insert(c, mkvecsmall3(a,b,type_DO));
    1018      180047 :           c = c->next;
    1019      180047 :           nbC++;
    1020      180047 :           done = 0;
    1021             :         }
    1022             :       }
    1023             :     }
    1024       28861 :     if (done) break;
    1025             :   }
    1026        4228 :   L = cgetg(nbC+1, t_VEC); i = 1;
    1027      192731 :   for (c = C; c; c = c->next) gel(L,i++) = c->data;
    1028        4228 :   return gerepilecopy(av, L);
    1029             : }
    1030             : 
    1031             : /* W an msN. M in PSL2(Z). Return index of M in P1^(Z/NZ) = Gamma0(N) \ PSL2(Z),
    1032             :  * and M0 in Gamma_0(N) such that M = M0 * M', where M' = chosen
    1033             :  * section( PSL2(Z) -> P1^(Z/NZ) ). */
    1034             : static GEN
    1035      498463 : Gamma0N_decompose(GEN W, GEN M, long *index)
    1036             : {
    1037      498463 :   GEN p1N = msN_get_p1N(W), W3 = gel(W,3), section = msN_get_section(W);
    1038             :   GEN A;
    1039      498463 :   ulong N = p1N_get_N(p1N);
    1040      498463 :   ulong c = umodiu(gcoeff(M,2,1), N);
    1041      498463 :   ulong d = umodiu(gcoeff(M,2,2), N);
    1042      498463 :   long s, ind = p1_index(c, d, p1N); /* as an elt of P1(Z/NZ) */
    1043      498463 :   *index = W3[ind]; /* as an elt of F, E2, ... */
    1044      498463 :   M = ZM_zm_mul(M, sl2_inv(gel(section,ind)));
    1045             :   /* normalize mod +/-Id */
    1046      498463 :   A = gcoeff(M,1,1);
    1047      498463 :   s = signe(A);
    1048      498463 :   if (s < 0)
    1049      237125 :     M = ZM_neg(M);
    1050      261338 :   else if (!s)
    1051             :   {
    1052         378 :     GEN C = gcoeff(M,2,1);
    1053         378 :     if (signe(C) < 0) M = ZM_neg(M);
    1054             :   }
    1055      498463 :   return M;
    1056             : }
    1057             : /* W an msN; as above for a path. Return [[ind], M] */
    1058             : static GEN
    1059      385462 : path_Gamma0N_decompose(GEN W, GEN path)
    1060             : {
    1061      385462 :   GEN p1N = msN_get_p1N(W);
    1062      385462 :   GEN p1index_to_ind = gel(W,3);
    1063      385462 :   GEN section = msN_get_section(W);
    1064      385462 :   GEN M = path_to_zm(path);
    1065      385462 :   long p1index = p1_index(cc(M), dd(M), p1N);
    1066      385462 :   long ind = p1index_to_ind[p1index];
    1067      385462 :   GEN M0 = ZM_zm_mul(mat2_to_ZM(M), sl2_inv(gel(section,p1index)));
    1068      385462 :   return mkvec2(mkvecsmall(ind), M0);
    1069             : }
    1070             : 
    1071             : /*Form generators of H_1(X_0(N),{cusps},Z)
    1072             : *
    1073             : *Input: N = integer > 1, p1N = P^1(Z/NZ)
    1074             : *Output: [cusp_list,E,F,T2,T3,E1] where
    1075             : *  cusps_list = list of cusps describing fundamental domain of
    1076             : *    \Gamma_0(N).
    1077             : *  E = list of paths in the boundary of the fundamental domains and oriented
    1078             : *    clockwise such that they do not contain a point
    1079             : *    fixed by an element of order 2 and they are not an edge of a
    1080             : *    triangle containing a fixed point of an element of order 3
    1081             : *  F = list of paths in the interior of the domain with each
    1082             : *    orientation appearing separately
    1083             : * T2 = list of paths in the boundary of domain containing a point fixed
    1084             : *    by an element of order 2 (oriented clockwise)
    1085             : * T3 = list of paths in the boundard of domain which are the edges of
    1086             : *    some triangle containing a fixed point of a matrix of order 3 (both
    1087             : *    orientations appear)
    1088             : * E1 = a sublist of E such that every path in E is \Gamma_0(N)-equivalent to
    1089             : *    either an element of E1 or the flip (reversed orientation) of an element
    1090             : *    of E1.
    1091             : * (Elements of T2 are \Gamma_0(N)-equivalent to their own flip.)
    1092             : *
    1093             : * sec = a list from 1..#p1N of matrices describing a section of the map
    1094             : *   SL_2(Z) to P^1(Z/NZ) given by [a,b;c,d]-->[c,d].
    1095             : *   Given our fixed enumeration of P^1(Z/NZ), the j-th element of the list
    1096             : *   represents the image of the j-th element of P^1(Z/NZ) under the section. */
    1097             : 
    1098             : /* insert path in set T */
    1099             : static void
    1100      554302 : set_insert(hashtable *T, GEN path)
    1101      554302 : { hash_insert(T, path,  (void*)(T->nb + 1)); }
    1102             : 
    1103             : static GEN
    1104       38052 : hash_to_vec(hashtable *h)
    1105             : {
    1106       38052 :   GEN v = cgetg(h->nb + 1, t_VEC);
    1107             :   ulong i;
    1108     4186994 :   for (i = 0; i < h->len; i++)
    1109             :   {
    1110     4148942 :     hashentry *e = h->table[i];
    1111     5066411 :     while (e)
    1112             :     {
    1113      917469 :       GEN key = (GEN)e->key;
    1114      917469 :       long index = (long)e->val;
    1115      917469 :       gel(v, index) = key;
    1116      917469 :       e = e->next;
    1117             :     }
    1118             :   }
    1119       38052 :   return v;
    1120             : }
    1121             : 
    1122             : static long
    1123      284487 : path_to_p1_index(GEN path, GEN p1N)
    1124             : {
    1125      284487 :   GEN M = path_to_zm(path);
    1126      284487 :   return p1_index(cc(M), dd(M), p1N);
    1127             : }
    1128             : 
    1129             : /* Pollack-Stevens sets */
    1130             : typedef struct PS_sets_t {
    1131             :   hashtable *F, *T2, *T31, *T32, *E1, *E2;
    1132             :   GEN E2fromE1, stdE1;
    1133             : } PS_sets_t;
    1134             : 
    1135             : static hashtable *
    1136       29036 : set_init(long max)
    1137       29036 : { return hash_create(max, (ulong(*)(void*))&hash_GEN,
    1138             :                           (int(*)(void*,void*))&gidentical, 1); }
    1139             : /* T = E2fromE1[i] = [c, gamma] */
    1140             : static ulong
    1141    42523936 : E2fromE1_c(GEN T) { return itou(gel(T,1)); }
    1142             : static GEN
    1143      579957 : E2fromE1_Zgamma(GEN T) { return gel(T,2); }
    1144             : static GEN
    1145       94829 : E2fromE1_gamma(GEN T) { return gcoeff(gel(T,2),1,1); }
    1146             : 
    1147             : static void
    1148      189658 : insert_E(GEN path, PS_sets_t *S, GEN p1N)
    1149             : {
    1150      189658 :   GEN rev = vecreverse(path);
    1151      189658 :   long std = path_to_p1_index(rev, p1N);
    1152      189658 :   GEN v = gel(S->stdE1, std);
    1153      189658 :   if (v)
    1154             :   { /* [s, p1], where E1[s] is the path p1 = vecreverse(path) mod \Gamma */
    1155       94829 :     GEN gamma, p1 = gel(v,2);
    1156       94829 :     long r, s = itou(gel(v,1));
    1157             : 
    1158       94829 :     set_insert(S->E2, path);
    1159       94829 :     r = S->E2->nb;
    1160       94829 :     if (gel(S->E2fromE1, r) != gen_0) pari_err_BUG("insert_E");
    1161             : 
    1162       94829 :     gamma = gamma_equiv_matrix(rev, p1);
    1163             :     /* reverse(E2[r]) = gamma * E1[s] */
    1164       94829 :     gel(S->E2fromE1, r) = mkvec2(utoipos(s), to_famat_shallow(gamma,gen_m1));
    1165             :   }
    1166             :   else
    1167             :   {
    1168       94829 :     set_insert(S->E1, path);
    1169       94829 :     std = path_to_p1_index(path, p1N);
    1170       94829 :     gel(S->stdE1, std) = mkvec2(utoipos(S->E1->nb), path);
    1171             :   }
    1172      189658 : }
    1173             : 
    1174             : static GEN
    1175       16912 : cusp_infinity(void) { return mkvecsmall2(1,0); }
    1176             : 
    1177             : static void
    1178        4228 : form_E_F_T(ulong N, GEN p1N, GEN *pC, PS_sets_t *S)
    1179             : {
    1180        4228 :   GEN C, cusp_list = form_list_of_cusps(N, p1N);
    1181        4228 :   long nbgen = lg(cusp_list)-1, nbmanin = p1_size(p1N), r, s, i;
    1182             :   hashtable *F, *T2, *T31, *T32, *E1, *E2;
    1183             : 
    1184        4228 :   *pC = C = cgetg(nbgen+1, t_VEC);
    1185      192731 :   for (i = 1; i <= nbgen; i++)
    1186             :   {
    1187      188503 :     GEN c = gel(cusp_list,i);
    1188      188503 :     gel(C,i) = mkvecsmall2(c[1], c[2]);
    1189             :   }
    1190        4228 :   S->F  = F  = set_init(nbmanin);
    1191        4228 :   S->E1 = E1 = set_init(nbgen);
    1192        4228 :   S->E2 = E2 = set_init(nbgen);
    1193        4228 :   S->T2 = T2 = set_init(nbgen);
    1194        4228 :   S->T31 = T31 = set_init(nbgen);
    1195        4228 :   S->T32 = T32 = set_init(nbgen);
    1196             : 
    1197             :   /* T31 represents the three torsion paths going from left to right */
    1198             :   /* T32 represents the three torsion paths going from right to left */
    1199      188503 :   for (r = 1; r < nbgen; r++)
    1200             :   {
    1201      184275 :     GEN c2 = gel(cusp_list,r+1);
    1202      184275 :     if (c2[3] == type_T)
    1203             :     {
    1204        1477 :       GEN c1 = gel(cusp_list,r), path = mkpath(c1,c2), path2 = vecreverse(path);
    1205        1477 :       set_insert(T31, path);
    1206        1477 :       set_insert(T32, path2);
    1207             :     }
    1208             :   }
    1209             : 
    1210             :   /* to record relations between E2 and E1 */
    1211        4228 :   S->E2fromE1 = zerovec(nbgen);
    1212        4228 :   S->stdE1 = const_vec(nbmanin, NULL);
    1213             : 
    1214             :   /* Assumption later: path [oo,0] is E1[1], path [1,oo] is E2[1] */
    1215             :   {
    1216        4228 :     GEN oo = cusp_infinity();
    1217        4228 :     GEN p1 = mkpath(oo, mkvecsmall2(0,1)); /* [oo, 0] */
    1218        4228 :     GEN p2 = mkpath(mkvecsmall2(1,1), oo); /* [1, oo] */
    1219        4228 :     insert_E(p1, S, p1N);
    1220        4228 :     insert_E(p2, S, p1N);
    1221             :   }
    1222             : 
    1223      188503 :   for (r = 1; r < nbgen; r++)
    1224             :   {
    1225      184275 :     GEN c1 = gel(cusp_list,r);
    1226    23924719 :     for (s = r+1; s <= nbgen; s++)
    1227             :     {
    1228    23740444 :       pari_sp av = avma;
    1229    23740444 :       GEN c2 = gel(cusp_list,s), path;
    1230    23740444 :       GEN d = subii(mulss(c1[1],c2[2]), mulss(c1[2],c2[1]));
    1231    23740444 :       set_avma(av);
    1232    23740444 :       if (!is_pm1(d)) continue;
    1233             : 
    1234      364322 :       path = mkpath(c1,c2);
    1235      364322 :       if (r+1 == s)
    1236             :       {
    1237      184275 :         GEN w = path;
    1238      184275 :         ulong hash = T31->hash(w); /* T31, T32 use the same hash function */
    1239      184275 :         if (!hash_search2(T31, w, hash) && !hash_search2(T32, w, hash))
    1240             :         {
    1241      182798 :           if (gamma_equiv(path, vecreverse(path), N))
    1242        1596 :             set_insert(T2, path);
    1243             :           else
    1244      181202 :             insert_E(path, S, p1N);
    1245             :         }
    1246             :       } else {
    1247      180047 :         set_insert(F, mkvec2(path, mkvecsmall2(r,s)));
    1248      180047 :         set_insert(F, mkvec2(vecreverse(path), mkvecsmall2(s,r)));
    1249             :       }
    1250             :     }
    1251             :   }
    1252        4228 :   setlg(S->E2fromE1, E2->nb+1);
    1253        4228 : }
    1254             : 
    1255             : /* v = \sum n_i g_i, g_i in Sl(2,Z), return \sum n_i g_i^(-1) */
    1256             : static GEN
    1257      845705 : ZSl2_star(GEN v)
    1258             : {
    1259             :   long i, l;
    1260             :   GEN w, G;
    1261      845705 :   if (typ(v) == t_INT) return v;
    1262      845705 :   G = gel(v,1);
    1263      845705 :   w = cgetg_copy(G, &l);
    1264     2015363 :   for (i = 1; i < l; i++)
    1265             :   {
    1266     1169658 :     GEN g = gel(G,i);
    1267     1169658 :     if (typ(g) == t_MAT) g = SL2_inv_shallow(g);
    1268     1169658 :     gel(w,i) = g;
    1269             :   }
    1270      845705 :   return ZG_normalize(mkmat2(w, gel(v,2)));
    1271             : }
    1272             : 
    1273             : /* Input: h = set of unimodular paths, p1N = P^1(Z/NZ) = Gamma_0(N)\PSL2(Z)
    1274             :  * Output: Each path is converted to a matrix and then an element of P^1(Z/NZ)
    1275             :  * Append the matrix to W[12], append the index that represents
    1276             :  * these elements of P^1 (the classes mod Gamma_0(N) via our fixed
    1277             :  * enumeration to W[2]. */
    1278             : static void
    1279       25368 : paths_decompose(GEN W, hashtable *h, int flag)
    1280             : {
    1281       25368 :   GEN p1N = ms_get_p1N(W), section = ms_get_section(W);
    1282       25368 :   GEN v = hash_to_vec(h);
    1283       25368 :   long i, l = lg(v);
    1284      579670 :   for (i = 1; i < l; i++)
    1285             :   {
    1286      554302 :     GEN e = gel(v,i);
    1287      554302 :     GEN M = path_to_zm(flag? gel(e,1): e);
    1288      554302 :     long index = p1_index(cc(M), dd(M), p1N);
    1289      554302 :     vecsmalltrunc_append(gel(W,2), index);
    1290      554302 :     gel(section, index) = M;
    1291             :   }
    1292       25368 : }
    1293             : static void
    1294        4228 : fill_W2_W12(GEN W, PS_sets_t *S)
    1295             : {
    1296        4228 :   GEN p1N = msN_get_p1N(W);
    1297        4228 :   long n = p1_size(p1N);
    1298        4228 :   gel(W, 2) = vecsmalltrunc_init(n+1);
    1299        4228 :   gel(W,12) = cgetg(n+1, t_VEC);
    1300             :   /* F contains [path, [index cusp1, index cusp2]]. Others contain paths only */
    1301        4228 :   paths_decompose(W, S->F, 1);
    1302        4228 :   paths_decompose(W, S->E2, 0);
    1303        4228 :   paths_decompose(W, S->T32, 0);
    1304        4228 :   paths_decompose(W, S->E1, 0);
    1305        4228 :   paths_decompose(W, S->T2, 0);
    1306        4228 :   paths_decompose(W, S->T31, 0);
    1307        4228 : }
    1308             : 
    1309             : /* x t_VECSMALL, corresponds to a map x(i) = j, where 1 <= j <= max for all i
    1310             :  * Return y s.t. y[j] = i or 0 (not in image) */
    1311             : static GEN
    1312        8456 : reverse_list(GEN x, long max)
    1313             : {
    1314        8456 :   GEN y = const_vecsmall(max, 0);
    1315        8456 :   long r, lx = lg(x);
    1316      660660 :   for (r = 1; r < lx; r++) y[ x[r] ] = r;
    1317        8456 :   return y;
    1318             : }
    1319             : 
    1320             : /* go from C[a] to C[b]; return the indices of paths
    1321             :  * E.g. if a < b
    1322             :  *   (C[a]->C[a+1], C[a+1]->C[a+2], ... C[b-1]->C[b])
    1323             :  * (else reverse direction)
    1324             :  * = b - a paths */
    1325             : static GEN
    1326      347228 : F_indices(GEN W, long a, long b)
    1327             : {
    1328      347228 :   GEN v = cgetg(labs(b-a) + 1, t_VEC);
    1329      347228 :   long s, k = 1;
    1330      347228 :   if (a < b) {
    1331      173614 :     GEN index_forward = gel(W,13);
    1332     1193969 :     for (s = a; s < b; s++) gel(v,k++) = gel(index_forward,s);
    1333             :   } else {
    1334      173614 :     GEN index_backward = gel(W,14);
    1335     1193969 :     for (s = a; s > b; s--) gel(v,k++) = gel(index_backward,s);
    1336             :   }
    1337      347228 :   return v;
    1338             : }
    1339             : /* go from C[a] to C[b] via oo; return the indices of paths
    1340             :  * E.g. if a < b
    1341             :  *   (C[a]->C[a-1], ... C[2]->C[1],
    1342             :  *    C[1]->oo, oo-> C[end],
    1343             :  *    C[end]->C[end-1], ... C[b+1]->C[b])
    1344             :  *  a-1 + 2 + end-(b+1)+1 = end - b + a + 1 paths  */
    1345             : static GEN
    1346       12866 : F_indices_oo(GEN W, long end, long a, long b)
    1347             : {
    1348       12866 :   GEN index_oo = gel(W,15);
    1349       12866 :   GEN v = cgetg(end-labs(b-a)+1 + 1, t_VEC);
    1350       12866 :   long s, k = 1;
    1351             : 
    1352       12866 :   if (a < b) {
    1353        6433 :     GEN index_backward = gel(W,14);
    1354        6433 :     for (s = a; s > 1; s--) gel(v,k++) = gel(index_backward,s);
    1355        6433 :     gel(v,k++) = gel(index_backward,1); /* C[1] -> oo */
    1356        6433 :     gel(v,k++) = gel(index_oo,2); /* oo -> C[end] */
    1357       75264 :     for (s = end; s > b; s--) gel(v,k++) = gel(index_backward,s);
    1358             :   } else {
    1359        6433 :     GEN index_forward = gel(W,13);
    1360       75264 :     for (s = a; s < end; s++) gel(v,k++) = gel(index_forward,s);
    1361        6433 :     gel(v,k++) = gel(index_forward,end); /* C[end] -> oo */
    1362        6433 :     gel(v,k++) = gel(index_oo,1); /* oo -> C[1] */
    1363        6433 :     for (s = 1; s < b; s++) gel(v,k++) = gel(index_forward,s);
    1364             :   }
    1365       12866 :   return v;
    1366             : }
    1367             : /* index of oo -> C[1], oo -> C[end] */
    1368             : static GEN
    1369        4228 : indices_oo(GEN W, GEN C)
    1370             : {
    1371        4228 :   long end = lg(C)-1;
    1372        4228 :   GEN w, v = cgetg(2+1, t_VEC), oo = cusp_infinity();
    1373        4228 :   w = mkpath(oo, gel(C,1)); /* oo -> C[1]=0 */
    1374        4228 :   gel(v,1) = path_Gamma0N_decompose(W, w);
    1375        4228 :   w = mkpath(oo, gel(C,end)); /* oo -> C[end]=1 */
    1376        4228 :   gel(v,2) = path_Gamma0N_decompose(W, w);
    1377        4228 :   return v;
    1378             : }
    1379             : 
    1380             : /* index of C[1]->C[2], C[2]->C[3], ... C[end-1]->C[end], C[end]->oo
    1381             :  * Recall that C[1] = 0, C[end] = 1 */
    1382             : static GEN
    1383        4228 : indices_forward(GEN W, GEN C)
    1384             : {
    1385        4228 :   long s, k = 1, end = lg(C)-1;
    1386        4228 :   GEN v = cgetg(end+1, t_VEC);
    1387      192731 :   for (s = 1; s <= end; s++)
    1388             :   {
    1389      188503 :     GEN w = mkpath(gel(C,s), s == end? cusp_infinity(): gel(C,s+1));
    1390      188503 :     gel(v,k++) = path_Gamma0N_decompose(W, w);
    1391             :   }
    1392        4228 :   return v;
    1393             : }
    1394             : /* index of C[1]->oo, C[2]->C[1], ... C[end]->C[end-1] */
    1395             : static GEN
    1396        4228 : indices_backward(GEN W, GEN C)
    1397             : {
    1398        4228 :   long s, k = 1, end = lg(C)-1;
    1399        4228 :   GEN v = cgetg(end+1, t_VEC);
    1400      192731 :   for (s = 1; s <= end; s++)
    1401             :   {
    1402      188503 :     GEN w = mkpath(gel(C,s), s == 1? cusp_infinity(): gel(C,s-1));
    1403      188503 :     gel(v,k++) = path_Gamma0N_decompose(W, w);
    1404             :   }
    1405        4228 :   return v;
    1406             : }
    1407             : 
    1408             : /*[0,-1;1,-1]*/
    1409             : static GEN
    1410        4312 : mkTAU()
    1411        4312 : { retmkmat22(gen_0,gen_m1, gen_1,gen_m1); }
    1412             : /* S */
    1413             : static GEN
    1414          84 : mkS()
    1415          84 : { retmkmat22(gen_0,gen_1, gen_m1,gen_0); }
    1416             : /* N = integer > 1. Returns data describing Delta_0 = Z[P^1(Q)]_0 seen as
    1417             :  * a Gamma_0(N) - module. */
    1418             : static GEN
    1419        4256 : msinit_N(ulong N)
    1420             : {
    1421             :   GEN p1N, C, vecF, vecT2, vecT31, TAU, W, W2, singlerel, annT2, annT31;
    1422             :   GEN F_index;
    1423             :   ulong r, s, width;
    1424             :   long nball, nbgen, nbp1N;
    1425             :   hashtable *F, *T2, *T31, *T32, *E1, *E2;
    1426             :   PS_sets_t S;
    1427             : 
    1428        4256 :   W = zerovec(16);
    1429        4256 :   gel(W,1) = p1N = create_p1mod(N);
    1430        4256 :   gel(W,16)= inithashcusps(p1N);
    1431        4256 :   TAU = mkTAU();
    1432        4256 :   if (N == 1)
    1433             :   {
    1434          28 :     gel(W,5) = mkvecsmall(1);
    1435             :     /* cheat because sets are not disjoint if N=1 */
    1436          28 :     gel(W,11) = mkvecsmall5(0, 0, 1, 1, 2);
    1437          28 :     gel(W,12) = mkvec(mat2(1,0,0,1));
    1438          28 :     gel(W,8) = mkvec( mkmat22(gen_1,gen_1, mkS(),gen_1) );
    1439          28 :     gel(W,9) = mkvec( mkmat2(mkcol3(gen_1,TAU,ZM2_sqr(TAU)),
    1440             :                              mkcol3(gen_1,gen_1,gen_1)) );
    1441          28 :     return W;
    1442             :   }
    1443        4228 :   nbp1N = p1_size(p1N);
    1444        4228 :   form_E_F_T(N,p1N, &C, &S);
    1445        4228 :   E1  = S.E1;
    1446        4228 :   E2  = S.E2;
    1447        4228 :   T31 = S.T31;
    1448        4228 :   T32 = S.T32;
    1449        4228 :   F   = S.F;
    1450        4228 :   T2  = S.T2;
    1451        4228 :   nbgen = lg(C)-1;
    1452             : 
    1453             :  /* Put our paths in the order: F,E2,T32,E1,T2,T31
    1454             :   * W2[j] associates to the j-th element of this list its index in P1. */
    1455        4228 :   fill_W2_W12(W, &S);
    1456        4228 :   W2 = gel(W, 2);
    1457        4228 :   nball = lg(W2)-1;
    1458        4228 :   gel(W,3) = reverse_list(W2, nbp1N);
    1459        4228 :   gel(W,5) = vecslice(gel(W,2), F->nb + E2->nb + T32->nb + 1, nball);
    1460        4228 :   gel(W,4) = reverse_list(gel(W,5), nbp1N);
    1461        4228 :   gel(W,13) = indices_forward(W, C);
    1462        4228 :   gel(W,14) = indices_backward(W, C);
    1463        4228 :   gel(W,15) = indices_oo(W, C);
    1464        8456 :   gel(W,11) = mkvecsmall5(F->nb,
    1465        4228 :                           F->nb + E2->nb,
    1466        4228 :                           F->nb + E2->nb + T32->nb,
    1467        4228 :                           F->nb + E2->nb + T32->nb + E1->nb,
    1468        4228 :                           F->nb + E2->nb + T32->nb + E1->nb + T2->nb);
    1469             :   /* relations between T32 and T31 [not stored!]
    1470             :    * T32[i] = - T31[i] */
    1471             : 
    1472             :   /* relations of F */
    1473        4228 :   width = E1->nb + T2->nb + T31->nb;
    1474             :   /* F_index[r] = [index_1, ..., index_k], where index_i is the p1_index()
    1475             :    * of the elementary unimodular path between 2 consecutive cusps
    1476             :    * [in E1,E2,T2,T31 or T32] */
    1477        4228 :   F_index = cgetg(F->nb+1, t_VEC);
    1478        4228 :   vecF = hash_to_vec(F);
    1479      364322 :   for (r = 1; r <= F->nb; r++)
    1480             :   {
    1481      360094 :     GEN w = gel(gel(vecF,r), 2);
    1482      360094 :     long a = w[1], b = w[2], d = labs(b - a);
    1483             :     /* c1 = cusp_list[a],  c2 = cusp_list[b], ci != oo */
    1484      360094 :     gel(F_index,r) = (nbgen-d >= d-1)? F_indices(W, a,b)
    1485      360094 :                                      : F_indices_oo(W, lg(C)-1,a,b);
    1486             :   }
    1487             : 
    1488        4228 :   singlerel = cgetg(width+1, t_VEC);
    1489             :   /* form the single boundary relation */
    1490       99057 :   for (s = 1; s <= E2->nb; s++)
    1491             :   { /* reverse(E2[s]) = gamma * E1[c] */
    1492       94829 :     GEN T = gel(S.E2fromE1,s), gamma = E2fromE1_gamma(T);
    1493       94829 :     gel(singlerel, E2fromE1_c(T)) = mkmat22(gen_1,gen_1, gamma,gen_m1);
    1494             :   }
    1495        7301 :   for (r = E1->nb + 1; r <= width; r++) gel(singlerel, r) = gen_1;
    1496             : 
    1497             :   /* form the 2-torsion relations */
    1498        4228 :   annT2 = cgetg(T2->nb+1, t_VEC);
    1499        4228 :   vecT2 = hash_to_vec(T2);
    1500        5824 :   for (r = 1; r <= T2->nb; r++)
    1501             :   {
    1502        1596 :     GEN w = gel(vecT2,r);
    1503        1596 :     GEN gamma = gamma_equiv_matrix(vecreverse(w), w);
    1504        1596 :     gel(annT2, r) = mkmat22(gen_1,gen_1, gamma,gen_1);
    1505             :   }
    1506             : 
    1507             :   /* form the 3-torsion relations */
    1508        4228 :   annT31 = cgetg(T31->nb+1, t_VEC);
    1509        4228 :   vecT31 = hash_to_vec(T31);
    1510        5705 :   for (r = 1; r <= T31->nb; r++)
    1511             :   {
    1512        1477 :     GEN M = path_to_ZM( vecreverse(gel(vecT31,r)) );
    1513        1477 :     GEN gamma = ZM_mul(ZM_mul(M, TAU), SL2_inv_shallow(M));
    1514        1477 :     gel(annT31, r) = mkmat2(mkcol3(gen_1,gamma,ZM2_sqr(gamma)),
    1515             :                             mkcol3(gen_1,gen_1,gen_1));
    1516             :   }
    1517        4228 :   gel(W,6) = F_index;
    1518        4228 :   gel(W,7) = S.E2fromE1;
    1519        4228 :   gel(W,8) = annT2;
    1520        4228 :   gel(W,9) = annT31;
    1521        4228 :   gel(W,10)= singlerel;
    1522        4228 :   return W;
    1523             : }
    1524             : static GEN
    1525         112 : cusp_to_P1Q(GEN c) { return c[2]? sstoQ(c[1], c[2]): mkoo(); }
    1526             : static GEN
    1527          21 : mspathgens_i(GEN W)
    1528             : {
    1529             :   GEN R, r, g, section, gen, annT2, annT31;
    1530             :   long i, l;
    1531          21 :   checkms(W); W = get_msN(W);
    1532          21 :   section = msN_get_section(W);
    1533          21 :   gen = ms_get_genindex(W);
    1534          21 :   l = lg(gen);
    1535          21 :   g = cgetg(l,t_VEC);
    1536          77 :   for (i = 1; i < l; i++)
    1537             :   {
    1538          56 :     GEN p = gel(section,gen[i]);
    1539          56 :     gel(g,i) = mkvec2(cusp_to_P1Q(gel(p,1)), cusp_to_P1Q(gel(p,2)));
    1540             :   }
    1541          21 :   annT2 = msN_get_annT2(W);
    1542          21 :   annT31= msN_get_annT31(W);
    1543          21 :   if (ms_get_N(W) == 1)
    1544             :   {
    1545           7 :     R = cgetg(3, t_VEC);
    1546           7 :     gel(R,1) = mkvec( mkvec2(gel(annT2,1), gen_1) );
    1547           7 :     gel(R,2) = mkvec( mkvec2(gel(annT31,1), gen_1) );
    1548             :   }
    1549             :   else
    1550             :   {
    1551          14 :     GEN singlerel = msN_get_singlerel(W);
    1552          14 :     long j, nbT2 = lg(annT2)-1, nbT31 = lg(annT31)-1, nbE1 = ms_get_nbE1(W);
    1553          14 :     R = cgetg(nbT2+nbT31+2, t_VEC);
    1554          14 :     l = lg(singlerel);
    1555          14 :     r = cgetg(l, t_VEC);
    1556          42 :     for (i = 1; i <= nbE1; i++)
    1557          28 :       gel(r,i) = mkvec2(gel(singlerel, i), utoi(i));
    1558          35 :     for (; i < l; i++)
    1559          21 :       gel(r,i) = mkvec2(gen_1, utoi(i));
    1560          14 :     gel(R,1) = r; j = 2;
    1561          35 :     for (i = 1; i <= nbT2; i++,j++)
    1562          21 :       gel(R,j) = mkvec( mkvec2(gel(annT2,i), utoi(i + nbE1)) );
    1563          14 :     for (i = 1; i <= nbT31; i++,j++)
    1564           0 :       gel(R,j) = mkvec( mkvec2(gel(annT31,i), utoi(i + nbE1 + nbT2)) );
    1565             :   }
    1566          21 :   return mkvec2(g,R);
    1567             : }
    1568             : GEN
    1569          21 : mspathgens(GEN W)
    1570             : {
    1571          21 :   pari_sp av = avma;
    1572          21 :   return gerepilecopy(av, mspathgens_i(W));
    1573             : }
    1574             : /* Modular symbols in weight k: Hom_Gamma(Delta, Q[x,y]_{k-2}) */
    1575             : /* A symbol phi is represented by the {phi(g_i)}, {phi(g'_i)}, {phi(g''_i)}
    1576             :  * where the {g_i, g'_i, g''_i} are the Z[\Gamma]-generators of Delta,
    1577             :  * g_i corresponds to E1, g'_i to T2, g''_i to T31.
    1578             :  */
    1579             : 
    1580             : /* FIXME: export. T^1, ..., T^n */
    1581             : static GEN
    1582      701834 : RgX_powers(GEN T, long n)
    1583             : {
    1584      701834 :   GEN v = cgetg(n+1, t_VEC);
    1585             :   long i;
    1586      701834 :   gel(v, 1) = T;
    1587     1643600 :   for (i = 1; i < n; i++) gel(v,i+1) = RgX_mul(gel(v,i), T);
    1588      701834 :   return v;
    1589             : }
    1590             : 
    1591             : /* g = [a,b;c,d] a mat2. Return (X^{k-2} | g)(X,Y)[X = 1]. */
    1592             : static GEN
    1593        2604 : voo_act_Gl2Q(GEN g, long k)
    1594             : {
    1595        2604 :   GEN mc = stoi(-coeff(g,2,1)), d = stoi(coeff(g,2,2));
    1596        2604 :   return RgX_to_RgC(gpowgs(deg1pol_shallow(mc, d, 0), k-2), k-1);
    1597             : }
    1598             : 
    1599             : struct m_act {
    1600             :   long dim, k, p;
    1601             :   GEN q;
    1602             :   GEN(*act)(struct m_act *,GEN);
    1603             : };
    1604             : 
    1605             : /* g = [a,b;c,d]. Return (P | g)(X,Y)[X = 1] = P(dX - cY, -b X + aY)[X = 1],
    1606             :  * for P = X^{k-2}, X^{k-3}Y, ..., Y^{k-2} */
    1607             : GEN
    1608      350749 : RgX_act_Gl2Q(GEN g, long k)
    1609             : {
    1610             :   GEN a,b,c,d, V1,V2,V;
    1611             :   long i;
    1612      350749 :   if (k == 2) return matid(1);
    1613      350749 :   a = gcoeff(g,1,1); b = gcoeff(g,1,2);
    1614      350749 :   c = gcoeff(g,2,1); d = gcoeff(g,2,2);
    1615      350749 :   V1 = RgX_powers(deg1pol_shallow(gneg(c), d, 0), k-2); /* d - c Y */
    1616      350749 :   V2 = RgX_powers(deg1pol_shallow(a, gneg(b), 0), k-2); /*-b + a Y */
    1617      350749 :   V = cgetg(k, t_MAT);
    1618      350749 :   gel(V,1)   = RgX_to_RgC(gel(V1, k-2), k-1);
    1619      819280 :   for (i = 1; i < k-2; i++)
    1620             :   {
    1621      468531 :     GEN v1 = gel(V1, k-2-i); /* (d-cY)^(k-2-i) */
    1622      468531 :     GEN v2 = gel(V2, i); /* (-b+aY)^i */
    1623      468531 :     gel(V,i+1) = RgX_to_RgC(RgX_mul(v1,v2), k-1);
    1624             :   }
    1625      350749 :   gel(V,k-1) = RgX_to_RgC(gel(V2, k-2), k-1);
    1626      350749 :   return V; /* V[i+1] = X^i | g */
    1627             : }
    1628             : /* z in Z[Gl2(Q)], return the matrix of z acting on V */
    1629             : static GEN
    1630      600649 : act_ZGl2Q(GEN z, struct m_act *T, hashtable *H)
    1631             : {
    1632      600649 :   GEN S = NULL, G, E;
    1633             :   pari_sp av;
    1634             :   long l, j;
    1635             :   /* paranoia: should not occur */
    1636      600649 :   if (typ(z) == t_INT) return scalarmat_shallow(z, T->dim);
    1637      600649 :   G = gel(z,1); l = lg(G);
    1638      600649 :   E = gel(z,2); av = avma;
    1639     1770307 :   for (j = 1; j < l; j++)
    1640             :   {
    1641     1169658 :     GEN M, g = gel(G,j), n = gel(E,j);
    1642     1169658 :     if (typ(g) == t_INT) /* = 1 */
    1643        3948 :       M = n; /* n*Id_dim */
    1644             :     else
    1645             :     { /*search in H succeeds because of preload*/
    1646     1165710 :       M = H? (GEN)hash_search(H,g)->val: T->act(T,g);
    1647     1165710 :       if (is_pm1(n))
    1648     1158185 :       { if (signe(n) < 0) M = RgM_neg(M); }
    1649             :       else
    1650        7525 :         M = RgM_Rg_mul(M, n);
    1651             :     }
    1652     1169658 :     if (!S) { S = M; continue; }
    1653      569009 :     S = gadd(S, M);
    1654      569009 :     if (gc_needed(av,1))
    1655             :     {
    1656           0 :       if(DEBUGMEM>1) pari_warn(warnmem,"act_ZGl2Q, j = %ld",j);
    1657           0 :       S = gerepileupto(av, S);
    1658             :     }
    1659             :   }
    1660      600649 :   return gerepilecopy(av, S);
    1661             : }
    1662             : static GEN
    1663      350602 : _RgX_act_Gl2Q(struct m_act *S, GEN z) { return RgX_act_Gl2Q(z, S->k); }
    1664             : /* acting on (X^{k-2},...,Y^{k-2}) */
    1665             : GEN
    1666       60907 : RgX_act_ZGl2Q(GEN z, long k)
    1667             : {
    1668             :   struct m_act T;
    1669       60907 :   T.k = k;
    1670       60907 :   T.dim = k-1;
    1671       60907 :   T.act=&_RgX_act_Gl2Q;
    1672       60907 :   return act_ZGl2Q(z, &T, NULL);
    1673             : }
    1674             : 
    1675             : /* First pass, identify matrices in Sl_2 to convert to operators;
    1676             :  * insert operators in hashtable. This allows GC in act_ZGl2Q */
    1677             : static void
    1678     1069894 : hash_preload(GEN M, struct m_act *S, hashtable *H)
    1679             : {
    1680     1069894 :   if (typ(M) != t_INT)
    1681             :   {
    1682     1069894 :     ulong h = H->hash(M);
    1683     1069894 :     hashentry *e = hash_search2(H, M, h);
    1684     1069894 :     if (!e) hash_insert2(H, M, S->act(S,M), h);
    1685             :   }
    1686     1069894 : }
    1687             : /* z a sparse operator */
    1688             : static void
    1689      539728 : hash_vecpreload(GEN z, struct m_act *S, hashtable *H)
    1690             : {
    1691      539728 :   GEN G = gel(z,1);
    1692      539728 :   long i, l = lg(G);
    1693     1609622 :   for (i = 1; i < l; i++) hash_preload(gel(G,i), S, H);
    1694      539728 : }
    1695             : static void
    1696       40677 : ZGl2QC_preload(struct m_act *S, GEN v, hashtable *H)
    1697             : {
    1698       40677 :   GEN val = gel(v,2);
    1699       40677 :   long i, l = lg(val);
    1700      580405 :   for (i = 1; i < l; i++) hash_vecpreload(gel(val,i), S, H);
    1701       40677 : }
    1702             : /* Given a sparse vector of elements in Z[G], convert it to a (sparse) vector
    1703             :  * of operators on V (given by t_MAT) */
    1704             : static void
    1705       40691 : ZGl2QC_to_act(struct m_act *S, GEN v, hashtable *H)
    1706             : {
    1707       40691 :   GEN val = gel(v,2);
    1708       40691 :   long i, l = lg(val);
    1709      580433 :   for (i = 1; i < l; i++) gel(val,i) = act_ZGl2Q(gel(val,i), S, H);
    1710       40691 : }
    1711             : 
    1712             : /* For all V[i] in Z[\Gamma], find the P such that  P . V[i]^* = 0;
    1713             :  * write P in basis X^{k-2}, ..., Y^{k-2} */
    1714             : static GEN
    1715        1260 : ZGV_tors(GEN V, long k)
    1716             : {
    1717        1260 :   long i, l = lg(V);
    1718        1260 :   GEN v = cgetg(l, t_VEC);
    1719        1764 :   for (i = 1; i < l; i++)
    1720             :   {
    1721         504 :     GEN a = ZSl2_star(gel(V,i));
    1722         504 :     gel(v,i) = ZM_ker(RgX_act_ZGl2Q(a,k));
    1723             :   }
    1724        1260 :   return v;
    1725             : }
    1726             : 
    1727             : static long
    1728   116583264 : set_from_index(GEN W11, long i)
    1729             : {
    1730   116583264 :   if (i <= W11[1]) return 1;
    1731   101477495 :   if (i <= W11[2]) return 2;
    1732    59091340 :   if (i <= W11[3]) return 3;
    1733    58897720 :   if (i <= W11[4]) return 4;
    1734     2330510 :   if (i <= W11[5]) return 5;
    1735      261849 :   return 6;
    1736             : }
    1737             : 
    1738             : /* det M = 1 */
    1739             : static void
    1740     1535667 : treat_index(GEN W, GEN M, long index, GEN v)
    1741             : {
    1742     1535667 :   GEN W11 = gel(W,11);
    1743     1535667 :   long shift = W11[3]; /* #F + #E2 + T32 */
    1744     1535667 :   switch(set_from_index(W11, index))
    1745             :   {
    1746      251167 :     case 1: /*F*/
    1747             :     {
    1748      251167 :       GEN F_index = gel(W,6), ind = gel(F_index, index);
    1749      251167 :       long j, l = lg(ind);
    1750     1288371 :       for (j = 1; j < l; j++)
    1751             :       {
    1752     1037204 :         GEN IND = gel(ind,j), M0 = gel(IND,2);
    1753     1037204 :         long index = mael(IND,1,1);
    1754     1037204 :         treat_index(W, ZM_mul(M,M0), index, v);
    1755             :       }
    1756      251167 :       break;
    1757             :     }
    1758             : 
    1759      579957 :     case 2: /*E2, E2[r] + gamma * E1[s] = 0 */
    1760             :     {
    1761      579957 :       long r = index - W11[1];
    1762      579957 :       GEN z = gel(msN_get_E2fromE1(W), r);
    1763             : 
    1764      579957 :       index = E2fromE1_c(z);
    1765      579957 :       M = G_ZG_mul(M, E2fromE1_Zgamma(z)); /* M * (-gamma) */
    1766      579957 :       gel(v, index) = ZG_add(gel(v, index), M);
    1767      579957 :       break;
    1768             :     }
    1769             : 
    1770        5922 :     case 3: /*T32, T32[i] = -T31[i] */
    1771             :     {
    1772        5922 :       long T3shift = W11[5] - W11[2]; /* #T32 + #E1 + #T2 */
    1773        5922 :       index += T3shift;
    1774        5922 :       index -= shift;
    1775        5922 :       gel(v, index) = ZG_add(gel(v, index), to_famat_shallow(M,gen_m1));
    1776        5922 :       break;
    1777             :     }
    1778      698621 :     default: /*E1,T2,T31*/
    1779      698621 :       index -= shift;
    1780      698621 :       gel(v, index) = ZG_add(gel(v, index), to_famat_shallow(M,gen_1));
    1781      698621 :       break;
    1782             :   }
    1783     1535667 : }
    1784             : static void
    1785   115047597 : treat_index_trivial(GEN v, GEN W, long index)
    1786             : {
    1787   115047597 :   GEN W11 = gel(W,11);
    1788   115047597 :   long shift = W11[3]; /* #F + #E2 + T32 */
    1789   115047597 :   switch(set_from_index(W11, index))
    1790             :   {
    1791    14854602 :     case 1: /*F*/
    1792             :     {
    1793    14854602 :       GEN F_index = gel(W,6), ind = gel(F_index, index);
    1794    14854602 :       long j, l = lg(ind);
    1795   105394835 :       for (j = 1; j < l; j++)
    1796             :       {
    1797    90540233 :         GEN IND = gel(ind,j);
    1798    90540233 :         treat_index_trivial(v, W, mael(IND,1,1));
    1799             :       }
    1800    14854602 :       break;
    1801             :     }
    1802             : 
    1803    41806198 :     case 2: /*E2, E2[r] + gamma * E1[s] = 0 */
    1804             :     {
    1805    41806198 :       long r = index - W11[1];
    1806    41806198 :       long s = E2fromE1_c(gel(msN_get_E2fromE1(W), r));
    1807    41806198 :       v[s]--;
    1808    41806198 :       break;
    1809             :     }
    1810             : 
    1811     2499672 :     case 3: case 5: case 6: /*T32,T2,T31*/
    1812     2499672 :       break;
    1813             : 
    1814    55887125 :     case 4: /*E1*/
    1815    55887125 :       v[index-shift]++;
    1816    55887125 :       break;
    1817             :   }
    1818   115047597 : }
    1819             : 
    1820             : static GEN
    1821      178213 : M2_log(GEN W, GEN M)
    1822             : {
    1823      178213 :   GEN a = gcoeff(M,1,1), b = gcoeff(M,1,2);
    1824      178213 :   GEN c = gcoeff(M,2,1), d = gcoeff(M,2,2);
    1825             :   GEN  u, v, D, V;
    1826             :   long index, s;
    1827             : 
    1828      178213 :   W = get_msN(W);
    1829      178213 :   V = zerovec(ms_get_nbgen(W));
    1830             : 
    1831      178213 :   D = subii(mulii(a,d), mulii(b,c));
    1832      178213 :   s = signe(D);
    1833      178213 :   if (!s) return V;
    1834      176869 :   if (is_pm1(D))
    1835             :   { /* shortcut, no need to apply Manin's trick */
    1836       63399 :     if (s < 0) { b = negi(b); d = negi(d); }
    1837       63399 :     M = Gamma0N_decompose(W, mkmat22(a,b, c,d), &index);
    1838       63399 :     treat_index(W, M, index, V);
    1839             :   }
    1840             :   else
    1841             :   {
    1842             :     GEN U, B, P, Q, PQ, C1,C2;
    1843             :     long i, l;
    1844      113470 :     (void)bezout(a,c,&u,&v);
    1845      113470 :     B = addii(mulii(b,u), mulii(d,v));
    1846             :     /* [u,v;-c,a] [a,b; c,d] = [1,B; 0,D], i.e. M = U [1,B;0,D] */
    1847      113470 :     U = mkmat22(a,negi(v), c,u);
    1848             : 
    1849             :     /* {1/0 -> B/D} as \sum g_i, g_i unimodular paths */
    1850      113470 :     PQ = ZV_allpnqn( gboundcf(gdiv(B,D), 0) );
    1851      113470 :     P = gel(PQ,1); l = lg(P);
    1852      113470 :     Q = gel(PQ,2);
    1853      113470 :     C1 = gel(U,1);
    1854      548534 :     for (i = 1; i < l; i++, C1 = C2)
    1855             :     {
    1856             :       GEN M;
    1857      435064 :       C2 = ZM_ZC_mul(U, mkcol2(gel(P,i), gel(Q,i)));
    1858      435064 :       if (!odd(i)) C1 = ZC_neg(C1);
    1859      435064 :       M = Gamma0N_decompose(W, mkmat2(C1,C2), &index);
    1860      435064 :       treat_index(W, M, index, V);
    1861             :     }
    1862             :   }
    1863      176869 :   return V;
    1864             : }
    1865             : 
    1866             : /* express +oo->q=a/b in terms of the Z[G]-generators, trivial action */
    1867             : static void
    1868     2246944 : Q_log_trivial(GEN v, GEN W, GEN q)
    1869             : {
    1870     2246944 :   GEN Q, W3 = gel(W,3), p1N = msN_get_p1N(W);
    1871     2246944 :   ulong c,d, N = p1N_get_N(p1N);
    1872             :   long i, lx;
    1873             : 
    1874     2246944 :   Q = Q_log_init(N, q);
    1875     2246944 :   lx = lg(Q);
    1876     2246944 :   c = 0;
    1877    23633848 :   for (i = 1; i < lx; i++, c = d)
    1878             :   {
    1879             :     long index;
    1880    21386904 :     d = Q[i];
    1881    21386904 :     if (c && !odd(i)) c = N - c;
    1882    21386904 :     index = W3[ p1_index(c,d,p1N) ];
    1883    21386904 :     treat_index_trivial(v, W, index);
    1884             :   }
    1885     2246944 : }
    1886             : static void
    1887     1248121 : M2_log_trivial(GEN V, GEN W, GEN M)
    1888             : {
    1889     1248121 :   GEN p1N = gel(W,1), W3 = gel(W,3);
    1890     1248121 :   ulong N = p1N_get_N(p1N);
    1891     1248121 :   GEN a = gcoeff(M,1,1), b = gcoeff(M,1,2);
    1892     1248121 :   GEN c = gcoeff(M,2,1), d = gcoeff(M,2,2);
    1893             :   GEN  u, v, D;
    1894             :   long index, s;
    1895             : 
    1896     1248121 :   D = subii(mulii(a,d), mulii(b,c));
    1897     1248121 :   s = signe(D);
    1898     1265537 :   if (!s) return;
    1899     1248114 :   if (is_pm1(D))
    1900             :   { /* shortcut, not need to apply Manin's trick */
    1901      449386 :     if (s < 0) d = negi(d);
    1902      449386 :     index = W3[ p1_index(umodiu(c,N),umodiu(d,N),p1N) ];
    1903      449386 :     treat_index_trivial(V, W, index);
    1904             :   }
    1905             :   else
    1906             :   {
    1907             :     GEN U, B, P, Q, PQ;
    1908             :     long i, l;
    1909      798728 :     if (!signe(c)) { Q_log_trivial(V,W,gdiv(b,d)); return; }
    1910      781312 :     (void)bezout(a,c,&u,&v);
    1911      781312 :     B = addii(mulii(b,u), mulii(d,v));
    1912             :     /* [u,v;-c,a] [a,b; c,d] = [1,B; 0,D], i.e. M = U [1,B;0,D] */
    1913      781312 :     U = mkvec2(c, u);
    1914             : 
    1915             :     /* {1/0 -> B/D} as \sum g_i, g_i unimodular paths */
    1916      781312 :     PQ = ZV_allpnqn( gboundcf(gdiv(B,D), 0) );
    1917      781312 :     P = gel(PQ,1); l = lg(P);
    1918      781312 :     Q = gel(PQ,2);
    1919     3452386 :     for (i = 1; i < l; i++, c = d)
    1920             :     {
    1921     2671074 :       d = addii(mulii(gel(U,1),gel(P,i)), mulii(gel(U,2),gel(Q,i)));
    1922     2671074 :       if (!odd(i)) c = negi(c);
    1923     2671074 :       index = W3[ p1_index(umodiu(c,N),umodiu(d,N),p1N) ];
    1924     2671074 :       treat_index_trivial(V, W, index);
    1925             :     }
    1926             :   }
    1927             : }
    1928             : 
    1929             : static GEN
    1930       16772 : cusp_to_ZC(GEN c)
    1931             : {
    1932       16772 :   switch(typ(c))
    1933             :   {
    1934          35 :     case t_INFINITY:
    1935          35 :       return mkcol2(gen_1,gen_0);
    1936          91 :     case t_INT:
    1937          91 :       return mkcol2(c,gen_1);
    1938         140 :     case t_FRAC:
    1939         140 :       return mkcol2(gel(c,1),gel(c,2));
    1940       16506 :     case t_VECSMALL:
    1941       16506 :       return mkcol2(stoi(c[1]), stoi(c[2]));
    1942           0 :     default:
    1943           0 :       pari_err_TYPE("mspathlog",c);
    1944             :       return NULL;/*LCOV_EXCL_LINE*/
    1945             :   }
    1946             : }
    1947             : static GEN
    1948        8386 : path2_to_M2(GEN p)
    1949        8386 : { return mkmat2(cusp_to_ZC(gel(p,1)), cusp_to_ZC(gel(p,2))); }
    1950             : static GEN
    1951       54439 : path_to_M2(GEN p)
    1952             : {
    1953       54439 :   if (lg(p) != 3) pari_err_TYPE("mspathlog",p);
    1954       54432 :   switch(typ(p))
    1955             :   {
    1956       48160 :     case t_MAT:
    1957       48160 :       RgM_check_ZM(p,"mspathlog");
    1958       48160 :       break;
    1959        6272 :     case t_VEC:
    1960        6272 :       p = path2_to_M2(p);
    1961        6272 :       break;
    1962           0 :     default: pari_err_TYPE("mspathlog",p);
    1963             :   }
    1964       54432 :   return p;
    1965             : }
    1966             : /* Expresses path p as \sum x_i g_i, where the g_i are our distinguished
    1967             :  * generators and x_i \in Z[\Gamma]. Returns [x_1,...,x_n] */
    1968             : GEN
    1969       12691 : mspathlog(GEN W, GEN p)
    1970             : {
    1971       12691 :   pari_sp av = avma;
    1972       12691 :   checkms(W);
    1973       12691 :   return gerepilecopy(av, M2_log(W, path_to_M2(p)));
    1974             : }
    1975             : 
    1976             : /** HECKE OPERATORS **/
    1977             : /* [a,b;c,d] * cusp */
    1978             : static GEN
    1979     2733696 : cusp_mul(long a, long b, long c, long d, GEN cusp)
    1980             : {
    1981     2733696 :   long x = cusp[1], y = cusp[2];
    1982     2733696 :   long A = a*x+b*y, B = c*x+d*y, u = cgcd(A,B);
    1983     2733696 :   if (u != 1) { A /= u; B /= u; }
    1984     2733696 :   return mkcol2s(A, B);
    1985             : }
    1986             : /* f in Gl2(Q), act on path (zm), return path_to_M2(f.path) */
    1987             : static GEN
    1988     1366848 : Gl2Q_act_path(GEN f, GEN path)
    1989             : {
    1990     1366848 :   long a = coeff(f,1,1), b = coeff(f,1,2);
    1991     1366848 :   long c = coeff(f,2,1), d = coeff(f,2,2);
    1992     1366848 :   GEN c1 = cusp_mul(a,b,c,d, gel(path,1));
    1993     1366848 :   GEN c2 = cusp_mul(a,b,c,d, gel(path,2));
    1994     1366848 :   return mkmat2(c1,c2);
    1995             : }
    1996             : 
    1997             : static GEN
    1998     2561678 : init_act_trivial(GEN W) { return const_vecsmall(ms_get_nbE1(W), 0); }
    1999             : static GEN
    2000       41734 : mspathlog_trivial(GEN W, GEN p)
    2001             : {
    2002             :   GEN v;
    2003       41734 :   W = get_msN(W);
    2004       41734 :   v = init_act_trivial(W);
    2005       41734 :   M2_log_trivial(v, W, path_to_M2(p));
    2006       41727 :   return v;
    2007             : }
    2008             : 
    2009             : /* map from W1=Hom(Delta_0(N1),Q) -> W2=Hom(Delta_0(N2),Q), weight 2,
    2010             :  * trivial action. v a t_VEC of Gl2_Q (\sum v[i] in Z[Gl2(Q)]).
    2011             :  * Return the matrix attached to the action of v. */
    2012             : static GEN
    2013        8575 : getMorphism_trivial(GEN WW1, GEN WW2, GEN v)
    2014             : {
    2015        8575 :   GEN T, section, gen, W1 = get_msN(WW1), W2 = get_msN(WW2);
    2016             :   long j, lv, d2;
    2017        8575 :   if (ms_get_N(W1) == 1) return cgetg(1,t_MAT);
    2018        8575 :   if (ms_get_N(W2) == 1) return zeromat(0, ms_get_nbE1(W1));
    2019        8575 :   section = msN_get_section(W2);
    2020        8575 :   gen = msN_get_genindex(W2);
    2021        8575 :   d2 = ms_get_nbE1(W2);
    2022        8575 :   T = cgetg(d2+1, t_MAT);
    2023        8575 :   lv = lg(v);
    2024      298991 :   for (j = 1; j <= d2; j++)
    2025             :   {
    2026      290416 :     GEN w = gel(section, gen[j]);
    2027      290416 :     GEN t = init_act_trivial(W1);
    2028      290416 :     pari_sp av = avma;
    2029             :     long l;
    2030     1496810 :     for (l = 1; l < lv; l++) M2_log_trivial(t, W1, Gl2Q_act_path(gel(v,l), w));
    2031      290416 :     gel(T,j) = t; set_avma(av);
    2032             :   }
    2033        8575 :   return shallowtrans(zm_to_ZM(T));
    2034             : }
    2035             : 
    2036             : static GEN
    2037      165522 : RgV_sparse(GEN v, GEN *pind)
    2038             : {
    2039             :   long i, l, k;
    2040      165522 :   GEN w = cgetg_copy(v,&l), ind = cgetg(l, t_VECSMALL);
    2041    17143112 :   for (i = k = 1; i < l; i++)
    2042             :   {
    2043    16977590 :     GEN c = gel(v,i);
    2044    16977590 :     if (typ(c) == t_INT) continue;
    2045      784798 :     gel(w,k) = c; ind[k] = i; k++;
    2046             :   }
    2047      165522 :   setlg(w,k); setlg(ind,k);
    2048      165522 :   *pind = ind; return w;
    2049             : }
    2050             : 
    2051             : static int
    2052      162568 : mat2_isidentity(GEN M)
    2053             : {
    2054      162568 :   GEN A = gel(M,1), B = gel(M,2);
    2055      162568 :   return A[1] == 1 && A[2] == 0 && B[1] == 0 && B[2] == 1;
    2056             : }
    2057             : /* path a mat22/mat22s, return log(f.path)^* . f in sparse form */
    2058             : static GEN
    2059      165522 : M2_logf(GEN Wp, GEN path, GEN f)
    2060             : {
    2061      165522 :   pari_sp av = avma;
    2062             :   GEN ind, L;
    2063             :   long i, l;
    2064      165522 :   if (f)
    2065      160454 :     path = Gl2Q_act_path(f, path);
    2066        5068 :   else if (typ(gel(path,1)) == t_VECSMALL)
    2067        2114 :     path = path2_to_M2(path);
    2068      165522 :   L = M2_log(Wp, path);
    2069      165522 :   L = RgV_sparse(L,&ind); l = lg(L);
    2070      950320 :   for (i = 1; i < l; i++) gel(L,i) = ZSl2_star(gel(L,i));
    2071      165522 :   if (f) ZGC_G_mul_inplace(L, mat2_to_ZM(f));
    2072      165522 :   return gerepilecopy(av, mkvec2(ind,L));
    2073             : }
    2074             : 
    2075             : static hashtable *
    2076        3668 : Gl2act_cache(long dim) { return set_init(dim*10); }
    2077             : 
    2078             : /* f zm/ZM in Gl_2(Q), acts from the left on Delta, which is generated by
    2079             :  * (g_i) as Z[Gamma1]-module, and by (G_i) as Z[Gamma2]-module.
    2080             :  * We have f.G_j = \sum_i \lambda_{i,j} g_i,   \lambda_{i,j} in Z[Gamma1]
    2081             :  * For phi in Hom_Gamma1(D,V), g in D, phi | f is in Hom_Gamma2(D,V) and
    2082             :  *  (phi | f)(G_j) = phi(f.G_j) | f
    2083             :  *                 = phi( \sum_i \lambda_{i,j} g_i ) | f
    2084             :  *                 = \sum_i phi(g_i) | (\lambda_{i,j}^* f)
    2085             :  *                 = \sum_i phi(g_i) | \mu_{i,j}(f)
    2086             :  * More generally
    2087             :  *  (\sum_k (phi |v_k))(G_j) = \sum_i phi(g_i) | \Mu_{i,j}
    2088             :  * with \Mu_{i,j} = \sum_k \mu{i,j}(v_k)
    2089             :  * Return the \Mu_{i,j} matrix as vector of sparse columns of operators on V */
    2090             : static GEN
    2091        3192 : init_dual_act(GEN v, GEN W1, GEN W2, struct m_act *S)
    2092             : {
    2093        3192 :   GEN section = ms_get_section(W2), gen = ms_get_genindex(W2);
    2094             :   /* HACK: the actions we consider in dimension 1 are trivial and in
    2095             :    * characteristic != 2, 3 => torsion generators are 0
    2096             :    * [satisfy e.g. (1+gamma).g = 0 => \phi(g) | 1+gamma  = 0 => \phi(g) = 0 */
    2097        3192 :   long j, lv = lg(v), dim = S->dim == 1? ms_get_nbE1(W2): lg(gen)-1;
    2098        3192 :   GEN T = cgetg(dim+1, t_VEC);
    2099        3192 :   hashtable *H = Gl2act_cache(dim);
    2100       40929 :   for (j = 1; j <= dim; j++)
    2101             :   {
    2102       37737 :     pari_sp av = avma;
    2103       37737 :     GEN w = gel(section, gen[j]); /* path_to_zm( E1/T2/T3 element ) */
    2104       37737 :     GEN t = NULL;
    2105             :     long k;
    2106      200305 :     for (k = 1; k < lv; k++)
    2107             :     {
    2108      162568 :       GEN tk, f = gel(v,k);
    2109      162568 :       if (typ(gel(f,1)) != t_VECSMALL) f = ZM_to_zm(f);
    2110      162568 :       if (mat2_isidentity(f)) f = NULL;
    2111      162568 :       tk = M2_logf(W1, w, f); /* mu_{.,j}(v[k]) as sparse vector */
    2112      162568 :       t = t? ZGCs_add(t, tk): tk;
    2113             :     }
    2114       37737 :     gel(T,j) = gerepilecopy(av, t);
    2115             :   }
    2116       40929 :   for (j = 1; j <= dim; j++)
    2117             :   {
    2118       37737 :     ZGl2QC_preload(S, gel(T,j), H);
    2119       37737 :     ZGl2QC_to_act(S, gel(T,j), H);
    2120             :   }
    2121        3192 :   return T;
    2122             : }
    2123             : 
    2124             : /* modular symbol given by phi[j] = \phi(G_j)
    2125             :  * \sum L[i]*phi[i], L a sparse column of operators */
    2126             : static GEN
    2127      354354 : dense_act_col(GEN col, GEN phi)
    2128             : {
    2129      354354 :   GEN s = NULL, colind = gel(col,1), colval = gel(col,2);
    2130      354354 :   long i, l = lg(colind), lphi = lg(phi);
    2131     5630121 :   for (i = 1; i < l; i++)
    2132             :   {
    2133     5278490 :     long a = colind[i];
    2134             :     GEN t;
    2135     5278490 :     if (a >= lphi) break; /* happens if k=2: torsion generator t omitted */
    2136     5275767 :     t = gel(phi, a); /* phi(G_a) */
    2137     5275767 :     t = RgM_RgC_mul(gel(colval,i), t);
    2138     5275767 :     s = s? RgC_add(s, t): t;
    2139             :   }
    2140      354354 :   return s;
    2141             : }
    2142             : /* modular symbol given by \phi( G[ind[j]] ) = val[j]
    2143             :  * \sum L[i]*phi[i], L a sparse column of operators */
    2144             : static GEN
    2145      779093 : sparse_act_col(GEN col, GEN phi)
    2146             : {
    2147      779093 :   GEN s = NULL, colind = gel(col,1), colval = gel(col,2);
    2148      779093 :   GEN ind = gel(phi,2), val = gel(phi,3);
    2149      779093 :   long a, l = lg(ind);
    2150      779093 :   if (lg(gel(phi,1)) == 1) return RgM_RgC_mul(gel(colval,1), gel(val,1));
    2151     3033205 :   for (a = 1; a < l; a++)
    2152             :   {
    2153     2254413 :     GEN t = gel(val, a); /* phi(G_i) */
    2154     2254413 :     long i = zv_search(colind, ind[a]);
    2155     2254413 :     if (!i) continue;
    2156      540603 :     t = RgM_RgC_mul(gel(colval,i), t);
    2157      540603 :     s = s? RgC_add(s, t): t;
    2158             :   }
    2159      778792 :   return s;
    2160             : }
    2161             : static int
    2162       69139 : phi_sparse(GEN phi) { return typ(gel(phi,1)) == t_VECSMALL; }
    2163             : /* phi in Hom_Gamma1(Delta, V), return the matrix whose colums are the
    2164             :  *   \sum_i phi(g_i) | \mu_{i,j} = (phi|f)(G_j),
    2165             :  * see init_dual_act. */
    2166             : static GEN
    2167       69139 : dual_act(long dimV, GEN act, GEN phi)
    2168             : {
    2169       69139 :   long l = lg(act), j;
    2170       69139 :   GEN v = cgetg(l, t_MAT);
    2171       69139 :   GEN (*ACT)(GEN,GEN) = phi_sparse(phi)? sparse_act_col: dense_act_col;
    2172     1199254 :   for (j = 1; j < l; j++)
    2173             :   {
    2174     1130115 :     pari_sp av = avma;
    2175     1130115 :     GEN s = ACT(gel(act,j), phi);
    2176     1130115 :     gel(v,j) = s? gerepileupto(av,s): zerocol(dimV);
    2177             :   }
    2178       69139 :   return v;
    2179             : }
    2180             : 
    2181             : /* in level N > 1 */
    2182             : static void
    2183       59087 : msk_get_st(GEN W, long *s, long *t)
    2184       59087 : { GEN st = gmael(W,3,3); *s = st[1]; *t = st[2]; }
    2185             : static GEN
    2186       59087 : msk_get_link(GEN W) { return gmael(W,3,4); }
    2187             : static GEN
    2188       59402 : msk_get_inv(GEN W) { return gmael(W,3,5); }
    2189             : /* \phi in Hom(Delta, V), \phi(G_k) = phi[k]. Write \phi as
    2190             :  *   \sum_{i,j} mu_{i,j} phi_{i,j}, mu_{i,j} in Q */
    2191             : static GEN
    2192       59402 : getMorphism_basis(GEN W, GEN phi)
    2193             : {
    2194       59402 :   GEN R, Q, Ls, T0, T1, Ts, link, basis, inv = msk_get_inv(W);
    2195             :   long i, j, r, s, t, dim, lvecT;
    2196             : 
    2197       59402 :   if (ms_get_N(W) == 1) return ZC_apply_dinv(inv, gel(phi,1));
    2198       59087 :   lvecT = lg(phi);
    2199       59087 :   basis = msk_get_basis(W);
    2200       59087 :   dim = lg(basis)-1;
    2201       59087 :   R = zerocol(dim);
    2202       59087 :   msk_get_st(W, &s, &t);
    2203       59087 :   link = msk_get_link(W);
    2204      789922 :   for (r = 2; r < lvecT; r++)
    2205             :   {
    2206             :     GEN Tr, L;
    2207      730835 :     if (r == s) continue;
    2208      671748 :     Tr = gel(phi,r); /* Phi(G_r), r != 1,s */
    2209      671748 :     L = gel(link, r);
    2210      671748 :     Q = ZC_apply_dinv(gel(inv,r), Tr);
    2211             :     /* write Phi(G_r) as sum_{a,b} mu_{a,b} Phi_{a,b}(G_r) */
    2212     3510668 :     for (j = 1; j < lg(L); j++) gel(R, L[j]) = gel(Q,j);
    2213             :   }
    2214       59087 :   Ls = gel(link, s);
    2215       59087 :   T1 = gel(phi,1); /* Phi(G_1) */
    2216       59087 :   gel(R, Ls[t]) = gel(T1, 1);
    2217             : 
    2218       59087 :   T0 = NULL;
    2219      789922 :   for (i = 2; i < lg(link); i++)
    2220             :   {
    2221             :     GEN L;
    2222      730835 :     if (i == s) continue;
    2223      671748 :     L = gel(link,i);
    2224     3510668 :     for (j =1 ; j < lg(L); j++)
    2225             :     {
    2226     2838920 :       long n = L[j]; /* phi_{i,j} = basis[n] */
    2227     2838920 :       GEN mu_ij = gel(R, n);
    2228     2838920 :       GEN phi_ij = gel(basis, n), pols = gel(phi_ij,3);
    2229     2838920 :       GEN z = RgC_Rg_mul(gel(pols, 3), mu_ij);
    2230     2838920 :       T0 = T0? RgC_add(T0, z): z; /* += mu_{i,j} Phi_{i,j} (G_s) */
    2231             :     }
    2232             :   }
    2233       59087 :   Ts = gel(phi,s); /* Phi(G_s) */
    2234       59087 :   if (T0) Ts = RgC_sub(Ts, T0);
    2235             :   /* solve \sum_{j!=t} mu_{s,j} Phi_{s,j}(G_s) = Ts */
    2236       59087 :   Q = ZC_apply_dinv(gel(inv,s), Ts);
    2237      234080 :   for (j = 1; j < t; j++) gel(R, Ls[j]) = gel(Q,j);
    2238             :   /* avoid mu_{s,t} */
    2239       59906 :   for (j = t; j < lg(Q); j++) gel(R, Ls[j+1]) = gel(Q,j);
    2240       59087 :   return R;
    2241             : }
    2242             : 
    2243             : /* a = s(g_i) for some modular symbol s; b in Z[G]
    2244             :  * return s(b.g_i) = b^* . s(g_i) */
    2245             : static GEN
    2246      115626 : ZGl2Q_act_s(GEN b, GEN a, long k)
    2247             : {
    2248      115626 :   if (typ(b) == t_INT)
    2249             :   {
    2250       58604 :     if (!signe(b)) return gen_0;
    2251          14 :     switch(typ(a))
    2252             :     {
    2253          14 :       case t_POL:
    2254          14 :         a = RgX_to_RgC(a, k-1); /*fall through*/
    2255          14 :       case t_COL:
    2256          14 :         a = RgC_Rg_mul(a,b);
    2257          14 :         break;
    2258           0 :       default: a = scalarcol_shallow(b,k-1);
    2259             :     }
    2260             :   }
    2261             :   else
    2262             :   {
    2263       57022 :     b = RgX_act_ZGl2Q(ZSl2_star(b), k);
    2264       57022 :     switch(typ(a))
    2265             :     {
    2266          63 :       case t_POL:
    2267          63 :         a = RgX_to_RgC(a, k-1); /*fall through*/
    2268       45262 :       case t_COL:
    2269       45262 :         a = RgM_RgC_mul(b,a);
    2270       45262 :         break;
    2271       11760 :       default: a = RgC_Rg_mul(gel(b,1),a);
    2272             :     }
    2273             :   }
    2274       57036 :   return a;
    2275             : }
    2276             : 
    2277             : static int
    2278          21 : checksymbol(GEN W, GEN s)
    2279             : {
    2280             :   GEN t, annT2, annT31, singlerel;
    2281             :   long i, k, l, nbE1, nbT2, nbT31;
    2282          21 :   k = msk_get_weight(W);
    2283          21 :   W = get_msN(W);
    2284          21 :   nbE1 = ms_get_nbE1(W);
    2285          21 :   singlerel = gel(W,10);
    2286          21 :   l = lg(singlerel);
    2287          21 :   if (k == 2)
    2288             :   {
    2289           0 :     for (i = nbE1+1; i < l; i++)
    2290           0 :       if (!gequal0(gel(s,i))) return 0;
    2291           0 :     return 1;
    2292             :   }
    2293          21 :   annT2 = msN_get_annT2(W); nbT2 = lg(annT2)-1;
    2294          21 :   annT31 = msN_get_annT31(W);nbT31 = lg(annT31)-1;
    2295          21 :   t = NULL;
    2296          84 :   for (i = 1; i < l; i++)
    2297             :   {
    2298          63 :     GEN a = gel(s,i);
    2299          63 :     a = ZGl2Q_act_s(gel(singlerel,i), a, k);
    2300          63 :     t = t? gadd(t, a): a;
    2301             :   }
    2302          21 :   if (!gequal0(t)) return 0;
    2303          14 :   for (i = 1; i <= nbT2; i++)
    2304             :   {
    2305           0 :     GEN a = gel(s,i + nbE1);
    2306           0 :     a = ZGl2Q_act_s(gel(annT2,i), a, k);
    2307           0 :     if (!gequal0(a)) return 0;
    2308             :   }
    2309          28 :   for (i = 1; i <= nbT31; i++)
    2310             :   {
    2311          14 :     GEN a = gel(s,i + nbE1 + nbT2);
    2312          14 :     a = ZGl2Q_act_s(gel(annT31,i), a, k);
    2313          14 :     if (!gequal0(a)) return 0;
    2314             :   }
    2315          14 :   return 1;
    2316             : }
    2317             : GEN
    2318          56 : msissymbol(GEN W, GEN s)
    2319             : {
    2320             :   long k, nbgen;
    2321          56 :   checkms(W);
    2322          56 :   k = msk_get_weight(W);
    2323          56 :   nbgen = ms_get_nbgen(W);
    2324          56 :   switch(typ(s))
    2325             :   {
    2326          21 :     case t_VEC: /* values s(g_i) */
    2327          21 :       if (lg(s)-1 != nbgen) return gen_0;
    2328          21 :       break;
    2329          28 :     case t_COL:
    2330          28 :       if (msk_get_sign(W))
    2331             :       {
    2332           0 :         GEN star = gel(msk_get_starproj(W), 1);
    2333           0 :         if (lg(star) == lg(s)) return gen_1;
    2334             :       }
    2335          28 :       if (k == 2) /* on the dual basis of (g_i) */
    2336             :       {
    2337           0 :         if (lg(s)-1 != nbgen) return gen_0;
    2338             :       }
    2339             :       else
    2340             :       {
    2341          28 :         GEN basis = msk_get_basis(W);
    2342          28 :         return (lg(s) == lg(basis))? gen_1: gen_0;
    2343             :       }
    2344           0 :       break;
    2345           7 :     case t_MAT:
    2346             :     {
    2347           7 :       long i, l = lg(s);
    2348           7 :       GEN v = cgetg(l, t_VEC);
    2349          21 :       for (i = 1; i < l; i++) gel(v,i) = msissymbol(W,gel(s,i))? gen_1: gen_0;
    2350           7 :       return v;
    2351             :     }
    2352           0 :     default: return gen_0;
    2353             :   }
    2354          21 :   return checksymbol(W,s)? gen_1: gen_0;
    2355             : }
    2356             : 
    2357             : /* map op: W1 = Hom(Delta_0(N1),V) -> W2 = Hom(Delta_0(N2),V), given by
    2358             :  * \sum v[i], v[i] in Gl2(Q) */
    2359             : static GEN
    2360       11284 : getMorphism(GEN W1, GEN W2, GEN v)
    2361             : {
    2362             :   struct m_act S;
    2363             :   GEN B1, M, act;
    2364       11284 :   long a, l, k = msk_get_weight(W1);
    2365       11284 :   if (k == 2) return getMorphism_trivial(W1,W2,v);
    2366        2709 :   S.k = k;
    2367        2709 :   S.dim = k-1;
    2368        2709 :   S.act = &_RgX_act_Gl2Q;
    2369        2709 :   act = init_dual_act(v,W1,W2,&S);
    2370        2709 :   B1 = msk_get_basis(W1);
    2371        2709 :   l = lg(B1); M = cgetg(l, t_MAT);
    2372       61180 :   for (a = 1; a < l; a++)
    2373             :   {
    2374       58471 :     pari_sp av = avma;
    2375       58471 :     GEN phi = dual_act(S.dim, act, gel(B1,a));
    2376       58471 :     GEN D = getMorphism_basis(W2, phi);
    2377       58471 :     gel(M,a) = gerepilecopy(av, D);
    2378             :   }
    2379        2709 :   return M;
    2380             : }
    2381             : static GEN
    2382       10122 : msendo(GEN W, GEN v) { return getMorphism(W, W, v); }
    2383             : 
    2384             : static GEN
    2385        2527 : endo_project(GEN W, GEN e, GEN H)
    2386             : {
    2387        2527 :   if (msk_get_sign(W)) e = Qevproj_apply(e, msk_get_starproj(W));
    2388        2527 :   if (H) e = Qevproj_apply(e, Qevproj_init0(H));
    2389        2527 :   return e;
    2390             : }
    2391             : static GEN
    2392        6146 : mshecke_i(GEN W, ulong p)
    2393             : {
    2394        6146 :   GEN v = ms_get_N(W) % p? Tp_matrices(p): Up_matrices(p);
    2395        6146 :   return msendo(W,v);
    2396             : }
    2397             : GEN
    2398        2478 : mshecke(GEN W, long p, GEN H)
    2399             : {
    2400        2478 :   pari_sp av = avma;
    2401             :   GEN T;
    2402        2478 :   checkms(W);
    2403        2478 :   if (p <= 1) pari_err_PRIME("mshecke",stoi(p));
    2404        2478 :   T = mshecke_i(W,p);
    2405        2478 :   T = endo_project(W,T,H);
    2406        2478 :   return gerepilecopy(av, T);
    2407             : }
    2408             : 
    2409             : static GEN
    2410          42 : msatkinlehner_i(GEN W, long Q)
    2411             : {
    2412          42 :   long N = ms_get_N(W);
    2413             :   GEN v;
    2414          42 :   if (Q == 1) return matid(msk_get_dim(W));
    2415          28 :   if (Q == N) return msendo(W, mkvec(mat2(0,1,-N,0)));
    2416          21 :   if (N % Q) pari_err_DOMAIN("msatkinlehner","N % Q","!=",gen_0,stoi(Q));
    2417          14 :   v = WQ_matrix(N, Q);
    2418          14 :   if (!v) pari_err_DOMAIN("msatkinlehner","gcd(Q,N/Q)","!=",gen_1,stoi(Q));
    2419          14 :   return msendo(W,mkvec(v));
    2420             : }
    2421             : GEN
    2422          42 : msatkinlehner(GEN W, long Q, GEN H)
    2423             : {
    2424          42 :   pari_sp av = avma;
    2425             :   GEN w;
    2426             :   long k;
    2427          42 :   checkms(W);
    2428          42 :   k = msk_get_weight(W);
    2429          42 :   if (Q <= 0) pari_err_DOMAIN("msatkinlehner","Q","<=",gen_0,stoi(Q));
    2430          42 :   w = msatkinlehner_i(W,Q);
    2431          35 :   w = endo_project(W,w,H);
    2432          35 :   if (k > 2 && Q != 1) w = RgM_Rg_div(w, powuu(Q,(k-2)>>1));
    2433          35 :   return gerepilecopy(av, w);
    2434             : }
    2435             : 
    2436             : static GEN
    2437        3955 : msstar_i(GEN W) { return msendo(W, mkvec(mat2(-1,0,0,1))); }
    2438             : GEN
    2439          14 : msstar(GEN W, GEN H)
    2440             : {
    2441          14 :   pari_sp av = avma;
    2442             :   GEN s;
    2443          14 :   checkms(W);
    2444          14 :   s = msstar_i(W);
    2445          14 :   s = endo_project(W,s,H);
    2446          14 :   return gerepilecopy(av, s);
    2447             : }
    2448             : 
    2449             : #if 0
    2450             : /* is \Gamma_0(N) cusp1 = \Gamma_0(N) cusp2 ? */
    2451             : static int
    2452             : iscuspeq(ulong N, GEN cusp1, GEN cusp2)
    2453             : {
    2454             :   long p1, q1, p2, q2, s1, s2, d;
    2455             :   p1 = cusp1[1]; p2 = cusp2[1];
    2456             :   q1 = cusp1[2]; q2 = cusp2[2];
    2457             :   d = Fl_mul(umodsu(q1,N),umodsu(q2,N), N);
    2458             :   d = ugcd(d, N);
    2459             : 
    2460             :   s1 = q1 > 2? Fl_inv(umodsu(p1,q1), q1): 1;
    2461             :   s2 = q2 > 2? Fl_inv(umodsu(p2,q2), q2): 1;
    2462             :   return Fl_mul(s1,q2,d) == Fl_mul(s2,q1,d);
    2463             : }
    2464             : #endif
    2465             : 
    2466             : /* return E_c(r) */
    2467             : static GEN
    2468        2604 : get_Ec_r(GEN c, long k)
    2469             : {
    2470        2604 :   long p = c[1], q = c[2], u, v;
    2471             :   GEN gr;
    2472        2604 :   (void)cbezout(p, q, &u, &v);
    2473        2604 :   gr = mat2(p, -v, q, u); /* g . (1:0) = (p:q) */
    2474        2604 :   return voo_act_Gl2Q(sl2_inv(gr), k);
    2475             : }
    2476             : /* N > 1; returns the modular symbol attached to the cusp c := p/q via the rule
    2477             :  * E_c(path from a to b in Delta_0) := E_c(b) - E_c(a), where
    2478             :  * E_c(r) := 0 if r != c mod Gamma
    2479             :  *           v_oo | gamma_r^(-1)
    2480             :  * where v_oo is stable by T = [1,1;0,1] (i.e x^(k-2)) and
    2481             :  * gamma_r . (1:0) = r, for some gamma_r in SL_2(Z) * */
    2482             : static GEN
    2483         462 : msfromcusp_trivial(GEN W, GEN c)
    2484             : {
    2485         462 :   GEN section = ms_get_section(W), gen = ms_get_genindex(W);
    2486         462 :   GEN S = ms_get_hashcusps(W);
    2487         462 :   long j, ic = cusp_index(c, S), l = ms_get_nbE1(W)+1;
    2488         462 :   GEN phi = cgetg(l, t_COL);
    2489       90356 :   for (j = 1; j < l; j++)
    2490             :   {
    2491       89894 :     GEN vj, g = gel(section, gen[j]); /* path_to_zm(generator) */
    2492       89894 :     GEN c1 = gel(g,1), c2 = gel(g,2);
    2493       89894 :     long i1 = cusp_index(c1, S);
    2494       89894 :     long i2 = cusp_index(c2, S);
    2495       89894 :     if (i1 == ic)
    2496        3290 :       vj = (i2 == ic)?  gen_0: gen_1;
    2497             :     else
    2498       86604 :       vj = (i2 == ic)? gen_m1: gen_0;
    2499       89894 :     gel(phi, j) = vj;
    2500             :   }
    2501         462 :   return phi;
    2502             : }
    2503             : static GEN
    2504        1393 : msfromcusp_i(GEN W, GEN c)
    2505             : {
    2506             :   GEN section, gen, S, phi;
    2507        1393 :   long j, ic, l, k = msk_get_weight(W);
    2508        1393 :   if (k == 2)
    2509             :   {
    2510         462 :     long N = ms_get_N(W);
    2511         462 :     return N == 1? cgetg(1,t_COL): msfromcusp_trivial(W, c);
    2512             :   }
    2513         931 :   k = msk_get_weight(W);
    2514         931 :   section = ms_get_section(W);
    2515         931 :   gen = ms_get_genindex(W);
    2516         931 :   S = ms_get_hashcusps(W);
    2517         931 :   ic = cusp_index(c, S);
    2518         931 :   l = lg(gen);
    2519         931 :   phi = cgetg(l, t_COL);
    2520       12075 :   for (j = 1; j < l; j++)
    2521             :   {
    2522       11144 :     GEN vj = NULL, g = gel(section, gen[j]); /* path_to_zm(generator) */
    2523       11144 :     GEN c1 = gel(g,1), c2 = gel(g,2);
    2524       11144 :     long i1 = cusp_index(c1, S);
    2525       11144 :     long i2 = cusp_index(c2, S);
    2526       11144 :     if (i1 == ic) vj = get_Ec_r(c1, k);
    2527       11144 :     if (i2 == ic)
    2528             :     {
    2529        1302 :       GEN s = get_Ec_r(c2, k);
    2530        1302 :       vj = vj? gsub(vj, s): gneg(s);
    2531             :     }
    2532       11144 :     if (!vj) vj = zerocol(k-1);
    2533       11144 :     gel(phi, j) = vj;
    2534             :   }
    2535         931 :   return getMorphism_basis(W, phi);
    2536             : }
    2537             : GEN
    2538          28 : msfromcusp(GEN W, GEN c)
    2539             : {
    2540          28 :   pari_sp av = avma;
    2541             :   long N;
    2542          28 :   checkms(W);
    2543          28 :   N = ms_get_N(W);
    2544          28 :   switch(typ(c))
    2545             :   {
    2546           7 :     case t_INFINITY:
    2547           7 :       c = mkvecsmall2(1,0);
    2548           7 :       break;
    2549          14 :     case t_INT:
    2550          14 :       c = mkvecsmall2(smodis(c,N), 1);
    2551          14 :       break;
    2552           7 :     case t_FRAC:
    2553           7 :       c = mkvecsmall2(smodis(gel(c,1),N), smodis(gel(c,2),N));
    2554           7 :       break;
    2555           0 :     default:
    2556           0 :       pari_err_TYPE("msfromcusp",c);
    2557             :   }
    2558          28 :   return gerepilecopy(av, msfromcusp_i(W,c));
    2559             : }
    2560             : 
    2561             : static GEN
    2562         287 : mseisenstein_i(GEN W)
    2563             : {
    2564         287 :   GEN M, S = ms_get_hashcusps(W), cusps = gel(S,3);
    2565         287 :   long i, l = lg(cusps);
    2566         287 :   if (msk_get_weight(W)==2) l--;
    2567         287 :   M = cgetg(l, t_MAT);
    2568        1652 :   for (i = 1; i < l; i++) gel(M,i) = msfromcusp_i(W, gel(cusps,i));
    2569         287 :   return Qevproj_init(Qevproj_star(W, QM_image_shallow(M)));
    2570             : }
    2571             : GEN
    2572          21 : mseisenstein(GEN W)
    2573             : {
    2574          21 :   pari_sp av = avma;
    2575          21 :   checkms(W); return gerepilecopy(av, mseisenstein_i(W));
    2576             : }
    2577             : 
    2578             : /* upper bound for log_2 |charpoly(T_p|S)|, where S is a cuspidal subspace of
    2579             :  * dimension d, k is the weight */
    2580             : #if 0
    2581             : static long
    2582             : TpS_char_bound(ulong p, long k, long d)
    2583             : { /* |eigenvalue| <= 2 p^(k-1)/2 */
    2584             :   return d * (2 + (log2((double)p)*(k-1))/2);
    2585             : }
    2586             : #endif
    2587             : static long
    2588         266 : TpE_char_bound(ulong p, long k, long d)
    2589             : { /* |eigenvalue| <= 2 p^(k-1) */
    2590         266 :   return d * (2 + log2((double)p)*(k-1));
    2591             : }
    2592             : 
    2593             : static GEN eisker(GEN M);
    2594             : static int
    2595         294 : use_Petersson(long N, long k, long s)
    2596             : {
    2597         294 :   if (!s)
    2598             :   {
    2599          70 :     if (N == 1)  return 1;
    2600          49 :     if (N <= 3)  return k >= 42;
    2601          42 :     if (N == 4)  return k >= 30;
    2602          42 :     if (N == 5)  return k >= 20;
    2603          42 :     if (N <= 10) return k >= 14;
    2604          35 :     if (N <= 16) return k >= 10;
    2605           7 :     if (N <= 28) return k >= 8;
    2606           7 :     if (N <= 136 || N == 180 || N == 200 || N == 225) return k >= 6;
    2607           0 :     return k >= 4;
    2608             :   }
    2609         224 :   if (s < 0)
    2610             :   {
    2611           0 :     if (N <= 64 || N == 100 || N == 128 || N == 144 || N == 225
    2612           0 :         || N == 351 || N == 375) return k >= 8;
    2613           0 :     return k >= 6;
    2614             :   }
    2615         224 :   if (N == 1) return 1;
    2616         217 :   if (N == 2) return k >= 56;
    2617         217 :   if (N == 3) return k >= 68;
    2618         182 :   if (N == 4) return k >= 78;
    2619         175 :   if (N == 5) return k >= 38;
    2620         147 :   if (N == 6) return k >= 24;
    2621         147 :   if (N == 7) return k >= 44;
    2622         140 :   if (N <= 9) return k >= 28;
    2623         133 :   if (N <= 13) return k >= 20;
    2624          98 :   if (N <= 21 || N == 50) return k >= 14;
    2625          70 :   if (N == 24 || N == 25) return k >= 16;
    2626          70 :   if (N <= 58 || N == 63 || N == 72 || N == 84 || N == 208 || N == 224) return k >= 10;
    2627          42 :   if (N <= 128 || N == 144 || N == 145 || N == 160 || N == 168 || N == 175 ||
    2628          21 :       N == 180 || N == 252 || N == 253 || N == 273 || N == 320 || N == 335 ||
    2629          42 :       N == 336 || N == 345 || N == 360) return k >= 8;
    2630          21 :   return k >= 6;
    2631             : }
    2632             : /* eisspace^-(N) = 0 */
    2633             : static int
    2634          49 : isminustriv(GEN F)
    2635             : {
    2636          49 :   GEN P = gel(F,1), E = gel(F,2);
    2637          49 :   long i = 1, l = lg(P);
    2638          49 :   if (l == 1) return 1;
    2639          49 :   if (P[1] == 2)
    2640             :   {
    2641           7 :     if (E[1] >= 4) return 0;
    2642           7 :     i++;
    2643             :   }
    2644          98 :   for (; i < l; i++)
    2645          49 :     if (E[i] > 1) return 0;
    2646          49 :   return 1;
    2647             : }
    2648             : 
    2649             : GEN
    2650         343 : mscuspidal(GEN W, long flag)
    2651             : {
    2652         343 :   pari_sp av = avma;
    2653             :   GEN M, E, S;
    2654             :   ulong p, N;
    2655             :   long k, s;
    2656             : 
    2657         343 :   checkms(W);
    2658         343 :   N = ms_get_N(W);
    2659         343 :   k = msk_get_weight(W);
    2660         343 :   s = msk_get_sign(W);
    2661         343 :   E = flag? mseisenstein_i(W): NULL;
    2662         343 :   if (s < 0 && isminustriv(factoru(N))) M = matid(msdim(W));
    2663         294 :   else if (use_Petersson(N, k, s)) M = eisker(W);
    2664             :   else
    2665             :   {
    2666             :     GEN dT, T, TE, chE;
    2667             :     forprime_t F;
    2668             :     long bit;
    2669             :     pari_timer ti;
    2670             : 
    2671         266 :     if (!E) E = mseisenstein_i(W);
    2672         266 :     (void)u_forprime_init(&F, 2, ULONG_MAX);
    2673         392 :     while ((p = u_forprime_next(&F)))
    2674         392 :       if (N % p) break;
    2675         266 :     if (DEBUGLEVEL) timer_start(&ti);
    2676         266 :     T = mshecke(W, p, NULL);
    2677         266 :     if (DEBUGLEVEL) timer_printf(&ti,"Tp, p = %ld", p);
    2678         266 :     TE = Qevproj_apply(T, E); /* T_p | E */
    2679         266 :     if (DEBUGLEVEL) timer_printf(&ti,"Qevproj_init(E)");
    2680         266 :     bit = TpE_char_bound(p, k, lg(TE)-1);
    2681         266 :     chE = QM_charpoly_ZX_bound(TE, bit);
    2682         266 :     chE = ZX_radical(chE);
    2683         266 :     T = Q_remove_denom(T, &dT);
    2684         266 :     if (dT) chE = ZX_rescale(chE, dT);
    2685         266 :     M = RgX_RgM_eval(chE, T);
    2686         266 :     M = QM_image_shallow(M); /* = Im chE(T / dT) */
    2687             :   }
    2688         343 :   S = Qevproj_init(M);
    2689         343 :   return gerepilecopy(av, flag? mkvec2(S,E): S);
    2690             : }
    2691             : 
    2692             : /** INIT ELLSYM STRUCTURE **/
    2693             : /* V a vector of ZM. If all of them have 0 last row, return NULL.
    2694             :  * Otherwise return [m,i,j], where m = V[i][last,j] contains the value
    2695             :  * of smallest absolute value */
    2696             : static GEN
    2697         945 : RgMV_find_non_zero_last_row(long offset, GEN V)
    2698             : {
    2699         945 :   long i, lasti = 0, lastj = 0, lV = lg(V);
    2700         945 :   GEN m = NULL;
    2701        4109 :   for (i = 1; i < lV; i++)
    2702             :   {
    2703        3164 :     GEN M = gel(V,i);
    2704        3164 :     long j, n, l = lg(M);
    2705        3164 :     if (l == 1) continue;
    2706        2849 :     n = nbrows(M);
    2707       13860 :     for (j = 1; j < l; j++)
    2708             :     {
    2709       11011 :       GEN a = gcoeff(M, n, j);
    2710       11011 :       if (!gequal0(a) && (!m || abscmpii(a, m) < 0))
    2711             :       {
    2712        1596 :         m = a; lasti = i; lastj = j;
    2713        1596 :         if (is_pm1(m)) goto END;
    2714             :       }
    2715             :     }
    2716             :   }
    2717         945 : END:
    2718         945 :   if (!m) return NULL;
    2719         630 :   return mkvec2(m, mkvecsmall2(lasti+offset, lastj));
    2720             : }
    2721             : /* invert the d_oo := (\gamma_oo - 1) operator, acting on
    2722             :  * [x^(k-2), ..., y^(k-2)] */
    2723             : static GEN
    2724         630 : Delta_inv(GEN doo, long k)
    2725             : {
    2726         630 :   GEN M = RgX_act_ZGl2Q(doo, k);
    2727         630 :   M = RgM_minor(M, k-1, 1); /* 1st column and last row are 0 */
    2728         630 :   return ZM_inv_denom(M);
    2729             : }
    2730             : /* The ZX P = \sum a_i x^i y^{k-2-i} is given by the ZV [a_0, ..., a_k-2]~,
    2731             :  * return Q and d such that P = doo Q + d y^k-2, where d in Z and Q */
    2732             : static GEN
    2733       12873 : doo_decompose(GEN dinv, GEN P, GEN *pd)
    2734             : {
    2735       12873 :   long l = lg(P); *pd = gel(P, l-1);
    2736       12873 :   P = vecslice(P, 1, l-2);
    2737       12873 :   return vec_prepend(ZC_apply_dinv(dinv, P), gen_0);
    2738             : }
    2739             : 
    2740             : static GEN
    2741       12873 : get_phi_ij(long i,long j,long n, long s,long t,GEN P_st,GEN Q_st,GEN d_st,
    2742             :            GEN P_ij, GEN lP_ij, GEN dinv)
    2743             : {
    2744             :   GEN ind, pols;
    2745       12873 :   if (i == s && j == t)
    2746             :   {
    2747         630 :     ind = mkvecsmall(1);
    2748         630 :     pols = mkvec(scalarcol_shallow(gen_1, lg(P_st)-1)); /* x^{k-2} */
    2749             :   }
    2750             :   else
    2751             :   {
    2752       12243 :     GEN d_ij, Q_ij = doo_decompose(dinv, lP_ij, &d_ij);
    2753       12243 :     GEN a = ZC_Z_mul(P_ij, d_st);
    2754       12243 :     GEN b = ZC_Z_mul(P_st, negi(d_ij));
    2755       12243 :     GEN c = RgC_sub(RgC_Rg_mul(Q_ij, d_st), RgC_Rg_mul(Q_st, d_ij));
    2756       12243 :     if (i == s) { /* j != t */
    2757        1659 :       ind = mkvecsmall2(1, s);
    2758        1659 :       pols = mkvec2(c, ZC_add(a, b));
    2759             :     } else {
    2760       10584 :       ind = mkvecsmall3(1, i, s);
    2761       10584 :       pols = mkvec3(c, a, b); /* image of g_1, g_i, g_s */
    2762             :     }
    2763       12243 :     pols = Q_primpart(pols);
    2764             :   }
    2765       12873 :   return mkvec3(mkvecsmall3(i,j,n), ind, pols);
    2766             : }
    2767             : 
    2768             : static GEN
    2769        3297 : mskinit_trivial(GEN WN)
    2770             : {
    2771        3297 :   long dim = ms_get_nbE1(WN);
    2772        3297 :   return mkvec3(WN, gen_0, mkvec2(gen_0,mkvecsmall2(2, dim)));
    2773             : }
    2774             : /* sum of #cols of the matrices contained in V */
    2775             : static long
    2776        1260 : RgMV_dim(GEN V)
    2777             : {
    2778        1260 :   long l = lg(V), d = 0, i;
    2779        1764 :   for (i = 1; i < l; i++) d += lg(gel(V,i)) - 1;
    2780        1260 :   return d;
    2781             : }
    2782             : static GEN
    2783         630 : mskinit_nontrivial(GEN WN, long k)
    2784             : {
    2785         630 :   GEN annT2 = gel(WN,8), annT31 = gel(WN,9), singlerel = gel(WN,10);
    2786             :   GEN link, basis, monomials, Inv;
    2787         630 :   long nbE1 = ms_get_nbE1(WN);
    2788         630 :   GEN dinv = Delta_inv(ZG_neg( ZSl2_star(gel(singlerel,1)) ), k);
    2789         630 :   GEN p1 = cgetg(nbE1+1, t_VEC), remove;
    2790         630 :   GEN p2 = ZGV_tors(annT2, k);
    2791         630 :   GEN p3 = ZGV_tors(annT31, k);
    2792         630 :   GEN gentor = shallowconcat(p2, p3);
    2793             :   GEN P_st, lP_st, Q_st, d_st;
    2794             :   long n, i, dim, s, t, u;
    2795         630 :   gel(p1, 1) = cgetg(1,t_MAT); /* dummy */
    2796        3381 :   for (i = 2; i <= nbE1; i++) /* skip 1st element = (\gamma_oo-1)g_oo */
    2797             :   {
    2798        2751 :     GEN z = gel(singlerel, i);
    2799        2751 :     gel(p1, i) = RgX_act_ZGl2Q(ZSl2_star(z), k);
    2800             :   }
    2801         630 :   remove = RgMV_find_non_zero_last_row(nbE1, gentor);
    2802         630 :   if (!remove) remove = RgMV_find_non_zero_last_row(0, p1);
    2803         630 :   if (!remove) pari_err_BUG("msinit [no y^k-2]");
    2804         630 :   remove = gel(remove,2); /* [s,t] */
    2805         630 :   s = remove[1];
    2806         630 :   t = remove[2];
    2807             :   /* +1 because of = x^(k-2), but -1 because of Manin relation */
    2808         630 :   dim = (k-1)*(nbE1-1) + RgMV_dim(p2) + RgMV_dim(p3);
    2809             :   /* Let (g_1,...,g_d) be the Gamma-generators of Delta, g_1 = g_oo.
    2810             :    * We describe modular symbols by the collection phi(g_1), ..., phi(g_d)
    2811             :    * \in V := Q[x,y]_{k-2}, with right Gamma action.
    2812             :    * For each i = 1, .., d, let V_i \subset V be the Q-vector space of
    2813             :    * allowed values for phi(g_i): with basis (P^{i,j}) given by the monomials
    2814             :    * x^(j-1) y^{k-2-(j-1)}, j = 1 .. k-1
    2815             :    * (g_i in E_1) or the solution of the torsion equations (1 + gamma)P = 0
    2816             :    * (g_i in T2) or (1 + gamma + gamma^2)P = 0 (g_i in T31). All such P
    2817             :    * are chosen in Z[x,y] with Q_content 1.
    2818             :    *
    2819             :    * The Manin relation (singlerel) is of the form \sum_i \lambda_i g_i = 0,
    2820             :    * where \lambda_i = 1 if g_i in T2 or T31, and \lambda_i = (1 - \gamma_i)
    2821             :    * for g_i in E1.
    2822             :    *
    2823             :    * If phi \in Hom_Gamma(Delta, V), it is defined by phi(g_i) := P_i in V
    2824             :    * with \sum_i P_i . \lambda_i^* = 0, where (\sum n_i g_i)^* :=
    2825             :    * \sum n_i \gamma_i^(-1).
    2826             :    *
    2827             :    * We single out gamma_1 / g_1 (g_oo in Pollack-Stevens paper) and
    2828             :    * write P_{i,j} \lambda_i^* =  Q_{i,j} (\gamma_1 - 1)^* + d_{i,j} y^{k-2}
    2829             :    * where d_{i,j} is a scalar and Q_{i,j} in V; we normalize Q_{i,j} to
    2830             :    * that the coefficient of x^{k-2} is 0.
    2831             :    *
    2832             :    * There exist (s,t) such that d_{s,t} != 0.
    2833             :    * A Q-basis of the (dual) space of modular symbols is given by the
    2834             :    * functions phi_{i,j}, 2 <= i <= d, 1 <= j <= k-1, mapping
    2835             :    *  g_1 -> d_{s,t} Q_{i,j} - d_{i,j} Q_{s,t} + [(i,j)=(s,t)] x^{k-2}
    2836             :    * If i != s
    2837             :    *   g_i -> d_{s,t} P_{i,j}
    2838             :    *   g_s -> - d_{i,j} P_{s,t}
    2839             :    * If i = s, j != t
    2840             :    *   g_i -> d_{s,t} P_{i,j} - d_{i,j} P_{s,t}
    2841             :    * And everything else to 0. Again we normalize the phi_{i,j} such that
    2842             :    * their image has content 1. */
    2843         630 :   monomials = matid(k-1); /* represent the monomials x^{k-2}, ... , y^{k-2} */
    2844         630 :   if (s <= nbE1) /* in E1 */
    2845             :   {
    2846         315 :     P_st = gel(monomials, t);
    2847         315 :     lP_st = gmael(p1, s, t); /* P_{s,t} lambda_s^* */
    2848             :   }
    2849             :   else /* in T2, T31 */
    2850             :   {
    2851         315 :     P_st = gmael(gentor, s - nbE1, t);
    2852         315 :     lP_st = P_st;
    2853             :   }
    2854         630 :   Q_st = doo_decompose(dinv, lP_st, &d_st);
    2855         630 :   basis = cgetg(dim+1, t_VEC);
    2856         630 :   link = cgetg(nbE1 + lg(gentor), t_VEC);
    2857         630 :   gel(link,1) = cgetg(1,t_VECSMALL); /* dummy */
    2858         630 :   n = 1;
    2859        3381 :   for (i = 2; i <= nbE1; i++)
    2860             :   {
    2861        2751 :     GEN L = cgetg(k, t_VECSMALL);
    2862             :     long j;
    2863             :     /* link[i][j] = n gives correspondance between phi_{i,j} and basis[n] */
    2864        2751 :     gel(link,i) = L;
    2865       14056 :     for (j = 1; j < k; j++)
    2866             :     {
    2867       11305 :       GEN lP_ij = gmael(p1, i, j); /* P_{i,j} lambda_i^* */
    2868       11305 :       GEN P_ij = gel(monomials,j);
    2869       11305 :       L[j] = n;
    2870       11305 :       gel(basis, n) = get_phi_ij(i,j,n, s,t, P_st, Q_st, d_st, P_ij, lP_ij, dinv);
    2871       11305 :       n++;
    2872             :     }
    2873             :   }
    2874        1134 :   for (u = 1; u < lg(gentor); u++,i++)
    2875             :   {
    2876         504 :     GEN V = gel(gentor,u);
    2877         504 :     long j, lV = lg(V);
    2878         504 :     GEN L = cgetg(lV, t_VECSMALL);
    2879         504 :     gel(link,i) = L;
    2880        2072 :     for (j = 1; j < lV; j++)
    2881             :     {
    2882        1568 :       GEN lP_ij = gel(V, j); /* P_{i,j} lambda_i^* = P_{i,j} */
    2883        1568 :       GEN P_ij = lP_ij;
    2884        1568 :       L[j] = n;
    2885        1568 :       gel(basis, n) = get_phi_ij(i,j,n, s,t, P_st, Q_st, d_st, P_ij, lP_ij, dinv);
    2886        1568 :       n++;
    2887             :     }
    2888             :   }
    2889         630 :   Inv = cgetg(lg(link), t_VEC);
    2890         630 :   gel(Inv,1) = cgetg(1, t_MAT); /* dummy */
    2891        3885 :   for (i = 2; i < lg(link); i++)
    2892             :   {
    2893        3255 :     GEN M, inv, B = gel(link,i);
    2894        3255 :     long j, lB = lg(B);
    2895        3255 :     if (i == s) { B = vecsplice(B, t); lB--; } /* remove phi_st */
    2896        3255 :     M = cgetg(lB, t_MAT);
    2897       15498 :     for (j = 1; j < lB; j++)
    2898             :     {
    2899       12243 :       GEN phi_ij = gel(basis, B[j]), pols = gel(phi_ij,3);
    2900       12243 :       gel(M, j) = gel(pols, 2); /* phi_ij(g_i) */
    2901             :     }
    2902        3255 :     if (i <= nbE1 && i != s) /* maximal rank k-1 */
    2903        2436 :       inv = ZM_inv_denom(M);
    2904             :     else /* i = s (rank k-2) or from torsion: rank k/3 or k/2 */
    2905         819 :       inv = Qevproj_init(M);
    2906        3255 :     gel(Inv,i) = inv;
    2907             :   }
    2908         630 :   return mkvec3(WN, gen_0, mkvec5(basis, mkvecsmall2(k, dim), mkvecsmall2(s,t),
    2909             :                                   link, Inv));
    2910             : }
    2911             : static GEN
    2912        3941 : add_star(GEN W, long sign)
    2913             : {
    2914        3941 :   GEN s = msstar_i(W);
    2915        3941 :   GEN K = sign? QM_ker(gsubgs(s, sign)): cgetg(1,t_MAT);
    2916        3941 :   gel(W,2) = mkvec3(stoi(sign), s, Qevproj_init(K));
    2917        3941 :   return W;
    2918             : }
    2919             : /* WN = msinit_N(N) */
    2920             : static GEN
    2921        3941 : mskinit(ulong N, long k, long sign)
    2922             : {
    2923        3941 :   GEN W, WN = msinit_N(N);
    2924        3941 :   if (N == 1)
    2925             :   {
    2926          14 :     GEN basis, M = RgXV_to_RgM(mfperiodpolbasis(k, 0), k-1);
    2927          14 :     GEN T = cgetg(1, t_VECSMALL), ind = mkvecsmall(1);
    2928          14 :     long i, l = lg(M);
    2929          14 :     basis = cgetg(l, t_VEC);
    2930          70 :     for (i = 1; i < l; i++) gel(basis,i) = mkvec3(T, ind, mkvec(gel(M,i)));
    2931          14 :     W = mkvec3(WN, gen_0, mkvec5(basis, mkvecsmall2(k, l-1), mkvecsmall2(0,0),
    2932             :                                  gen_0, Qevproj_init(M)));
    2933             :   }
    2934             :   else
    2935        3927 :     W = k == 2? mskinit_trivial(WN)
    2936        3927 :               : mskinit_nontrivial(WN, k);
    2937        3941 :   return add_star(W, sign);
    2938             : }
    2939             : GEN
    2940         518 : msinit(GEN N, GEN K, long s)
    2941             : {
    2942         518 :   pari_sp av = avma;
    2943             :   GEN W;
    2944             :   long k;
    2945         518 :   if (typ(N) != t_INT) pari_err_TYPE("msinit", N);
    2946         511 :   if (typ(K) != t_INT) pari_err_TYPE("msinit", K);
    2947         504 :   k = itos(K);
    2948         504 :   if (k < 2) pari_err_DOMAIN("msinit","k", "<", gen_2,K);
    2949         497 :   if (odd(k)) pari_err_IMPL("msinit [odd weight]");
    2950         497 :   if (signe(N) <= 0) pari_err_DOMAIN("msinit","N", "<=", gen_0,N);
    2951         490 :   if (labs(s) > 1) pari_err_DOMAIN("msinit", "|sign|", ">", gen_1, stoi(s));
    2952         476 :   W = mskinit(itou(N), k, s);
    2953         476 :   return gerepilecopy(av, W);
    2954             : }
    2955             : 
    2956             : /* W = msinit, xpm integral modular symbol of weight 2, c t_FRAC
    2957             :  * Return image of <oo->c> */
    2958             : GEN
    2959     2229528 : mseval2_ooQ(GEN W, GEN xpm, GEN c)
    2960             : {
    2961     2229528 :   pari_sp av = avma;
    2962             :   GEN v;
    2963     2229528 :   W = get_msN(W);
    2964     2229528 :   v = init_act_trivial(W);
    2965     2229528 :   Q_log_trivial(v, W, c); /* oo -> (a:b), c = a/b */
    2966     2229528 :   return gerepileuptoint(av, ZV_zc_mul(xpm, v));
    2967             : }
    2968             : 
    2969             : static GEN
    2970       20314 : eval_single(GEN s, long k, GEN B, long v)
    2971             : {
    2972             :   long i, l;
    2973       20314 :   GEN A = cgetg_copy(s,&l);
    2974      135863 :   for (i=1; i<l; i++) gel(A,i) = ZGl2Q_act_s(gel(B,i), gel(s,i), k);
    2975       20314 :   A = RgV_sum(A);
    2976       20314 :   if (is_vec_t(typ(A))) A = RgV_to_RgX(A, v);
    2977       20314 :   return A;
    2978             : }
    2979             : /* Evaluate symbol s on mspathlog B (= sum p_i g_i, p_i in Z[G]). Allow
    2980             :  * s = t_MAT [ collection of symbols, return a vector ]*/
    2981             : static GEN
    2982       54362 : mseval_by_values(GEN W, GEN s, GEN p, long v)
    2983             : {
    2984       54362 :   long i, l, k = msk_get_weight(W);
    2985             :   GEN A;
    2986       54362 :   if (k == 2)
    2987             :   { /* trivial represention: don't bother with Z[G] */
    2988       41734 :     GEN B = mspathlog_trivial(W,p);
    2989       41727 :     if (typ(s) != t_MAT) return RgV_zc_mul(s,B);
    2990       41657 :     l = lg(s); A = cgetg(l, t_VEC);
    2991      124971 :     for (i = 1; i < l; i++) gel(A,i) = RgV_zc_mul(gel(s,i), B);
    2992             :   }
    2993             :   else
    2994             :   {
    2995       12628 :     GEN B = mspathlog(W,p);
    2996       12628 :     if (typ(s) != t_MAT) return eval_single(s, k, B, v);
    2997         812 :     l = lg(s); A = cgetg(l, t_VEC);
    2998        9310 :     for (i = 1; i < l; i++) gel(A,i) = eval_single(gel(s,i), k, B, v);
    2999             :   }
    3000       42469 :   return A;
    3001             : }
    3002             : 
    3003             : /* express symbol on the basis phi_{i,j} */
    3004             : static GEN
    3005       20692 : symtophi(GEN W, GEN s)
    3006             : {
    3007       20692 :   GEN e, basis = msk_get_basis(W);
    3008       20692 :   long i, l = lg(basis);
    3009       20692 :   if (lg(s) != l) pari_err_TYPE("mseval",s);
    3010       20692 :   e = zerovec(ms_get_nbgen(W));
    3011      313670 :   for (i=1; i<l; i++)
    3012             :   {
    3013      292978 :     GEN phi, ind, pols, c = gel(s,i);
    3014             :     long j, m;
    3015      292978 :     if (gequal0(c)) continue;
    3016      122696 :     phi = gel(basis,i);
    3017      122696 :     ind = gel(phi,2); m = lg(ind);
    3018      122696 :     pols = gel(phi,3);
    3019      470806 :     for (j=1; j<m; j++)
    3020             :     {
    3021      348110 :       long t = ind[j];
    3022      348110 :       gel(e,t) = gadd(gel(e,t), gmul(c, gel(pols,j)));
    3023             :     }
    3024             :   }
    3025       20692 :   return e;
    3026             : }
    3027             : /* evaluate symbol s on path p */
    3028             : GEN
    3029       55321 : mseval(GEN W, GEN s, GEN p)
    3030             : {
    3031       55321 :   pari_sp av = avma;
    3032       55321 :   long i, k, l, v = 0;
    3033       55321 :   checkms(W);
    3034       55321 :   k = msk_get_weight(W);
    3035       55321 :   switch(typ(s))
    3036             :   {
    3037           7 :     case t_VEC: /* values s(g_i) */
    3038           7 :       if (lg(s)-1 != ms_get_nbgen(W)) pari_err_TYPE("mseval",s);
    3039           7 :       if (!p) return gcopy(s);
    3040           0 :       v = gvar(s);
    3041           0 :       break;
    3042       12831 :     case t_COL:
    3043       12831 :       if (msk_get_sign(W))
    3044             :       {
    3045         399 :         GEN star = gel(msk_get_starproj(W), 1);
    3046         399 :         if (lg(star) == lg(s)) s = RgM_RgC_mul(star, s);
    3047             :       }
    3048       12831 :       if (k == 2) /* on the dual basis of (g_i) */
    3049             :       {
    3050         637 :         if (lg(s)-1 != ms_get_nbE1(W)) pari_err_TYPE("mseval",s);
    3051         637 :         if (!p) return gtrans(s);
    3052             :       }
    3053             :       else
    3054       12194 :         s = symtophi(W,s);
    3055       12271 :       break;
    3056       42483 :     case t_MAT:
    3057       42483 :       l = lg(s);
    3058       42483 :       if (!p)
    3059             :       {
    3060           7 :         GEN v = cgetg(l, t_VEC);
    3061          28 :         for (i = 1; i < l; i++) gel(v,i) = mseval(W, gel(s,i), NULL);
    3062           7 :         return v;
    3063             :       }
    3064       42476 :       if (l == 1) return cgetg(1, t_VEC);
    3065       42469 :       if (msk_get_sign(W))
    3066             :       {
    3067          84 :         GEN star = gel(msk_get_starproj(W), 1);
    3068          84 :         if (lg(star) == lgcols(s)) s = RgM_mul(star, s);
    3069             :       }
    3070       42469 :       if (k == 2)
    3071       41657 :       { if (nbrows(s) != ms_get_nbE1(W)) pari_err_TYPE("mseval",s); }
    3072             :       else
    3073             :       {
    3074         812 :         GEN t = cgetg(l, t_MAT);
    3075        9310 :         for (i = 1; i < l; i++) gel(t,i) = symtophi(W,gel(s,i));
    3076         812 :         s = t;
    3077             :       }
    3078       42469 :       break;
    3079           0 :     default: pari_err_TYPE("mseval",s);
    3080             :   }
    3081       54740 :   if (p)
    3082       54362 :     s = mseval_by_values(W, s, p, v);
    3083             :   else
    3084             :   {
    3085         378 :     l = lg(s);
    3086        3675 :     for (i = 1; i < l; i++)
    3087             :     {
    3088        3297 :       GEN c = gel(s,i);
    3089        3297 :       if (!isintzero(c)) gel(s,i) = RgV_to_RgX(gel(s,i), v);
    3090             :     }
    3091             :   }
    3092       54733 :   return gerepilecopy(av, s);
    3093             : }
    3094             : 
    3095             : static GEN
    3096        9464 : allxpm(GEN W, GEN xpm, long f)
    3097             : {
    3098        9464 :   GEN v, L = coprimes_zv(f);
    3099        9464 :   long a, nonzero = 0;
    3100        9464 :   v = const_vec(f, NULL);
    3101       33719 :   for (a = 1; a <= f; a++)
    3102             :   {
    3103             :     GEN c;
    3104       24255 :     if (!L[a]) continue;
    3105       18564 :     c = mseval2_ooQ(W, xpm, sstoQ(a, f));
    3106       18564 :     if (!gequal0(c)) { gel(v,a) = c; nonzero = 1; }
    3107             :   }
    3108        9464 :   return nonzero? v: NULL;
    3109             : }
    3110             : /* \sum_{a mod f} chi(a) x(a/f) */
    3111             : static GEN
    3112        5138 : seval(GEN G, GEN chi, GEN vx)
    3113             : {
    3114        5138 :   GEN vZ, T, s = gen_0, go = zncharorder(G,chi);
    3115        5138 :   long i, l = lg(vx), o = itou(go);
    3116        5138 :   T = polcyclo(o,0);
    3117        5138 :   vZ = mkvec2(RgXQ_powers(RgX_rem(pol_x(0), T), o-1, T), go);
    3118       20643 :   for (i = 1; i < l; i++)
    3119             :   {
    3120       15505 :     GEN x = gel(vx,i);
    3121       15505 :     if (x) s = gadd(s, gmul(x, znchareval(G, chi, utoi(i), vZ)));
    3122             :   }
    3123        5138 :   return gequal0(s)? NULL: poleval(s, rootsof1u_cx(o, DEFAULTPREC));
    3124             : }
    3125             : 
    3126             : /* Let W = msinit(conductor(E), 2), xpm an integral modular symbol with the same
    3127             :  * eigenvalues as L_E. There exist a unique C such that
    3128             :  *   C*L(E,(D/.),1)_{xpm} = L(E,(D/.),1) / w1(E_D) != 0,
    3129             :  * for all D fundamental, sign(D) = s, and such that E_D has rank 0.
    3130             :  * Return C * ellQtwist_bsdperiod(E,s) */
    3131             : static GEN
    3132        5138 : ell_get_Cw(GEN LE, GEN W, GEN xpm, long s)
    3133             : {
    3134        5138 :   long f, NE = ms_get_N(W);
    3135        5138 :   const long bit = 64;
    3136             : 
    3137        5138 :   for (f = 1;; f++)
    3138       10367 :   { /* look for chi with conductor f coprime to N(E) and parity s
    3139             :      * such that L(E,chi,1) != 0 */
    3140       15505 :     pari_sp av = avma;
    3141             :     GEN vchi, vx, G;
    3142             :     long l, i;
    3143       15505 :     if ((f & 3) == 2 || ugcd(NE,f) != 1) continue;
    3144        9464 :     vx = allxpm(W, xpm, f); if (!vx) continue;
    3145        5138 :     G = znstar0(utoipos(f),1);
    3146        5138 :     vchi = chargalois(G,NULL); l = lg(vchi);
    3147        8204 :     for (i = 1; i < l; i++)
    3148             :     {
    3149        8204 :       pari_sp av2 = avma;
    3150        8204 :       GEN tau, z, S, L, chi = gel(vchi,i);
    3151        8204 :       long o = zncharisodd(G,chi);
    3152        8204 :       if ((s > 0 && o) || (s < 0 && !o)
    3153        8204 :           || itos(zncharconductor(G, chi)) != f) continue;
    3154        5138 :       S = seval(G, chi, vx);
    3155        5138 :       if (!S) { set_avma(av2); continue; }
    3156             : 
    3157        5138 :       L = lfuntwist(LE, mkvec2(G, zncharconj(G,chi)), bit);
    3158        5138 :       z = lfun(L, gen_1, bit);
    3159        5138 :       tau = znchargauss(G, chi, gen_1, bit);
    3160        5138 :       return gdiv(gmul(z, tau), S); /* C * w */
    3161             :     }
    3162           0 :     set_avma(av);
    3163             :   }
    3164             : }
    3165             : static GEN
    3166        2884 : ell_get_scale(GEN LE, GEN W, long sign, GEN x)
    3167             : {
    3168        2884 :   if (sign)
    3169         630 :     return ell_get_Cw(LE, W, gel(x,1), sign);
    3170             :   else
    3171             :   {
    3172        2254 :     GEN Cwp = ell_get_Cw(LE, W, gel(x,1), 1);
    3173        2254 :     GEN Cwm = ell_get_Cw(LE, W, gel(x,2),-1);
    3174        2254 :     return mkvec2(Cwp, Cwm);
    3175             :   }
    3176             : }
    3177             : /* E minimal */
    3178             : static GEN
    3179       10101 : msfromell_scale(GEN x, GEN Cw, GEN E, long s)
    3180             : {
    3181       10101 :   GEN B = int2n(32);
    3182       10101 :   if (s)
    3183             :   {
    3184         630 :     GEN C = gdiv(Cw, ellQtwist_bsdperiod(E,s));
    3185         630 :     return ZC_Q_mul(gel(x,1), bestappr(C,B));
    3186             :   }
    3187             :   else
    3188             :   {
    3189        9471 :     GEN xp = gel(x,1), Cp = gdiv(gel(Cw,1), ellQtwist_bsdperiod(E, 1)), L;
    3190        9471 :     GEN xm = gel(x,2), Cm = gdiv(gel(Cw,2), ellQtwist_bsdperiod(E,-1));
    3191        9471 :     xp = ZC_Q_mul(xp, bestappr(Cp,B));
    3192        9471 :     xm = ZC_Q_mul(xm, bestappr(Cm,B));
    3193        9471 :     if (signe(ell_get_disc(E)) > 0)
    3194        5320 :       L = mkmat2(xp, xm); /* E(R) has 2 connected components */
    3195             :     else
    3196        4151 :       L = mkmat2(gsub(xp,xm), gmul2n(xm,1));
    3197        9471 :     return mkvec3(xp, xm, L);
    3198             :   }
    3199             : }
    3200             : /* v != 0 */
    3201             : static GEN
    3202        5138 : Flc_normalize(GEN v, ulong p)
    3203             : {
    3204        5138 :   long i, l = lg(v);
    3205        9128 :   for (i = 1; i < l; i++)
    3206        9128 :     if (v[i])
    3207             :     {
    3208        5138 :       if (v[i] != 1) v = Flv_Fl_div(v, v[i], p);
    3209        5138 :       return v;
    3210             :     }
    3211           0 :   return NULL;
    3212             : }
    3213             : /* K \cap Ker M  [F_l vector spaces]. K = NULL means full space */
    3214             : static GEN
    3215        3668 : msfromell_ker(GEN K, GEN M, ulong l)
    3216             : {
    3217        3668 :   GEN B, Ml = ZM_to_Flm(M, l);
    3218        3668 :   if (K) Ml = Flm_mul(Ml, K, l);
    3219        3668 :   B = Flm_ker(Ml, l);
    3220        3668 :   if (!K) K = B;
    3221         784 :   else if (lg(B) < lg(K))
    3222         616 :     K = Flm_mul(K, B, l);
    3223        3668 :   return K;
    3224             : }
    3225             : /* K = \cap_p Ker(T_p - a_p), 2-dimensional. Set *xl to the 1-dimensional
    3226             :  * Fl-basis  such that star . xl = sign . xl if sign != 0 and
    3227             :  * star * xl[1] = xl[1]; star * xl[2] = -xl[2] if sign = 0 */
    3228             : static void
    3229        2884 : msfromell_l(GEN *pxl, GEN K, GEN star, long sign, ulong l)
    3230             : {
    3231        2884 :   GEN s = ZM_to_Flm(star, l);
    3232        2884 :   GEN a = gel(K,1), Sa = Flm_Flc_mul(s,a,l);
    3233        2884 :   GEN b = gel(K,2);
    3234        2884 :   GEN t = Flv_add(a,Sa,l), xp, xm;
    3235        2884 :   if (zv_equal0(t))
    3236             :   {
    3237         497 :     xm = a;
    3238         497 :     xp = Flv_add(b,Flm_Flc_mul(s,b,l), l);
    3239             :   }
    3240             :   else
    3241             :   {
    3242        2387 :     xp = t; t = Flv_sub(a, Sa, l);
    3243        2387 :     xm = zv_equal0(t)? Flv_sub(b, Flm_Flc_mul(s,b,l), l): t;
    3244             :   }
    3245             :   /* xp = 0 on Im(S - 1), xm = 0 on Im(S + 1) */
    3246        2884 :   if (sign > 0)
    3247         518 :     *pxl = mkmat(Flc_normalize(xp, l));
    3248        2366 :   else if (sign < 0)
    3249         112 :     *pxl = mkmat(Flc_normalize(xm, l));
    3250             :   else
    3251        2254 :     *pxl = mkmat2(Flc_normalize(xp, l), Flc_normalize(xm, l));
    3252        2884 : }
    3253             : /* return a primitive symbol */
    3254             : static GEN
    3255        2884 : msfromell_ratlift(GEN x, GEN q)
    3256             : {
    3257        2884 :   GEN B = sqrti(shifti(q,-1));
    3258        2884 :   GEN r = FpM_ratlift(x, q, B, B, NULL);
    3259        2884 :   if (r) r = Q_primpart(r);
    3260        2884 :   return r;
    3261             : }
    3262             : static int
    3263        2884 : msfromell_check(GEN x, GEN vT, GEN star, long sign)
    3264             : {
    3265             :   long i, l;
    3266             :   GEN sx;
    3267        2884 :   if (!x) return 0;
    3268        2884 :   l = lg(vT);
    3269        6552 :   for (i = 1; i < l; i++)
    3270             :   {
    3271        3668 :     GEN T = gel(vT,i);
    3272        3668 :     if (!gequal0(ZM_mul(T, x))) return 0; /* fail */
    3273             :   }
    3274        2884 :   sx = ZM_mul(star,x);
    3275        2884 :   if (sign)
    3276         630 :     return ZV_equal(gel(sx,1), sign > 0? gel(x,1): ZC_neg(gel(x,1)));
    3277             :   else
    3278        2254 :     return ZV_equal(gel(sx,1),gel(x,1)) && ZV_equal(gel(sx,2),ZC_neg(gel(x,2)));
    3279             : }
    3280             : GEN
    3281        2884 : msfromell(GEN E0, long sign)
    3282             : {
    3283        2884 :   pari_sp av = avma, av2;
    3284        2884 :   GEN T, Cw, E, NE, star, q, vT, xl, xr, W, x = NULL, K = NULL;
    3285             :   long lE, single;
    3286             :   ulong p, l, N;
    3287             :   forprime_t S, Sl;
    3288             : 
    3289        2884 :   if (typ(E0) != t_VEC) pari_err_TYPE("msfromell",E0);
    3290        2884 :   lE = lg(E0);
    3291        2884 :   if (lE == 1) return cgetg(1,t_VEC);
    3292        2884 :   single = (typ(gel(E0,1)) != t_VEC);
    3293        2884 :   E = single ? E0: gel(E0,1);
    3294        2884 :   NE = ellQ_get_N(E);
    3295             :   /* must make it integral for ellap; we have minimal model at hand */
    3296        2884 :   T = obj_check(E, Q_MINIMALMODEL); if (lg(T) != 2) E = gel(T,3);
    3297        2884 :   N = itou(NE); av2 = avma;
    3298        2884 :   W = gerepilecopy(av2, mskinit(N,2,0));
    3299        2884 :   star = msk_get_star(W);
    3300        2884 :   (void)u_forprime_init(&Sl, 1UL<<29, ULONG_MAX);
    3301             :   /* loop for p <= count_Manin_symbols(N) / 6 would be enough */
    3302        2884 :   (void)u_forprime_init(&S, 2, ULONG_MAX);
    3303        2884 :   vT = cgetg(1, t_VEC);
    3304        2884 :   l = u_forprime_next(&Sl);
    3305        6265 :   while( (p = u_forprime_next(&S)) )
    3306             :   {
    3307             :     GEN M;
    3308        6265 :     if (N % p == 0) continue;
    3309        3668 :     av2 = avma;
    3310        3668 :     M = RgM_Rg_sub_shallow(mshecke_i(W, p), ellap(E, utoipos(p)));
    3311        3668 :     M = gerepilecopy(av2, M);
    3312        3668 :     vT = vec_append(vT, M); /* for certification at the end */
    3313        3668 :     K = msfromell_ker(K, M, l);
    3314        3668 :     if (lg(K) == 3) break;
    3315             :   }
    3316        2884 :   if (!p) pari_err_BUG("msfromell: ran out of primes");
    3317             : 
    3318             :   /* mod one l should be enough */
    3319        2884 :   msfromell_l(&xl, K, star, sign, l);
    3320        2884 :   x = ZM_init_CRT(xl, l);
    3321        2884 :   q = utoipos(l);
    3322        2884 :   xr = msfromell_ratlift(x, q);
    3323             :   /* paranoia */
    3324        2884 :   while (!msfromell_check(xr, vT, star, sign) && (l = u_forprime_next(&Sl)) )
    3325             :   {
    3326           0 :     GEN K = NULL;
    3327           0 :     long i, lvT = lg(vT);
    3328           0 :     for (i = 1; i < lvT; i++)
    3329             :     {
    3330           0 :       K = msfromell_ker(K, gel(vT,i), l);
    3331           0 :       if (lg(K) == 3) break;
    3332             :     }
    3333           0 :     if (i >= lvT) { x = NULL; continue; }
    3334           0 :     msfromell_l(&xl, K, star, sign, l);
    3335           0 :     ZM_incremental_CRT(&x, xl, &q, l);
    3336           0 :     xr = msfromell_ratlift(x, q);
    3337             :   }
    3338             :   /* linear form = 0 on all Im(Tp - ap) and Im(S - sign) if sign != 0 */
    3339        2884 :   Cw = ell_get_scale(lfuncreate(E), W, sign, xr);
    3340        2884 :   if (single)
    3341         693 :     x = msfromell_scale(xr, Cw, E, sign);
    3342             :   else
    3343             :   { /* assume all E0[i] isogenous, given by minimal models */
    3344        2191 :     GEN v = cgetg(lE, t_VEC);
    3345             :     long i;
    3346       11599 :     for (i=1; i<lE; i++) gel(v,i) = msfromell_scale(xr, Cw, gel(E0,i), sign);
    3347        2191 :     x = v;
    3348             :   }
    3349        2884 :   return gerepilecopy(av, mkvec2(W, x));
    3350             : }
    3351             : 
    3352             : GEN
    3353          21 : msfromhecke(GEN W, GEN v, GEN H)
    3354             : {
    3355          21 :   pari_sp av = avma;
    3356          21 :   long i, l = lg(v);
    3357          21 :   GEN K = NULL;
    3358          21 :   checkms(W);
    3359          21 :   if (typ(v) != t_VEC) pari_err_TYPE("msfromhecke",v);
    3360          49 :   for (i = 1; i < l; i++)
    3361             :   {
    3362          28 :     GEN K2, T, p, P, c = gel(v,i);
    3363          28 :     if (typ(c) != t_VEC || lg(c) != 3) pari_err_TYPE("msfromhecke",v);
    3364          28 :     p = gel(c,1);
    3365          28 :     if (typ(p) != t_INT) pari_err_TYPE("msfromhecke",v);
    3366          28 :     P = gel(c,2);
    3367          28 :     switch(typ(P))
    3368             :     {
    3369          21 :       case t_INT:
    3370          21 :         P = deg1pol_shallow(gen_1, negi(P), 0);
    3371          21 :         break;
    3372           7 :       case t_POL:
    3373           7 :         if (RgX_is_ZX(P)) break;
    3374             :       default:
    3375           0 :         pari_err_TYPE("msfromhecke",v);
    3376             :     };
    3377          28 :     T = mshecke(W, itos(p), H);
    3378          28 :     T = Q_primpart(RgX_RgM_eval(P, T));
    3379          28 :     if (K) T = ZM_mul(T,K);
    3380          28 :     K2 = ZM_ker(T);
    3381          28 :     if (!K) K = K2;
    3382           7 :     else if (lg(K2) < lg(K)) K = ZM_mul(K,K2);
    3383             :   }
    3384          21 :   return gerepilecopy(av, K);
    3385             : }
    3386             : 
    3387             : /* OVERCONVERGENT MODULAR SYMBOLS */
    3388             : 
    3389             : static GEN
    3390        2933 : mspadic_get_Wp(GEN W) { return gel(W,1); }
    3391             : static GEN
    3392         483 : mspadic_get_Tp(GEN W) { return gel(W,2); }
    3393             : static GEN
    3394         483 : mspadic_get_bin(GEN W) { return gel(W,3); }
    3395             : static GEN
    3396         476 : mspadic_get_actUp(GEN W) { return gel(W,4); }
    3397             : static GEN
    3398         476 : mspadic_get_q(GEN W) { return gel(W,5); }
    3399             : static long
    3400        1456 : mspadic_get_p(GEN W) { return gel(W,6)[1]; }
    3401             : static long
    3402        1211 : mspadic_get_n(GEN W) { return gel(W,6)[2]; }
    3403             : static long
    3404         161 : mspadic_get_flag(GEN W) { return gel(W,6)[3]; }
    3405             : static GEN
    3406         483 : mspadic_get_M(GEN W) { return gel(W,7); }
    3407             : static GEN
    3408         483 : mspadic_get_C(GEN W) { return gel(W,8); }
    3409             : static long
    3410         973 : mspadic_get_weight(GEN W) { return msk_get_weight(mspadic_get_Wp(W)); }
    3411             : 
    3412             : void
    3413         980 : checkmspadic(GEN W)
    3414             : {
    3415         980 :   if (typ(W) != t_VEC || lg(W) != 9) pari_err_TYPE("checkmspadic",W);
    3416         980 :   checkms(mspadic_get_Wp(W));
    3417         980 : }
    3418             : 
    3419             : /* f in M_2(Z) \cap GL_2(Q), p \nmid a [ and for the result to mean anything
    3420             :  * p | c, but not needed here]. Return the matrix M in M_D(Z), D = M+k-1
    3421             :  * such that, if v = \int x^i d mu, i < D, is a vector of D moments of mu,
    3422             :  * then M * v is the vector of moments of mu | f  mod p^D */
    3423             : static GEN
    3424      276073 : moments_act_i(struct m_act *S, GEN f)
    3425             : {
    3426      276073 :   long j, k = S->k, D = S->dim;
    3427      276073 :   GEN a = gcoeff(f,1,1), b = gcoeff(f,1,2);
    3428      276073 :   GEN c = gcoeff(f,2,1), d = gcoeff(f,2,2);
    3429      276073 :   GEN u, z, q = S->q, mat = cgetg(D+1, t_MAT);
    3430             : 
    3431      276073 :   a = modii(a,q);
    3432      276073 :   c = modii(c,q);
    3433      276073 :   z = FpX_powu(deg1pol(c,a,0), k-2, q); /* (a+cx)^(k-2) */
    3434             :   /* u := (b+dx) / (a+cx) mod (q,x^D) = (b/a +d/a*x) / (1 - (-c/a)*x) */
    3435      276073 :   if (!equali1(a))
    3436             :   {
    3437      271229 :     GEN ai = Fp_inv(a,q);
    3438      271229 :     b = Fp_mul(b,ai,q);
    3439      271229 :     c = Fp_mul(c,ai,q);
    3440      271229 :     d = Fp_mul(d,ai,q);
    3441             :   }
    3442      276073 :   u = deg1pol_shallow(d, b, 0);
    3443             :   /* multiply by 1 / (1 - (-c/a)*x) */
    3444      276073 :   if (signe(c))
    3445             :   {
    3446      269640 :     GEN C = Fp_neg(c,q), v = cgetg(D+2,t_POL);
    3447      269640 :     v[1] = evalsigne(1)|evalvarn(0);
    3448      269640 :     gel(v, 2) = gen_1; gel(v, 3) = C;
    3449     1405138 :     for (j = 4; j < D+2; j++)
    3450             :     {
    3451     1329027 :       GEN t = Fp_mul(gel(v,j-1), C, q);
    3452     1329027 :       if (!signe(t)) { setlg(v,j); break; }
    3453     1135498 :       gel(v,j) = t;
    3454             :     }
    3455      269640 :     u = FpXn_mul(u, v, D, q);
    3456             :   }
    3457     2369024 :   for (j = 1; j <= D; j++)
    3458             :   {
    3459     2092951 :     gel(mat,j) = RgX_to_RgC(z, D); /* (a+cx)^(k-2) * ((b+dx)/(a+cx))^(j-1) */
    3460     2092951 :     if (j != D) z = FpXn_mul(z, u, D, q);
    3461             :   }
    3462      276073 :   return shallowtrans(mat);
    3463             : }
    3464             : static GEN
    3465      275611 : moments_act(struct m_act *S, GEN f)
    3466      275611 : { pari_sp av = avma; return gerepilecopy(av, moments_act_i(S,f)); }
    3467             : static GEN
    3468         483 : init_moments_act(GEN W, long p, long n, GEN q, GEN v)
    3469             : {
    3470             :   struct m_act S;
    3471         483 :   long k = msk_get_weight(W);
    3472         483 :   S.p = p;
    3473         483 :   S.k = k;
    3474         483 :   S.q = q;
    3475         483 :   S.dim = n+k-1;
    3476         483 :   S.act = &moments_act; return init_dual_act(v,W,W,&S);
    3477             : }
    3478             : 
    3479             : static void
    3480        6762 : clean_tail(GEN phi, long c, GEN q)
    3481             : {
    3482        6762 :   long a, l = lg(phi);
    3483      214438 :   for (a = 1; a < l; a++)
    3484             :   {
    3485      207676 :     GEN P = FpC_red(gel(phi,a), q); /* phi(G_a) = vector of moments */
    3486      207676 :     long j, lP = lg(P);
    3487     1007825 :     for (j = c; j < lP; j++) gel(P,j) = gen_0; /* reset garbage to 0 */
    3488      207676 :     gel(phi,a) = P;
    3489             :   }
    3490        6762 : }
    3491             : /* concat z to all x[i] */
    3492             : static GEN
    3493         630 : concat2(GEN x, GEN z)
    3494       29022 : { pari_APPLY_same(shallowconcat(gel(x,i), z)); }
    3495             : static GEN
    3496         630 : red_mod_FilM(GEN phi, ulong p, long k, long flag)
    3497             : {
    3498             :   long a, l;
    3499         630 :   GEN den = gen_1, v = cgetg_copy(phi, &l);
    3500         630 :   if (flag)
    3501             :   {
    3502         343 :     phi = Q_remove_denom(phi, &den);
    3503         343 :     if (!den) { den = gen_1; flag = 0; }
    3504             :   }
    3505       29386 :   for (a = 1; a < l; a++)
    3506             :   {
    3507       28756 :     GEN P = gel(phi,a), q = den;
    3508             :     long j;
    3509      207676 :     for (j = lg(P)-1; j >= k+1; j--)
    3510             :     {
    3511      178920 :       q = muliu(q,p);
    3512      178920 :       gel(P,j) = modii(gel(P,j),q);
    3513             :     }
    3514       28756 :     q = muliu(q,p);
    3515       93380 :     for (     ; j >= 1; j--)
    3516       64624 :       gel(P,j) = modii(gel(P,j),q);
    3517       28756 :     gel(v,a) = P;
    3518             :   }
    3519         630 :   if (flag) v = gdiv(v, den);
    3520         630 :   return v;
    3521             : }
    3522             : 
    3523             : /* denom(C) | p^(2(k-1) - v_p(ap)) */
    3524             : static GEN
    3525         154 : oms_dim2(GEN W, GEN phi, GEN C, GEN ap)
    3526             : {
    3527         154 :   long t, i, k = mspadic_get_weight(W);
    3528         154 :   long p = mspadic_get_p(W), n = mspadic_get_n(W);
    3529         154 :   GEN phi1 = gel(phi,1), phi2 = gel(phi,2);
    3530         154 :   GEN v, q = mspadic_get_q(W);
    3531         154 :   GEN act = mspadic_get_actUp(W);
    3532             : 
    3533         154 :   t = signe(ap)? Z_lval(ap,p) : k-1;
    3534         154 :   phi1 = concat2(phi1, zerovec(n));
    3535         154 :   phi2 = concat2(phi2, zerovec(n));
    3536        2107 :   for (i = 1; i <= n; i++)
    3537             :   {
    3538        1953 :     phi1 = dual_act(k-1, act, phi1);
    3539        1953 :     phi1 = dual_act(k-1, act, phi1);
    3540        1953 :     clean_tail(phi1, k + i*t, q);
    3541             : 
    3542        1953 :     phi2 = dual_act(k-1, act, phi2);
    3543        1953 :     phi2 = dual_act(k-1, act, phi2);
    3544        1953 :     clean_tail(phi2, k + i*t, q);
    3545             :   }
    3546         154 :   C = gpowgs(C,n);
    3547         154 :   v = RgM_RgC_mul(C, mkcol2(phi1,phi2));
    3548         154 :   phi1 = red_mod_FilM(gel(v,1), p, k, 1);
    3549         154 :   phi2 = red_mod_FilM(gel(v,2), p, k, 1);
    3550         154 :   return mkvec2(phi1,phi2);
    3551             : }
    3552             : 
    3553             : /* flag = 0 iff alpha is a p-unit */
    3554             : static GEN
    3555         322 : oms_dim1(GEN W, GEN phi, GEN alpha, long flag)
    3556             : {
    3557         322 :   long i, k = mspadic_get_weight(W);
    3558         322 :   long p = mspadic_get_p(W), n = mspadic_get_n(W);
    3559         322 :   GEN q = mspadic_get_q(W);
    3560         322 :   GEN act = mspadic_get_actUp(W);
    3561         322 :   phi = concat2(phi, zerovec(n));
    3562        3178 :   for (i = 1; i <= n; i++)
    3563             :   {
    3564        2856 :     phi = dual_act(k-1, act, phi);
    3565        2856 :     clean_tail(phi, k + i, q);
    3566             :   }
    3567         322 :   phi = gmul(lift_shallow(gpowgs(alpha,n)), phi);
    3568         322 :   phi = red_mod_FilM(phi, p, k, flag);
    3569         322 :   return mkvec(phi);
    3570             : }
    3571             : 
    3572             : /* lift polynomial P in RgX[X,Y]_{k-2} to a distribution \mu such that
    3573             :  * \int (Y - X z)^(k-2) d\mu(z) = P(X,Y)
    3574             :  * Return the t_VEC of k-1 first moments of \mu: \int z^i d\mu(z), 0<= i < k-1.
    3575             :  *   \sum_j (-1)^(k-2-j) binomial(k-2,j) Y^j \int z^(k-2-j) d\mu(z) = P(1,Y)
    3576             :  * Input is P(1,Y), bin = vecbinomial(k-2): bin[j] = binomial(k-2,j-1) */
    3577             : static GEN
    3578       38626 : RgX_to_moments(GEN P, GEN bin)
    3579             : {
    3580       38626 :   long j, k = lg(bin);
    3581             :   GEN Pd, Bd;
    3582       38626 :   if (typ(P) != t_POL) P = scalarpol(P,0);
    3583       38626 :   P = RgX_to_RgC(P, k-1); /* deg <= k-2 */
    3584       38626 :   settyp(P, t_VEC);
    3585       38626 :   Pd = P+1;  /* Pd[i] = coeff(P,i) */
    3586       38626 :   Bd = bin+1;/* Bd[i] = binomial(k-2,i) */
    3587       46249 :   for (j = 1; j < k-2; j++)
    3588             :   {
    3589        7623 :     GEN c = gel(Pd,j);
    3590        7623 :     if (odd(j)) c = gneg(c);
    3591        7623 :     gel(Pd,j) = gdiv(c, gel(Bd,j));
    3592             :   }
    3593       38626 :   return vecreverse(P);
    3594             : }
    3595             : static GEN
    3596         882 : RgXC_to_moments(GEN x, GEN bin)
    3597       39508 : { pari_APPLY_same(RgX_to_moments(gel(x,i), bin)); }
    3598             : 
    3599             : /* W an mspadic, assume O[2] is integral, den is the cancelled denominator
    3600             :  * or NULL, L = log(path)^* in sparse form */
    3601             : static GEN
    3602        2954 : omseval_int(struct m_act *S, GEN PHI, GEN L, hashtable *H)
    3603             : {
    3604             :   long i, l;
    3605        2954 :   GEN v = cgetg_copy(PHI, &l);
    3606        2954 :   ZGl2QC_to_act(S, L, H); /* as operators on V */
    3607        6286 :   for (i = 1; i < l; i++)
    3608             :   {
    3609        3332 :     GEN T = dense_act_col(L, gel(PHI,i));
    3610        3332 :     gel(v,i) = T? FpC_red(T,S->q): zerocol(S->dim);
    3611             :   }
    3612        2954 :   return v;
    3613             : }
    3614             : 
    3615             : GEN
    3616          14 : msomseval(GEN W, GEN phi, GEN path)
    3617             : {
    3618             :   struct m_act S;
    3619          14 :   pari_sp av = avma;
    3620             :   GEN v, Wp;
    3621             :   long n, vden;
    3622          14 :   checkmspadic(W);
    3623          14 :   if (typ(phi) != t_COL || lg(phi) != 4)  pari_err_TYPE("msomseval",phi);
    3624          14 :   vden = itos(gel(phi,2));
    3625          14 :   phi = gel(phi,1);
    3626          14 :   n = mspadic_get_n(W);
    3627          14 :   Wp= mspadic_get_Wp(W);
    3628          14 :   S.k = mspadic_get_weight(W);
    3629          14 :   S.p = mspadic_get_p(W);
    3630          14 :   S.q = powuu(S.p, n+vden);
    3631          14 :   S.dim = n + S.k - 1;
    3632          14 :   S.act = &moments_act;
    3633          14 :   path = path_to_M2(path);
    3634          14 :   v = omseval_int(&S, phi, M2_logf(Wp,path,NULL), NULL);
    3635          14 :   return gerepilecopy(av, v);
    3636             : }
    3637             : /* W = msinit(N,k,...); if flag < 0 or flag >= k-1, allow all symbols;
    3638             :  * else commit to v_p(a_p) <= flag (ordinary if flag = 0)*/
    3639             : GEN
    3640         490 : mspadicinit(GEN W, long p, long n, long flag)
    3641             : {
    3642         490 :   pari_sp av = avma;
    3643             :   long a, N, k;
    3644             :   GEN P, C, M, bin, Wp, Tp, q, pn, actUp, teich, pas;
    3645             : 
    3646         490 :   checkms(W);
    3647         490 :   N = ms_get_N(W);
    3648         490 :   k = msk_get_weight(W);
    3649         490 :   if (flag < 0) flag = 1; /* worst case */
    3650         357 :   else if (flag >= k) flag = k-1;
    3651             : 
    3652         490 :   bin = vecbinomial(k-2);
    3653         490 :   Tp = mshecke(W, p, NULL);
    3654         490 :   if (N % p == 0)
    3655             :   {
    3656          91 :     if ((N/p) % p == 0) pari_err_IMPL("mspadicinit when p^2 | N");
    3657             :     /* a_p != 0 */
    3658          84 :     Wp = W;
    3659          84 :     M = gen_0;
    3660          84 :     flag = (k-2) / 2; /* exact valuation */
    3661             :     /* will multiply by matrix with denominator p^(k-2)/2 in mspadicint.
    3662             :      * Except if p = 2 (multiply by alpha^2) */
    3663          84 :     if (p == 2) n += k-2; else n += (k-2)/2;
    3664          84 :     pn = powuu(p,n);
    3665             :     /* For accuracy mod p^n, oms_dim1 require p^(k/2*n) */
    3666          84 :     q = powiu(pn, k/2);
    3667             :   }
    3668             :   else
    3669             :   { /* p-stabilize */
    3670         399 :     long s = msk_get_sign(W);
    3671             :     GEN M1, M2;
    3672             : 
    3673         399 :     Wp = mskinit(N*p, k, s);
    3674         399 :     M1 = getMorphism(W, Wp, mkvec(mat2(1,0,0,1)));
    3675         399 :     M2 = getMorphism(W, Wp, mkvec(mat2(p,0,0,1)));
    3676         399 :     if (s)
    3677             :     {
    3678         147 :       GEN SW = msk_get_starproj(W), SWp = msk_get_starproj(Wp);
    3679         147 :       M1 = Qevproj_apply2(M1, SW, SWp);
    3680         147 :       M2 = Qevproj_apply2(M2, SW, SWp);
    3681             :     }
    3682         399 :     M = mkvec2(M1,M2);
    3683         399 :     n += Z_lval(Q_denom(M), p); /*den. introduced by p-stabilization*/
    3684             :     /* in supersingular case: will multiply by matrix with denominator p^k
    3685             :      * in mspadicint. Except if p = 2 (multiply by alpha^2) */
    3686         399 :     if (flag) { if (p == 2) n += 2*k-2; else n += k; }
    3687         399 :     pn = powuu(p,n);
    3688             :     /* For accuracy mod p^n, supersingular require p^((2k-1-v_p(a_p))*n) */
    3689         399 :     if (flag) /* k-1 also takes care of a_p = 0. Worst case v_p(a_p) = flag */
    3690         231 :       q = powiu(pn, 2*k-1 - flag);
    3691             :     else
    3692         168 :       q = pn;
    3693             :   }
    3694         483 :   actUp = init_moments_act(Wp, p, n, q, Up_matrices(p));
    3695             : 
    3696         483 :   if (p == 2) C = gen_0;
    3697             :   else
    3698             :   {
    3699         427 :     pas = matpascal(n);
    3700         427 :     teich = teichmullerinit(p, n+1);
    3701         427 :     P = gpowers(utoipos(p), n);
    3702         427 :     C = cgetg(p, t_VEC);
    3703        2317 :     for (a = 1; a < p; a++)
    3704             :     { /* powb[j+1] = ((a - w(a)) / p)^j mod p^n */
    3705        1890 :       GEN powb = Fp_powers(diviuexact(subui(a, gel(teich,a)), p), n, pn);
    3706        1890 :       GEN Ca = cgetg(n+2, t_VEC);
    3707        1890 :       long j, r, ai = Fl_inv(a, p); /* a^(-1) */
    3708        1890 :       gel(C,a) = Ca;
    3709       22134 :       for (j = 0; j <= n; j++)
    3710             :       {
    3711       20244 :         GEN Caj = cgetg(j+2, t_VEC);
    3712       20244 :         GEN atij = gel(teich, Fl_powu(ai,j,p));/* w(a)^(-j) = w(a^(-j) mod p) */
    3713       20244 :         gel(Ca,j+1) = Caj;
    3714      158200 :         for (r = 0; r <= j; r++)
    3715             :         {
    3716      137956 :           GEN c = Fp_mul(gcoeff(pas,j+1,r+1), gel(powb, j-r+1), pn);
    3717      137956 :           c = Fp_mul(c,atij,pn); /* binomial(j,r)*b^(j-r)*w(a)^(-j) mod p^n */
    3718      137956 :           gel(Caj,r+1) = mulii(c, gel(P,j+1)); /* p^j * c mod p^(n+j) */
    3719             :         }
    3720             :       }
    3721             :     }
    3722             :   }
    3723         483 :   return gerepilecopy(av, mkvecn(8, Wp,Tp, bin, actUp, q,
    3724             :                                  mkvecsmall3(p,n,flag), M, C));
    3725             : }
    3726             : 
    3727             : #if 0
    3728             : /* assume phi an ordinary OMS */
    3729             : static GEN
    3730             : omsactgl2(GEN W, GEN phi, GEN M)
    3731             : {
    3732             :   GEN q, Wp, act;
    3733             :   long p, k, n;
    3734             :   checkmspadic(W);
    3735             :   Wp = mspadic_get_Wp(W);
    3736             :   p = mspadic_get_p(W);
    3737             :   k = mspadic_get_weight(W);
    3738             :   n = mspadic_get_n(W);
    3739             :   q = mspadic_get_q(W);
    3740             :   act = init_moments_act(Wp, p, n, q, M);
    3741             :   phi = gel(phi,1);
    3742             :   return dual_act(k-1, act, gel(phi,1));
    3743             : }
    3744             : #endif
    3745             : 
    3746             : static GEN
    3747         483 : eigenvalue(GEN T, GEN x)
    3748             : {
    3749         483 :   long i, l = lg(x);
    3750         637 :   for (i = 1; i < l; i++)
    3751         637 :     if (!isintzero(gel(x,i))) break;
    3752         483 :   if (i == l) pari_err_DOMAIN("mstooms", "phi", "=", gen_0, x);
    3753         483 :   return gdiv(RgMrow_RgC_mul(T,x,i), gel(x,i));
    3754             : }
    3755             : 
    3756             : /* p coprime to ap, return unit root of x^2 - ap*x + p^(k-1), accuracy p^n */
    3757             : GEN
    3758         532 : mspadic_unit_eigenvalue(GEN ap, long k, GEN p, long n)
    3759             : {
    3760         532 :   GEN sqrtD, D = subii(sqri(ap), shifti(powiu(p,k-1),2));
    3761         532 :   if (absequaliu(p,2))
    3762             :   {
    3763          35 :     n++; sqrtD = Zp_sqrt(D, p, n);
    3764          35 :     if (mod4(sqrtD) != mod4(ap)) sqrtD = negi(sqrtD);
    3765             :   }
    3766             :   else
    3767         497 :     sqrtD = Zp_sqrtlift(D, ap, p, n);
    3768             :   /* sqrtD = ap (mod p) */
    3769         532 :   return gmul2n(gadd(ap, cvtop(sqrtD,p,n)), -1);
    3770             : }
    3771             : 
    3772             : /* W = msinit(N,k,...); phi = T_p/U_p - eigensymbol */
    3773             : GEN
    3774         483 : mstooms(GEN W, GEN phi)
    3775             : {
    3776         483 :   pari_sp av = avma;
    3777             :   GEN Wp, bin, Tp, c, alpha, ap, phi0, M;
    3778             :   long k, p, vden;
    3779             : 
    3780         483 :   checkmspadic(W);
    3781         483 :   if (typ(phi) != t_COL)
    3782             :   {
    3783         161 :     if (!is_Qevproj(phi)) pari_err_TYPE("mstooms",phi);
    3784         161 :     phi = gel(phi,1);
    3785         161 :     if (lg(phi) != 2) pari_err_TYPE("mstooms [dim_Q (eigenspace) > 1]",phi);
    3786         161 :     phi = gel(phi,1);
    3787             :   }
    3788             : 
    3789         483 :   Wp = mspadic_get_Wp(W);
    3790         483 :   Tp = mspadic_get_Tp(W);
    3791         483 :   bin = mspadic_get_bin(W);
    3792         483 :   k = msk_get_weight(Wp);
    3793         483 :   p = mspadic_get_p(W);
    3794         483 :   M = mspadic_get_M(W);
    3795             : 
    3796         483 :   phi = Q_remove_denom(phi, &c);
    3797         483 :   ap = eigenvalue(Tp, phi);
    3798         483 :   vden = c? Z_lvalrem(c, p, &c): 0;
    3799             : 
    3800         483 :   if (typ(M) == t_INT)
    3801             :   { /* p | N */
    3802             :     GEN c1;
    3803          84 :     alpha = ap;
    3804          84 :     alpha = ginv(alpha);
    3805          84 :     phi0 = mseval(Wp, phi, NULL);
    3806          84 :     phi0 = RgXC_to_moments(phi0, bin);
    3807          84 :     phi0 = Q_remove_denom(phi0, &c1);
    3808          84 :     if (c1) { vden += Z_lvalrem(c1, p, &c1); c = mul_denom(c,c1); }
    3809          84 :     if (umodiu(ap,p)) /* p \nmid a_p */
    3810          49 :       phi = oms_dim1(W, phi0, alpha, 0);
    3811             :     else
    3812             :     {
    3813          35 :       phi = oms_dim1(W, phi0, alpha, 1);
    3814          35 :       phi = Q_remove_denom(phi, &c1);
    3815          35 :       if (c1) { vden += Z_lvalrem(c1, p, &c1); c = mul_denom(c,c1); }
    3816             :     }
    3817             :   }
    3818             :   else
    3819             :   { /* p-stabilize */
    3820             :     GEN M1, M2, phi1, phi2, c1;
    3821         399 :     if (typ(M) != t_VEC || lg(M) != 3) pari_err_TYPE("mstooms",W);
    3822         399 :     M1 = gel(M,1);
    3823         399 :     M2 = gel(M,2);
    3824             : 
    3825         399 :     phi1 = RgM_RgC_mul(M1, phi);
    3826         399 :     phi2 = RgM_RgC_mul(M2, phi);
    3827         399 :     phi1 = mseval(Wp, phi1, NULL);
    3828         399 :     phi2 = mseval(Wp, phi2, NULL);
    3829             : 
    3830         399 :     phi1 = RgXC_to_moments(phi1, bin);
    3831         399 :     phi2 = RgXC_to_moments(phi2, bin);
    3832         399 :     phi = Q_remove_denom(mkvec2(phi1,phi2), &c1);
    3833         399 :     phi1 = gel(phi,1);
    3834         399 :     phi2 = gel(phi,2);
    3835         399 :     if (c1) { vden += Z_lvalrem(c1, p, &c1); c = mul_denom(c,c1); }
    3836             :     /* all polynomials multiplied by c p^vden */
    3837         399 :     if (umodiu(ap, p))
    3838             :     {
    3839         238 :       alpha = mspadic_unit_eigenvalue(ap, k, utoipos(p), mspadic_get_n(W));
    3840         238 :       alpha = ginv(alpha);
    3841         238 :       phi0 = gsub(phi1, gmul(lift_shallow(alpha),phi2));
    3842         238 :       phi = oms_dim1(W, phi0, alpha, 0);
    3843             :     }
    3844             :     else
    3845             :     { /* p | ap, alpha = [a_p, -1; p^(k-1), 0] */
    3846         161 :       long flag = mspadic_get_flag(W);
    3847         161 :       if (!flag || (signe(ap) && Z_lval(ap,p) < flag))
    3848           7 :         pari_err_TYPE("mstooms [v_p(ap) > mspadicinit flag]", phi);
    3849         154 :       alpha = mkmat22(ap,gen_m1, powuu(p, k-1),gen_0);
    3850         154 :       alpha = ginv(alpha);
    3851         154 :       phi = oms_dim2(W, mkvec2(phi1,phi2), gsqr(alpha), ap);
    3852         154 :       phi = Q_remove_denom(phi, &c1);
    3853         154 :       if (c1) { vden += Z_lvalrem(c1, p, &c1); c = mul_denom(c,c1); }
    3854             :     }
    3855             :   }
    3856         476 :   if (vden) c = mul_denom(c, powuu(p,vden));
    3857         476 :   if (p == 2) alpha = gsqr(alpha);
    3858         476 :   if (c) alpha = gdiv(alpha,c);
    3859         476 :   if (typ(alpha) == t_MAT)
    3860             :   { /* express in basis (omega,-p phi(omega)) */
    3861         154 :     gcoeff(alpha,2,1) = gdivgs(gcoeff(alpha,2,1), -p);
    3862         154 :     gcoeff(alpha,2,2) = gdivgs(gcoeff(alpha,2,2), -p);
    3863             :     /* at the end of mspadicint we shall multiply result by [1,0;0,-1/p]*alpha
    3864             :      * vden + k is the denominator of this matrix */
    3865             :   }
    3866             :   /* phi is integral-valued */
    3867         476 :   return gerepilecopy(av, mkcol3(phi, stoi(vden), alpha));
    3868             : }
    3869             : 
    3870             : /* HACK: the v[j] have different lengths */
    3871             : static GEN
    3872        2156 : FpVV_dotproduct(GEN v, GEN w, GEN p)
    3873             : {
    3874        2156 :   long j, l = lg(v);
    3875        2156 :   GEN T = cgetg(l, t_VEC);
    3876       26026 :   for (j = 1; j < l; j++) gel(T,j) = FpV_dotproduct(gel(v,j),w,p);
    3877        2156 :   return T;
    3878             : }
    3879             : 
    3880             : /* 4^(i-1) x */
    3881             : static GEN
    3882        3822 : _4i(GEN x, long i)
    3883             : {
    3884        3822 :   if (i > 1) x = gmul2n(x, (i-1)<<1);
    3885        3822 :   return x;
    3886             : }
    3887             : /* (-1)^i 4^(i-1) x */
    3888             : static GEN
    3889        1911 : _m4i(GEN x, long i)
    3890        1911 : { x = _4i(x, i); return odd(i)? x: gneg(x); }
    3891             : /* \int (-4z)^j given \int z^j */
    3892             : static GEN
    3893          98 : twistmoment_m4(GEN x)
    3894        2009 : { pari_APPLY_same(_m4i(gel(x,i), i)); }
    3895             : /* \int (4z)^j given \int z^j */
    3896             : static GEN
    3897          98 : twistmoment_4(GEN x)
    3898        2009 : { pari_APPLY_same(_4i(gel(x,i), i)); }
    3899             : 
    3900             : /* W an mspadic, phi eigensymbol, p \nmid D. Return C(x) mod FilM */
    3901             : GEN
    3902         483 : mspadicmoments(GEN W, GEN PHI, long D)
    3903             : {
    3904         483 :   pari_sp av = avma;
    3905         483 :   long na, ia, b, lphi, aD = labs(D), pp, p, k, n, vden;
    3906             :   GEN Wp, Dact, vL, v, C, pn, phi;
    3907             :   struct m_act S;
    3908             :   hashtable *H;
    3909             : 
    3910         483 :   checkmspadic(W);
    3911         483 :   Wp = mspadic_get_Wp(W);
    3912         483 :   p = mspadic_get_p(W);
    3913         483 :   k = mspadic_get_weight(W);
    3914         483 :   n = mspadic_get_n(W);
    3915         483 :   C = mspadic_get_C(W);
    3916         483 :   if (typ(PHI) != t_COL || lg(PHI) != 4 || typ(gel(PHI,1)) != t_VEC)
    3917         476 :     PHI = mstooms(W, PHI);
    3918         476 :   vden = itos( gel(PHI,2) );
    3919         476 :   phi = gel(PHI,1); lphi = lg(phi);
    3920         476 :   if (p == 2) { na = 2; pp = 4; }
    3921         420 :   else        { na = p-1; pp = p; }
    3922         476 :   pn = powuu(p, n + vden);
    3923             : 
    3924         476 :   S.p = p;
    3925         476 :   S.k = k;
    3926         476 :   S.q = pn;
    3927         476 :   S.dim = n+k-1;
    3928         476 :   S.act = &moments_act;
    3929         476 :   H = Gl2act_cache(ms_get_nbgen(Wp));
    3930         476 :   if (D == 1) Dact = NULL;
    3931             :   else
    3932             :   {
    3933          63 :     GEN gaD = utoi(aD), Dk = Fp_pows(stoi(D), 2-k, pn);
    3934          63 :     if (!sisfundamental(D)) pari_err_TYPE("mspadicmoments", stoi(D));
    3935          63 :     if (D % p == 0) pari_err_DOMAIN("mspadicmoments","p","|", stoi(D), utoi(p));
    3936          63 :     Dact = cgetg(aD, t_VEC);
    3937         532 :     for (b = 1; b < aD; b++)
    3938             :     {
    3939         469 :       GEN z = NULL;
    3940         469 :       long s = kross(D, b);
    3941         469 :       if (s)
    3942             :       {
    3943         462 :         pari_sp av2 = avma;
    3944             :         GEN d;
    3945         462 :         z = moments_act_i(&S, mkmat22(gaD,utoipos(b), gen_0,gaD));
    3946         462 :         d = s > 0? Dk: Fp_neg(Dk, pn);
    3947         924 :         z = equali1(d)? gerepilecopy(av2, z)
    3948         462 :                       : gerepileupto(av2, FpM_Fp_mul(z, d, pn));
    3949             :       }
    3950         469 :       gel(Dact,b) = z;
    3951             :     }
    3952             :   }
    3953         476 :   vL = cgetg(na+1,t_VEC);
    3954             :   /* first pass to precompute log(paths), preload matrices and allow GC later */
    3955        2464 :   for (ia = 1; ia <= na; ia++)
    3956             :   {
    3957             :     GEN path, La;
    3958        1988 :     long a = (p == 2 && ia == 2)? -1: ia;
    3959        1988 :     if (Dact)
    3960             :     { /* twist by D */
    3961         224 :       La = cgetg(aD, t_VEC);
    3962        1442 :       for (b = 1; b < aD; b++)
    3963             :       {
    3964        1218 :         GEN Actb = gel(Dact,b);
    3965        1218 :         if (!Actb) continue;
    3966             :         /* oo -> a/pp + b/|D|*/
    3967        1176 :         path = mkmat22(gen_1, addii(mulss(a, aD), muluu(pp, b)),
    3968             :                        gen_0, muluu(pp, aD));
    3969        1176 :         gel(La,b) = M2_logf(Wp,path,NULL);
    3970        1176 :         ZGl2QC_preload(&S, gel(La,b), H);
    3971             :       }
    3972             :     }
    3973             :     else
    3974             :     {
    3975        1764 :       path = mkmat22(gen_1,stoi(a), gen_0, utoipos(pp));
    3976        1764 :       La = M2_logf(Wp,path,NULL);
    3977        1764 :       ZGl2QC_preload(&S, La, H);
    3978             :     }
    3979        1988 :     gel(vL,ia) = La;
    3980             :   }
    3981         476 :   v = cgetg(na+1,t_VEC);
    3982             :   /* second pass, with GC */
    3983        2464 :   for (ia = 1; ia <= na; ia++)
    3984             :   {
    3985        1988 :     pari_sp av2 = avma;
    3986        1988 :     GEN vca, Ca = gel(C,ia), La = gel(vL,ia), va = cgetg(lphi, t_VEC);
    3987             :     long i;
    3988        1988 :     if (!Dact) vca = omseval_int(&S, phi, La, H);
    3989             :     else
    3990             :     { /* twist by D */
    3991         224 :       vca = cgetg(lphi,t_VEC);
    3992        1442 :       for (b = 1; b < aD; b++)
    3993             :       {
    3994        1218 :         GEN T, Actb = gel(Dact,b);
    3995        1218 :         if (!Actb) continue;
    3996        1176 :         T = omseval_int(&S, phi, gel(La,b), H);
    3997        2352 :         for (i = 1; i < lphi; i++)
    3998             :         {
    3999        1176 :           GEN z = FpM_FpC_mul(Actb, gel(T,i), pn);
    4000        1176 :           gel(vca,i) = b==1? z: ZC_add(gel(vca,i), z);
    4001             :         }
    4002             :       }
    4003             :     }
    4004        1988 :     if (p != 2)
    4005        4032 :     { for (i=1; i<lphi; i++) gel(va,i) = FpVV_dotproduct(Ca,gel(vca,i),pn); }
    4006         112 :     else if (ia == 1) /* \tilde{a} = 1 */
    4007         154 :     { for (i=1; i<lphi; i++) gel(va,i) = twistmoment_4(gel(vca,i)); }
    4008             :     else /* \tilde{a} = -1 */
    4009         154 :     { for (i=1; i<lphi; i++) gel(va,i) = twistmoment_m4(gel(vca,i)); }
    4010        1988 :     gel(v,ia) = gerepilecopy(av2, va);
    4011             :   }
    4012         476 :   return gerepilecopy(av, mkvec3(v, gel(PHI,3), mkvecsmall4(p,n+vden,n,D)));
    4013             : }
    4014             : static void
    4015        1918 : checkoms(GEN v)
    4016             : {
    4017        1918 :   if (typ(v) != t_VEC || lg(v) != 4 || typ(gel(v,1)) != t_VEC
    4018        1918 :       || typ(gel(v,3))!=t_VECSMALL)
    4019           0 :     pari_err_TYPE("checkoms [apply mspadicmoments]", v);
    4020        1918 : }
    4021             : static long
    4022        4284 : oms_get_p(GEN oms) { return gel(oms,3)[1]; }
    4023             : static long
    4024        4186 : oms_get_n(GEN oms) { return gel(oms,3)[2]; }
    4025             : static long
    4026        2464 : oms_get_n0(GEN oms) { return gel(oms,3)[3]; }
    4027             : static long
    4028        1918 : oms_get_D(GEN oms) { return gel(oms,3)[4]; }
    4029             : static int
    4030          98 : oms_is_supersingular(GEN oms) { GEN v = gel(oms,1); return lg(gel(v,1)) == 3; }
    4031             : 
    4032             : /* sum(j = 1, n, (-1)^(j+1)/j * x^j) */
    4033             : static GEN
    4034         784 : log1x(long n)
    4035             : {
    4036         784 :   long i, l = n+3;
    4037         784 :   GEN v = cgetg(l, t_POL);
    4038         784 :   v[1] = evalvarn(0)|evalsigne(1); gel(v,2) = gen_0;
    4039        8904 :   for (i = 3; i < l; i++)
    4040        8120 :     gel(v,i) = mkfrac(odd(i)? gen_1: gen_m1, utoipos(i-2));
    4041         784 :   return v;
    4042             : }
    4043             : 
    4044             : /* S = (1+x)^zk log(1+x)^logj (mod x^(n+1)) */
    4045             : static GEN
    4046        1820 : xlog1x(long n, long zk, long logj, long *pteich)
    4047             : {
    4048        1820 :   GEN S = logj? RgXn_powu_i(log1x(n), logj, n+1): NULL;
    4049        1820 :   if (zk)
    4050             :   {
    4051        1183 :     GEN L = deg1pol_shallow(gen_1, gen_1, 0); /* x+1 */
    4052        1183 :     *pteich += zk;
    4053        1183 :     if (zk < 0) { L = RgXn_inv(L,n+1); zk = -zk; }
    4054        1183 :     if (zk != 1) L = RgXn_powu_i(L, zk, n+1);
    4055        1183 :     S = S? RgXn_mul(S, L, n+1): L;
    4056             :   }
    4057        1820 :   return S;
    4058             : }
    4059             : 
    4060             : /* oms from mspadicmoments; integrate teichmuller^i * S(x) [S = NULL: 1]*/
    4061             : static GEN
    4062        2366 : mspadicint(GEN oms, long teichi, GEN S)
    4063             : {
    4064        2366 :   pari_sp av = avma;
    4065        2366 :   long p = oms_get_p(oms), n = oms_get_n(oms), n0 = oms_get_n0(oms);
    4066        2366 :   GEN vT = gel(oms,1), alpha = gel(oms,2), gp = utoipos(p);
    4067        2366 :   long loss = S? Z_lval(Q_denom(S), p): 0;
    4068        2366 :   long nfinal = minss(n-loss, n0);
    4069        2366 :   long i, la, l = lg(gel(vT,1));
    4070        2366 :   GEN res = cgetg(l, t_COL), teich = NULL;
    4071             : 
    4072        2366 :   if (S) S = RgX_to_RgC(S,lg(gmael(vT,1,1))-1);
    4073        2366 :   if (p == 2)
    4074             :   {
    4075         448 :     la = 3; /* corresponds to [1,-1] */
    4076         448 :     teichi &= 1;
    4077             :   }
    4078             :   else
    4079             :   {
    4080        1918 :     la = p; /* corresponds to [1,2,...,p-1] */
    4081        1918 :     teichi = umodsu(teichi, p-1);
    4082        1918 :     if (teichi) teich = teichmullerinit(p, n);
    4083             :   }
    4084        5446 :   for (i=1; i<l; i++)
    4085             :   {
    4086        3080 :     pari_sp av2 = avma;
    4087        3080 :     GEN s = gen_0;
    4088             :     long ia;
    4089       14756 :     for (ia = 1; ia < la; ia++)
    4090             :     { /* Ta[j+1] correct mod p^n */
    4091       11676 :       GEN Ta = gmael(vT,ia,i), v = S? RgV_dotproduct(Ta, S): gel(Ta,1);
    4092       11676 :       if (teichi && ia != 1)
    4093             :       {
    4094        3843 :         if (p != 2)
    4095        3626 :           v = gmul(v, gel(teich, Fl_powu(ia,teichi,p)));
    4096             :         else
    4097         217 :           if (teichi) v = gneg(v);
    4098             :       }
    4099       11676 :       s = gadd(s, v);
    4100             :     }
    4101        3080 :     s = gadd(s, zeropadic_shallow(gp,nfinal));
    4102        3080 :     gel(res,i) = gerepileupto(av2, s);
    4103             :   }
    4104        2366 :   return gerepileupto(av, gmul(alpha, res));
    4105             : }
    4106             : /* integrate P = polynomial in log(x); vlog[j+1] = mspadicint(0,log(1+x)^j) */
    4107             : static GEN
    4108         539 : mspadicint_RgXlog(GEN P, GEN vlog)
    4109             : {
    4110         539 :   long i, d = degpol(P);
    4111         539 :   GEN s = gmul(gel(P,2), gel(vlog,1));
    4112        1848 :   for (i = 1; i <= d; i++) s = gadd(s, gmul(gel(P,i+2), gel(vlog,i+1)));
    4113         539 :   return s;
    4114             : };
    4115             : 
    4116             : /* oms from mspadicmoments */
    4117             : GEN
    4118          98 : mspadicseries(GEN oms, long teichi)
    4119             : {
    4120          98 :   pari_sp av = avma;
    4121             :   GEN S, L, X, vlog, s, s2, u, logu, bin;
    4122             :   long j, p, m, n, step, stop;
    4123          98 :   checkoms(oms);
    4124          98 :   n = oms_get_n0(oms);
    4125          98 :   if (n < 1)
    4126             :   {
    4127           0 :     s = zeroser(0,0);
    4128           0 :     if (oms_is_supersingular(oms)) s = mkvec2(s,s);
    4129           0 :     return gerepilecopy(av, s);
    4130             :   }
    4131          98 :   p = oms_get_p(oms);
    4132          98 :   vlog = cgetg(n+1, t_VEC);
    4133          98 :   step = p == 2? 2: 1;
    4134          98 :   stop = 0;
    4135          98 :   S = NULL;
    4136          98 :   L = log1x(n);
    4137         644 :   for (j = 0; j < n; j++)
    4138             :   {
    4139         616 :     if (j) stop += step + u_lval(j,p); /* = step*j + v_p(j!) */
    4140         616 :     if (stop >= n) break;
    4141             :     /* S = log(1+x)^j */
    4142         546 :     gel(vlog,j+1) = mspadicint(oms,teichi,S);
    4143         546 :     S = S? RgXn_mul(S, L, n+1): L;
    4144             :   }
    4145          98 :   m = j;
    4146          98 :   u = utoipos(p == 2? 5: 1+p);
    4147          98 :   logu = glog(cvtop(u, utoipos(p), 4*m), 0);
    4148          98 :   X = gdiv(pol_x(0), logu);
    4149          98 :   s = cgetg(m+1, t_VEC);
    4150          98 :   s2 = oms_is_supersingular(oms)? cgetg(m+1, t_VEC): NULL;
    4151          98 :   bin = pol_1(0);
    4152         539 :   for (j = 0; j < m; j++)
    4153             :   { /* bin = binomial(x/log(1+p+O(p^(4*n))), j) mod x^m */
    4154         539 :     GEN a, v = mspadicint_RgXlog(bin, vlog);
    4155         539 :     int done = 1;
    4156         539 :     gel(s,j+1) = a = gel(v,1);
    4157         539 :     if (!gequal0(a) || valp(a) > 0) done = 0; else setlg(s,j+1);
    4158         539 :     if (s2)
    4159             :     {
    4160         119 :       gel(s2,j+1) = a = gel(v,2);
    4161         119 :       if (!gequal0(a) || valp(a) > 0) done = 0; else setlg(s2,j+1);
    4162             :     }
    4163         539 :     if (done || j == m-1) break;
    4164         441 :     bin = RgXn_mul(bin, gdivgu(gsubgs(X, j), j+1), m);
    4165             :   }
    4166          98 :   s = RgV_to_ser(s,0,lg(s)+1);
    4167          98 :   if (s2) { s2 = RgV_to_ser(s2,0,lg(s2)+1); s = mkvec2(s, s2); }
    4168          98 :   if (kross(oms_get_D(oms), p) >= 0) return gerepilecopy(av, s);
    4169           7 :   return gerepileupto(av, gneg(s));
    4170             : }
    4171             : void
    4172        1911 : mspadic_parse_chi(GEN s, GEN *s1, GEN *s2)
    4173             : {
    4174        1911 :   if (!s) *s1 = *s2 = gen_0;
    4175        1778 :   else switch(typ(s))
    4176             :   {
    4177        1274 :     case t_INT: *s1 = *s2 = s; break;
    4178         504 :     case t_VEC:
    4179         504 :       if (lg(s) == 3)
    4180             :       {
    4181         504 :         *s1 = gel(s,1);
    4182         504 :         *s2 = gel(s,2);
    4183         504 :         if (typ(*s1) == t_INT && typ(*s2) == t_INT) break;
    4184             :       }
    4185           0 :     default: pari_err_TYPE("mspadicL",s);
    4186           0 :              *s1 = *s2 = NULL;
    4187             :   }
    4188        1911 : }
    4189             : /* oms from mspadicmoments
    4190             :  * r-th derivative of L(f,chi^s,psi) in direction <chi>
    4191             :    - s \in Z_p \times \Z/(p-1)\Z, s-> chi^s=<\chi>^s_1 omega^s_2)
    4192             :    - Z -> Z_p \times \Z/(p-1)\Z par s-> (s, s mod p-1).
    4193             :  */
    4194             : GEN
    4195        1820 : mspadicL(GEN oms, GEN s, long r)
    4196             : {
    4197        1820 :   pari_sp av = avma;
    4198             :   GEN s1, s2, z, S;
    4199             :   long p, n, teich;
    4200        1820 :   checkoms(oms);
    4201        1820 :   p = oms_get_p(oms);
    4202        1820 :   n = oms_get_n(oms);
    4203        1820 :   mspadic_parse_chi(s, &s1,&s2);
    4204        1820 :   teich = umodiu(subii(s2,s1), p==2? 2: p-1);
    4205        1820 :   S = xlog1x(n, itos(s1), r, &teich);
    4206        1820 :   z = mspadicint(oms, teich, S);
    4207        1820 :   if (lg(z) == 2) z = gel(z,1);
    4208        1820 :   if (kross(oms_get_D(oms), p) < 0) z = gneg(z);
    4209        1820 :   return gerepilecopy(av, z);
    4210             : }
    4211             : 
    4212             : /****************************************************************************/
    4213             : 
    4214             : struct siegel
    4215             : {
    4216             :   GEN V, Ast;
    4217             :   long N; /* level */
    4218             :   long oo; /* index of the [oo,0] path */
    4219             :   long k1, k2; /* two distinguished indices */
    4220             :   long n; /* #W, W = initial segment [in siegelstepC] already normalized */
    4221             : };
    4222             : 
    4223             : static void
    4224        2527 : siegel_init(struct siegel *C, GEN M)
    4225             : {
    4226             :   GEN CPI, CP, MM, V, W, Ast;
    4227        2527 :   GEN m = gel(M,11), M2 = gel(M,2), S = msN_get_section(M);
    4228        2527 :   GEN E2fromE1 = msN_get_E2fromE1(M);
    4229        2527 :   long m0 = lg(M2)-1;
    4230        2527 :   GEN E2  = vecslice(M2, m[1]+1, m[2]);/* E2 */
    4231        2527 :   GEN E1T = vecslice(M2, m[3]+1, m0); /* E1,T2,T31 */
    4232        2527 :   GEN L = shallowconcat(E1T, E2);
    4233        2527 :   long i, l = lg(L), n = lg(E1T)-1, lE = lg(E2);
    4234             : 
    4235        2527 :   Ast = cgetg(l, t_VECSMALL);
    4236       45479 :   for (i = 1; i < lE; ++i)
    4237             :   {
    4238       42952 :     long j = E2fromE1_c(gel(E2fromE1,i));
    4239       42952 :     Ast[n+i] = j;
    4240       42952 :     Ast[j] = n+i;
    4241             :   }
    4242        4053 :   for (; i<=n; ++i) Ast[i] = i;
    4243        2527 :   MM = cgetg (l,t_VEC);
    4244             : 
    4245       89957 :   for (i = 1; i < l; i++)
    4246             :   {
    4247       87430 :     GEN c = gel(S, L[i]);
    4248       87430 :     long c12, c22, c21 = ucoeff(c,2,1);
    4249       87430 :     if (!c21) { gel(MM,i) = gen_0; continue; }
    4250       84903 :     c22 = ucoeff(c,2,2);
    4251       84903 :     if (!c22) { gel(MM,i) = gen_m1; continue; }
    4252       82376 :     c12 = ucoeff(c,1,2);
    4253       82376 :     gel(MM,i) = sstoQ(c12, c22); /* right extremity > 0 */
    4254             :   }
    4255        2527 :   CP = indexsort(MM);
    4256        2527 :   CPI = cgetg(l, t_VECSMALL);
    4257        2527 :   V = cgetg(l, t_VEC);
    4258        2527 :   W = cgetg(l, t_VECSMALL);
    4259       89957 :   for (i = 1; i < l; ++i)
    4260             :   {
    4261       87430 :     gel(V,i) = mat2_to_ZM(gel(S, L[CP[i]]));
    4262       87430 :     CPI[CP[i]] = i;
    4263             :   }
    4264       89957 :   for (i = 1; i < l; ++i) W[CPI[i]] = CPI[Ast[i]];
    4265        2527 :   C->V = V;
    4266        2527 :   C->Ast = W;
    4267        2527 :   C->n = 0;
    4268        2527 :   C->oo = 2;
    4269        2527 :   C->N = ms_get_N(M);
    4270        2527 : }
    4271             : 
    4272             : static double
    4273           0 : ZMV_size(GEN v)
    4274             : {
    4275           0 :   long i, l = lg(v);
    4276           0 :   GEN z = cgetg(l, t_VECSMALL);
    4277           0 :   for (i = 1; i < l; i++) z[i] = gexpo(gel(v,i));
    4278           0 :   return ((double)zv_sum(z)) / (4*(l-1));
    4279             : }
    4280             : 
    4281             : /* apply permutation perm to struct S. Don't follow k1,k2 */
    4282             : static void
    4283        5558 : siegel_perm0(struct siegel *S, GEN perm)
    4284             : {
    4285        5558 :   pari_sp av = avma;
    4286        5558 :   long i, l = lg(S->V);
    4287        5558 :   GEN V2 = cgetg(l, t_VEC), Ast2 = cgetg(l, t_VECSMALL);
    4288        5558 :   GEN V = S->V, Ast = S->Ast;
    4289             : 
    4290      267078 :   for (i = 1; i < l; i++) gel(V2,perm[i]) = gel(V,i);
    4291      267078 :   for (i = 1; i < l; i++) Ast2[perm[i]] = perm[Ast[i]];
    4292      267078 :   for (i = 1; i < l; i++) { S->Ast[i] = Ast2[i]; gel(V,i) = gel(V2,i); }
    4293        5558 :   set_avma(av); S->oo = perm[S->oo];
    4294        5558 : }
    4295             : /* apply permutation perm to full struct S */
    4296             : static void
    4297        5194 : siegel_perm(struct siegel *S, GEN perm)
    4298             : {
    4299        5194 :   siegel_perm0(S, perm);
    4300        5194 :   S->k1 = perm[S->k1];
    4301        5194 :   S->k2 = perm[S->k2];
    4302        5194 : }
    4303             : /* cyclic permutation of lg = l-1 moving a -> 1, a+1 -> 2, etc.  */
    4304             : static GEN
    4305        2884 : rotate_perm(long l, long a)
    4306             : {
    4307        2884 :   GEN p = cgetg(l, t_VECSMALL);
    4308        2884 :   long i, j = 1;
    4309       86905 :   for (i = a; i < l; i++) p[i] = j++;
    4310       49329 :   for (i = 1; i < a; i++) p[i] = j++;
    4311        2884 :   return p;
    4312             : }
    4313             : 
    4314             : /* a1 < c1 <= a2 < c2*/
    4315             : static GEN
    4316        2520 : basic_op_perm(long l, long a1, long a2, long c1, long c2)
    4317             : {
    4318        2520 :   GEN p = cgetg(l, t_VECSMALL);
    4319        2520 :   long i, j = 1;
    4320        2520 :   p[a1] = j++;
    4321       22568 :   for (i = c1; i < a2; i++)   p[i] = j++;
    4322       32284 :   for (i = a1+1; i < c1; i++) p[i] = j++;
    4323        2520 :   p[a2] = j++;
    4324       44891 :   for (i = c2; i < l; i++)    p[i] = j++;
    4325        2520 :   for (i = 1; i < a1; i++)    p[i] = j++;
    4326       29855 :   for (i = a2+1; i < c2; i++) p[i] = j++;
    4327        2520 :   return p;
    4328             : }
    4329             : static GEN
    4330         154 : basic_op_perm_elliptic(long l, long a1)
    4331             : {
    4332         154 :   GEN p = cgetg(l, t_VECSMALL);
    4333         154 :   long i, j = 1;
    4334         154 :   p[a1] = j++;
    4335        2660 :   for (i = 1; i < a1; i++)   p[i] = j++;
    4336        3990 :   for (i = a1+1; i < l; i++) p[i] = j++;
    4337         154 :   return p;
    4338             : }
    4339             : static GEN
    4340       90104 : ZM2_rev(GEN T) { return mkmat2(gel(T,2), ZC_neg(gel(T,1))); }
    4341             : 
    4342             : /* In place, V = vector of consecutive paths, between x <= y.
    4343             :  * V[x..y-1] <- g*V[x..y-1] */
    4344             : static void
    4345        5733 : path_vec_mul(GEN V, long x, long y, GEN g)
    4346             : {
    4347             :   long j;
    4348             :   GEN M;
    4349        5733 :   if (x == y) return;
    4350        3360 :   M = gel(V,x); gel(V,x) = ZM_mul(g,M);
    4351       37709 :   for (j = x+1; j < y; j++) /* V[j] <- g*V[j], optimized */
    4352             :   {
    4353       34349 :     GEN Mnext = gel(V,j); /* Mnext[,1] = M[,2] */
    4354       34349 :     GEN gM = gel(V,j-1), u = gel(gM,2);
    4355       34349 :     if (!ZV_equal(gel(M,2), gel(Mnext,1))) u = ZC_neg(u);
    4356       34349 :     gel(V,j) = mkmat2(u, ZM_ZC_mul(g,gel(Mnext,2)));
    4357       34349 :     M = Mnext;
    4358             :   }
    4359             : }
    4360             : 
    4361        4830 : static long prev(GEN V, long i) { return (i == 1)? lg(V)-1: i-1; }
    4362        4830 : static long next(GEN V, long i) { return (i == lg(V)-1)? 1: i+1; }
    4363             : static GEN
    4364       95298 : ZM_det2(GEN u, GEN v)
    4365             : {
    4366       95298 :   GEN a = gel(u,1), c = gel(u,2);
    4367       95298 :   GEN b = gel(v,1), d = gel(v,2); return subii(mulii(a,d), mulii(b,c));
    4368             : }
    4369             : static GEN
    4370       90104 : ZM2_det(GEN T) { return ZM_det2(gel(T,1),gel(T,2)); }
    4371             : static long
    4372        5194 : ZM_det2_sign(GEN u, GEN v)
    4373             : {
    4374        5194 :   pari_sp av = avma;
    4375        5194 :   long s = signe(ZM_det2(u, v));
    4376        5194 :   return gc_long(av, s);
    4377             : }
    4378             : static void
    4379        4466 : fill1(GEN V, long a)
    4380             : {
    4381        4466 :   long p = prev(V,a), n = next(V,a);
    4382        4466 :   GEN u = gmael(V,p,2), v = gmael(V,n,1);
    4383        4466 :   if (ZM_det2_sign(u,v) < 0) v = ZC_neg(v);
    4384        4466 :   gel(V,a) = mkmat2(u, v);
    4385        4466 : }
    4386             : /* a1 < a2 */
    4387             : static void
    4388        2520 : fill2(GEN V, long a1, long a2)
    4389             : {
    4390        2520 :   if (a2 != a1+1) { fill1(V,a1); fill1(V,a2); } /* non adjacent, reconnect */
    4391             :   else
    4392             :   { /* parabolic */
    4393         364 :     long p = prev(V,a1), n = next(V,a2);
    4394         364 :     GEN u, v, C = gmael(V,a1,2), mC = NULL; /* = \pm V[a2][1] */
    4395         364 :     u = gmael(V,p,2); v = C;
    4396         364 :     if (ZM_det2_sign(u,v) < 0) v = mC = ZC_neg(C);
    4397         364 :     gel(V,a1) = mkmat2(u,v);
    4398         364 :     v = gmael(V,n,1); u = C;
    4399         364 :     if (ZM_det2_sign(u,v) < 0) u = mC? mC: ZC_neg(C);
    4400         364 :     gel(V,a2) = mkmat2(u,v);
    4401             :   }
    4402        2520 : }
    4403             : 
    4404             : /* DU = det(U), return g = T*U^(-1) or NULL if not in Gamma0(N); if N = 0,
    4405             :  * only test whether g is integral */
    4406             : static GEN
    4407       90979 : ZM2_div(GEN T, GEN U, GEN DU, long N)
    4408             : {
    4409       90979 :   GEN a=gcoeff(U,1,1), b=gcoeff(U,1,2), c=gcoeff(U,2,1), d=gcoeff(U,2,2);
    4410       90979 :   GEN e=gcoeff(T,1,1), f=gcoeff(T,1,2), g=gcoeff(T,2,1), h=gcoeff(T,2,2);
    4411             :   GEN A, B, C, D, r;
    4412             : 
    4413       90979 :   C = dvmdii(subii(mulii(d,g), mulii(c,h)), DU, &r);
    4414       90979 :   if (r != gen_0 || (N && smodis(C,N))) return NULL;
    4415       90104 :   A = dvmdii(subii(mulii(d,e), mulii(c,f)), DU, &r);
    4416       90104 :   if (r != gen_0) return NULL;
    4417       90104 :   B = dvmdii(subii(mulii(a,f), mulii(b,e)), DU, &r);
    4418       90104 :   if (r != gen_0) return NULL;
    4419       90104 :   D = dvmdii(subii(mulii(a,h), mulii(g,b)), DU, &r);
    4420       90104 :   if (r != gen_0) return NULL;
    4421       90104 :   retmkmat22(A,B,C,D);
    4422             : }
    4423             : 
    4424             : static GEN
    4425       90104 : get_g(struct siegel *S, long a1)
    4426             : {
    4427       90104 :   pari_sp av = avma;
    4428       90104 :   long a2 = S->Ast[a1];
    4429       90104 :   GEN a = gel(S->V,a1), ar = ZM2_rev(gel(S->V,a2)), Dar = ZM2_det(ar);
    4430       90104 :   GEN g = ZM2_div(a, ar, Dar, S->N);
    4431       90104 :   if (!g)
    4432             :   {
    4433         875 :     GEN tau = mkmat22(gen_0,gen_m1, gen_1,gen_m1); /*[0,-1;1,-1]*/
    4434         875 :     g = ZM2_div(ZM_mul(ar, tau), ar, Dar, 0);
    4435             :   }
    4436       90104 :   return gerepilecopy(av, g);
    4437             : }
    4438             : /* input V = (X1 a X2 | X3 a^* X4) + Ast
    4439             :  * a1 = index of a
    4440             :  * a2 = index of a^*, inferred from a1. We must have a != a^*
    4441             :  * c1 = first cut [ index of first path in X3 ]
    4442             :  * c2 = second cut [ either in X4 or X1, index of first path ]
    4443             :  * Assume a < a^* (cf Paranoia below): c1 or c2 must be in
    4444             :  *    ]a,a^*], and the other in the "complement" ]a^*,a] */
    4445             : static void
    4446        2520 : basic_op(struct siegel *S, long a1, long c1, long c2)
    4447             : {
    4448             :   pari_sp av;
    4449        2520 :   long l = lg(S->V), a2 = S->Ast[a1];
    4450             :   GEN g;
    4451             : 
    4452        2520 :   if (a1 == a2)
    4453             :   { /* a = a^* */
    4454           0 :     g = get_g(S, a1);
    4455           0 :     path_vec_mul(S->V, a1+1, l, g);
    4456           0 :     av = avma;
    4457           0 :     siegel_perm(S, basic_op_perm_elliptic(l, a1));
    4458             :     /* fill the hole left at a1, reconnect the path */
    4459           0 :     set_avma(av); fill1(S->V, a1); return;
    4460             :   }
    4461             : 
    4462             :   /* Paranoia: (a,a^*) conjugate, call 'a' the first one */
    4463        2520 :   if (a2 < a1) lswap(a1,a2);
    4464             :   /* Now a1 < a2 */
    4465        2520 :   if (c1 <= a1 || c1 > a2) lswap(c1,c2); /* ensure a1 < c1 <= a2 */
    4466        2520 :   if (c2 < a1)
    4467             :   { /* if cut c2 is in X1 = X11|X12, rotate to obtain
    4468             :        (a X2 | X3 a^* X4 X11|X12): then a1 = 1 */
    4469             :     GEN p;
    4470        2520 :     av = avma; p = rotate_perm(l, a1);
    4471        2520 :     siegel_perm(S, p);
    4472        2520 :     a1 = 1; /* = p[a1] */
    4473        2520 :     a2 = S->Ast[1]; /* > a1 */
    4474        2520 :     c1 = p[c1];
    4475        2520 :     c2 = p[c2]; set_avma(av);
    4476             :   }
    4477             :   /* Now a1 < c1 <= a2 < c2; a != a^* */
    4478        2520 :   g = get_g(S, a1);
    4479        2520 :   if (S->oo >= c1 && S->oo < c2) /* W inside [c1..c2[ */
    4480         539 :   { /* c2 -> c1 excluding a1 */
    4481         539 :     GEN gi = SL2_inv_shallow(g); /* g a^* = a; gi a = a^* */
    4482         539 :     path_vec_mul(S->V, 1, a1, gi);
    4483         539 :     path_vec_mul(S->V, a1+1, c1, gi);
    4484         539 :     path_vec_mul(S->V, c2, l, gi);
    4485             :   }
    4486             :   else
    4487             :   { /* c1 -> c2 excluding a2 */
    4488        1981 :     path_vec_mul(S->V, c1, a2, g);
    4489        1981 :     path_vec_mul(S->V, a2+1, c2, g);
    4490             :   }
    4491        2520 :   av = avma;
    4492        2520 :   siegel_perm(S, basic_op_perm(l, a1,a2, c1,c2));
    4493        2520 :   set_avma(av);
    4494             :   /* fill the holes left at a1,a2, reconnect the path */
    4495        2520 :   fill2(S->V, a1, a2);
    4496             : }
    4497             : /* a = a^* (elliptic case) */
    4498             : static void
    4499         154 : basic_op_elliptic(struct siegel *S, long a1)
    4500             : {
    4501             :   pari_sp av;
    4502         154 :   long l = lg(S->V);
    4503         154 :   GEN g = get_g(S, a1);
    4504         154 :   path_vec_mul(S->V, a1+1, l, g);
    4505         154 :   av = avma; siegel_perm(S, basic_op_perm_elliptic(l, a1));
    4506             :   /* fill the hole left at a1 (now at 1), reconnect the path */
    4507         154 :   set_avma(av); fill1(S->V, 1);
    4508         154 : }
    4509             : 
    4510             : /* input V = W X a b Y a^* Z b^* T, W already normalized
    4511             :  * X = [n+1, k1-1], Y = [k2+1, Ast[k1]-1],
    4512             :  * Z = [Ast[k1]+1, Ast[k2]-1], T = [Ast[k2]+1, oo].
    4513             :  * Assume that X doesn't start by c c^* or a b a^* b^*. */
    4514             : static void
    4515        1057 : siegelstep(struct siegel *S)
    4516             : {
    4517        1057 :   if (S->Ast[S->k1] == S->k1)
    4518             :   {
    4519         154 :     basic_op_elliptic(S, S->k1);
    4520         154 :     S->n++;
    4521             :   }
    4522         903 :   else if (S->Ast[S->k1] == S->k1+1)
    4523             :   {
    4524         364 :     basic_op(S, S->k1, S->Ast[S->k1], 1); /* 1: W starts there */
    4525         364 :     S->n += 2;
    4526             :   }
    4527             :   else
    4528             :   {
    4529         539 :     basic_op(S, S->k2, S->Ast[S->k1], 1); /* 1: W starts there */
    4530         539 :     basic_op(S, S->k1, S->k2, S->Ast[S->k2]);
    4531         539 :     basic_op(S, S->Ast[S->k2], S->k2, S->Ast[S->k1]);
    4532         539 :     basic_op(S, S->k1, S->Ast[S->k1], S->Ast[S->k2]);
    4533         539 :     S->n += 4;
    4534             :   }
    4535        1057 : }
    4536             : 
    4537             : /* normalize hyperbolic polygon */
    4538             : static void
    4539         301 : mssiegel(struct siegel *S)
    4540             : {
    4541         301 :   pari_sp av = avma;
    4542             :   long k, t, nv;
    4543             : #ifdef COUNT
    4544             :   long countset[16];
    4545             :   for (k = 0; k < 16; k++) countset[k] = 0;
    4546             : #endif
    4547             : 
    4548         301 :   nv = lg(S->V)-1;
    4549         301 :   if (DEBUGLEVEL>1) err_printf("nv = %ld, expo = %.2f\n", nv,ZMV_size(S->V));
    4550         301 :   t = 0;
    4551        2205 :   while (S->n < nv)
    4552             :   {
    4553        1904 :     if (S->Ast[S->n+1] == S->n+1) { S->n++; continue; }
    4554        1778 :     if (S->Ast[S->n+1] == S->n+2) { S->n += 2; continue; }
    4555        1134 :     if (S->Ast[S->n+1] == S->n+3 && S->Ast[S->n+2] == S->n+4) { S->n += 4; continue; }
    4556        1057 :     k = nv;
    4557        1127 :     while (k > S->n)
    4558             :     {
    4559        1127 :       if (S->Ast[k] == k) { k--; continue; }
    4560        1099 :       if (S->Ast[k] == k-1) { k -= 2; continue; }
    4561        1057 :       if (S->Ast[k] == k-2 && S->Ast[k-1] == k-3) { k -= 4; continue; }
    4562        1057 :       break;
    4563             :     }
    4564        1057 :     if (k != nv)
    4565             :     {
    4566          63 :       pari_sp av2 = avma;
    4567          63 :       siegel_perm0(S, rotate_perm(nv+1, k+1));
    4568          63 :       set_avma(av2); S->n += nv-k;
    4569             :     }
    4570             : 
    4571        6223 :     for (k = S->n+1; k <= nv; k++)
    4572        6223 :       if (S->Ast[k] <= k) { t = S->Ast[k]; break; }
    4573        1057 :     S->k1 = t;
    4574        1057 :     S->k2 = t+1;
    4575             : #ifdef COUNT
    4576             :     countset[ ((S->k1-1 == S->n)
    4577             :               | ((S->k2 == S->Ast[S->k1]-1) << 1)
    4578             :               | ((S->Ast[S->k1] == S->Ast[S->k2]-1) << 2)
    4579             :               | ((S->Ast[S->k2] == nv) << 3)) ]++;
    4580             : #endif
    4581        1057 :     siegelstep(S);
    4582        1057 :     if (gc_needed(av,2))
    4583             :     {
    4584           0 :       if(DEBUGMEM>1) pari_warn(warnmem,"mspolygon, n = %ld",S->n);
    4585           0 :       gerepileall(av, 2, &S->V, &S->Ast);
    4586             :     }
    4587             :   }
    4588         301 :   if (DEBUGLEVEL>1) err_printf("expo = %.2f\n", ZMV_size(S->V));
    4589             : #ifdef COUNT
    4590             :   for (k = 0; k < 16; k++)
    4591             :     err_printf("%3ld: %6ld\n", k, countset[k]);
    4592             : #endif
    4593         301 : }
    4594             : 
    4595             : /* return a vector of char* */
    4596             : static GEN
    4597           0 : Ast2v(GEN Ast)
    4598             : {
    4599           0 :   long j = 0, k, l = lg(Ast);
    4600           0 :   GEN v = const_vec(l-1, NULL);
    4601           0 :   for (k=1; k < l; k++)
    4602             :   {
    4603             :     char *sj;
    4604           0 :     if (gel(v,k)) continue;
    4605           0 :     j++;
    4606           0 :     sj = stack_sprintf("$%ld$", j);
    4607           0 :     gel(v,k) = (GEN)sj;
    4608           0 :     if (Ast[k] != k) gel(v,Ast[k]) = (GEN)stack_sprintf("$%ld^*$", j);
    4609             :   }
    4610           0 :   return v;
    4611             : };
    4612             : 
    4613             : static void
    4614           0 : decorate(pari_str *s, GEN g, GEN arc, double high)
    4615             : {
    4616           0 :   double a = gtodouble(gcoeff(g,1,1)), c = gtodouble(gcoeff(g,2,1));
    4617           0 :   double d = gtodouble(gcoeff(g,2,2));
    4618           0 :   if (a + d)
    4619             :   {
    4620           0 :     double t, u, C = 360/(2*M_PI), x = (a-d) / (2*c), y = 0.8660254/fabs(c);
    4621           0 :     long D1 = itos(gcoeff(arc,2,1));
    4622           0 :     long D2 = itos(gcoeff(arc,2,2));
    4623           0 :     str_printf(s, "\\coordinate (ellpt) at (%.4f,%.4f);\n\\draw (ellpt) node {$\\bullet$}\n", x, y);
    4624           0 :     if (D1)
    4625             :     {
    4626           0 :       t = gtodouble(gcoeff(arc,1,1)) / D1;
    4627           0 :       u = (x*x + y*y - t*t)/(x-t)/2;
    4628           0 :       str_printf(s, "arc (%.4f:180:%.4f)\n", C*atan2(y,x-u), fabs(t-u));
    4629             :     }
    4630             :     else
    4631           0 :       str_printf(s, "-- (%.4f,%.4f)\n", x, high);
    4632           0 :     if (D2)
    4633             :     {
    4634           0 :       t = gtodouble(gcoeff(arc,1,2)) / D2;
    4635           0 :       u = (x*x + y*y - t*t)/(x-t)/2;
    4636           0 :       str_printf(s, "(ellpt) arc (%.4f:0:%.4f);\n", C*atan2(y,x-u), fabs(t-u));
    4637             :     }
    4638             :     else
    4639           0 :       str_printf(s, "(ellpt) -- (%.4f,%.4f);\n", x, high);
    4640             :   }
    4641             :   else
    4642           0 :     str_printf(s, "\\draw (%.4f,%.4f) node {$\\circ$};\n",a/c,fabs(1/c));
    4643           0 : }
    4644             : 
    4645             : static GEN
    4646           0 : polygon2tex(GEN V, GEN Ast, GEN G)
    4647             : {
    4648           0 :   pari_sp av = avma;
    4649             :   pari_str s;
    4650           0 :   long j, l = lg(V), flag = (l <= 16);
    4651           0 :   double d, high = (l < 4)? 1.2: 0.5;
    4652           0 :   GEN v = Ast2v(Ast), r1 = NULL, r2 = NULL;
    4653             : 
    4654           0 :   for (j = 1; j < l; j++)
    4655             :   {
    4656           0 :     GEN arc = gel(V,j);
    4657           0 :     if (!signe(gcoeff(arc,2,1)))
    4658           0 :       r1 = gdiv(gcoeff(arc,1,2), gcoeff(arc,2,2));
    4659           0 :     else if (!signe(gcoeff(arc,2,2)))
    4660           0 :       r2 = gdiv(gcoeff(arc,1,1), gcoeff(arc,2,1));
    4661             :   }
    4662           0 :   if (!r1 || !r2) pari_err_BUG("polgon2tex");
    4663           0 :   str_init(&s, 1); d = fabs(gtodouble(gsub(r1,r2)));
    4664           0 :   str_printf(&s, "\n\\begin{tikzpicture}[scale=%.2f]\n",
    4665             :                  d? (10 / d): 10);
    4666           0 :   for (j = 1; j < l; j++)
    4667             :   {
    4668           0 :     GEN arc = gel(V,j);
    4669           0 :     if (itos(gcoeff(arc,2,1)))
    4670             :     {
    4671           0 :       GEN a = gdiv(gcoeff(arc,1,1), gcoeff(arc,2,1));
    4672           0 :       double aa = gtodouble(a);
    4673           0 :       str_printf(&s, "\\draw (%.4f,0) ", aa);
    4674           0 :       if (flag || j == 2 || j == l-1)
    4675             :       {
    4676             :         long n, d;
    4677           0 :         Qtoss(a, &n, &d);
    4678           0 :         if (d == 1)
    4679           0 :           str_printf(&s, "node [below] {$%ld$}\n", n);
    4680             :         else
    4681           0 :           str_printf(&s, "node [below] {$\\frac{%ld}{%ld}$}\n", n, d);
    4682             :       }
    4683           0 :       if (itos(gcoeff(arc,2,2)))
    4684             :       {
    4685           0 :         GEN b = gdiv(gcoeff(arc,1,2),gcoeff(arc,2,2));
    4686           0 :         str_printf(&s, "arc (%s:%.4f) ", (gcmp(a,b)<0)?"180:0":"0:180",
    4687           0 :                    fabs((gtodouble(b)-aa)/2));
    4688           0 :         if (flag)
    4689           0 :           str_printf(&s, "node [midway, above] {%s} ", (char*)gel(v,j));
    4690             :       }
    4691             :       else
    4692             :       {
    4693           0 :         str_printf(&s, "-- (%.4f,%.4f) ", aa, high);
    4694           0 :         if (flag)
    4695           0 :           str_printf(&s, "node [very near end, right] {%s}",(char*)gel(v,j));
    4696             :       }
    4697             :     }
    4698             :     else
    4699             :     {
    4700           0 :       GEN b = gdiv(gcoeff(arc,1,2), gcoeff(arc,2,2));
    4701           0 :       double bb = gtodouble(b);
    4702           0 :       str_printf(&s, "\\draw (%.4f,%.4f)--(%.4f,0)\n", bb, high, bb);
    4703           0 :       if (flag)
    4704           0 :         str_printf(&s,"node [very near start, left] {%s}\n", (char*)gel(v,j));
    4705             :     }
    4706           0 :     str_printf(&s,";\n");
    4707           0 :     if (Ast[j] == j) decorate(&s, gel(G,j), arc, high);
    4708             :   }
    4709           0 :   str_printf(&s, "\n\\end{tikzpicture}");
    4710           0 :   return gerepileuptoleaf(av, strtoGENstr(s.string));
    4711             : }
    4712             : 
    4713             : static GEN
    4714           0 : circle2tex(GEN Ast, GEN G)
    4715             : {
    4716           0 :   pari_sp av = avma;
    4717           0 :   GEN v = Ast2v(Ast);
    4718             :   pari_str s;
    4719           0 :   long u, n = lg(Ast)-1;
    4720           0 :   const double ang = 360./n;
    4721             : 
    4722           0 :   if (n > 30)
    4723             :   {
    4724           0 :     v = const_vec(n, (GEN)"");
    4725           0 :     gel(v,1) = (GEN)"$(1,\\infty)$";
    4726             :   }
    4727           0 :   str_init(&s, 1);
    4728           0 :   str_puts(&s, "\n\\begingroup\n\
    4729             :   \\def\\geo#1#2{(#2:1) arc (90+#2:270+#1:{tan((#2-#1)/2)})}\n\
    4730             :   \\def\\sgeo#1#2{(#2:1) -- (#1:1)}\n\
    4731             :   \\def\\unarc#1#2#3{({#1 * #3}:1.2) node {#2}}\n\
    4732             :   \\def\\cell#1#2{({#1 * #2}:0.95) circle(0.05)}\n\
    4733             :   \\def\\link#1#2#3#4#5{\\unarc{#1}{#2}{#5}\\geo{#1*#5}{#3*#5}\\unarc{#3}{#4}{#5}}\n\
    4734             :   \\def\\slink#1#2#3#4#5{\\unarc{#1}{#2}{#5}\\sgeo{#1*#5}{#3*#5}\\unarc{#3}{#4}{#5}}");
    4735             : 
    4736           0 :   str_puts(&s, "\n\\begin{tikzpicture}[scale=4]\n");
    4737           0 :   str_puts(&s, "\\draw (0, 0) circle(1);\n");
    4738           0 :   for (u=1; u <= n; u++)
    4739             :   {
    4740           0 :     if (Ast[u] == u)
    4741             :     {
    4742           0 :       str_printf(&s,"\\draw\\unarc{%ld}{%s}{%.4f}; \\draw\\cell{%ld}{%.4f};\n",
    4743           0 :                  u, v[u], ang, u, ang);
    4744           0 :       if (ZM_isscalar(gpowgs(gel(G,u),3), NULL))
    4745           0 :         str_printf(&s,"\\fill \\cell{%ld}{%.4f};\n", u, ang);
    4746             :     }
    4747           0 :     else if(Ast[u] > u)
    4748           0 :       str_printf(&s, "\\draw \\%slink {%ld}{%s}{%ld}{%s}{%.4f};\n",
    4749           0 :                      (Ast[u] - u)*ang > 179? "s": "", u, v[u], Ast[u], v[Ast[u]], ang);
    4750             :   }
    4751           0 :   str_printf(&s, "\\end{tikzpicture}\\endgroup");
    4752           0 :   return gerepileuptoleaf(av, strtoGENstr(s.string));
    4753             : }
    4754             : 
    4755             : GEN
    4756        2583 : mspolygon(GEN M, long flag)
    4757             : {
    4758        2583 :   pari_sp av = avma;
    4759             :   struct siegel T;
    4760        2583 :   GEN v, msN = NULL, G = NULL;
    4761        2583 :   if (typ(M) == t_INT)
    4762             :   {
    4763         315 :     long N = itos(M);
    4764         315 :     if (N <= 0) pari_err_DOMAIN("msinit","N", "<=", gen_0,M);
    4765         315 :     msN = msinit_N(N);
    4766             :   }
    4767        2268 :   else if (checkfarey_i(M))
    4768             :   {
    4769           0 :     T.V = gel(M,1);
    4770           0 :     T.Ast = gel(M,2);
    4771           0 :     G = gel(M,3);
    4772             :   }
    4773             :   else
    4774        2268 :   { checkms(M); msN = get_msN(M); }
    4775        2583 :   if (flag < 0 || flag > 3) pari_err_FLAG("mspolygon");
    4776        2583 :   if (!G)
    4777             :   {
    4778        2583 :     if (ms_get_N(msN) == 1)
    4779             :     {
    4780          56 :       GEN S = mkS();
    4781          56 :       T.V = mkvec2(matid(2), S);
    4782          56 :       T.Ast = mkvecsmall2(1,2);
    4783          56 :       G = mkvec2(S, mkTAU());
    4784             :     }
    4785             :     else
    4786             :     {
    4787             :       long i, l;
    4788        2527 :       siegel_init(&T, msN);
    4789        2527 :       l = lg(T.V);
    4790        2527 :       if (flag & 1)
    4791             :       {
    4792         301 :         long oo2 = 0;
    4793             :         pari_sp av;
    4794         301 :         mssiegel(&T);
    4795        3451 :         for (i = 1; i < l; i++)
    4796             :         {
    4797        3451 :           GEN c = gel(T.V, i);
    4798        3451 :           GEN c22 = gcoeff(c,2,2); if (!signe(c22)) { oo2 = i; break; }
    4799             :         }
    4800         301 :         if (!oo2) pari_err_BUG("mspolygon");
    4801         301 :         av = avma; siegel_perm0(&T, rotate_perm(l, oo2));
    4802         301 :         set_avma(av);
    4803             :       }
    4804        2527 :       G = cgetg(l, t_VEC);
    4805       89957 :       for (i = 1; i < l; i++) gel(G,i) = get_g(&T, i);
    4806             :     }
    4807             :   }
    4808        2583 :   if (flag & 2)
    4809           0 :     v = mkvec5(T.V, T.Ast, G, polygon2tex(T.V,T.Ast,G), circle2tex(T.Ast,G));
    4810             :   else
    4811        2583 :     v = mkvec3(T.V, T.Ast, G);
    4812        2583 :   return gerepilecopy(av, v);
    4813             : }
    4814             : 
    4815             : #if 0
    4816             : static int
    4817             : iselliptic(GEN Ast, long i) { return i == Ast[i]; }
    4818             : static int
    4819             : isparabolic(GEN Ast, long i)
    4820             : { long i2 = Ast[i]; return (i2 == i+1 || i2 == i-1); }
    4821             : #endif
    4822             : 
    4823             : /* M from msinit, F QM maximal rank */
    4824             : GEN
    4825        2219 : mslattice(GEN M, GEN F)
    4826             : {
    4827        2219 :   pari_sp av = avma;
    4828             :   long i, ivB, j, k, l, lF;
    4829             :   GEN D, U, G, A, vB, m, d;
    4830             : 
    4831        2219 :   checkms(M);
    4832        2219 :   if (!F) F = gel(mscuspidal(M, 0), 1);
    4833             :   else
    4834             :   {
    4835        2191 :     if (is_Qevproj(F)) F = gel(F,1);
    4836        2191 :     if (typ(F) != t_MAT) pari_err_TYPE("mslattice",F);
    4837             :   }
    4838        2219 :   lF = lg(F); if (lF == 1) return cgetg(1, t_MAT);
    4839        2219 :   D = mspolygon(M,0);
    4840        2219 :   k = msk_get_weight(M);
    4841        2219 :   F = vec_Q_primpart(F);
    4842        2219 :   if (typ(F)!=t_MAT || !RgM_is_ZM(F)) pari_err_TYPE("mslattice",F);
    4843        2219 :   G = gel(D,3); l = lg(G);
    4844        2219 :   A = gel(D,2);
    4845        2219 :   vB = cgetg(l, t_COL);
    4846        2219 :   d = mkcol2(gen_0,gen_1);
    4847        2219 :   m = mkmat2(d, d);
    4848       84595 :   for (i = ivB = 1; i < l; i++)
    4849             :   {
    4850       82376 :     GEN B, vb, g = gel(G,i);
    4851       82376 :     if (A[i] < i) continue;
    4852       41804 :     gel(m,2) = SL2_inv2(g);
    4853       41804 :     vb = mseval(M, F, m);
    4854       41804 :     if (k == 2) B = vb;
    4855             :     else
    4856             :     {
    4857             :       long lB;
    4858         147 :       B = RgXV_to_RgM(vb, k-1);
    4859             :       /* add coboundaries */
    4860         147 :       B = shallowconcat(B, RgM_Rg_sub_shallow(RgX_act_Gl2Q(g, k), gen_1));
    4861             :       /* beware: the basis for RgX_act_Gl2Q is (X^(k-2),...,Y^(k-2)) */
    4862         147 :       lB = lg(B);
    4863        3444 :       for (j = 1; j < lB; j++) gel(B,j) = vecreverse(gel(B,j));
    4864             :     }
    4865       41804 :     gel(vB, ivB++) = B;
    4866             :   }
    4867        2219 :   setlg(vB, ivB);
    4868        2219 :   vB = shallowmatconcat(vB);
    4869        2219 :   if (ZM_equal0(vB)) return gerepilecopy(av, F);
    4870             : 
    4871        2219 :   (void)QM_ImQ_hnfall(vB, &U, 0);
    4872        2219 :   if (k > 2) U = rowslice(U, 1, lgcols(U)-k); /* remove coboundary part */
    4873        2219 :   U = Q_remove_denom(U, &d);
    4874        2219 :   F = ZM_hnf(ZM_mul(F, U));
    4875        2219 :   if (d) F = RgM_Rg_div(F, d);
    4876        2219 :   return gerepileupto(av, F);
    4877             : }
    4878             : 
    4879             : /**** Petersson scalar product ****/
    4880             : /* TODO:
    4881             :  * Eisspace: represent functions by coordinates of nonzero entries in matrix */
    4882             : 
    4883             : /* oo -> g^(-1) oo */
    4884             : static GEN
    4885        6181 : cocycle(GEN g)
    4886        6181 : { retmkmat22(gen_1, gcoeff(g,2,2), gen_0, negi(gcoeff(g,2,1))); }
    4887             : 
    4888             : /* CD = binomial_init(k-2); return <P,Q> * D (integral) */
    4889             : static GEN
    4890       18151 : bil(GEN P, GEN Q, GEN CD)
    4891             : {
    4892       18151 :   GEN s, C = gel(CD,1);
    4893       18151 :   long i, n = lg(C)-2; /* k - 2 */
    4894       18151 :   if (!n) return gmul(P,Q);
    4895       18130 :   if (typ(P) != t_POL) P = scalarpol_shallow(P,0);
    4896       18130 :   if (typ(Q) != t_POL) Q = scalarpol_shallow(Q,0);
    4897       18130 :   s = gen_0;
    4898       37282 :   for (i = n - degpol(Q); i <= degpol(P); i++)
    4899             :   {
    4900       19152 :     GEN t = gmul(gmul(RgX_coeff(P,i), RgX_coeff(Q, n-i)), gel(C,i+1));
    4901       19152 :     s = odd(i)? gsub(s, t): gadd(s, t);
    4902             :   }
    4903       18130 :   return s;
    4904             : }
    4905             : 
    4906             : /* Let D = lcm {binomial(n,k), k = 0..n} = lcm([1..n+1]) / (n+1)
    4907             :  * Return [C, D] where C[i] = D / binomial(n,i+1), i = 0..n */
    4908             : static GEN
    4909        1379 : binomial_init(long n, GEN vC)
    4910             : {
    4911        1379 :   GEN C = vC? shallowcopy(vC): vecbinomial(n), c = C + 1;
    4912        1379 :   GEN D = diviuexact(ZV_lcm(identity_ZV(n+1)), n+1);
    4913        1379 :   long k, d = (n + 1) >> 1;
    4914             : 
    4915        1379 :   gel(c,0) = D;
    4916        2961 :   for (k = 1; k <= d; k++) gel(c, k) = diviiexact(D, gel(c, k));
    4917        2961 :   for (     ; k <= n;  k++) gel(c, k) = gel(c, n-k);
    4918        1379 :   return mkvec2(C, D);
    4919             : }
    4920             : 
    4921             : static void
    4922        1351 : mspetersson_i(GEN W, GEN F, GEN G, GEN *pvf, GEN *pvg, GEN *pC)
    4923             : {
    4924        1351 :   GEN WN = get_msN(W), annT2, annT31, section, c, vf, vg;
    4925             :   long i, n1, n2, n3;
    4926             : 
    4927        1351 :   annT2 = msN_get_annT2(WN);
    4928        1351 :   annT31 = msN_get_annT31(WN);
    4929        1351 :   section = msN_get_section(WN);
    4930             : 
    4931        1351 :   if (ms_get_N(WN) == 1)
    4932             :   {
    4933           7 :     vf = cgetg(3, t_VEC);
    4934           7 :     vg = cgetg(3, t_VEC);
    4935           7 :     gel(vf,1) = mseval(W, F, gel(section,1));
    4936           7 :     gel(vf,2) = gneg(gel(vf,1));
    4937           7 :     n1 = 0;
    4938             :   }
    4939             :   else
    4940             :   {
    4941        1344 :     GEN singlerel = msN_get_singlerel(WN);
    4942        1344 :     GEN gen = msN_get_genindex(WN);
    4943        1344 :     long l = lg(gen);
    4944        1344 :     vf = cgetg(l, t_VEC);
    4945        1344 :     vg = cgetg(l, t_VEC); /* generators of Delta ordered as E1,T2,T31 */
    4946        7476 :     for (i = 1; i < l; i++) gel(vf, i) = mseval(W, F, gel(section,gen[i]));
    4947        1344 :     n1 = ms_get_nbE1(WN); /* E1 */
    4948        7420 :     for (i = 1; i <= n1; i++)
    4949             :     {
    4950        6076 :       c = cocycle(gcoeff(gel(singlerel,i),2,1));
    4951        6076 :       gel(vg, i) = mseval(W, G, c);
    4952             :     }
    4953             :   }
    4954        1351 :   n2 = lg(annT2)-1; /* T2 */
    4955        1386 :   for (i = 1; i <= n2; i++)
    4956             :   {
    4957          35 :     c = cocycle(gcoeff(gel(annT2,i), 2,1));
    4958          35 :     gel(vg, i+n1) = gmul2n(mseval(W, G, c), -1);
    4959             :   }
    4960        1351 :   n3 = lg(annT31)-1; /* T31 */
    4961        1386 :   for (i = 1; i <= n3; i++)
    4962             :   {
    4963             :     GEN f;
    4964          35 :     c = cocycle(gcoeff(gel(annT31,i), 2,1));
    4965          35 :     f = mseval(W, G, c);
    4966          35 :     c = cocycle(gcoeff(gel(annT31,i), 3,1));
    4967          35 :     gel(vg, i+n1+n2) = gdivgu(gadd(f, mseval(W, G, c)), 3);
    4968             :   }
    4969        1351 :   *pC = binomial_init(msk_get_weight(W) - 2, NULL);
    4970        1351 :   *pvf = vf;
    4971        1351 :   *pvg = vg;
    4972        1351 : }
    4973             : 
    4974             : /* Petersson product on Hom_G(Delta_0, V_k) */
    4975             : GEN
    4976        1351 : mspetersson(GEN W, GEN F, GEN G)
    4977             : {
    4978        1351 :   pari_sp av = avma;
    4979             :   GEN vf, vg, CD, cf, cg, A;
    4980             :   long k, l, tG, tF;
    4981        1351 :   checkms(W);
    4982        1351 :   if (!F) F = matid(msdim(W));
    4983        1351 :   if (!G) G = F;
    4984        1351 :   tF = typ(F);
    4985        1351 :   tG = typ(G);
    4986        1351 :   if (tF == t_MAT && tG != t_MAT) pari_err_TYPE("mspetersson",G);
    4987        1351 :   if (tG == t_MAT && tF != t_MAT) pari_err_TYPE("mspetersson",F);
    4988        1351 :   mspetersson_i(W, F, G, &vf, &vg, &CD);
    4989        1351 :   vf = Q_primitive_part(vf, &cf);
    4990        1351 :   vg = Q_primitive_part(vg, &cg);
    4991        1351 :   A = div_content(mul_content(cf, cg), gel(CD,2));
    4992        1351 :   l = lg(vf);
    4993        1351 :   if (tF != t_MAT)
    4994             :   { /* <F,G>, two symbols */
    4995        1274 :     GEN s = gen_0;
    4996        7105 :     for (k = 1; k < l; k++) s = gadd(s, bil(gel(vf,k), gel(vg,k), CD));
    4997        1274 :     return gerepileupto(av, gmul(s, A));
    4998             :   }
    4999          77 :   else if (F != G)
    5000             :   { /* <(f_1,...,f_m), (g_1,...,g_n)> */
    5001           0 :     long iF, iG, lF = lg(F), lG = lg(G);
    5002           0 :     GEN M = cgetg(lG, t_MAT);
    5003           0 :     for (iG = 1; iG < lG; iG++)
    5004             :     {
    5005           0 :       GEN c = cgetg(lF, t_COL);
    5006           0 :       gel(M,iG) = c;
    5007           0 :       for (iF = 1; iF < lF; iF++)
    5008             :       {
    5009           0 :         GEN s = gen_0;
    5010           0 :         for (k = 1; k < l; k++)
    5011           0 :           s = gadd(s, bil(gmael(vf,k,iF), gmael(vg,k,iG), CD));
    5012           0 :         gel(c,iF) = s; /* M[iF,iG] = <F[iF], G[iG] > */
    5013             :       }
    5014             :     }
    5015           0 :     return gerepileupto(av, RgM_Rg_mul(M, A));
    5016             :   }
    5017             :   else
    5018             :   { /* <(f_1,...,f_n), (f_1,...,f_n)> */
    5019          77 :     long iF, iG, n = lg(F)-1;
    5020          77 :     GEN M = zeromatcopy(n,n);
    5021         693 :     for (iG = 1; iG <= n; iG++)
    5022        3192 :       for (iF = iG+1; iF <= n; iF++)
    5023             :       {
    5024        2576 :         GEN s = gen_0;
    5025       14728 :         for (k = 1; k < l; k++)
    5026       12152 :           s = gadd(s, bil(gmael(vf,k,iF), gmael(vg,k,iG), CD));
    5027        2576 :         gcoeff(M,iF,iG) = s; /* <F[iF], F[iG] > */
    5028        2576 :         gcoeff(M,iG,iF) = gneg(s);
    5029             :       }
    5030          77 :     return gerepileupto(av, RgM_Rg_mul(M, A));
    5031             :   }
    5032             : }
    5033             : 
    5034             : static GEN
    5035           0 : act_ij(GEN v, ulong a, ulong b, ulong c, ulong d, ulong N)
    5036             : {
    5037           0 :   long I, J, i = v[1], j = v[2];
    5038           0 :   I = Fl_add(Fl_mul(a,i,N), Fl_mul(c,j,N), N); if (!I) I = N;
    5039           0 :   J = Fl_add(Fl_mul(b,i,N), Fl_mul(d,j,N), N); if (!J) J = N;
    5040           0 :   return mkvecsmall2(I,J);
    5041             : }
    5042             : /* action of g in SL_2(Z/NZ) on functions f: (Z/NZ)^2 -> Q given by sparse
    5043             :  * matrix x. */
    5044             : static GEN
    5045         168 : actf(long N, GEN x, GEN g)
    5046             : {
    5047             :   long a, b, c, d;
    5048         168 :   c = umodiu(gcoeff(g,2,1), N); if (!c) return x;
    5049           0 :   d = umodiu(gcoeff(g,2,2), N);
    5050           0 :   a = umodiu(gcoeff(g,1,1), N);
    5051           0 :   b = umodiu(gcoeff(g,1,2), N);
    5052           0 :   pari_APPLY_same(act_ij(gel(x,i), a, b, c, d, N));
    5053             : }
    5054             : 
    5055             : /* q1 = N/a, q2 = q1/d, (u,a) = 1. Gamma_0(N)-orbit attached to [q1,q2,u]
    5056             :  * in (Z/N)^2; set of [q1 v, q2 w], v in (Z/a)^*, w in Z/a*d,
    5057             :  * w mod a = u / v [invertible]; w mod d in (Z/d)^*; c1+c2= q2, d2|c1, d1|c2
    5058             :  * The orbit has cardinal C = a phi(d) <= N */
    5059             : static GEN
    5060          28 : eisf(long N, long C, long a, long d1, GEN Z2, long c1, long c2,
    5061             :      long q1, long u)
    5062             : {
    5063          28 :   GEN m = cgetg(C+1, t_VEC);
    5064          28 :   long v, n = 1, l = lg(Z2);
    5065          56 :   for (v = 1; v <= a; v++)
    5066          28 :     if (ugcd(v,a)==1)
    5067             :     {
    5068          28 :       long w1 = Fl_div(u, v, a), vq1 = v * q1, i, j;
    5069          56 :       for (i = 0; i < d1; i++, w1 += a)
    5070             :       { /* w1 defined mod a*d1, lifts u/v (mod a) */
    5071          56 :         for (j = 1; j < l; j++)
    5072          28 :           if (Z2[j])
    5073             :           {
    5074          28 :             long wq2 = (c1 * w1 + c2 * j) % N;
    5075          28 :             if (wq2 <= 0) wq2 += N;
    5076          28 :             gel(m, n++) = mkvecsmall2(vq1, wq2);
    5077             :           }
    5078             :       }
    5079             :     }
    5080          28 :   return m;
    5081             : }
    5082             : 
    5083             : /* basis for Gamma_0(N)-invariant functions attached to cusps */
    5084             : static GEN
    5085          28 : eisspace(long N, long k, long s)
    5086             : {
    5087          28 :   GEN v, D, F = factoru(N);
    5088             :   long l, n, i, j;
    5089          28 :   D = divisorsu_fact(F); l = lg(D);
    5090          28 :   n = mfnumcuspsu_fact(F);
    5091          28 :   v = cgetg((k==2)? n: n+1, t_VEC);
    5092          56 :   for (i = (k==2)? 2: 1, j = 1; i < l; i++) /* remove d = 1 if k = 2 */
    5093             :   {
    5094          28 :     long d = D[i], Nd = D[l-i], a = ugcd(d, Nd), q1, q2, d1, d2, C, c1, c2, u;
    5095             :     GEN Z2;
    5096             : 
    5097          56 :     if (s < 0 && a <= 2) continue;
    5098          28 :     q1 = N / a;
    5099          28 :     q2 = q1 / d;
    5100          28 :     d2 = u_ppo(d/a, a);
    5101          28 :     d1 = d / d2;
    5102          28 :     C = eulerphiu(d) * a;
    5103          28 :     Z2 = coprimes_zv(d2);
    5104             :     /* d = d1d2, (d2,a) = 1; d1 and a have same prime divisors */
    5105          28 :     (void)cbezout(d1, d2, &c2, &c1);
    5106          28 :     c2 *= d1 * q2;
    5107          28 :     c1 *= d2 * q2;
    5108          28 :     if (a <= 2)
    5109             :     { /* sigma.(C cusp attached to [q1,q2,u]) = C */
    5110          28 :       gel(v, j++) = eisf(N,C,a,d1,Z2,c1,c2, N/a, 1);
    5111          28 :       continue;
    5112             :     }
    5113           0 :     for (u = 1; 2*u < a; u++)
    5114             :     {
    5115           0 :       if (ugcd(u,a) != 1) continue;
    5116           0 :       gel(v, j++) = eisf(N,C,a,d1,Z2,c1,c2, q1, u);
    5117           0 :       if (!s) gel(v, j++) = eisf(N,C,a,d1,Z2,c1,c2, q1, a-u);
    5118             :     }
    5119             :   }
    5120          28 :   if (s) setlg(v, j);
    5121          28 :   return v;
    5122             : }
    5123             : 
    5124             : /* action of g on V_k */
    5125             : static GEN
    5126         168 : act(GEN P, GEN g, long k)
    5127             : {
    5128         168 :   GEN a = gcoeff(g,1,1), b = gcoeff(g,1,2), V1, V2, Q;
    5129         168 :   GEN c = gcoeff(g,2,1), d = gcoeff(g,2,2);
    5130             :   long i;
    5131         168 :   if (k == 2) return P;
    5132         168 :   V1 = RgX_powers(deg1pol_shallow(c, a, 0), k-2); /* V1[i] = (a + c Y)^i */
    5133         168 :   V2 = RgX_powers(deg1pol_shallow(d, b, 0), k-2); /* V2[j] = (b + d Y)^j */
    5134         168 :   Q = gmul(RgX_coeff(P,0), gel(V1, k-2));
    5135        2520 :   for (i = 1; i < k-2; i++)
    5136             :   {
    5137        2352 :     GEN v1 = gel(V1, k-2-i);
    5138        2352 :     GEN v2 = gel(V2, i);
    5139        2352 :     Q = gadd(Q, gmul(RgX_coeff(P,i), RgX_mul(v1,v2)));
    5140             :   }
    5141         168 :   return gadd(Q, gmul(RgX_coeff(P,k-2), gel(V2,k-2)));
    5142             : }
    5143             : 
    5144             : static long
    5145         420 : co_get_N(GEN co) { return gel(co,1)[1]; }
    5146             : static long
    5147         504 : co_get_k(GEN co) { return gel(co,1)[2]; }
    5148             : static GEN
    5149         140 : co_get_B(GEN co) { return gel(co,2); }
    5150             : static GEN
    5151         112 : co_get_BD(GEN co) { return gel(co,3); }
    5152             : static GEN
    5153          84 : co_get_C(GEN co) { return gel(co,4); }
    5154             : 
    5155             : /* N g^(-1) . eval on g([0,a]_oo)=g([pi_oo(0),pi_oo(a)]), fg = f|g */
    5156             : static GEN
    5157         252 : evalcap(GEN co, GEN fg, GEN a)
    5158             : {
    5159         252 :   long n, t, l = lg(fg), N = co_get_N(co), k = co_get_k(co);
    5160             :   GEN P, B, z, T;
    5161             :   pari_sp av;
    5162         252 :   if (isintzero(a)) return gen_0;
    5163             :   /* (a+y)^(k-1) - y^(k-1) */
    5164          56 :   P = gsub(gpowgs(deg1pol_shallow(gen_1, a, 0), k-1), pol_xn(k-1, 0));
    5165          56 :   B = co_get_B(co); z = gen_0;
    5166          56 :   av = avma; T = zero_zv(N);
    5167         112 :   for (n = 1; n < l; n++)
    5168             :   {
    5169          56 :     GEN v = gel(fg, n);
    5170          56 :     t = v[1]; T[t]++;
    5171             :   }
    5172         112 :   for (t = 1; t <= N; t++)
    5173             :   {
    5174          56 :     long c = T[t];
    5175          56 :     if (c)
    5176             :     {
    5177          56 :       GEN u = gmael(B, k, t);
    5178          56 :       if (c != 1) u = gmulsg(c, u);
    5179          56 :       z = gadd(z, u);
    5180             :     }
    5181             :   }
    5182          56 :   if (co_get_BD(co)) z = gmul(co_get_BD(co),z);
    5183          56 :   z = gerepileupto(av, gdivgs(z, -k * (k-1)));
    5184          56 :   return RgX_Rg_mul(P, z);
    5185             : };
    5186             : 
    5187             : /* eval N g^(-1) * Psi(f) on g{oo,0}, fg = f|g */
    5188             : static GEN
    5189          84 : evalcup(GEN co, GEN fg)
    5190             : {
    5191          84 :   long j, n, k = co_get_k(co), l = lg(fg);
    5192          84 :   GEN B = co_get_B(co), C = co_get_C(co), P = cgetg(k+1, t_POL);
    5193          84 :   P[1] = evalvarn(0);
    5194        1428 :   for (j = 2; j <= k; j++) gel(P,j) = gen_0;
    5195         168 :   for (n = 1; n < l; n++)
    5196             :   {
    5197          84 :     GEN v = gel(fg,n);
    5198          84 :     long t = v[1], s = v[2];
    5199        1428 :     for (j = 1; j < k; j++)
    5200             :     {
    5201        1344 :       long j1 = k-j;
    5202        1344 :       GEN u = gmael(B, j1, t);
    5203        1344 :       GEN v = gmael(B, j, s);
    5204        1344 :       gel(P, j1+1) = gadd(gel(P, j1+1), gmul(u,v));
    5205             :     }
    5206             :   }
    5207        1428 :   for (j = 1; j < k; j++) gel(P, j+1) = gmul(gel(C,j), gel(P, j+1));
    5208          84 :   return normalizepol(P);
    5209             : }
    5210             : 
    5211             : /* Manin-Stevens algorithm, prepare for [pi_0(oo),pi_r(oo)] */
    5212             : static GEN
    5213          84 : evalmanin(GEN r)
    5214             : {
    5215          84 :   GEN fr = gboundcf(r, 0), pq, V;
    5216          84 :   long j, n = lg(fr)-1; /* > 0 */
    5217          84 :   V = cgetg(n+2, t_VEC);
    5218          84 :   gel(V,1) = gel(fr,1); /* a_0; tau_{-1} = id */
    5219          84 :   if (n == 1)
    5220             :   { /* r integer, can happen iff N = 1 */
    5221          84 :     gel(V,2) = mkvec2(gen_0, mkmat22(negi(r), gen_1, gen_m1, gen_0));
    5222          84 :     return V;
    5223             :   }
    5224           0 :   pq = contfracpnqn(fr,n-1);
    5225           0 :   fr = vec_append(fr, gdiv(negi(gcoeff(pq,2,n-1)), gcoeff(pq,2,n)));
    5226           0 :   for (j = 0; j < n; j++)
    5227             :   {
    5228           0 :     GEN v1 = gel(pq, j+1), v2 = (j == 0)? col_ei(2,1): gel(pq, j);
    5229           0 :     GEN z = gel(fr,j+2);
    5230           0 :     if (!odd(j)) { v1 = ZC_neg(v1); z = gneg(z); }
    5231           0 :     gel(V,j+2) = mkvec2(z, mkmat2(v1,v2)); /* [a_{j+1}, tau_j] */
    5232             :   }
    5233           0 :   return V;
    5234             : }
    5235             : 
    5236             : /* evaluate N * Psi(f) on
    5237             :   g[pi_oo(0),pi_r(oo)]=g[pi_oo(0),pi_0(oo)] + g[pi_0(oo),pi_r(oo)] */
    5238             : static GEN
    5239          84 : evalhull(GEN co, GEN f, GEN r)
    5240             : {
    5241          84 :   GEN V = evalmanin(r), res = evalcap(co,f,gel(V,1));
    5242          84 :   long j, l = lg(V), N = co_get_N(co);
    5243         168 :   for (j = 2; j < l; j++)
    5244             :   {
    5245          84 :     GEN v = gel(V,j), t = gel(v,2); /* in SL_2(Z) */
    5246          84 :     GEN ft = actf(N, f, t), a = gel(v,1); /* in Q */
    5247             :     /* t([pi_0(oo),pi_oo(a)]) */
    5248          84 :     res = gsub(res, act(gsub(evalcup(co,ft), evalcap(co,ft,a)), t, co_get_k(co)));
    5249             :   }
    5250          84 :   return res;
    5251             : };
    5252             : 
    5253             : /* evaluate N * cocycle at g in Gamma_0(N), f Gamma_0(N)-invariant */
    5254             : static GEN
    5255          84 : eiscocycle(GEN co, GEN f, GEN g)
    5256             : {
    5257          84 :   pari_sp av = avma;
    5258          84 :   GEN a = gcoeff(g,1,1), b = gcoeff(g,1,2);
    5259          84 :   GEN c = gcoeff(g,2,1), d = gcoeff(g,2,2), P;
    5260          84 :   long N = co_get_N(co);
    5261          84 :   if (!signe(c))
    5262           0 :     P = evalcap(co,f, gdiv(negi(b),a));
    5263             :   else
    5264             :   {
    5265          84 :     GEN gi = SL2_inv_shallow(g);
    5266          84 :     P = gsub(evalhull(co, f, gdiv(negi(d),c)),
    5267             :              act(evalcap(co, actf(N,f,gi), gdiv(a,c)), gi, co_get_k(co)));
    5268             :   }
    5269          84 :   return gerepileupto(av, P);
    5270             : }
    5271             : 
    5272             : static GEN
    5273          28 : eisCocycle(GEN co, GEN D, GEN f)
    5274             : {
    5275          28 :   GEN V = gel(D,1), Ast = gel(D,2), G = gel(D,3);
    5276          28 :   long i, j, n = lg(G)-1;
    5277          28 :   GEN VG = cgetg(n+1, t_VEC);
    5278          84 :   for (i = j = 1; i <= n; i++)
    5279             :   {
    5280          56 :     GEN c, g, d, s = gel(V,i);
    5281          56 :     if (i > Ast[i]) continue;
    5282          56 :     g = SL2_inv_shallow(gel(G,i));
    5283          56 :     c = eiscocycle(co,f,g);
    5284          56 :     if (i < Ast[i]) /* non elliptic */
    5285           0 :       d = gen_1;
    5286             :     else
    5287             :     { /* i = Ast[i] */
    5288          56 :       GEN g2 = ZM2_sqr(g);
    5289          56 :       if (ZM_isdiagonal(g2)) d = gen_2; /* \pm Id */
    5290             :       else
    5291             :       {
    5292          28 :         c = gadd(c, eiscocycle(co,f,g2));
    5293          28 :         d = utoipos(3);
    5294             :       }
    5295             :     }
    5296          56 :     gel(VG, j++) = mkvec3(d, s, c);
    5297             :   }
    5298          28 :   setlg(VG, j); return VG;
    5299             : };
    5300             : 
    5301             : /* F=modular symbol, Eis = cocycle attached to f invariant function
    5302             :  * by Gamma_0(N); CD = binomial_init(k-2) */
    5303             : static GEN
    5304          84 : eispetersson(GEN M, GEN F, GEN Eis, GEN CD)
    5305             : {
    5306          84 :   pari_sp av = avma;
    5307          84 :   long i, l = lg(Eis);
    5308          84 :   GEN res = gen_0;
    5309         252 :   for (i = 1; i < l; i++)
    5310             :   {
    5311         168 :     GEN e = gel(Eis,i), Q = mseval(M, F, gel(e,2)), z = bil(gel(e,3), Q, CD);
    5312         168 :     long d = itou(gel(e,1));
    5313         168 :     res = gadd(res, d == 1? z: gdivgu(z,d));
    5314             :   }
    5315          84 :   return gerepileupto(av, gdiv(simplify_shallow(res), gel(CD,2)));
    5316             : };
    5317             : 
    5318             : /*vB[j][i] = {i/N} */
    5319             : static GEN
    5320          28 : get_bern(long N, long k)
    5321             : {
    5322          28 :   GEN vB = cgetg(k+1, t_VEC), gN = utoipos(N);
    5323             :   long i, j; /* no need for j = 0 */
    5324         504 :   for (j = 1; j <= k; j++)
    5325             :   {
    5326         476 :     GEN c, B = RgX_rescale(bernpol(j, 0), gN);
    5327         476 :     gel(vB, j) = c = cgetg(N+1, t_VEC);
    5328         476 :     for (i = 1; i < N; i++) gel(c,i) = poleval(B, utoipos(i));
    5329         476 :     gel(c,N) = gel(B,2); /* B(0) */
    5330             :   }
    5331          28 :   return vB;
    5332             : }
    5333             : GEN
    5334          28 : eisker_worker(GEN Ei, GEN M, GEN D, GEN co, GEN CD)
    5335             : {
    5336          28 :   pari_sp av = avma;
    5337          28 :   long j, n = msdim(M), s = msk_get_sign(M);
    5338          28 :   GEN V, Eis = eisCocycle(co, D, Ei), v = cgetg(n+1, t_VEC);
    5339             : 
    5340          28 :   V = s? gel(msk_get_starproj(M), 1): matid(n);
    5341             :   /* T is multiplied by N * BD^2: same Ker */
    5342         112 :   for (j = 1; j <= n; j++) gel(v,j) = eispetersson(M, gel(V,j), Eis, CD);
    5343          28 :   return gerepileupto(av, v);
    5344             : }
    5345             : /* vC = vecbinomial(k-2); vC[j] = binom(k-2,j-1) = vC[k-j], j = 1..k-1, k even.
    5346             :  * C[k-j+1] = (-1)^(j-1) binom(k-2, j-1) / (j(k-j)) = C[j+1] */
    5347             : static GEN
    5348          28 : get_C(GEN vC, long k)
    5349             : {
    5350          28 :   GEN C = cgetg(k, t_VEC);
    5351          28 :   long j, k2 = k/2;
    5352         266 :   for (j = 1; j <= k2; j++)
    5353             :   {
    5354         238 :     GEN c = gel(vC, j);
    5355         238 :     if (!odd(j)) c = negi(c);
    5356         238 :     gel(C,k-j) = gel(C, j) = gdivgu(c, j*(k-j));
    5357             :   }
    5358          28 :   return C;
    5359             : }
    5360             : static GEN
    5361          28 : eisker(GEN M)
    5362             : {
    5363          28 :   long N = ms_get_N(M), k = msk_get_weight(M), s = msk_get_sign(M);
    5364          28 :   GEN worker, vC, co, CD, D, B, BD, T, E = eisspace(N, k, s);
    5365          28 :   long i, j, m = lg(E)-1, n = msdim(M), pending = 0;
    5366             :   struct pari_mt pt;
    5367             : 
    5368          28 :   if (m == 0) return matid(n);
    5369          28 :   vC = vecbinomial(k-2);
    5370          28 :   T = zeromatcopy(m, n);
    5371          28 :   D = mspolygon(M, 0);
    5372          28 :   B = Q_remove_denom(get_bern(N,k), &BD);
    5373          28 :   co = mkvec4(mkvecsmall2(N,k), B, BD, get_C(vC, k));
    5374          28 :   CD = binomial_init(k-2, vC);
    5375          28 :   worker = snm_closure(is_entry("_eisker_worker"), mkvec4(M, D, co, CD));
    5376          28 :   mt_queue_start_lim(&pt, worker, m);
    5377          56 :   for (i = 1; i <= m || pending; i++)
    5378             :   {
    5379             :     long workid;
    5380             :     GEN done;
    5381          28 :     mt_queue_submit(&pt, i, i<=m? mkvec(gel(E,i)): NULL);
    5382          28 :     done = mt_queue_get(&pt, &workid, &pending);
    5383         112 :     if (done) for (j = 1; j <= n; j++) gcoeff(T,workid,j) = gel(done,j);
    5384             :   }
    5385          28 :   mt_queue_end(&pt); return QM_ker(T);
    5386             : }

Generated by: LCOV version 1.16