Line data Source code
1 : /* Copyright (C) 2000-2003 The PARI group.
2 :
3 : This file is part of the PARI/GP package.
4 :
5 : PARI/GP is free software; you can redistribute it and/or modify it under the
6 : terms of the GNU General Public License as published by the Free Software
7 : Foundation; either version 2 of the License, or (at your option) any later
8 : version. It is distributed in the hope that it will be useful, but WITHOUT
9 : ANY WARRANTY WHATSOEVER.
10 :
11 : Check the License for details. You should have received a copy of it, along
12 : with the package; see the file 'COPYING'. If not, write to the Free Software
13 : Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */
14 :
15 : #include "pari.h"
16 : #include "paripriv.h"
17 :
18 : #define DEBUGLEVEL DEBUGLEVEL_galois
19 :
20 : /*************************************************************************/
21 : /** **/
22 : /** GALOIS CONJUGATES **/
23 : /** **/
24 : /*************************************************************************/
25 :
26 : static int
27 10948 : is2sparse(GEN x)
28 : {
29 10948 : long i, l = lg(x);
30 10948 : if (odd(l-3)) return 0;
31 32802 : for(i=3; i<l; i+=2)
32 22029 : if (signe(gel(x,i))) return 0;
33 10773 : return 1;
34 : }
35 :
36 : static GEN
37 35886 : galoisconj1(GEN nf)
38 : {
39 35886 : GEN x = get_nfpol(nf, &nf), f = nf? nf : x, y, z;
40 35886 : long i, lz, v = varn(x), nbmax;
41 35886 : pari_sp av = avma;
42 35886 : RgX_check_ZX(x, "nfgaloisconj");
43 35887 : nbmax = numberofconjugates(x, 2);
44 35889 : if (nbmax==1) retmkcol(pol_x(v));
45 11578 : if (nbmax==2 && is2sparse(x))
46 : {
47 10773 : GEN res = cgetg(3,t_COL);
48 10773 : gel(res,1) = deg1pol_shallow(gen_m1, gen_0, v);
49 10773 : gel(res,2) = pol_x(v);
50 10773 : return res;
51 : }
52 805 : x = leafcopy(x); setvarn(x, fetch_var_higher());
53 805 : z = nfroots(f, x); lz = lg(z);
54 805 : y = cgetg(lz, t_COL);
55 3885 : for (i = 1; i < lz; i++)
56 : {
57 3080 : GEN t = lift(gel(z,i));
58 3080 : if (typ(t) == t_POL) setvarn(t, v);
59 3080 : gel(y,i) = t;
60 : }
61 805 : (void)delete_var();
62 805 : return gerepileupto(av, y);
63 : }
64 :
65 : /*************************************************************************/
66 : /** **/
67 : /** GALOISCONJ4 **/
68 : /** **/
69 : /*************************************************************************/
70 : /*DEBUGLEVEL:
71 : 1: timing
72 : 2: outline
73 : 4: complete outline
74 : 6: detail
75 : 7: memory
76 : 9: complete detail
77 : */
78 : struct galois_borne {
79 : GEN l;
80 : long valsol;
81 : long valabs;
82 : GEN bornesol;
83 : GEN ladicsol;
84 : GEN ladicabs;
85 : GEN dis;
86 : };
87 : struct galois_lift {
88 : GEN T;
89 : GEN den;
90 : GEN p;
91 : GEN L;
92 : GEN Lden;
93 : long e;
94 : GEN Q;
95 : GEN TQ;
96 : struct galois_borne *gb;
97 : };
98 : struct galois_testlift {
99 : long n;
100 : long f;
101 : long g;
102 : GEN bezoutcoeff;
103 : GEN pauto;
104 : GEN C;
105 : GEN Cd;
106 : };
107 : struct galois_test { /* data for permutation test */
108 : GEN order; /* order of tests pour galois_test_perm */
109 : GEN borne, lborne; /* coefficient bounds */
110 : GEN ladic;
111 : GEN PV; /* NULL or vector of test matrices (Vmatrix) */
112 : GEN TM; /* transpose of M */
113 : GEN L; /* p-adic roots, known mod ladic */
114 : GEN M; /* vandermonde inverse */
115 : };
116 : /* result of the study of Frobenius degrees */
117 : enum ga_code {ga_all_normal=1,ga_ext_2=2,ga_non_wss=4,
118 : ga_all_nilpotent=8,ga_easy=16};
119 : struct galois_analysis {
120 : long p; /* prime to be lifted */
121 : long deg; /* degree of the lift */
122 : long ord;
123 : long l; /* l: prime number such that T is totally split mod l */
124 : long p4;
125 : long group;
126 : };
127 : struct galois_frobenius {
128 : long p;
129 : long fp;
130 : long deg;
131 : GEN Tmod;
132 : GEN psi;
133 : };
134 :
135 : /* #r = r1 + r2 */
136 : GEN
137 43 : embed_roots(GEN ro, long r1)
138 : {
139 43 : long r2 = lg(ro)-1-r1;
140 : GEN L;
141 43 : if (!r2) L = ro;
142 : else
143 : {
144 39 : long i,j, N = r1+2*r2;
145 39 : L = cgetg(N+1, t_VEC);
146 151 : for (i = 1; i <= r1; i++) gel(L,i) = gel(ro,i);
147 242 : for (j = i; j <= N; i++)
148 : {
149 203 : GEN z = gel(ro,i);
150 203 : gel(L,j++) = z;
151 203 : gel(L,j++) = mkcomplex(gel(z,1), gneg(gel(z,2)));
152 : }
153 : }
154 43 : return L;
155 : }
156 : GEN
157 135186 : embed_disc(GEN z, long r1, long prec)
158 : {
159 135186 : pari_sp av = avma;
160 135186 : GEN t = real_1(prec);
161 135190 : long i, j, n = lg(z)-1, r2 = n-r1;
162 230327 : for (i = 1; i < r1; i++)
163 : {
164 95137 : GEN zi = gel(z,i);
165 665252 : for (j = i+1; j <= r1; j++) t = gmul(t, gsub(zi, gel(z,j)));
166 : }
167 714356 : for (j = r1+1; j <= n; j++)
168 : {
169 579201 : GEN zj = gel(z,j), a = gel(zj,1), b = gel(zj,2), b2 = gsqr(b);
170 596375 : for (i = 1; i <= r1; i++)
171 : {
172 17192 : GEN zi = gel(z,i);
173 17192 : t = gmul(t, gadd(gsqr(gsub(zi, a)), b2));
174 : }
175 579183 : t = gmul(t, b);
176 : }
177 135155 : if (r2) t = gmul2n(t, r2);
178 135165 : if (r2 > 1)
179 : {
180 123309 : GEN T = real_1(prec);
181 577706 : for (i = r1+1; i < n; i++)
182 : {
183 454440 : GEN zi = gel(z,i), a = gel(zi,1), b = gel(zi,2);
184 1955466 : for (j = i+1; j <= n; j++)
185 : {
186 1501069 : GEN zj = gel(z,j), c = gel(zj,1), d = gel(zj,2);
187 1501069 : GEN f = gsqr(gsub(a,c)), g = gsqr(gsub(b,d)), h = gsqr(gadd(b,d));
188 1500993 : T = gmul(T, gmul(gadd(f,g), gadd(f,h)));
189 : }
190 : }
191 123266 : t = gmul(t, T);
192 : }
193 135157 : t = gsqr(t);
194 135180 : if (odd(r2)) t = gneg(t);
195 135186 : return gerepileupto(av, t);
196 : }
197 :
198 : /* Compute bound for the coefficients of automorphisms.
199 : * T a ZX, den a t_INT denominator or NULL */
200 : GEN
201 83508 : initgaloisborne(GEN T, GEN den, long prec, GEN *pL, GEN *pprep, GEN *pD)
202 : {
203 : GEN L, prep, nf, r;
204 : pari_timer ti;
205 :
206 83508 : if (DEBUGLEVEL>=4) timer_start(&ti);
207 83508 : T = get_nfpol(T, &nf);
208 83507 : r = nf ? nf_get_roots(nf) : NULL;
209 83507 : if (nf && precision(gel(r, 1)) >= prec)
210 43 : L = embed_roots(r, nf_get_r1(nf));
211 : else
212 83464 : L = QX_complex_roots(T, prec);
213 83508 : if (DEBUGLEVEL>=4) timer_printf(&ti,"roots");
214 83508 : prep = vandermondeinverseinit(L);
215 83508 : if (!den || pD)
216 : {
217 62048 : GEN res = RgV_prod(gabs(prep,prec));
218 62046 : GEN D = ZX_disc_all(T, 1 + gexpo(res)); /* +1 for safety */
219 62046 : if (pD) *pD = D;
220 62046 : if (!den) den = indexpartial(T,D);
221 : }
222 83509 : if (pprep) *pprep = prep;
223 83509 : *pL = L; return den;
224 : }
225 :
226 : /* ||| M ||| with respect to || x ||_oo, M t_MAT */
227 : GEN
228 114800 : matrixnorm(GEN M, long prec)
229 : {
230 114800 : long i,j,m, l = lg(M);
231 114800 : GEN B = real_0(prec);
232 :
233 114798 : if (l == 1) return B;
234 114798 : m = lgcols(M);
235 389321 : for (i = 1; i < m; i++)
236 : {
237 274525 : GEN z = gabs(gcoeff(M,i,1), prec);
238 2648698 : for (j = 2; j < l; j++) z = gadd(z, gabs(gcoeff(M,i,j), prec));
239 274519 : if (gcmp(z, B) > 0) B = z;
240 : }
241 114796 : return B;
242 : }
243 :
244 : static GEN
245 31388 : galoisborne(GEN T, GEN dn, struct galois_borne *gb, long d)
246 : {
247 : pari_sp ltop, av2;
248 : GEN borne, borneroots, bornetrace, borneabs;
249 : long prec;
250 : GEN L, M, prep, den;
251 : pari_timer ti;
252 31388 : const long step=3;
253 :
254 31388 : prec = nbits2prec(bit_accuracy(ZX_max_lg(T)));
255 31388 : den = initgaloisborne(T,dn,prec, &L,&prep,&gb->dis);
256 31389 : if (!dn) dn = den;
257 31389 : ltop = avma;
258 31389 : if (DEBUGLEVEL>=4) timer_start(&ti);
259 31389 : M = vandermondeinverse(L, RgX_gtofp(T, prec), den, prep);
260 31389 : if (DEBUGLEVEL>=4) timer_printf(&ti,"vandermondeinverse");
261 31389 : borne = matrixnorm(M, prec);
262 31388 : borneroots = gsupnorm(L, prec); /*t_REAL*/
263 31387 : bornetrace = mulur((2*step)*degpol(T)/d,
264 31386 : powru(borneroots, minss(degpol(T), step)));
265 31387 : borneroots = ceil_safe(gmul(borne, borneroots));
266 31389 : borneabs = ceil_safe(gmax_shallow(gmul(borne, bornetrace),
267 : powru(bornetrace, d)));
268 31389 : av2 = avma;
269 : /*We use d-1 test, so we must overlift to 2^BITS_IN_LONG*/
270 31389 : gb->valsol = logint(shifti(borneroots,2+BITS_IN_LONG), gb->l) + 1;
271 31387 : gb->valabs = logint(shifti(borneabs,2), gb->l) + 1;
272 31389 : gb->valabs = maxss(gb->valsol, gb->valabs);
273 31389 : if (DEBUGLEVEL >= 4)
274 0 : err_printf("GaloisConj: val1=%ld val2=%ld\n", gb->valsol, gb->valabs);
275 31389 : set_avma(av2);
276 31389 : gb->bornesol = gerepileuptoint(ltop, shifti(borneroots,1));
277 31389 : if (DEBUGLEVEL >= 9)
278 0 : err_printf("GaloisConj: Bound %Ps\n",borneroots);
279 31389 : gb->ladicsol = powiu(gb->l, gb->valsol);
280 31388 : gb->ladicabs = powiu(gb->l, gb->valabs);
281 31389 : return dn;
282 : }
283 :
284 : static GEN
285 29932 : makeLden(GEN L,GEN den, struct galois_borne *gb)
286 29932 : { return FpC_Fp_mul(L, den, gb->ladicsol); }
287 :
288 : /* Initialize the galois_lift structure */
289 : static void
290 30034 : initlift(GEN T, GEN den, ulong p, GEN L, GEN Lden, struct galois_borne *gb, struct galois_lift *gl)
291 : {
292 : pari_sp av;
293 : long e;
294 30034 : gl->gb = gb;
295 30034 : gl->T = T;
296 30034 : gl->den = is_pm1(den)? gen_1: den;
297 30035 : gl->p = utoipos(p);
298 30034 : gl->L = L;
299 30034 : gl->Lden = Lden;
300 30034 : av = avma;
301 30034 : e = logint(shifti(gb->bornesol, 2+BITS_IN_LONG), gl->p) + 1;
302 30035 : set_avma(av);
303 30036 : if (e < 2) e = 2;
304 30036 : gl->e = e;
305 30036 : gl->Q = powuu(p, e);
306 30036 : gl->TQ = FpX_red(T,gl->Q);
307 30037 : }
308 :
309 : /* Check whether f is (with high probability) a solution and compute its
310 : * permutation */
311 : static int
312 66123 : poltopermtest(GEN f, struct galois_lift *gl, GEN pf)
313 : {
314 : pari_sp av;
315 66123 : GEN fx, fp, B = gl->gb->bornesol;
316 : long i, j, ll;
317 284380 : for (i = 2; i < lg(f); i++)
318 226538 : if (abscmpii(gel(f,i),B) > 0)
319 : {
320 8278 : if (DEBUGLEVEL>=4) err_printf("GaloisConj: Solution too large.\n");
321 8278 : if (DEBUGLEVEL>=8) err_printf("f=%Ps\n borne=%Ps\n",f,B);
322 8277 : return 0;
323 : }
324 57842 : ll = lg(gl->L);
325 57842 : fp = const_vecsmall(ll-1, 1); /* left on stack */
326 57847 : av = avma;
327 285123 : for (i = 1; i < ll; i++, set_avma(av))
328 : {
329 227451 : fx = FpX_eval(f, gel(gl->L,i), gl->gb->ladicsol);
330 1247631 : for (j = 1; j < ll; j++)
331 1247458 : if (fp[j] && equalii(fx, gel(gl->Lden,j))) { pf[i]=j; fp[j]=0; break; }
332 227446 : if (j == ll) return 0;
333 : }
334 57676 : return 1;
335 : }
336 :
337 : static long
338 60797 : galoisfrobeniustest(GEN aut, struct galois_lift *gl, GEN frob)
339 : {
340 60797 : pari_sp av = avma;
341 60797 : GEN tlift = aut;
342 60797 : if (gl->den != gen_1) tlift = FpX_Fp_mul(tlift, gl->den, gl->Q);
343 60797 : tlift = FpX_center_i(tlift, gl->Q, shifti(gl->Q,-1));
344 60795 : return gc_long(av, poltopermtest(tlift, gl, frob));
345 : }
346 :
347 : static GEN
348 64492 : monoratlift(void *E, GEN S, GEN q)
349 : {
350 64492 : pari_sp ltop = avma;
351 64492 : struct galois_lift *gl = (struct galois_lift *) E;
352 64492 : GEN qm1 = sqrti(shifti(q,-2)), N = gl->Q;
353 64493 : GEN tlift = FpX_ratlift(S, q, qm1, qm1, gl->den);
354 64494 : if (tlift)
355 : {
356 27443 : pari_sp ltop = avma;
357 27443 : GEN frob = cgetg(lg(gl->L), t_VECSMALL);
358 27444 : if(DEBUGLEVEL>=4)
359 0 : err_printf("MonomorphismLift: trying early solution %Ps\n",tlift);
360 27444 : if (gl->den != gen_1)
361 23476 : tlift = FpX_Fp_mul(FpX_red(Q_muli_to_int(tlift, gl->den), N),
362 : Fp_inv(gl->den, N), N);
363 27442 : if (galoisfrobeniustest(tlift, gl, frob))
364 : {
365 27271 : if(DEBUGLEVEL>=4) err_printf("MonomorphismLift: true early solution.\n");
366 27271 : return gerepilecopy(ltop, tlift);
367 : }
368 173 : if(DEBUGLEVEL>=4) err_printf("MonomorphismLift: false early solution.\n");
369 : }
370 37224 : set_avma(ltop);
371 37224 : return NULL;
372 : }
373 :
374 : static GEN
375 32074 : monomorphismratlift(GEN P, GEN S, struct galois_lift *gl)
376 : {
377 : pari_timer ti;
378 32074 : if (DEBUGLEVEL >= 1) timer_start(&ti);
379 32074 : S = ZpX_ZpXQ_liftroot_ea(P,S,gl->T,gl->p, gl->e, (void*)gl, monoratlift);
380 32074 : if (DEBUGLEVEL >= 1) timer_printf(&ti, "monomorphismlift()");
381 32074 : return S;
382 : }
383 :
384 : /* Let T be a polynomial in Z[X] , p a prime number, S in Fp[X]/(T) so
385 : * that T(S)=0 [p,T]. Lift S in S_0 so that T(S_0)=0 [T,p^e]
386 : * Unclean stack */
387 : static GEN
388 32074 : automorphismlift(GEN S, struct galois_lift *gl)
389 : {
390 32074 : return monomorphismratlift(gl->T, S, gl);
391 : }
392 :
393 : static GEN
394 30036 : galoisdolift(struct galois_lift *gl)
395 : {
396 30036 : pari_sp av = avma;
397 30036 : GEN Tp = FpX_red(gl->T, gl->p);
398 30036 : GEN S = FpX_Frobenius(Tp, gl->p);
399 30037 : return gerepileupto(av, automorphismlift(S, gl));
400 : }
401 :
402 : static GEN
403 1449 : galoisdoliftn(struct galois_lift *gl, long e)
404 : {
405 1449 : pari_sp av = avma;
406 1449 : GEN Tp = FpX_red(gl->T, gl->p);
407 1449 : GEN S = FpXQ_autpow(FpX_Frobenius(Tp, gl->p), e, Tp, gl->p);
408 1449 : return gerepileupto(av, automorphismlift(S, gl));
409 : }
410 :
411 : static ulong
412 89 : findpsi(GEN D, ulong pstart, GEN P, GEN S, long o, GEN *Tmod, GEN *Tpsi)
413 : {
414 : forprime_t iter;
415 : ulong p;
416 89 : long n = degpol(P), i, j, g = n/o;
417 89 : GEN psi = cgetg(g+1, t_VECSMALL);
418 89 : u_forprime_init(&iter, pstart, ULONG_MAX);
419 2527 : while ((p = u_forprime_next(&iter)))
420 : {
421 : GEN F, Sp;
422 2527 : long gp = 0;
423 2527 : if (smodis(D, p) == 0)
424 254 : continue;
425 2273 : F = gel(Flx_factor(ZX_to_Flx(P, p), p), 1);
426 2273 : if (lg(F)-1 != g) continue;
427 794 : Sp = RgX_to_Flx(S, p);
428 2089 : for (j = 1; j <= g; j++)
429 : {
430 1869 : GEN Fj = gel(F, j);
431 1869 : GEN Sj = Flx_rem(Sp, Fj, p);
432 1869 : GEN A = Flxq_autpowers(Flx_Frobenius(Fj, p), o, Fj, p);
433 6291 : for (i = 1; i <= o; i++)
434 5717 : if (gequal(Sj, gel(A,i+1)))
435 : {
436 1295 : psi[j] = i; break;
437 : }
438 1869 : if (i > o) break;
439 1295 : if (gp==0 && i==1) gp=j;
440 : }
441 794 : if (gp && j > g)
442 : {
443 : /* Normalize result so that psi[l]=1 */
444 89 : if (gp!=1)
445 : {
446 16 : swap(gel(F,1),gel(F,gp));
447 16 : lswap(uel(psi,1),uel(psi,gp));
448 : }
449 89 : *Tpsi = Flv_Fl_div(psi,psi[g],o);
450 89 : *Tmod = FlxV_to_ZXV(F);
451 89 : return p;
452 : }
453 : }
454 0 : return 0;
455 : }
456 :
457 : static void
458 1757 : inittestlift(GEN plift, GEN Tmod, struct galois_lift *gl,
459 : struct galois_testlift *gt)
460 : {
461 : pari_timer ti;
462 1757 : gt->n = lg(gl->L) - 1;
463 1757 : gt->g = lg(Tmod) - 1;
464 1757 : gt->f = gt->n / gt->g;
465 1757 : gt->bezoutcoeff = bezout_lift_fact(gl->T, Tmod, gl->p, gl->e);
466 1757 : if (DEBUGLEVEL >= 2) timer_start(&ti);
467 1757 : gt->pauto = FpXQ_autpowers(plift, gt->f-1, gl->TQ, gl->Q);
468 1757 : if (DEBUGLEVEL >= 2) timer_printf(&ti, "Frobenius power");
469 1757 : }
470 :
471 : /* Explanation of the intheadlong technique:
472 : * Let C be a bound, B = BITS_IN_LONG, M > C*2^B a modulus and 0 <= a_i < M for
473 : * i=1,...,n where n < 2^B. We want to test if there exist k,l, |k| < C < M/2^B,
474 : * such that sum a_i = k + l*M
475 : * We write a_i*2^B/M = b_i+c_i with b_i integer and 0<=c_i<1, so that
476 : * sum b_i - l*2^B = k*2^B/M - sum c_i
477 : * Since -1 < k*2^B/M < 1 and 0<=c_i<1, it follows that
478 : * -n-1 < sum b_i - l*2^B < 1 i.e. -n <= sum b_i -l*2^B <= 0
479 : * So we compute z = - sum b_i [mod 2^B] and check if 0 <= z <= n. */
480 :
481 : /* Assume 0 <= x < mod. */
482 : static ulong
483 1361212 : intheadlong(GEN x, GEN mod)
484 : {
485 1361212 : pari_sp av = avma;
486 1361212 : long res = (long) itou(divii(shifti(x,BITS_IN_LONG),mod));
487 1361212 : return gc_long(av,res);
488 : }
489 : static GEN
490 58533 : vecheadlong(GEN W, GEN mod)
491 : {
492 58533 : long i, l = lg(W);
493 58533 : GEN V = cgetg(l, t_VECSMALL);
494 1380880 : for(i=1; i<l; i++) V[i] = intheadlong(gel(W,i), mod);
495 58533 : return V;
496 : }
497 : static GEN
498 5755 : matheadlong(GEN W, GEN mod)
499 : {
500 5755 : long i, l = lg(W);
501 5755 : GEN V = cgetg(l,t_MAT);
502 64288 : for(i=1; i<l; i++) gel(V,i) = vecheadlong(gel(W,i), mod);
503 5755 : return V;
504 : }
505 : static ulong
506 38865 : polheadlong(GEN P, long n, GEN mod)
507 : {
508 38865 : return (lg(P)>n+2)? intheadlong(gel(P,n+2),mod): 0;
509 : }
510 :
511 : #define headlongisint(Z,N) (-(ulong)(Z)<=(ulong)(N))
512 :
513 : static long
514 2002 : frobeniusliftall(GEN sg, long el, GEN *psi, struct galois_lift *gl,
515 : struct galois_testlift *gt, GEN frob)
516 : {
517 2002 : pari_sp av, ltop2, ltop = avma;
518 2002 : long i,j,k, c = lg(sg)-1, n = lg(gl->L)-1, m = gt->g, d = m / c;
519 : GEN pf, u, v, C, Cd, SG, cache;
520 2002 : long N1, N2, R1, Ni, ord = gt->f, c_idx = gt->g-1;
521 : ulong headcache;
522 2002 : long hop = 0;
523 : GEN NN, NQ;
524 : pari_timer ti;
525 :
526 2002 : *psi = pf = cgetg(m, t_VECSMALL);
527 2002 : ltop2 = avma;
528 2002 : NN = diviiexact(mpfact(m), mului(c, powiu(mpfact(d), c)));
529 2002 : if (DEBUGLEVEL >= 4)
530 0 : err_printf("GaloisConj: I will try %Ps permutations\n", NN);
531 2002 : N1=10000000;
532 2002 : NQ=divis_rem(NN,N1,&R1);
533 2002 : if (abscmpiu(NQ,1000000000)>0)
534 : {
535 0 : pari_warn(warner,"Combinatorics too hard : would need %Ps tests!\n"
536 : "I will skip it, but it may induce an infinite loop",NN);
537 0 : *psi = NULL; return gc_long(ltop,0);
538 : }
539 2002 : N2=itos(NQ); if(!N2) N1=R1;
540 2002 : if (DEBUGLEVEL>=4) timer_start(&ti);
541 2002 : set_avma(ltop2);
542 2002 : C = gt->C;
543 2002 : Cd= gt->Cd;
544 2002 : v = FpXQ_mul(gel(gt->pauto, 1+el%ord), gel(gt->bezoutcoeff, m),gl->TQ,gl->Q);
545 2002 : if (gl->den != gen_1) v = FpX_Fp_mul(v, gl->den, gl->Q);
546 2002 : SG = cgetg(lg(sg),t_VECSMALL);
547 6552 : for(i=1; i<lg(SG); i++) SG[i] = (el*sg[i])%ord + 1;
548 2002 : cache = cgetg(m+1,t_VECSMALL); cache[m] = polheadlong(v,1,gl->Q);
549 2002 : headcache = polheadlong(v,2,gl->Q);
550 5306 : for (i = 1; i < m; i++) pf[i] = 1 + i/d;
551 2002 : av = avma;
552 2002 : for (Ni = 0, i = 0; ;i++)
553 : {
554 301422 : for (j = c_idx ; j > 0; j--)
555 : {
556 236828 : long h = SG[pf[j]];
557 236828 : if (!mael(C,h,j))
558 : {
559 5006 : pari_sp av3 = avma;
560 5006 : GEN r = FpXQ_mul(gel(gt->pauto,h), gel(gt->bezoutcoeff,j),gl->TQ,gl->Q);
561 5006 : if (gl->den != gen_1) r = FpX_Fp_mul(r, gl->den, gl->Q);
562 5006 : gmael(C,h,j) = gclone(r);
563 5006 : mael(Cd,h,j) = polheadlong(r,1,gl->Q);
564 5006 : set_avma(av3);
565 : }
566 236828 : uel(cache,j) = uel(cache,j+1)+umael(Cd,h,j);
567 : }
568 64594 : if (headlongisint(uel(cache,1),n))
569 : {
570 3360 : ulong head = headcache;
571 33215 : for (j = 1; j < m; j++) head += polheadlong(gmael(C,SG[pf[j]],j),2,gl->Q);
572 3360 : if (headlongisint(head,n))
573 : {
574 1722 : u = v;
575 4193 : for (j = 1; j < m; j++) u = ZX_add(u, gmael(C,SG[pf[j]],j));
576 1722 : u = FpX_center_i(FpX_red(u, gl->Q), gl->Q, shifti(gl->Q,-1));
577 1722 : if (poltopermtest(u, gl, frob))
578 : {
579 1715 : if (DEBUGLEVEL >= 4)
580 : {
581 0 : timer_printf(&ti, "");
582 0 : err_printf("GaloisConj: %d hops on %Ps tests\n",hop,addis(mulss(Ni,N1),i));
583 : }
584 1715 : return gc_long(ltop2,1);
585 : }
586 7 : if (DEBUGLEVEL >= 4) err_printf("M");
587 : }
588 1638 : else hop++;
589 : }
590 62879 : if (DEBUGLEVEL >= 4 && i % maxss(N1/20, 1) == 0)
591 0 : timer_printf(&ti, "GaloisConj:Testing %Ps", addis(mulss(Ni,N1),i));
592 62879 : set_avma(av);
593 62879 : if (i == N1-1)
594 : {
595 287 : if (Ni==N2-1) N1 = R1;
596 287 : if (Ni==N2) break;
597 0 : Ni++; i = 0;
598 0 : if (DEBUGLEVEL>=4) timer_start(&ti);
599 : }
600 170932 : for (j = 2; j < m && pf[j-1] >= pf[j]; j++)
601 : /*empty*/; /* to kill clang Warning */
602 101702 : for (k = 1; k < j-k && pf[k] != pf[j-k]; k++) { lswap(pf[k], pf[j-k]); }
603 109684 : for (k = j - 1; pf[k] >= pf[j]; k--)
604 : /*empty*/;
605 62592 : lswap(pf[j], pf[k]); c_idx = j;
606 : }
607 287 : if (DEBUGLEVEL>=4) err_printf("GaloisConj: not found, %d hops \n",hop);
608 287 : *psi = NULL; return gc_long(ltop,0);
609 : }
610 :
611 : /* Compute the test matrix for the i-th line of V. Clone. */
612 : static GEN
613 5755 : Vmatrix(long i, struct galois_test *td)
614 : {
615 5755 : pari_sp av = avma;
616 5755 : GEN m = gclone( matheadlong(FpC_FpV_mul(td->L, row(td->M,i), td->ladic), td->ladic));
617 5755 : set_avma(av); return m;
618 : }
619 :
620 : /* Initialize galois_test */
621 : static void
622 5517 : inittest(GEN L, GEN M, GEN borne, GEN ladic, struct galois_test *td)
623 : {
624 5517 : long i, n = lg(L)-1;
625 5517 : GEN p = cgetg(n+1, t_VECSMALL);
626 5517 : if (DEBUGLEVEL >= 8) err_printf("GaloisConj: Init Test\n");
627 5517 : td->order = p;
628 44994 : for (i = 1; i <= n-2; i++) p[i] = i+2;
629 5517 : p[n-1] = 1; p[n] = 2;
630 5517 : td->borne = borne;
631 5517 : td->lborne = subii(ladic, borne);
632 5517 : td->ladic = ladic;
633 5517 : td->L = L;
634 5517 : td->M = M;
635 5517 : td->TM = shallowtrans(M);
636 5517 : td->PV = zero_zv(n);
637 5517 : gel(td->PV, 2) = Vmatrix(2, td);
638 5517 : }
639 :
640 : /* Free clones stored inside galois_test */
641 : static void
642 5517 : freetest(struct galois_test *td)
643 : {
644 : long i;
645 56028 : for (i = 1; i < lg(td->PV); i++)
646 50511 : if (td->PV[i]) { gunclone(gel(td->PV,i)); td->PV[i] = 0; }
647 5517 : }
648 :
649 : /* Check if the integer P seen as a p-adic number is close to an integer less
650 : * than td->borne in absolute value */
651 : static long
652 94764 : padicisint(GEN P, struct galois_test *td)
653 : {
654 94764 : pari_sp ltop = avma;
655 94764 : GEN U = modii(P, td->ladic);
656 94764 : long r = cmpii(U, td->borne) <= 0 || cmpii(U, td->lborne) >= 0;
657 94764 : return gc_long(ltop, r);
658 : }
659 :
660 : /* Check if the permutation pf is valid according to td.
661 : * If not, update td to make subsequent test faster (hopefully) */
662 : static long
663 117388 : galois_test_perm(struct galois_test *td, GEN pf)
664 : {
665 117388 : pari_sp av = avma;
666 117388 : long i, j, n = lg(td->L)-1;
667 117388 : GEN V, P = NULL;
668 213349 : for (i = 1; i < n; i++)
669 : {
670 206428 : long ord = td->order[i];
671 206428 : GEN PW = gel(td->PV, ord);
672 206428 : if (PW)
673 : {
674 111664 : ulong head = umael(PW,1,pf[1]);
675 7121072 : for (j = 2; j <= n; j++) head += umael(PW,j,pf[j]);
676 111664 : if (!headlongisint(head,n)) break;
677 : } else
678 : {
679 94764 : if (!P) P = vecpermute(td->L, pf);
680 94764 : V = FpV_dotproduct(gel(td->TM,ord), P, td->ladic);
681 94764 : if (!padicisint(V, td)) {
682 238 : gel(td->PV, ord) = Vmatrix(ord, td);
683 238 : if (DEBUGLEVEL >= 4) err_printf("M");
684 238 : break;
685 : }
686 : }
687 : }
688 117388 : if (i == n) return gc_long(av,1);
689 110467 : if (DEBUGLEVEL >= 4) err_printf("%d.", i);
690 110467 : if (i > 1)
691 : {
692 742 : long z = td->order[i];
693 1526 : for (j = i; j > 1; j--) td->order[j] = td->order[j-1];
694 742 : td->order[1] = z;
695 742 : if (DEBUGLEVEL >= 8) err_printf("%Ps", td->order);
696 : }
697 110467 : return gc_long(av,0);
698 : }
699 : /*Compute a*b/c when a*b will overflow*/
700 : static long
701 0 : muldiv(long a,long b,long c)
702 : {
703 0 : return (long)((double)a*(double)b/c);
704 : }
705 :
706 : /* F = cycle decomposition of sigma,
707 : * B = cycle decomposition of cl(tau).
708 : * Check all permutations pf who can possibly correspond to tau, such that
709 : * tau*sigma*tau^-1 = sigma^s and tau^d = sigma^t, where d = ord cl(tau)
710 : * x: vector of choices,
711 : * G: vector allowing linear access to elts of F.
712 : * Choices multiple of e are not changed. */
713 : static GEN
714 8979 : testpermutation(GEN F, GEN B, GEN x, long s, long e, long cut,
715 : struct galois_test *td)
716 : {
717 8979 : pari_sp av, avm = avma;
718 : long a, b, c, d, n, p1, p2, p3, p4, p5, p6, l1, l2, N1, N2, R1;
719 8979 : long i, j, cx, hop = 0, start = 0;
720 : GEN pf, ar, G, W, NN, NQ;
721 : pari_timer ti;
722 8979 : if (DEBUGLEVEL >= 1) timer_start(&ti);
723 8979 : a = lg(F)-1; b = lg(gel(F,1))-1;
724 8979 : c = lg(B)-1; d = lg(gel(B,1))-1;
725 8979 : n = a*b;
726 8979 : s = (b+s) % b;
727 8979 : pf = cgetg(n+1, t_VECSMALL);
728 8979 : av = avma;
729 8979 : ar = cgetg(a+2, t_VECSMALL); ar[a+1]=0;
730 8979 : G = cgetg(a+1, t_VECSMALL);
731 8979 : W = gel(td->PV, td->order[n]);
732 58922 : for (cx=1, i=1, j=1; cx <= a; cx++, i++)
733 : {
734 49943 : gel(G,cx) = gel(F, coeff(B,i,j));
735 49943 : if (i == d) { i = 0; j++; }
736 : }
737 8979 : NN = divis(powuu(b, c * (d - d/e)), cut);
738 8979 : if (DEBUGLEVEL>=4) err_printf("GaloisConj: I will try %Ps permutations\n", NN);
739 8979 : N1 = 1000000;
740 8979 : NQ = divis_rem(NN,N1,&R1);
741 8979 : if (abscmpiu(NQ,100000000)>0)
742 : {
743 0 : set_avma(avm);
744 0 : pari_warn(warner,"Combinatorics too hard: would need %Ps tests!\n"
745 : "I'll skip it but you will get a partial result...",NN);
746 0 : return identity_perm(n);
747 : }
748 8979 : N2 = itos(NQ);
749 11331 : for (l2 = 0; l2 <= N2; l2++)
750 : {
751 8979 : long nbiter = (l2<N2) ? N1: R1;
752 8979 : if (DEBUGLEVEL >= 2 && N2) err_printf("%d%% ", muldiv(l2,100,N2));
753 10148269 : for (l1 = 0; l1 < nbiter; l1++)
754 : {
755 10145917 : if (start)
756 : {
757 18145618 : for (i=1, j=e; i < a;)
758 : {
759 18145618 : if ((++(x[i])) != b) break;
760 8008680 : x[i++] = 0;
761 8008680 : if (i == j) { i++; j += e; }
762 : }
763 : }
764 8979 : else { start=1; i = a-1; }
765 : /* intheadlong test: overflow in + is OK, we compute mod 2^BIL */
766 46092716 : for (p1 = i+1, p5 = p1%d - 1 ; p1 >= 1; p1--, p5--) /* p5 = (p1%d) - 1 */
767 : {
768 : GEN G1, G6;
769 35946799 : ulong V = 0;
770 35946799 : if (p5 == - 1) { p5 = d - 1; p6 = p1 + 1 - d; } else p6 = p1 + 1;
771 35946799 : G1 = gel(G,p1); G6 = gel(G,p6);
772 35946799 : p4 = p5 ? x[p1-1] : 0;
773 109415360 : for (p2 = 1+p4, p3 = 1 + x[p1]; p2 <= b; p2++)
774 : {
775 73468561 : V += umael(W,uel(G6,p3),uel(G1,p2));
776 73468561 : p3 += s; if (p3 > b) p3 -= b;
777 : }
778 35946799 : p3 = 1 + x[p1] - s; if (p3 <= 0) p3 += b;
779 50259756 : for (p2 = p4; p2 >= 1; p2--)
780 : {
781 14312957 : V += umael(W,uel(G6,p3),uel(G1,p2));
782 14312957 : p3 -= s; if (p3 <= 0) p3 += b;
783 : }
784 35946799 : uel(ar,p1) = uel(ar,p1+1) + V;
785 : }
786 10145917 : if (!headlongisint(uel(ar,1),n)) continue;
787 :
788 : /* intheadlong succeeds. Full computation */
789 3511077 : for (p1=1, p5=d; p1 <= a; p1++, p5++)
790 : {
791 3393983 : if (p5 == d) { p5 = 0; p4 = 0; } else p4 = x[p1-1];
792 3393983 : if (p5 == d-1) p6 = p1+1-d; else p6 = p1+1;
793 9517232 : for (p2 = 1+p4, p3 = 1 + x[p1]; p2 <= b; p2++)
794 : {
795 6123249 : pf[mael(G,p1,p2)] = mael(G,p6,p3);
796 6123249 : p3 += s; if (p3 > b) p3 -= b;
797 : }
798 3393983 : p3 = 1 + x[p1] - s; if (p3 <= 0) p3 += b;
799 4417758 : for (p2 = p4; p2 >= 1; p2--)
800 : {
801 1023775 : pf[mael(G,p1,p2)] = mael(G,p6,p3);
802 1023775 : p3 -= s; if (p3 <= 0) p3 += b;
803 : }
804 : }
805 117094 : if (galois_test_perm(td, pf))
806 : {
807 6627 : if (DEBUGLEVEL >= 1)
808 : {
809 0 : GEN nb = addis(mulss(l2,N1),l1);
810 0 : timer_printf(&ti, "testpermutation(%Ps)", nb);
811 0 : if (DEBUGLEVEL >= 2 && hop)
812 0 : err_printf("GaloisConj: %d hop over %Ps iterations\n", hop, nb);
813 : }
814 6627 : set_avma(av); return pf;
815 : }
816 110467 : hop++;
817 : }
818 : }
819 2352 : if (DEBUGLEVEL >= 1)
820 : {
821 0 : timer_printf(&ti, "testpermutation(%Ps)", NN);
822 0 : if (DEBUGLEVEL >= 2 && hop)
823 0 : err_printf("GaloisConj: %d hop over %Ps iterations\n", hop, NN);
824 : }
825 2352 : return gc_NULL(avm);
826 : }
827 :
828 : /* List of subgroups of (Z/mZ)^* whose order divide o, and return the list
829 : * of their elements, sorted by increasing order */
830 : static GEN
831 1764 : listznstarelts(long m, long o)
832 : {
833 1764 : pari_sp av = avma;
834 : GEN L, zn, zns;
835 : long i, phi, ind, l;
836 1764 : if (m == 2) retmkvec(mkvecsmall(1));
837 1750 : zn = znstar(stoi(m));
838 1750 : phi = itos(gel(zn,1));
839 1750 : o = ugcd(o, phi); /* do we impose this on input ? */
840 1750 : zns = znstar_small(zn);
841 1750 : L = cgetg(o+1, t_VEC);
842 5782 : for (i=1,ind = phi; ind; ind -= phi/o, i++) /* by *decreasing* exact index */
843 4032 : gel(L,i) = subgrouplist(gel(zn,2), mkvec(utoipos(ind)));
844 1750 : L = shallowconcat1(L); l = lg(L);
845 5502 : for (i = 1; i < l; i++) gel(L,i) = znstar_hnf_elts(zns, gel(L,i));
846 1750 : return gerepilecopy(av, L);
847 : }
848 :
849 : /* A sympol is a symmetric polynomial
850 : *
851 : * Currently sympol are couple of t_VECSMALL [v,w]
852 : * v[1]...v[k], w[1]...w[k] represent the polynomial sum(i=1,k,v[i]*s_w[i])
853 : * where s_i(X_1,...,X_n) = sum(j=1,n,X_j^i) */
854 :
855 : static GEN
856 17760 : Flm_newtonsum(GEN M, ulong e, ulong p)
857 : {
858 17760 : long f = lg(M), g = lg(gel(M,1)), i, j;
859 17760 : GEN NS = cgetg(f, t_VECSMALL);
860 83857 : for(i=1; i<f; i++)
861 : {
862 66097 : ulong s = 0;
863 66097 : GEN Mi = gel(M,i);
864 294416 : for(j = 1; j < g; j++)
865 228319 : s = Fl_add(s, Fl_powu(uel(Mi,j), e, p), p);
866 66097 : uel(NS,i) = s;
867 : }
868 17760 : return NS;
869 : }
870 :
871 : static GEN
872 11292 : Flv_sympol_eval(GEN v, GEN NS, ulong p)
873 : {
874 11292 : pari_sp av = avma;
875 11292 : long i, l = lg(v);
876 11292 : GEN S = Flv_Fl_mul(gel(NS,1), uel(v,1), p);
877 11937 : for (i=2; i<l; i++)
878 645 : if (v[i]) S = Flv_add(S, Flv_Fl_mul(gel(NS,i), uel(v,i), p), p);
879 11292 : return gerepileuptoleaf(av, S);
880 : }
881 :
882 : static GEN
883 11292 : sympol_eval_newtonsum(long e, GEN O, GEN mod)
884 : {
885 11292 : long f = lg(O), g = lg(gel(O,1)), i, j;
886 11292 : GEN PL = cgetg(f, t_COL);
887 55409 : for(i=1; i<f; i++)
888 : {
889 44117 : pari_sp av = avma;
890 44117 : GEN s = gen_0;
891 180756 : for(j=1; j<g; j++) s = addii(s, Fp_powu(gmael(O,i,j), e, mod));
892 44117 : gel(PL,i) = gerepileuptoint(av, remii(s,mod));
893 : }
894 11292 : return PL;
895 : }
896 :
897 : static GEN
898 11215 : sympol_eval(GEN sym, GEN O, GEN mod)
899 : {
900 11215 : pari_sp av = avma;
901 : long i;
902 11215 : GEN v = gel(sym,1), w = gel(sym,2);
903 11215 : GEN S = gen_0;
904 22998 : for (i=1; i<lg(v); i++)
905 11783 : if (v[i]) S = gadd(S, gmulsg(v[i], sympol_eval_newtonsum(w[i], O, mod)));
906 11215 : return gerepileupto(av, S);
907 : }
908 :
909 : /* Let sigma be an automorphism of L (as a polynomial with rational coefs)
910 : * Let 'sym' be a symmetric polynomial defining alpha in L.
911 : * We have alpha = sym(x,sigma(x),,,sigma^(g-1)(x)). Compute alpha mod p */
912 : static GEN
913 5440 : sympol_aut_evalmod(GEN sym, long g, GEN sigma, GEN Tp, GEN p)
914 : {
915 5440 : pari_sp ltop=avma;
916 5440 : long i, j, npows = brent_kung_optpow(degpol(Tp)-1, g-1, 1);
917 5440 : GEN s, f, pows, v = zv_to_ZV(gel(sym,1)), w = zv_to_ZV(gel(sym,2));
918 5440 : sigma = RgX_to_FpX(sigma, p);
919 5440 : pows = FpXQ_powers(sigma,npows,Tp,p);
920 5440 : f = pol_x(varn(sigma));
921 5440 : s = pol_0(varn(sigma));
922 22312 : for(i=1; i<=g;i++)
923 : {
924 16872 : if (i > 1) f = FpX_FpXQV_eval(f,pows,Tp,p);
925 34122 : for(j=1; j<lg(v); j++)
926 17250 : s = FpX_add(s, FpX_Fp_mul(FpXQ_pow(f,gel(w,j),Tp,p),gel(v,j),p),p);
927 : }
928 5440 : return gerepileupto(ltop, s);
929 : }
930 :
931 : /* Let Sp be as computed with sympol_aut_evalmod
932 : * Let Tmod be the factorisation of T mod p.
933 : * Return the factorisation of the minimal polynomial of S mod p w.r.t. Tmod */
934 : static GEN
935 5440 : fixedfieldfactmod(GEN Sp, GEN p, GEN Tmod)
936 : {
937 5440 : long i, l = lg(Tmod);
938 5440 : GEN F = cgetg(l,t_VEC);
939 18330 : for(i=1; i<l; i++)
940 : {
941 12890 : GEN Ti = gel(Tmod,i);
942 12890 : gel(F,i) = FpXQ_minpoly(FpX_rem(Sp,Ti,p), Ti,p);
943 : }
944 5440 : return F;
945 : }
946 :
947 : static GEN
948 11215 : fixedfieldsurmer(ulong l, GEN NS, GEN W)
949 : {
950 11215 : const long step=3;
951 11215 : long i, j, n = lg(W)-1, m = 1L<<((n-1)<<1);
952 11215 : GEN sym = cgetg(n+1,t_VECSMALL);
953 11783 : for (j=1;j<n;j++) sym[j] = step;
954 11215 : sym[n] = 0;
955 11215 : if (DEBUGLEVEL>=4) err_printf("FixedField: Weight: %Ps\n",W);
956 11292 : for (i=0; i<m; i++)
957 : {
958 11292 : pari_sp av = avma;
959 : GEN L;
960 11860 : for (j=1; sym[j]==step; j++) sym[j]=0;
961 11292 : sym[j]++;
962 11292 : if (DEBUGLEVEL>=6) err_printf("FixedField: Sym: %Ps\n",sym);
963 11292 : L = Flv_sympol_eval(sym, NS, l);
964 11292 : if (!vecsmall_is1to1(L)) { set_avma(av); continue; }
965 11215 : return mkvec2(sym,W);
966 : }
967 0 : return NULL;
968 : }
969 :
970 : /*Check whether the line of NS are pair-wise distinct.*/
971 : static long
972 11783 : sympol_is1to1_lg(GEN NS, long n)
973 : {
974 11783 : long i, j, k, l = lgcols(NS);
975 54552 : for (i=1; i<l; i++)
976 172873 : for(j=i+1; j<l; j++)
977 : {
978 133893 : for(k=1; k<n; k++)
979 133325 : if (mael(NS,k,j)!=mael(NS,k,i)) break;
980 130104 : if (k>=n) return 0;
981 : }
982 11215 : return 1;
983 : }
984 :
985 : /* Let O a set of orbits of roots (see fixedfieldorbits) modulo mod,
986 : * l | mod and p two prime numbers. Return a vector [sym,s,P] where:
987 : * sym is a sympol, s is the set of images of sym on O and
988 : * P is the polynomial with roots s. */
989 : static GEN
990 11215 : fixedfieldsympol(GEN O, ulong l)
991 : {
992 11215 : pari_sp ltop=avma;
993 11215 : const long n=(BITS_IN_LONG>>1)-1;
994 11215 : GEN NS = cgetg(n+1,t_MAT), sym = NULL, W = cgetg(n+1,t_VECSMALL);
995 11215 : long i, e=1;
996 11215 : if (DEBUGLEVEL>=4)
997 0 : err_printf("FixedField: Size: %ldx%ld\n",lg(O)-1,lg(gel(O,1))-1);
998 11215 : O = ZM_to_Flm(O,l);
999 22998 : for (i=1; !sym && i<=n; i++)
1000 : {
1001 11783 : GEN L = Flm_newtonsum(O, e++, l);
1002 11783 : if (lg(O)>2)
1003 17662 : while (vecsmall_isconst(L)) L = Flm_newtonsum(O, e++, l);
1004 11783 : W[i] = e-1; gel(NS,i) = L;
1005 11783 : if (sympol_is1to1_lg(NS,i+1))
1006 11215 : sym = fixedfieldsurmer(l,NS,vecsmall_shorten(W,i));
1007 : }
1008 11215 : if (!sym) pari_err_BUG("fixedfieldsympol [p too small]");
1009 11215 : if (DEBUGLEVEL>=2) err_printf("FixedField: Found: %Ps\n",gel(sym,1));
1010 11215 : return gerepilecopy(ltop,sym);
1011 : }
1012 :
1013 : /* Let O a set of orbits as indices and L the corresponding roots.
1014 : * Return the set of orbits as roots. */
1015 : static GEN
1016 11215 : fixedfieldorbits(GEN O, GEN L)
1017 : {
1018 11215 : GEN S = cgetg(lg(O), t_MAT);
1019 : long i;
1020 53932 : for (i = 1; i < lg(O); i++) gel(S,i) = vecpermute(L, gel(O,i));
1021 11215 : return S;
1022 : }
1023 :
1024 : static GEN
1025 1057 : fixedfieldinclusion(GEN O, GEN PL)
1026 : {
1027 1057 : long i, j, f = lg(O)-1, g = lg(gel(O,1))-1;
1028 1057 : GEN S = cgetg(f*g + 1, t_COL);
1029 7112 : for (i = 1; i <= f; i++)
1030 : {
1031 6055 : GEN Oi = gel(O,i);
1032 24948 : for (j = 1; j <= g; j++) gel(S, Oi[j]) = gel(PL, i);
1033 : }
1034 1057 : return S;
1035 : }
1036 :
1037 : /* Polynomial attached to a vector of conjugates. Not stack clean */
1038 : static GEN
1039 51590 : vectopol(GEN v, GEN M, GEN den , GEN mod, GEN mod2, long x)
1040 : {
1041 51590 : long l = lg(v)+1, i;
1042 51590 : GEN z = cgetg(l,t_POL);
1043 51591 : z[1] = evalsigne(1)|evalvarn(x);
1044 395662 : for (i=2; i<l; i++)
1045 344072 : gel(z,i) = gdiv(centermodii(ZMrow_ZC_mul(M,v,i-1), mod, mod2), den);
1046 51590 : return normalizepol_lg(z, l);
1047 : }
1048 :
1049 : /* Polynomial associate to a permutation of the roots. Not stack clean */
1050 : static GEN
1051 49994 : permtopol(GEN p, GEN L, GEN M, GEN den, GEN mod, GEN mod2, long x)
1052 : {
1053 49994 : if (lg(p) != lg(L)) pari_err_TYPE("permtopol [permutation]", p);
1054 49994 : return vectopol(vecpermute(L,p), M, den, mod, mod2, x);
1055 : }
1056 :
1057 : static GEN
1058 8761 : galoisvecpermtopol(GEN gal, GEN vec, GEN mod, GEN mod2)
1059 : {
1060 8761 : long i, l = lg(vec);
1061 8761 : long v = varn(gal_get_pol(gal));
1062 8761 : GEN L = gal_get_roots(gal);
1063 8761 : GEN M = gal_get_invvdm(gal);
1064 8761 : GEN P = cgetg(l, t_MAT);
1065 45739 : for (i=1; i<l; i++)
1066 36978 : gel(P, i) = vecpermute(L,gel(vec,i));
1067 8761 : P = RgM_to_RgXV(FpM_center(FpM_mul(M, P, mod), mod, mod2), v);
1068 8761 : return gdiv(P, gal_get_den(gal));
1069 : }
1070 :
1071 : static void
1072 66756 : notgalois(long p, struct galois_analysis *ga)
1073 : {
1074 66756 : if (DEBUGLEVEL >= 2) err_printf("GaloisAnalysis:non Galois for p=%ld\n", p);
1075 66756 : ga->p = p;
1076 66756 : ga->deg = 0;
1077 66756 : }
1078 :
1079 : /*Gather information about the group*/
1080 : static long
1081 96789 : init_group(long n, long np, GEN Fp, GEN Fe, long *porder)
1082 : {
1083 96789 : const long prim_nonwss_orders[] = { 48,56,60,72,75,80,196,200,216 };
1084 96789 : long i, phi_order = 1, order = 1, group = 0;
1085 : ulong p;
1086 :
1087 : /* non-WSS groups of this order? */
1088 967699 : for (i=0; i < (long)numberof(prim_nonwss_orders); i++)
1089 870931 : if (n % prim_nonwss_orders[i] == 0) { group |= ga_non_wss; break; }
1090 96789 : if (np == 2 && Fp[2] == 3 && Fe[2] == 1 && Fe[1] > 2) group |= ga_ext_2;
1091 :
1092 143640 : for (i = np; i > 0; i--)
1093 : {
1094 102642 : long p = Fp[i];
1095 102642 : if (phi_order % p == 0) { group |= ga_all_normal; break; }
1096 96839 : order *= p; phi_order *= p-1;
1097 96839 : if (Fe[i] > 1) break;
1098 : }
1099 96789 : if (uisprimepower(n, &p) || n == 135) group |= ga_all_nilpotent;
1100 96788 : if (n <= 104) group |= ga_easy; /* no need to use polynomial algo */
1101 96788 : *porder = order; return group;
1102 : }
1103 :
1104 : /*is a "better" than b ? (if so, update karma) */
1105 : static int
1106 163340 : improves(long a, long b, long plift, long p, long n, long *karma)
1107 : {
1108 163340 : if (!plift || a > b) { *karma = ugcd(p-1,n); return 1; }
1109 159697 : if (a == b) {
1110 156987 : long k = ugcd(p-1,n);
1111 156990 : if (k > *karma) { *karma = k; return 1; }
1112 : }
1113 141751 : return 0; /* worse */
1114 : }
1115 :
1116 : /* return 0 if not galois or not wss */
1117 : static int
1118 96789 : galoisanalysis(GEN T, struct galois_analysis *ga, long calcul_l, GEN bad)
1119 : {
1120 96789 : pari_sp ltop = avma, av;
1121 96789 : long group, linf, n, p, i, karma = 0;
1122 : GEN F, Fp, Fe, Fpe, O;
1123 : long np, order, plift, nbmax, nbtest, deg;
1124 : pari_timer ti;
1125 : forprime_t S;
1126 96789 : if (DEBUGLEVEL >= 1) timer_start(&ti);
1127 96789 : n = degpol(T);
1128 96789 : O = zero_zv(n);
1129 96788 : F = factoru_pow(n);
1130 96789 : Fp = gel(F,1); np = lg(Fp)-1;
1131 96789 : Fe = gel(F,2);
1132 96789 : Fpe= gel(F,3);
1133 96789 : group = init_group(n, np, Fp, Fe, &order);
1134 :
1135 : /*Now we study the orders of the Frobenius elements*/
1136 96788 : deg = Fp[np]; /* largest prime | n */
1137 96788 : plift = 0;
1138 96788 : nbtest = 0;
1139 96788 : nbmax = 8+(n>>1);
1140 96788 : u_forprime_init(&S, n*maxss(expu(n)-3, 2), ULONG_MAX);
1141 96790 : av = avma;
1142 535214 : while (!plift || (nbtest < nbmax && (nbtest <=8 || order < (n>>1)))
1143 30307 : || ((n == 24 || n==36) && O[6] == 0 && O[4] == 0)
1144 30307 : || ((group&ga_non_wss) && order == Fp[np]))
1145 : {
1146 504903 : long d, o, norm_o = 1;
1147 : GEN D, Tp;
1148 :
1149 504903 : if ((group&ga_non_wss) && nbtest >= 3*nbmax) break; /* in all cases */
1150 504903 : nbtest++; set_avma(av);
1151 504902 : p = u_forprime_next(&S);
1152 504898 : if (!p) pari_err_OVERFLOW("galoisanalysis [ran out of primes]");
1153 544979 : if (bad && dvdiu(bad, p)) continue;
1154 504898 : Tp = ZX_to_Flx(T,p);
1155 504869 : if (!Flx_is_squarefree(Tp,p)) { if (!--nbtest) nbtest = 1; continue; }
1156 :
1157 464790 : D = Flx_nbfact_by_degree(Tp, &d, p);
1158 464809 : o = n / d; /* d factors, all should have degree o */
1159 464809 : if (D[o] != d) { notgalois(p, ga); return gc_bool(ltop,0); }
1160 :
1161 398346 : if (!O[o]) O[o] = p;
1162 398346 : if (o % deg) goto ga_end; /* NB: deg > 1 */
1163 246198 : if ((group&ga_all_normal) && o < order) goto ga_end;
1164 :
1165 : /*Frob_p has order o > 1, find a power which generates a normal subgroup*/
1166 246044 : if (o * Fp[1] >= n)
1167 230265 : norm_o = o; /*subgroups of smallest index are normal*/
1168 : else
1169 : {
1170 19230 : for (i = np; i > 0; i--)
1171 : {
1172 19229 : if (o % Fpe[i]) break;
1173 3451 : norm_o *= Fpe[i];
1174 : }
1175 : }
1176 : /* Frob_p^(o/norm_o) generates a normal subgroup of order norm_o */
1177 246044 : if (norm_o != 1)
1178 : {
1179 233716 : if (!(group&ga_all_normal) || o > order)
1180 82704 : karma = ugcd(p-1,n);
1181 151012 : else if (!improves(norm_o, deg, plift,p,n, &karma)) goto ga_end;
1182 : /* karma0=0, deg0<=norm_o -> the first improves() returns 1 */
1183 101974 : deg = norm_o; group |= ga_all_normal; /* STORE */
1184 : }
1185 12328 : else if (group&ga_all_normal) goto ga_end;
1186 12328 : else if (!improves(o, order, plift,p,n, &karma)) goto ga_end;
1187 :
1188 104301 : order = o; plift = p; /* STORE */
1189 398353 : ga_end:
1190 398353 : if (DEBUGLEVEL >= 5)
1191 0 : err_printf("GaloisAnalysis:Nbtest=%ld,p=%ld,o=%ld,n_o=%d,best p=%ld,ord=%ld,k=%ld\n", nbtest, p, o, norm_o, plift, order,karma);
1192 : }
1193 : /* To avoid looping on non-WSS group.
1194 : * TODO: check for large groups. Would it be better to disable this check if
1195 : * we are in a good case (ga_all_normal && !(ga_ext_2) (e.g. 60)) ?*/
1196 30311 : ga->p = plift;
1197 30311 : if (!plift || ((group&ga_non_wss) && order == Fp[np]))
1198 : {
1199 1 : if (DEBUGLEVEL)
1200 0 : pari_warn(warner,"Galois group probably not weakly super solvable");
1201 0 : return 0;
1202 : }
1203 30310 : linf = 2*n*usqrt(n);
1204 30310 : if (calcul_l && O[1] <= linf)
1205 : {
1206 : pari_sp av2;
1207 : forprime_t S2;
1208 : ulong p;
1209 6918 : u_forprime_init(&S2, linf+1,ULONG_MAX);
1210 6918 : av2 = avma;
1211 95628 : while ((p = u_forprime_next(&S2)))
1212 : { /*find a totally split prime l > linf*/
1213 95628 : GEN Tp = ZX_to_Flx(T, p);
1214 95628 : long nb = Flx_nbroots(Tp, p);
1215 95628 : if (nb == n) { O[1] = p; break; }
1216 88990 : if (nb && Flx_is_squarefree(Tp,p)) { notgalois(p,ga); return gc_bool(ltop,0); }
1217 88710 : set_avma(av2);
1218 : }
1219 6638 : if (!p) pari_err_OVERFLOW("galoisanalysis [ran out of primes]");
1220 : }
1221 30030 : ga->group = group;
1222 30030 : ga->deg = deg;
1223 30030 : ga->ord = order;
1224 30030 : ga->l = O[1];
1225 30030 : ga->p4 = n >= 4 ? O[4] : 0;
1226 30030 : if (DEBUGLEVEL >= 4)
1227 0 : err_printf("GaloisAnalysis:p=%ld l=%ld group=%ld deg=%ld ord=%ld\n",
1228 0 : plift, O[1], group, deg, order);
1229 30030 : if (DEBUGLEVEL >= 1) timer_printf(&ti, "galoisanalysis()");
1230 30030 : return gc_bool(ltop,1);
1231 : }
1232 :
1233 : static GEN
1234 98 : a4galoisgen(struct galois_test *td)
1235 : {
1236 98 : const long n = 12;
1237 98 : pari_sp ltop = avma, av, av2;
1238 98 : long i, j, k, N, hop = 0;
1239 : GEN MT, O,O1,O2,O3, ar, mt, t, u, res, orb, pft, pfu, pfv;
1240 :
1241 98 : res = cgetg(3, t_VEC);
1242 98 : pft = cgetg(n+1, t_VECSMALL);
1243 98 : pfu = cgetg(n+1, t_VECSMALL);
1244 98 : pfv = cgetg(n+1, t_VECSMALL);
1245 98 : gel(res,1) = mkvec3(pft,pfu,pfv);
1246 98 : gel(res,2) = mkvecsmall3(2,2,3);
1247 98 : av = avma;
1248 98 : ar = cgetg(5, t_VECSMALL);
1249 98 : mt = gel(td->PV, td->order[n]);
1250 98 : t = identity_perm(n) + 1; /* Sorry for this hack */
1251 98 : u = cgetg(n+1, t_VECSMALL) + 1; /* too lazy to correct */
1252 98 : MT = cgetg(n+1, t_MAT);
1253 1274 : for (j = 1; j <= n; j++) gel(MT,j) = cgetg(n+1, t_VECSMALL);
1254 1274 : for (j = 1; j <= n; j++)
1255 7644 : for (i = 1; i < j; i++)
1256 6468 : ucoeff(MT,i,j) = ucoeff(MT,j,i) = ucoeff(mt,i,j)+ucoeff(mt,j,i);
1257 : /* MT(i,i) unused */
1258 :
1259 98 : av2 = avma;
1260 : /* N = itos(gdiv(mpfact(n), mpfact(n >> 1))) >> (n >> 1); */
1261 : /* n = 2k = 12; N = (2k)! / (k! * 2^k) = 10395 */
1262 98 : N = 10395;
1263 98 : if (DEBUGLEVEL>=4) err_printf("A4GaloisConj: will test %ld permutations\n", N);
1264 98 : uel(ar,4) = umael(MT,11,12);
1265 98 : uel(ar,3) = uel(ar,4) + umael(MT,9,10);
1266 98 : uel(ar,2) = uel(ar,3) + umael(MT,7,8);
1267 98 : uel(ar,1) = uel(ar,2) + umael(MT,5,6);
1268 226646 : for (i = 0; i < N; i++)
1269 : {
1270 : long g;
1271 226646 : if (i)
1272 : {
1273 226548 : long a, x = i, y = 1;
1274 319388 : do { y += 2; a = x%y; x = x/y; } while (!a);
1275 226548 : switch (y)
1276 : {
1277 151074 : case 3:
1278 151074 : lswap(t[2], t[2-a]);
1279 151074 : break;
1280 60405 : case 5:
1281 60405 : x = t[0]; t[0] = t[2]; t[2] = t[1]; t[1] = x;
1282 60405 : lswap(t[4], t[4-a]);
1283 60405 : uel(ar,1) = uel(ar,2) + umael(MT,t[4],t[5]);
1284 60405 : break;
1285 12961 : case 7:
1286 12961 : x = t[0]; t[0] = t[4]; t[4] = t[3]; t[3] = t[1]; t[1] = t[2]; t[2] = x;
1287 12961 : lswap(t[6], t[6-a]);
1288 12961 : uel(ar,2) = uel(ar,3) + umael(MT,t[6],t[7]);
1289 12961 : uel(ar,1) = uel(ar,2) + umael(MT,t[4],t[5]);
1290 12961 : break;
1291 1919 : case 9:
1292 1919 : x = t[0]; t[0] = t[6]; t[6] = t[5]; t[5] = t[3]; t[3] = x;
1293 1919 : lswap(t[1], t[4]);
1294 1919 : lswap(t[8], t[8-a]);
1295 1919 : uel(ar,3) = uel(ar,4) + umael(MT,t[8],t[9]);
1296 1919 : uel(ar,2) = uel(ar,3) + umael(MT,t[6],t[7]);
1297 1919 : uel(ar,1) = uel(ar,2) + umael(MT,t[4],t[5]);
1298 1919 : break;
1299 189 : case 11:
1300 189 : x = t[0]; t[0] = t[8]; t[8] = t[7]; t[7] = t[5]; t[5] = t[1];
1301 189 : t[1] = t[6]; t[6] = t[3]; t[3] = t[2]; t[2] = t[4]; t[4] = x;
1302 189 : lswap(t[10], t[10-a]);
1303 189 : uel(ar,4) = umael(MT,t[10],t[11]);
1304 189 : uel(ar,3) = uel(ar,4) + umael(MT,t[8],t[9]);
1305 189 : uel(ar,2) = uel(ar,3) + umael(MT,t[6],t[7]);
1306 189 : uel(ar,1) = uel(ar,2) + umael(MT,t[4],t[5]);
1307 : }
1308 98 : }
1309 226646 : g = uel(ar,1)+umael(MT,t[0],t[1])+umael(MT,t[2],t[3]);
1310 226646 : if (headlongisint(g,n))
1311 : {
1312 686 : for (k = 0; k < n; k += 2)
1313 : {
1314 588 : pft[t[k]] = t[k+1];
1315 588 : pft[t[k+1]] = t[k];
1316 : }
1317 98 : if (galois_test_perm(td, pft)) break;
1318 0 : hop++;
1319 : }
1320 226548 : set_avma(av2);
1321 : }
1322 98 : if (DEBUGLEVEL >= 1 && hop)
1323 0 : err_printf("A4GaloisConj: %ld hop over %ld iterations\n", hop, N);
1324 98 : if (i == N) return gc_NULL(ltop);
1325 : /* N = itos(gdiv(mpfact(n >> 1), mpfact(n >> 2))) >> 1; */
1326 98 : N = 60;
1327 98 : if (DEBUGLEVEL >= 4) err_printf("A4GaloisConj: sigma=%Ps \n", pft);
1328 392 : for (k = 0; k < n; k += 4)
1329 : {
1330 294 : u[k+3] = t[k+3];
1331 294 : u[k+2] = t[k+1];
1332 294 : u[k+1] = t[k+2];
1333 294 : u[k] = t[k];
1334 : }
1335 4682 : for (i = 0; i < N; i++)
1336 : {
1337 4682 : ulong g = 0;
1338 4682 : if (i)
1339 : {
1340 4584 : long a, x = i, y = -2;
1341 7213 : do { y += 4; a = x%y; x = x/y; } while (!a);
1342 4584 : lswap(u[0],u[2]);
1343 4584 : switch (y)
1344 : {
1345 2292 : case 2:
1346 2292 : break;
1347 1955 : case 6:
1348 1955 : lswap(u[4],u[6]);
1349 1955 : if (!(a & 1))
1350 : {
1351 802 : a = 4 - (a>>1);
1352 802 : lswap(u[6], u[a]);
1353 802 : lswap(u[4], u[a-2]);
1354 : }
1355 1955 : break;
1356 337 : case 10:
1357 337 : x = u[6];
1358 337 : u[6] = u[3];
1359 337 : u[3] = u[2];
1360 337 : u[2] = u[4];
1361 337 : u[4] = u[1];
1362 337 : u[1] = u[0];
1363 337 : u[0] = x;
1364 337 : if (a >= 3) a += 2;
1365 337 : a = 8 - a;
1366 337 : lswap(u[10],u[a]);
1367 337 : lswap(u[8], u[a-2]);
1368 337 : break;
1369 : }
1370 98 : }
1371 32774 : for (k = 0; k < n; k += 2) g += mael(MT,u[k],u[k+1]);
1372 4682 : if (headlongisint(g,n))
1373 : {
1374 686 : for (k = 0; k < n; k += 2)
1375 : {
1376 588 : pfu[u[k]] = u[k+1];
1377 588 : pfu[u[k+1]] = u[k];
1378 : }
1379 98 : if (galois_test_perm(td, pfu)) break;
1380 0 : hop++;
1381 : }
1382 4584 : set_avma(av2);
1383 : }
1384 98 : if (i == N) return gc_NULL(ltop);
1385 98 : if (DEBUGLEVEL >= 1 && hop)
1386 0 : err_printf("A4GaloisConj: %ld hop over %ld iterations\n", hop, N);
1387 98 : if (DEBUGLEVEL >= 4) err_printf("A4GaloisConj: tau=%Ps \n", pfu);
1388 98 : set_avma(av2);
1389 98 : orb = mkvec2(pft,pfu);
1390 98 : O = vecperm_orbits(orb, 12);
1391 98 : if (DEBUGLEVEL >= 4) {
1392 0 : err_printf("A4GaloisConj: orb=%Ps\n", orb);
1393 0 : err_printf("A4GaloisConj: O=%Ps \n", O);
1394 : }
1395 98 : av2 = avma;
1396 98 : O1 = gel(O,1); O2 = gel(O,2); O3 = gel(O,3);
1397 140 : for (j = 0; j < 2; j++)
1398 : {
1399 140 : pfv[O1[1]] = O2[1];
1400 140 : pfv[O1[2]] = O2[3+j];
1401 140 : pfv[O1[3]] = O2[4 - (j << 1)];
1402 140 : pfv[O1[4]] = O2[2+j];
1403 459 : for (i = 0; i < 4; i++)
1404 : {
1405 417 : ulong g = 0;
1406 417 : switch (i)
1407 : {
1408 140 : case 0: break;
1409 118 : case 1: lswap(O3[1], O3[2]); lswap(O3[3], O3[4]); break;
1410 97 : case 2: lswap(O3[1], O3[4]); lswap(O3[2], O3[3]); break;
1411 62 : case 3: lswap(O3[1], O3[2]); lswap(O3[3], O3[4]); break;
1412 : }
1413 417 : pfv[O2[1]] = O3[1];
1414 417 : pfv[O2[3+j]] = O3[4-j];
1415 417 : pfv[O2[4 - (j<<1)]] = O3[2 + (j<<1)];
1416 417 : pfv[O2[2+j]] = O3[3-j];
1417 417 : pfv[O3[1]] = O1[1];
1418 417 : pfv[O3[4-j]] = O1[2];
1419 417 : pfv[O3[2 + (j<<1)]] = O1[3];
1420 417 : pfv[O3[3-j]] = O1[4];
1421 5421 : for (k = 1; k <= n; k++) g += mael(mt,k,pfv[k]);
1422 417 : if (headlongisint(g,n) && galois_test_perm(td, pfv))
1423 : {
1424 98 : set_avma(av);
1425 98 : if (DEBUGLEVEL >= 1)
1426 0 : err_printf("A4GaloisConj: %ld hop over %d iterations max\n",
1427 : hop, 10395 + 68);
1428 98 : return res;
1429 : }
1430 319 : hop++; set_avma(av2);
1431 : }
1432 : }
1433 0 : return gc_NULL(ltop);
1434 : }
1435 :
1436 : /* S4 */
1437 : static GEN
1438 1470 : s4makelift(GEN u, struct galois_lift *gl)
1439 1470 : { return FpXQ_powers(u, degpol(gl->T)-1, gl->TQ, gl->Q); }
1440 :
1441 : static long
1442 241075 : s4test(GEN u, GEN liftpow, struct galois_lift *gl, GEN phi)
1443 : {
1444 241075 : pari_sp av = avma;
1445 : GEN res, Q, Q2;
1446 241075 : long bl, i, d = lg(u)-2;
1447 : pari_timer ti;
1448 241075 : if (DEBUGLEVEL >= 6) timer_start(&ti);
1449 241075 : if (!d) return 0;
1450 241075 : Q = gl->Q; Q2 = shifti(Q,-1);
1451 241075 : res = gel(u,2);
1452 8570512 : for (i = 2; i <= d; i++)
1453 8329437 : if (lg(gel(liftpow,i))>2)
1454 8329437 : res = addii(res, mulii(gmael(liftpow,i,2), gel(u,i+1)));
1455 241075 : res = remii(res,Q);
1456 241075 : if (gl->den != gen_1) res = mulii(res, gl->den);
1457 241075 : res = centermodii(res, Q,Q2);
1458 241075 : if (abscmpii(res, gl->gb->bornesol) > 0) return gc_long(av,0);
1459 3605 : res = scalar_ZX_shallow(gel(u,2),varn(u));
1460 120512 : for (i = 2; i <= d ; i++)
1461 116907 : if (lg(gel(liftpow,i))>2)
1462 116907 : res = ZX_add(res, ZX_Z_mul(gel(liftpow,i), gel(u,i+1)));
1463 3605 : res = FpX_red(res, Q);
1464 3605 : if (gl->den != gen_1) res = FpX_Fp_mul(res, gl->den, Q);
1465 3605 : res = FpX_center_i(res, Q, shifti(Q,-1));
1466 3605 : bl = poltopermtest(res, gl, phi);
1467 3605 : if (DEBUGLEVEL >= 6) timer_printf(&ti, "s4test()");
1468 3605 : return gc_long(av,bl);
1469 : }
1470 :
1471 : static GEN
1472 525 : s4releveauto(GEN M, GEN B, GEN T, GEN p,long a1,long a2,long a3,long a4,long a5,long a6)
1473 : {
1474 525 : GEN F = ZX_mul(gel(M,a1),gel(B,a2));
1475 525 : F = ZX_add(F, ZX_mul(gel(M,a2),gel(B,a1)));
1476 525 : F = ZX_add(F, ZX_mul(gel(M,a3),gel(B,a4)));
1477 525 : F = ZX_add(F, ZX_mul(gel(M,a4),gel(B,a3)));
1478 525 : F = ZX_add(F, ZX_mul(gel(M,a5),gel(B,a6)));
1479 525 : F = ZX_add(F, ZX_mul(gel(M,a6),gel(B,a5)));
1480 525 : return FpXQ_red(F, T, p);
1481 : }
1482 :
1483 : static GEN
1484 321947 : lincomb(GEN B, long a, long b, long j)
1485 : {
1486 321947 : long k = (-j) & 3;
1487 321947 : return ZX_add(gmael(B,a,j+1), gmael(B,b,k+1));
1488 : }
1489 :
1490 : static GEN
1491 91 : FpXV_ffisom(GEN V, GEN p)
1492 : {
1493 91 : pari_sp av = avma;
1494 91 : long i, j, l = lg(V);
1495 91 : GEN S = cgetg(l, t_VEC), Si = cgetg(l, t_VEC), M;
1496 679 : for (i = 1; i < l; i++)
1497 : {
1498 588 : gel(S,i) = FpX_ffisom(gel(V,1), gel(V,i), p);
1499 588 : gel(Si,i) = FpXQ_ffisom_inv(gel(S,i), gel(V,i), p);
1500 : }
1501 91 : M = cgetg(l, t_MAT);
1502 679 : for (j = 1; j < l; j++)
1503 588 : gel(M,j) = FpXC_FpXQ_eval(Si, gel(S,j), gel(V,j), p);
1504 91 : return gerepileupto(av, M);
1505 : }
1506 :
1507 : static GEN
1508 91 : mkliftpow(GEN x, GEN T, GEN p, struct galois_lift *gl)
1509 679 : { pari_APPLY_same(automorphismlift(FpXV_chinese(gel(x,i), T, p, NULL), gl)) }
1510 :
1511 : #define rot3(x,y,z) {long _t=x; x=y; y=z; z=_t;}
1512 : #define rot4(x,y,z,t) {long _u=x; x=y; y=z; z=t; t=_u;}
1513 :
1514 : /* FIXME: could use the intheadlong technique */
1515 : static GEN
1516 77 : s4galoisgen(struct galois_lift *gl)
1517 : {
1518 77 : const long n = 24;
1519 : struct galois_testlift gt;
1520 77 : pari_sp av, ltop2, ltop = avma;
1521 : long i, j;
1522 77 : GEN sigma, tau, phi, res, r1,r2,r3,r4, pj, p = gl->p, Q = gl->Q, TQ = gl->TQ;
1523 : GEN sg, Tp, Tmod, misom, B, Bcoeff, liftpow, liftp, aut;
1524 :
1525 77 : res = cgetg(3, t_VEC);
1526 77 : r1 = cgetg(n+1, t_VECSMALL);
1527 77 : r2 = cgetg(n+1, t_VECSMALL);
1528 77 : r3 = cgetg(n+1, t_VECSMALL);
1529 77 : r4 = cgetg(n+1, t_VECSMALL);
1530 77 : gel(res,1)= mkvec4(r1,r2,r3,r4);
1531 77 : gel(res,2) = mkvecsmall4(2,2,3,2);
1532 77 : ltop2 = avma;
1533 77 : sg = identity_perm(6);
1534 77 : pj = zero_zv(6);
1535 77 : sigma = cgetg(n+1, t_VECSMALL);
1536 77 : tau = cgetg(n+1, t_VECSMALL);
1537 77 : phi = cgetg(n+1, t_VECSMALL);
1538 77 : Tp = FpX_red(gl->T,p);
1539 77 : Tmod = gel(FpX_factor(Tp,p), 1);
1540 77 : misom = FpXV_ffisom(Tmod, p);
1541 77 : aut = galoisdolift(gl);
1542 77 : inittestlift(aut, Tmod, gl, >);
1543 77 : B = FqC_FqV_mul(gt.pauto, gt.bezoutcoeff, gl->TQ, Q);
1544 77 : Bcoeff = gt.bezoutcoeff;
1545 77 : liftp = mkliftpow(shallowtrans(misom), Tmod, p, gl);
1546 77 : av = avma;
1547 140 : for (i = 0; i < 3; i++, set_avma(av))
1548 : {
1549 : pari_sp av1, av2, av3;
1550 : GEN u, u1, u2, u3;
1551 : long j1, j2, j3;
1552 140 : if (i)
1553 : {
1554 63 : if (i == 1) { lswap(sg[2],sg[3]); }
1555 7 : else { lswap(sg[1],sg[3]); }
1556 : }
1557 140 : u = s4releveauto(liftp,Bcoeff,TQ,Q,sg[1],sg[2],sg[3],sg[4],sg[5],sg[6]);
1558 140 : liftpow = s4makelift(u, gl);
1559 140 : av1 = avma;
1560 476 : for (j1 = 0; j1 < 4; j1++, set_avma(av1))
1561 : {
1562 413 : u1 = lincomb(B,sg[5],sg[6],j1);
1563 413 : av2 = avma;
1564 1867 : for (j2 = 0; j2 < 4; j2++, set_avma(av2))
1565 : {
1566 1531 : u2 = lincomb(B,sg[3],sg[4],j2);
1567 1531 : u2 = FpX_add(u1, u2, Q); av3 = avma;
1568 7424 : for (j3 = 0; j3 < 4; j3++, set_avma(av3))
1569 : {
1570 5970 : u3 = lincomb(B,sg[1],sg[2],j3);
1571 5970 : u3 = FpX_add(u2, u3, Q);
1572 5970 : if (DEBUGLEVEL >= 4)
1573 0 : err_printf("S4GaloisConj: Testing %d/3:%d/4:%d/4:%d/4:%Ps\n",
1574 : i,j1,j2,j3, sg);
1575 5970 : if (s4test(u3, liftpow, gl, sigma))
1576 : {
1577 77 : pj[1] = j3;
1578 77 : pj[2] = j2;
1579 77 : pj[3] = j1; goto suites4;
1580 : }
1581 : }
1582 : }
1583 : }
1584 : }
1585 0 : return gc_NULL(ltop);
1586 77 : suites4:
1587 77 : if (DEBUGLEVEL >= 4) err_printf("S4GaloisConj: sigma=%Ps\n", sigma);
1588 77 : if (DEBUGLEVEL >= 4) err_printf("S4GaloisConj: pj=%Ps\n", pj);
1589 77 : set_avma(av);
1590 168 : for (j = 1; j <= 3; j++)
1591 : {
1592 : pari_sp av2, av3;
1593 : GEN u;
1594 : long w, l;
1595 168 : rot3(sg[1], sg[3], sg[5])
1596 168 : rot3(sg[2], sg[4], sg[6])
1597 168 : rot3(pj[1], pj[2], pj[3])
1598 399 : for (l = 0; l < 2; l++, set_avma(av))
1599 : {
1600 308 : u = s4releveauto(liftp,Bcoeff,TQ,Q,sg[1],sg[3],sg[2],sg[4],sg[5],sg[6]);
1601 308 : liftpow = s4makelift(u, gl);
1602 308 : av2 = avma;
1603 847 : for (w = 0; w < 4; w += 2, set_avma(av2))
1604 : {
1605 : GEN uu;
1606 616 : pj[6] = (w + pj[3]) & 3;
1607 616 : uu = lincomb(B, sg[5], sg[6], pj[6]);
1608 616 : uu = FpX_red(uu, Q);
1609 616 : av3 = avma;
1610 2908 : for (i = 0; i < 4; i++, set_avma(av3))
1611 : {
1612 : GEN u;
1613 2369 : pj[4] = i;
1614 2369 : pj[5] = (i + pj[2] - pj[1]) & 3;
1615 2369 : if (DEBUGLEVEL >= 4)
1616 0 : err_printf("S4GaloisConj: Testing %d/3:%d/2:%d/2:%d/4:%Ps:%Ps\n",
1617 : j-1, w >> 1, l, i, sg, pj);
1618 2369 : u = ZX_add(lincomb(B,sg[1],sg[3],pj[4]),
1619 2369 : lincomb(B,sg[2],sg[4],pj[5]));
1620 2369 : u = FpX_add(uu,u,Q);
1621 2369 : if (s4test(u, liftpow, gl, tau)) goto suites4_2;
1622 : }
1623 : }
1624 231 : lswap(sg[3], sg[4]);
1625 231 : pj[2] = (-pj[2]) & 3;
1626 : }
1627 : }
1628 0 : return gc_NULL(ltop);
1629 77 : suites4_2:
1630 77 : set_avma(av);
1631 : {
1632 77 : long abc = (pj[1] + pj[2] + pj[3]) & 3;
1633 77 : long abcdef = ((abc + pj[4] + pj[5] - pj[6]) & 3) >> 1;
1634 : GEN u;
1635 : pari_sp av2;
1636 77 : u = s4releveauto(liftp,Bcoeff,TQ,Q,sg[1],sg[4],sg[2],sg[5],sg[3],sg[6]);
1637 77 : liftpow = s4makelift(u, gl);
1638 77 : av2 = avma;
1639 343 : for (j = 0; j < 8; j++)
1640 : {
1641 : long h, g, i;
1642 343 : h = j & 3;
1643 343 : g = (abcdef + ((j & 4) >> 1)) & 3;
1644 343 : i = (h + abc - g) & 3;
1645 343 : u = ZX_add(lincomb(B,sg[1],sg[4], g), lincomb(B,sg[2],sg[5], h));
1646 343 : u = FpX_add(u, lincomb(B,sg[3],sg[6], i),Q);
1647 343 : if (DEBUGLEVEL >= 4)
1648 0 : err_printf("S4GaloisConj: Testing %d/8 %d:%d:%d\n", j,g,h,i);
1649 343 : if (s4test(u, liftpow, gl, phi)) break;
1650 266 : set_avma(av2);
1651 : }
1652 : }
1653 77 : if (j == 8) return gc_NULL(ltop);
1654 1925 : for (i = 1; i <= n; i++)
1655 : {
1656 1848 : r1[i] = sigma[tau[i]];
1657 1848 : r2[i] = phi[sigma[tau[phi[i]]]];
1658 1848 : r3[i] = phi[sigma[i]];
1659 1848 : r4[i] = sigma[i];
1660 : }
1661 77 : set_avma(ltop2); return res;
1662 : }
1663 :
1664 : static GEN
1665 910 : f36releveauto2(GEN Bl, GEN T, GEN p,GEN a)
1666 : {
1667 910 : GEN F = gmael(Bl,a[1],a[1]);
1668 910 : F = ZX_add(F,gmael(Bl,a[2],a[3]));
1669 910 : F = ZX_add(F,gmael(Bl,a[3],a[2]));
1670 910 : F = ZX_add(F,gmael(Bl,a[4],a[5]));
1671 910 : F = ZX_add(F,gmael(Bl,a[5],a[4]));
1672 910 : F = ZX_add(F,gmael(Bl,a[6],a[7]));
1673 910 : F = ZX_add(F,gmael(Bl,a[7],a[6]));
1674 910 : F = ZX_add(F,gmael(Bl,a[8],a[9]));
1675 910 : F = ZX_add(F,gmael(Bl,a[9],a[8]));
1676 910 : return FpXQ_red(F, T, p);
1677 : }
1678 :
1679 : static GEN
1680 35 : f36releveauto4(GEN Bl, GEN T, GEN p,GEN a)
1681 : {
1682 35 : GEN F = gmael(Bl,a[1],a[1]);
1683 35 : F = ZX_add(F,gmael(Bl,a[2],a[3]));
1684 35 : F = ZX_add(F,gmael(Bl,a[3],a[4]));
1685 35 : F = ZX_add(F,gmael(Bl,a[4],a[5]));
1686 35 : F = ZX_add(F,gmael(Bl,a[5],a[2]));
1687 35 : F = ZX_add(F,gmael(Bl,a[6],a[7]));
1688 35 : F = ZX_add(F,gmael(Bl,a[7],a[8]));
1689 35 : F = ZX_add(F,gmael(Bl,a[8],a[9]));
1690 35 : F = ZX_add(F,gmael(Bl,a[9],a[6]));
1691 35 : return FpXQ_red(F, T, p);
1692 : }
1693 :
1694 : static GEN
1695 14 : f36galoisgen(struct galois_lift *gl)
1696 : {
1697 14 : const long n = 36;
1698 : struct galois_testlift gt;
1699 14 : pari_sp av, ltop2, ltop = avma;
1700 : long i;
1701 14 : GEN sigma, tau, rho, res, r1,r2,r3, pj, pk, p = gl->p, Q = gl->Q, TQ = gl->TQ;
1702 : GEN sg, s4, sp, Tp, Tmod, misom, Bcoeff, liftpow, aut, liftp, B, Bl, tam;
1703 14 : res = cgetg(3, t_VEC);
1704 14 : r1 = cgetg(n+1, t_VECSMALL);
1705 14 : r2 = cgetg(n+1, t_VECSMALL);
1706 14 : r3 = cgetg(n+1, t_VECSMALL);
1707 14 : gel(res,1)= mkvec3(r1,r2,r3);
1708 14 : gel(res,2) = mkvecsmall3(3,3,4);
1709 14 : ltop2 = avma;
1710 14 : sg = identity_perm(9);
1711 14 : s4 = identity_perm(9);
1712 14 : sp = identity_perm(9);
1713 14 : pj = zero_zv(4);
1714 14 : pk = zero_zv(2);
1715 14 : sigma = cgetg(n+1, t_VECSMALL);
1716 14 : tau = r3;
1717 14 : rho = cgetg(n+1, t_VECSMALL);
1718 14 : Tp = FpX_red(gl->T,p);
1719 14 : Tmod = gel(FpX_factor(Tp,p), 1);
1720 14 : misom = FpXV_ffisom(Tmod, p);
1721 14 : aut = galoisdolift(gl);
1722 14 : inittestlift(aut, Tmod, gl, >);
1723 14 : Bcoeff = gt.bezoutcoeff;
1724 14 : B = FqC_FqV_mul(gt.pauto, Bcoeff, gl->TQ, gl->Q);
1725 14 : liftp = mkliftpow(shallowtrans(misom), Tmod, p, gl);
1726 14 : Bl = FqC_FqV_mul(liftp,Bcoeff, gl->TQ, gl->Q);
1727 14 : av = avma;
1728 910 : for (i = 0; i < 105; i++, set_avma(av))
1729 : {
1730 : pari_sp av0, av1, av2, av3;
1731 : GEN u0, u1, u2, u3;
1732 : long j0, j1, j2, j3, s;
1733 910 : if (i)
1734 : {
1735 896 : rot3(sg[7],sg[8],sg[9])
1736 896 : if (i%3==0)
1737 : {
1738 294 : s=sg[5]; sg[5]=sg[6]; sg[6]=sg[7]; sg[7]=sg[8]; sg[8]=sg[9]; sg[9]=s;
1739 294 : if (i%15==0)
1740 : {
1741 49 : s=sg[3]; sg[3]=sg[4]; sg[4]=sg[5];
1742 49 : sg[5]=sg[6]; sg[6]=sg[7]; sg[7]=sg[8]; sg[8]=sg[9]; sg[9]=s;
1743 : }
1744 : }
1745 : }
1746 910 : liftpow = s4makelift(f36releveauto2(Bl, TQ, Q, sg), gl);
1747 910 : av0 = avma;
1748 4522 : for (j0 = 0; j0 < 4; j0++, set_avma(av0))
1749 : {
1750 3626 : u0 = lincomb(B,sg[8],sg[9],j0);
1751 3626 : u0 = FpX_add(u0, gmael(B,sg[1],3), Q); av1 = avma;
1752 18095 : for (j1 = 0; j1 < 4; j1++, set_avma(av1))
1753 : {
1754 14483 : u1 = lincomb(B,sg[6],sg[7],j1);
1755 14483 : u1 = FpX_add(u0, u1, Q); av2 = avma;
1756 72380 : for (j2 = 0; j2 < 4; j2++, set_avma(av2))
1757 : {
1758 57911 : u2 = lincomb(B,sg[4],sg[5],j2);
1759 57911 : u2 = FpX_add(u1, u2, Q); av3 = avma;
1760 289527 : for (j3 = 0; j3 < 4; j3++, set_avma(av3))
1761 : {
1762 231630 : u3 = lincomb(B,sg[2],sg[3],j3);
1763 231630 : u3 = FpX_add(u2, u3, Q);
1764 231630 : if (s4test(u3, liftpow, gl, sigma))
1765 : {
1766 14 : pj[1] = j3;
1767 14 : pj[2] = j2;
1768 14 : pj[3] = j1;
1769 14 : pj[4] = j0; goto suitef36;
1770 : }
1771 : }
1772 : }
1773 : }
1774 : }
1775 : }
1776 0 : return gc_NULL(ltop);
1777 14 : suitef36:
1778 14 : s4[1]=sg[1]; s4[2]=sg[2]; s4[4]=sg[3];
1779 14 : s4[3]=sg[4]; s4[5]=sg[5]; s4[6]=sg[6];
1780 14 : s4[8]=sg[7]; s4[7]=sg[8]; s4[9]=sg[9];
1781 14 : for (i = 0; i < 12; i++, set_avma(av))
1782 : {
1783 : pari_sp av0, av1;
1784 : GEN u0, u1;
1785 : long j0, j1;
1786 14 : if (i)
1787 : {
1788 0 : lswap(s4[3],s4[5]); pj[2] = (-pj[2])&3;
1789 0 : if (odd(i)) { lswap(s4[7],s4[9]); pj[4]=(-pj[4])&3; }
1790 0 : if (i%4==0)
1791 : {
1792 0 : rot3(s4[3],s4[6],s4[7]);
1793 0 : rot3(s4[5],s4[8],s4[9]);
1794 0 : rot3(pj[2],pj[3],pj[4]);
1795 : }
1796 : }
1797 14 : liftpow = s4makelift(f36releveauto4(Bl, TQ, Q, s4), gl);
1798 14 : av0 = avma;
1799 21 : for (j0 = 0; j0 < 4; j0++, set_avma(av0))
1800 : {
1801 21 : u0 = FpX_add(gmael(B,s4[1],2), gmael(B,s4[2],1+j0),Q);
1802 21 : u0 = FpX_add(u0, gmael(B,s4[3],1+smodss(pj[2]-j0,4)),Q);
1803 21 : u0 = FpX_add(u0, gmael(B,s4[4],1+smodss(j0-pj[1]-pj[2],4)),Q);
1804 21 : u0 = FpX_add(u0, gmael(B,s4[5],1+smodss(pj[1]-j0,4)),Q);
1805 21 : av1 = avma;
1806 84 : for (j1 = 0; j1 < 4; j1++, set_avma(av1))
1807 : {
1808 77 : u1 = FpX_add(u0, gmael(B,s4[6],1+j1),Q);
1809 77 : u1 = FpX_add(u1, gmael(B,s4[7],1+smodss(pj[4]-j1,4)),Q);
1810 77 : u1 = FpX_add(u1, gmael(B,s4[8],1+smodss(j1-pj[3]-pj[4],4)),Q);
1811 77 : u1 = FpX_add(u1, gmael(B,s4[9],1+smodss(pj[3]-j1,4)),Q);
1812 77 : if (s4test(u1, liftpow, gl, tau))
1813 : {
1814 14 : pk[1] = j0;
1815 14 : pk[2] = j1; goto suitef36_2;
1816 : }
1817 : }
1818 : }
1819 : }
1820 0 : return gc_NULL(ltop);
1821 14 : suitef36_2:
1822 14 : sp[1]=s4[9]; sp[2]=s4[1]; sp[3]=s4[2];
1823 14 : sp[4]=s4[7]; sp[5]=s4[3]; sp[6]=s4[8];
1824 14 : sp[8]=s4[4]; sp[7]=s4[5]; sp[9]=s4[6];
1825 21 : for (i = 0; i < 4; i++, set_avma(av))
1826 : {
1827 21 : const int w[4][6]={{0,0,1,3,0,2},{1,0,2,1,1,2},{3,3,2,0,3,1},{0,1,3,0,0,3}};
1828 : pari_sp av0, av1, av2;
1829 : GEN u0, u1, u2;
1830 : long j0, j1,j2,j3,j4,j5;
1831 21 : if (i)
1832 : {
1833 7 : rot4(sp[3],sp[5],sp[8],sp[7])
1834 7 : pk[1]=(-pk[1])&3;
1835 : }
1836 21 : liftpow = s4makelift(f36releveauto4(Bl,TQ,Q,sp), gl);
1837 21 : av0 = avma;
1838 56 : for (j0 = 0; j0 < 4; j0++, set_avma(av0))
1839 : {
1840 49 : u0 = FpX_add(gmael(B,sp[1],2), gmael(B,sp[2],1+j0),Q);
1841 49 : av1 = avma;
1842 210 : for (j1 = 0; j1 < 4; j1++, set_avma(av1))
1843 : {
1844 175 : u1 = FpX_add(u0, gmael(B,sp[3],1+j1),Q);
1845 175 : j3 = (-pk[1]-pj[3]+j0+j1-w[i][0]*pj[1]-w[i][3]*pj[2])&3;
1846 175 : u1 = FpX_add(u1, gmael(B,sp[6],1+j3),Q);
1847 175 : j5 = (-pk[1]+2*j0+2*j1-w[i][2]*pj[1]-w[i][5]*pj[2])&3;
1848 175 : u1 = FpX_add(u1, gmael(B,sp[8],1+j5),Q);
1849 175 : av2 = avma;
1850 847 : for (j2 = 0; j2 < 4; j2++, set_avma(av2))
1851 : {
1852 686 : u2 = FpX_add(u1, gmael(B,sp[4],1+j2),Q);
1853 686 : u2 = FpX_add(u2, gmael(B,sp[5],1+smodss(-j0-j1-j2,4)),Q);
1854 686 : j4 = (-pk[1]-pk[2]+pj[3]+pj[4]-j2-w[i][1]*pj[1]-w[i][4]*pj[2])&3;
1855 686 : u2 = FpX_add(u2, gmael(B,sp[7],1+j4),Q);
1856 686 : u2 = FpX_add(u2, gmael(B,sp[9],1+smodss(-j3-j4-j5,4)),Q);
1857 686 : if (s4test(u2, liftpow, gl, rho))
1858 14 : goto suitef36_3;
1859 : }
1860 : }
1861 : }
1862 : }
1863 0 : return gc_NULL(ltop);
1864 14 : suitef36_3:
1865 14 : tam = perm_inv(tau);
1866 518 : for (i = 1; i <= n; i++)
1867 : {
1868 504 : r1[tau[i]] = rho[i];
1869 504 : r2[i] = tam[rho[i]];
1870 : }
1871 14 : set_avma(ltop2); return res;
1872 : }
1873 :
1874 : /* return a vecvecsmall */
1875 : static GEN
1876 98 : galoisfindgroups(GEN lo, GEN sg, long f)
1877 : {
1878 98 : pari_sp ltop = avma;
1879 : long i, j, k;
1880 98 : GEN V = cgetg(lg(lo), t_VEC);
1881 287 : for(j=1,i=1; i<lg(lo); i++)
1882 : {
1883 189 : pari_sp av = avma;
1884 189 : GEN loi = gel(lo,i), W = cgetg(lg(loi),t_VECSMALL);
1885 476 : for (k=1; k<lg(loi); k++) W[k] = loi[k] % f;
1886 189 : W = vecsmall_uniq(W);
1887 189 : if (zv_equal(W, sg)) gel(V,j++) = loi;
1888 189 : set_avma(av);
1889 : }
1890 98 : setlg(V,j); return gerepilecopy(ltop,V);
1891 : }
1892 :
1893 : static GEN
1894 1715 : galoismakepsi(long g, GEN sg, GEN pf)
1895 : {
1896 1715 : GEN psi=cgetg(g+1,t_VECSMALL);
1897 : long i;
1898 4172 : for (i = 1; i < g; i++) psi[i] = sg[pf[i]];
1899 1715 : psi[g] = sg[1]; return psi;
1900 : }
1901 :
1902 : static GEN
1903 27732 : galoisfrobeniuslift_nilp(GEN T, GEN den, GEN L, GEN Lden,
1904 : struct galois_frobenius *gf, struct galois_borne *gb)
1905 : {
1906 27732 : pari_sp ltop=avma, av2;
1907 : struct galois_lift gl;
1908 27732 : long i, k, deg = 1, g = lg(gf->Tmod)-1;
1909 27732 : GEN F,Fp,Fe, aut, frob, res = cgetg(lg(L), t_VECSMALL);
1910 27732 : gf->psi = const_vecsmall(g,1);
1911 27732 : av2 = avma;
1912 27732 : initlift(T, den, gf->p, L, Lden, gb, &gl);
1913 27734 : if (DEBUGLEVEL >= 4)
1914 0 : err_printf("GaloisConj: p=%ld e=%ld deg=%ld fp=%ld\n",
1915 : gf->p, gl.e, deg, gf->fp);
1916 27734 : aut = galoisdolift(&gl);
1917 27734 : if (galoisfrobeniustest(aut,&gl,res))
1918 : {
1919 26355 : set_avma(av2); gf->deg = gf->fp; return res;
1920 : }
1921 :
1922 1379 : F =factoru(gf->fp);
1923 1379 : Fp = gel(F,1);
1924 1379 : Fe = gel(F,2);
1925 1379 : frob = cgetg(lg(L), t_VECSMALL);
1926 2758 : for(k = lg(Fp)-1; k>=1; k--)
1927 : {
1928 1379 : pari_sp btop=avma;
1929 1379 : GEN fres=NULL;
1930 1379 : long el = gf->fp, dg = 1, dgf = 1, e, pr;
1931 2702 : for(e=1; e<=Fe[k]; e++)
1932 : {
1933 2702 : dg *= Fp[k]; el /= Fp[k];
1934 2702 : if (DEBUGLEVEL>=4) err_printf("Trying degre %d.\n",dg);
1935 2702 : if (el==1) break;
1936 1449 : aut = galoisdoliftn(&gl, el);
1937 1449 : if (!galoisfrobeniustest(aut,&gl,frob))
1938 126 : break;
1939 1323 : dgf = dg; fres = gcopy(frob);
1940 : }
1941 1379 : if (dgf == 1) { set_avma(btop); continue; }
1942 1260 : pr = deg*dgf;
1943 1260 : if (deg == 1)
1944 : {
1945 16072 : for(i=1;i<lg(res);i++) res[i]=fres[i];
1946 : }
1947 : else
1948 : {
1949 0 : GEN cp = perm_mul(res,fres);
1950 0 : for(i=1;i<lg(res);i++) res[i] = cp[i];
1951 : }
1952 1260 : deg = pr; set_avma(btop);
1953 : }
1954 1379 : if (DEBUGLEVEL>=4 && res) err_printf("Best lift: %d\n",deg);
1955 1379 : if (deg==1) return gc_NULL(ltop);
1956 : else
1957 : {
1958 1260 : set_avma(av2); gf->deg = deg; return res;
1959 : }
1960 : }
1961 :
1962 : static GEN
1963 2212 : galoisfrobeniuslift(GEN T, GEN den, GEN L, GEN Lden,
1964 : struct galois_frobenius *gf, struct galois_borne *gb)
1965 : {
1966 2212 : pari_sp ltop=avma, av2;
1967 : struct galois_testlift gt;
1968 : struct galois_lift gl;
1969 2212 : long i, j, k, n = lg(L)-1, deg = 1, g = lg(gf->Tmod)-1;
1970 2212 : GEN F,Fp,Fe, aut, frob, res = cgetg(lg(L), t_VECSMALL);
1971 2212 : gf->psi = const_vecsmall(g,1);
1972 2212 : av2 = avma;
1973 2212 : initlift(T, den, gf->p, L, Lden, gb, &gl);
1974 2212 : if (DEBUGLEVEL >= 4)
1975 0 : err_printf("GaloisConj: p=%ld e=%ld deg=%ld fp=%ld\n",
1976 : gf->p, gl.e, deg, gf->fp);
1977 2212 : aut = galoisdolift(&gl);
1978 2212 : if (galoisfrobeniustest(aut,&gl,res))
1979 : {
1980 546 : set_avma(av2); gf->deg = gf->fp; return res;
1981 : }
1982 1666 : inittestlift(aut,gf->Tmod, &gl, >);
1983 1666 : gt.C = cgetg(gf->fp+1,t_VEC);
1984 1666 : gt.Cd= cgetg(gf->fp+1,t_VEC);
1985 9303 : for (i = 1; i <= gf->fp; i++) {
1986 7637 : gel(gt.C,i) = zero_zv(gt.g);
1987 7637 : gel(gt.Cd,i) = zero_zv(gt.g);
1988 : }
1989 :
1990 1666 : F =factoru(gf->fp);
1991 1666 : Fp = gel(F,1);
1992 1666 : Fe = gel(F,2);
1993 1666 : frob = cgetg(lg(L), t_VECSMALL);
1994 3528 : for(k=lg(Fp)-1;k>=1;k--)
1995 : {
1996 1862 : pari_sp btop=avma;
1997 1862 : GEN psi=NULL, fres=NULL, sg = identity_perm(1);
1998 1862 : long el=gf->fp, dg=1, dgf=1, e, pr;
1999 3773 : for(e=1; e<=Fe[k]; e++)
2000 : {
2001 : GEN lo, pf;
2002 : long l;
2003 1960 : dg *= Fp[k]; el /= Fp[k];
2004 1960 : if (DEBUGLEVEL>=4) err_printf("Trying degre %d.\n",dg);
2005 1960 : if (galoisfrobeniustest(gel(gt.pauto,el+1),&gl,frob))
2006 : {
2007 196 : psi = const_vecsmall(g,1);
2008 196 : dgf = dg; fres = leafcopy(frob); continue;
2009 : }
2010 1764 : lo = listznstarelts(dg, n / gf->fp);
2011 1764 : if (e!=1) lo = galoisfindgroups(lo, sg, dgf);
2012 1764 : if (DEBUGLEVEL>=4) err_printf("Galoisconj:Subgroups list:%Ps\n", lo);
2013 3745 : for (l = 1; l < lg(lo); l++)
2014 3696 : if (lg(gel(lo,l))>2 && frobeniusliftall(gel(lo,l), el, &pf,&gl,>, frob))
2015 : {
2016 1715 : sg = leafcopy(gel(lo,l));
2017 1715 : psi = galoismakepsi(g,sg,pf);
2018 1715 : dgf = dg; fres = leafcopy(frob); break;
2019 : }
2020 1764 : if (l == lg(lo)) break;
2021 : }
2022 1862 : if (dgf == 1) { set_avma(btop); continue; }
2023 1827 : pr = deg*dgf;
2024 1827 : if (deg == 1)
2025 : {
2026 20454 : for(i=1;i<lg(res);i++) res[i]=fres[i];
2027 5719 : for(i=1;i<lg(psi);i++) gf->psi[i]=psi[i];
2028 : }
2029 : else
2030 : {
2031 161 : GEN cp = perm_mul(res,fres);
2032 3059 : for(i=1;i<lg(res);i++) res[i] = cp[i];
2033 525 : for(i=1;i<lg(psi);i++) gf->psi[i] = (dgf*gf->psi[i] + deg*psi[i]) % pr;
2034 : }
2035 1827 : deg = pr; set_avma(btop);
2036 : }
2037 9303 : for (i = 1; i <= gf->fp; i++)
2038 26425 : for (j = 1; j <= gt.g; j++) guncloneNULL(gmael(gt.C,i,j));
2039 1666 : if (DEBUGLEVEL>=4 && res) err_printf("Best lift: %d\n",deg);
2040 1666 : if (deg==1) return gc_NULL(ltop);
2041 : else
2042 : {
2043 : /* Normalize result so that psi[g]=1 */
2044 1666 : ulong im = Fl_inv(gf->psi[g], deg);
2045 1666 : GEN cp = perm_powu(res, im);
2046 20454 : for(i=1;i<lg(res);i++) res[i] = cp[i];
2047 5719 : for(i=1;i<lg(gf->psi);i++) gf->psi[i] = Fl_mul(im, gf->psi[i], deg);
2048 1666 : set_avma(av2); gf->deg = deg; return res;
2049 : }
2050 : }
2051 :
2052 : /* return NULL if not Galois */
2053 : static GEN
2054 29841 : galoisfindfrobenius(GEN T, GEN L, GEN den, GEN bad, struct galois_frobenius *gf,
2055 : struct galois_borne *gb, const struct galois_analysis *ga)
2056 : {
2057 29841 : pari_sp ltop = avma, av;
2058 29841 : long Try = 0, n = degpol(T), deg, gmask = (ga->group&ga_ext_2)? 3: 1;
2059 29841 : GEN frob, Lden = makeLden(L,den,gb);
2060 29839 : long is_nilpotent = ga->group&ga_all_nilpotent;
2061 : forprime_t S;
2062 :
2063 29839 : u_forprime_init(&S, ga->p, ULONG_MAX);
2064 29841 : av = avma;
2065 29841 : deg = gf->deg = ga->deg;
2066 29974 : while ((gf->p = u_forprime_next(&S)))
2067 : {
2068 : pari_sp lbot;
2069 : GEN Ti, Tp;
2070 : long nb, d;
2071 29973 : set_avma(av);
2072 29973 : Tp = ZX_to_Flx(T, gf->p);
2073 29973 : if (!Flx_is_squarefree(Tp, gf->p)) continue;
2074 29974 : if (bad && dvdiu(bad, gf->p)) continue;
2075 29974 : Ti = gel(Flx_factor(Tp, gf->p), 1);
2076 29972 : nb = lg(Ti)-1; d = degpol(gel(Ti,1));
2077 29973 : if (nb > 1 && degpol(gel(Ti,nb)) != d) return gc_NULL(ltop);
2078 29959 : if (((gmask&1)==0 || d % deg) && ((gmask&2)==0 || odd(d))) continue;
2079 29945 : if (DEBUGLEVEL >= 1) err_printf("GaloisConj: Trying p=%ld\n", gf->p);
2080 29945 : FlxV_to_ZXV_inplace(Ti);
2081 29946 : gf->fp = d;
2082 29946 : gf->Tmod = Ti; lbot = avma;
2083 29946 : if (is_nilpotent)
2084 27734 : frob = galoisfrobeniuslift_nilp(T, den, L, Lden, gf, gb);
2085 : else
2086 2212 : frob = galoisfrobeniuslift(T, den, L, Lden, gf, gb);
2087 29947 : if (frob)
2088 : {
2089 : GEN *gptr[3];
2090 29828 : gf->Tmod = gcopy(Ti);
2091 29828 : gptr[0]=&gf->Tmod; gptr[1]=&gf->psi; gptr[2]=&frob;
2092 29828 : gerepilemanysp(ltop,lbot,gptr,3); return frob;
2093 : }
2094 119 : if (is_nilpotent) continue;
2095 0 : if ((ga->group&ga_all_normal) && d % deg == 0) gmask &= ~1;
2096 : /* The first prime degree is always divisible by deg, so we don't
2097 : * have to worry about ext_2 being used before regular supersolvable*/
2098 0 : if (!gmask) return gc_NULL(ltop);
2099 0 : if ((ga->group&ga_non_wss) && ++Try > ((3*n)>>1))
2100 : {
2101 0 : if (DEBUGLEVEL)
2102 0 : pari_warn(warner,"Galois group probably not weakly super solvable");
2103 0 : return NULL;
2104 : }
2105 : }
2106 0 : if (!gf->p) pari_err_OVERFLOW("galoisfindfrobenius [ran out of primes]");
2107 0 : return NULL;
2108 : }
2109 :
2110 : /* compute g such that tau(Pmod[#])= tau(Pmod[g]) */
2111 :
2112 : static long
2113 6648 : get_image(GEN tau, GEN P, GEN Pmod, GEN p)
2114 : {
2115 6648 : pari_sp av = avma;
2116 6648 : long g, gp = lg(Pmod)-1;
2117 6648 : tau = RgX_to_FpX(tau, p);
2118 6648 : tau = FpX_FpXQ_eval(gel(Pmod, gp), tau, P, p);
2119 6648 : tau = FpX_normalize(FpX_gcd(P, tau, p), p);
2120 10784 : for (g = 1; g <= gp; g++)
2121 10784 : if (ZX_equal(tau, gel(Pmod,g))) return gc_long(av,g);
2122 0 : return gc_long(av,0);
2123 : }
2124 :
2125 : static GEN
2126 34116 : gg_get_std(GEN G)
2127 : {
2128 34116 : return !G ? NULL: lg(G)==3 ? G: mkvec2(gel(G,1),gmael(G,5,1));
2129 : }
2130 :
2131 : static GEN galoisgen(GEN T, GEN L, GEN M, GEN den, GEN bad, struct galois_borne *gb,
2132 : const struct galois_analysis *ga);
2133 :
2134 : static GEN
2135 5440 : galoisgenfixedfield(GEN Tp, GEN Pmod, GEN PL, GEN P, GEN ip, GEN bad, struct galois_borne *gb)
2136 : {
2137 : GEN Pden, PM;
2138 : GEN tau, PG, Pg;
2139 : long g, lP;
2140 5440 : long x = varn(Tp);
2141 5440 : GEN Pp = FpX_red(P, ip);
2142 5440 : if (DEBUGLEVEL>=6)
2143 0 : err_printf("GaloisConj: Fixed field %Ps\n",P);
2144 5440 : if (degpol(P)==2 && !bad)
2145 : {
2146 4092 : PG=cgetg(3,t_VEC);
2147 4092 : gel(PG,1) = mkvec( mkvecsmall2(2,1) );
2148 4092 : gel(PG,2) = mkvecsmall(2);
2149 4092 : tau = deg1pol_shallow(gen_m1, negi(gel(P,3)), x);
2150 4092 : g = get_image(tau, Pp, Pmod, ip);
2151 4092 : if (!g) return NULL;
2152 4092 : Pg = mkvecsmall(g);
2153 : }
2154 : else
2155 : {
2156 : struct galois_analysis Pga;
2157 : struct galois_borne Pgb;
2158 : GEN mod, mod2;
2159 : long j;
2160 1355 : if (!galoisanalysis(P, &Pga, 0, NULL)) return NULL;
2161 1334 : if (bad) Pga.group &= ~ga_easy;
2162 1334 : Pgb.l = gb->l;
2163 1334 : Pden = galoisborne(P, NULL, &Pgb, degpol(P));
2164 :
2165 1334 : if (Pgb.valabs > gb->valabs)
2166 : {
2167 125 : if (DEBUGLEVEL>=4)
2168 0 : err_printf("GaloisConj: increase prec of p-adic roots of %ld.\n"
2169 0 : ,Pgb.valabs-gb->valabs);
2170 125 : PL = ZpX_liftroots(P,PL,gb->l,Pgb.valabs);
2171 : }
2172 1209 : else if (Pgb.valabs < gb->valabs)
2173 1127 : PL = FpC_red(PL, Pgb.ladicabs);
2174 1334 : PM = FpV_invVandermonde(PL, Pden, Pgb.ladicabs);
2175 1334 : PG = galoisgen(P, PL, PM, Pden, bad ? lcmii(Pgb.dis, bad): NULL, &Pgb, &Pga);
2176 1334 : if (!PG) return NULL;
2177 1327 : lP = lg(gel(PG,1));
2178 1327 : mod = Pgb.ladicabs; mod2 = shifti(mod, -1);
2179 1327 : Pg = cgetg(lP, t_VECSMALL);
2180 3883 : for (j = 1; j < lP; j++)
2181 : {
2182 2556 : pari_sp btop=avma;
2183 2556 : tau = permtopol(gmael(PG,1,j), PL, PM, Pden, mod, mod2, x);
2184 2556 : g = get_image(tau, Pp, Pmod, ip);
2185 2556 : if (!g) return NULL;
2186 2556 : Pg[j] = g;
2187 2556 : set_avma(btop);
2188 : }
2189 : }
2190 5419 : return mkvec2(PG,Pg);
2191 : }
2192 :
2193 : static GEN
2194 5440 : galoisgenfixedfield0(GEN O, GEN L, GEN sigma, GEN T, GEN bad, GEN *pt_V,
2195 : struct galois_frobenius *gf, struct galois_borne *gb)
2196 : {
2197 5440 : pari_sp btop = avma;
2198 5440 : long vT = varn(T);
2199 5440 : GEN mod = gb->ladicabs, mod2 = shifti(gb->ladicabs,-1);
2200 : GEN OL, sym, P, PL, p, Tp, Sp, Pmod, PG;
2201 5440 : OL = fixedfieldorbits(O,L);
2202 5440 : sym = fixedfieldsympol(OL, itou(gb->l));
2203 5440 : PL = sympol_eval(sym, OL, mod);
2204 5440 : P = FpX_center_i(FpV_roots_to_pol(PL, mod, vT), mod, mod2);
2205 5440 : if (!FpX_is_squarefree(P,utoipos(gf->p)))
2206 : {
2207 89 : GEN badp = lcmii(bad? bad: gb->dis, ZX_disc(P));
2208 89 : gf->p = findpsi(badp, gf->p, T, sigma, gf->deg, &gf->Tmod, &gf->psi);
2209 : }
2210 5440 : p = utoipos(gf->p);
2211 5440 : Tp = FpX_red(T,p);
2212 5440 : Sp = sympol_aut_evalmod(sym, gf->deg, sigma, Tp, p);
2213 5440 : Pmod = fixedfieldfactmod(Sp, p, gf->Tmod);
2214 5440 : PG = galoisgenfixedfield(Tp, Pmod, PL, P, p, bad, gb);
2215 5440 : if (PG == NULL) return NULL;
2216 5419 : if (DEBUGLEVEL >= 4)
2217 0 : err_printf("GaloisConj: Back to Earth:%Ps\n", gg_get_std(gel(PG,1)));
2218 5419 : if (pt_V) *pt_V = mkvec3(sym, PL, P);
2219 5419 : return gc_all(btop, pt_V ? 4: 3, &PG, &gf->Tmod, &gf->psi, pt_V);
2220 : }
2221 :
2222 : /* Let sigma^m=1, tau*sigma*tau^-1=sigma^s. Return n = sum_{0<=k<e,0} s^k mod m
2223 : * so that (sigma*tau)^e = sigma^n*tau^e. N.B. n*(1-s) = 1-s^e mod m,
2224 : * unfortunately (1-s) may not invertible mod m */
2225 : static long
2226 14780 : stpow(long s, long e, long m)
2227 : {
2228 14780 : long i, n = 1;
2229 23108 : for (i = 1; i < e; i++) n = (1 + n * s) % m;
2230 14780 : return n;
2231 : }
2232 :
2233 : static GEN
2234 6648 : wpow(long s, long m, long e, long n)
2235 : {
2236 6648 : GEN w = cgetg(n+1,t_VECSMALL);
2237 6648 : long si = s;
2238 : long i;
2239 6648 : w[1] = 1;
2240 7390 : for(i=2; i<=n; i++) w[i] = w[i-1]*e;
2241 14038 : for(i=n; i>=1; i--)
2242 : {
2243 7390 : si = Fl_powu(si,e,m);
2244 7390 : w[i] = Fl_mul(s-1, stpow(si, w[i], m), m);
2245 : }
2246 6648 : return w;
2247 : }
2248 :
2249 : static GEN
2250 6648 : galoisgenliftauto(GEN O, GEN gj, long s, long n, struct galois_test *td)
2251 : {
2252 6648 : pari_sp av = avma;
2253 : long sr, k;
2254 6648 : long deg = lg(gel(O,1))-1;
2255 6648 : GEN X = cgetg(lg(O), t_VECSMALL);
2256 6648 : GEN oX = cgetg(lg(O), t_VECSMALL);
2257 6648 : GEN B = perm_cycles(gj);
2258 6648 : long oj = lg(gel(B,1)) - 1;
2259 6648 : GEN F = factoru(oj);
2260 6648 : GEN Fp = gel(F,1);
2261 6648 : GEN Fe = gel(F,2);
2262 6648 : GEN pf = identity_perm(n);
2263 6648 : if (DEBUGLEVEL >= 6)
2264 0 : err_printf("GaloisConj: %Ps of relative order %d\n", gj, oj);
2265 12533 : for (k=lg(Fp)-1; k>=1; k--)
2266 : {
2267 6648 : long f, dg = 1, el = oj, osel = 1, a = 0;
2268 6648 : long p = Fp[k], e = Fe[k], op = oj / upowuu(p,e);
2269 : long i;
2270 6648 : GEN pf1 = NULL, w, wg, Be = cgetg(e+1,t_VEC);
2271 6648 : gel(Be,e) = cyc_pow(B, op);
2272 7390 : for(i=e-1; i>=1; i--) gel(Be,i) = cyc_pow(gel(Be,i+1), p);
2273 6648 : w = wpow(Fl_powu(s,op,deg),deg,p,e);
2274 6648 : wg = cgetg(e+2,t_VECSMALL);
2275 6648 : wg[e+1] = deg;
2276 14038 : for (i=e; i>=1; i--) wg[i] = ugcd(wg[i+1], w[i]);
2277 36823 : for (i=1; i<lg(O); i++) oX[i] = 0;
2278 13275 : for (f=1; f<=e; f++)
2279 : {
2280 : long sel, t;
2281 7390 : GEN Bel = gel(Be,f);
2282 7390 : dg *= p; el /= p;
2283 7390 : sel = Fl_powu(s,el,deg);
2284 7390 : if (DEBUGLEVEL >= 6) err_printf("GaloisConj: B=%Ps\n", Bel);
2285 7390 : sr = ugcd(stpow(sel,p,deg),deg);
2286 7390 : if (DEBUGLEVEL >= 6)
2287 0 : err_printf("GaloisConj: exp %d: s=%ld [%ld] a=%ld w=%ld wg=%ld sr=%ld\n",
2288 0 : dg, sel, deg, a, w[f], wg[f+1], sr);
2289 9812 : for (t = 0; t < sr; t++)
2290 9049 : if ((a+t*w[f])%wg[f+1]==0)
2291 : {
2292 : long i, j, k, st;
2293 58922 : for (i = 1; i < lg(X); i++) X[i] = 0;
2294 30986 : for (i = 0; i < lg(X)-1; i+=dg)
2295 46856 : for (j = 1, k = p, st = t; k <= dg; j++, k += p)
2296 : {
2297 24849 : X[k+i] = (oX[j+i] + st)%deg;
2298 24849 : st = (t + st*osel)%deg;
2299 : }
2300 8979 : pf1 = testpermutation(O, Bel, X, sel, p, sr, td);
2301 8979 : if (pf1) break;
2302 : }
2303 7390 : if (!pf1) return NULL;
2304 43060 : for (i=1; i<lg(O); i++) oX[i] = X[i];
2305 6627 : osel = sel; a = (a+t*w[f])%deg;
2306 : }
2307 5885 : pf = perm_mul(pf, perm_powu(pf1, el));
2308 : }
2309 5885 : return gerepileuptoleaf(av, pf);
2310 : }
2311 :
2312 : static GEN
2313 0 : FlxV_Flx_gcd(GEN x, GEN T, ulong p)
2314 0 : { pari_APPLY_same(Flx_normalize(Flx_gcd(gel(x,i),T,p),p)) }
2315 :
2316 : static GEN
2317 0 : Flx_FlxV_minpolymod(GEN y, GEN x, ulong p)
2318 0 : { pari_APPLY_same(Flxq_minpoly(Flx_rem(y, gel(x,i), p), gel(x,i), p)) }
2319 :
2320 : static GEN
2321 0 : FlxV_minpolymod(GEN x, GEN y, ulong p)
2322 0 : { pari_APPLY_same(Flx_FlxV_minpolymod(gel(x,i), y, p)) }
2323 :
2324 : static GEN
2325 0 : factperm(GEN x)
2326 : {
2327 0 : pari_APPLY_same(gen_indexsort(gel(x,i), (void*)cmp_Flx, cmp_nodata))
2328 : }
2329 :
2330 : /* compute (prod p_i^e_i)(1) */
2331 :
2332 : static long
2333 0 : permprodeval(GEN p, GEN e, long s)
2334 : {
2335 0 : long i, j, l = lg(p);
2336 0 : for (i=l-1; i>=1; i--)
2337 : {
2338 0 : GEN pi = gel(p,i);
2339 0 : long ei = uel(e,i);
2340 0 : for(j = 1; j <= ei; j++)
2341 0 : s = uel(pi, s);
2342 : }
2343 0 : return s;
2344 : }
2345 :
2346 : static GEN
2347 0 : pc_to_perm(GEN pc, GEN gen, long n)
2348 : {
2349 0 : long i, l = lg(pc);
2350 0 : GEN s = identity_perm(n);
2351 0 : for (i=1; i<l; i++)
2352 0 : s = perm_mul(gel(gen,pc[i]),s);
2353 0 : return s;
2354 : }
2355 :
2356 : static GEN
2357 0 : genorbit(GEN ordH, GEN permfact_Hp, long fr, long n, long k, long j)
2358 : {
2359 0 : pari_sp av = avma;
2360 0 : long l = lg(gel(permfact_Hp,1))-1, no = 1, b, i;
2361 0 : GEN W = zero_zv(l);
2362 0 : GEN orb = cgetg(l+1, t_VECSMALL);
2363 0 : GEN gen = cgetg(l+1, t_VEC);
2364 0 : GEN E = cgetg(k+1, t_VECSMALL);
2365 0 : for(b = 0; b < n; b++)
2366 : {
2367 0 : long bb = b, s;
2368 0 : for(i = 1; i <= k; i++)
2369 : {
2370 0 : uel(E,i) = bb % uel(ordH,i);
2371 0 : bb /= uel(ordH,i);
2372 : }
2373 0 : if (E[j]) continue;
2374 0 : s = permprodeval(permfact_Hp, E, fr);
2375 0 : if (s>lg(W)-1) pari_err_BUG("W1");
2376 0 : if (W[s]) continue;
2377 0 : W[s] = 1;
2378 0 : if (no > l) pari_err_BUG("genorbit");
2379 0 : uel(orb,no) = s;
2380 0 : gel(gen,no) = zv_copy(E);
2381 0 : no++;
2382 : }
2383 0 : if(no<l) pari_err_BUG("genorbit");
2384 0 : return gerepilecopy(av, mkvec2(orb,gen));
2385 : }
2386 :
2387 0 : INLINE GEN br_get(GEN br, long i, long j) { return gmael(br,j,i-j); }
2388 0 : static GEN pcgrp_get_ord(GEN G) { return gel(G,1); }
2389 0 : static GEN pcgrp_get_pow(GEN G) { return gel(G,2); }
2390 0 : static GEN pcgrp_get_br(GEN G) { return gel(G,3); }
2391 :
2392 : static GEN
2393 24387 : cyclic_pc(long n)
2394 : {
2395 24387 : return mkvec3(mkvecsmall(n),mkvec(cgetg(1,t_VECSMALL)), mkvec(cgetg(1,t_VEC)));
2396 : }
2397 :
2398 : static GEN
2399 0 : pc_normalize(GEN g, GEN G)
2400 : {
2401 0 : long i, l = lg(g)-1, o = 1;
2402 0 : GEN ord = pcgrp_get_ord(G), pw = pcgrp_get_pow(G), br = pcgrp_get_br(G);
2403 0 : for (i = 1; i < l; i++)
2404 : {
2405 0 : if (g[i] == g[i+1])
2406 : {
2407 0 : if (++o == ord[g[i]])
2408 : {
2409 0 : GEN v = vecsmall_concat(vecslice(g,1,i-o+1),gel(pw,g[i]));
2410 0 : GEN w = vecsmall_concat(v,vecslice(g,i+2,l));
2411 0 : return pc_normalize(w, G);
2412 : }
2413 : }
2414 0 : else if (g[i] > g[i+1])
2415 : {
2416 0 : GEN v = vecsmall_concat(vecslice(g,1,i-1), br_get(br,g[i],g[i+1]));
2417 0 : GEN w = vecsmall_concat(mkvecsmall2(g[i+1],g[i]),vecslice(g,i+2,l));
2418 0 : v = vecsmall_concat(v, w);
2419 0 : return pc_normalize(v, G);
2420 : }
2421 0 : else o = 1;
2422 : }
2423 0 : return g;
2424 : }
2425 :
2426 : static GEN
2427 0 : pc_inv(GEN g, GEN G)
2428 : {
2429 0 : long i, l = lg(g);
2430 0 : GEN ord = pcgrp_get_ord(G), pw = pcgrp_get_pow(G);
2431 0 : GEN v = cgetg(l, t_VEC);
2432 0 : if (l==1) return v;
2433 0 : for(i = 1; i < l; i++)
2434 : {
2435 0 : ulong gi = uel(g,i);
2436 0 : gel(v,l-i) = vecsmall_concat(pc_inv(gel(pw, gi), G),
2437 0 : const_vecsmall(uel(ord,gi)-1,gi));
2438 : }
2439 0 : return pc_normalize(shallowconcat1(v), G);
2440 : }
2441 :
2442 : static GEN
2443 0 : pc_mul(GEN g, GEN h, GEN G)
2444 : {
2445 0 : return pc_normalize(vecsmall_concat(g,h), G);
2446 : }
2447 :
2448 : static GEN
2449 0 : pc_bracket(GEN g, GEN h, GEN G)
2450 : {
2451 0 : GEN gh = pc_mul(g, h, G);
2452 0 : GEN hg = pc_mul(h, g, G);
2453 0 : long i, l1 = lg(gh), l2 = lg(hg), lm = minss(l1,l2);
2454 0 : for (i = 1; i < lm; i++)
2455 0 : if (gh[l1-i] != hg[l2-i]) break;
2456 0 : return pc_mul(vecsmall_shorten(gh,l1-i), pc_inv(vecsmall_shorten(hg,l2-i), G), G);
2457 : }
2458 :
2459 : static GEN
2460 0 : pc_exp(GEN v)
2461 : {
2462 0 : long i, l = lg(v);
2463 0 : GEN w = cgetg(l, t_VEC);
2464 0 : if (l==1) return w;
2465 0 : for (i = 1; i < l; i++)
2466 0 : gel(w,i) = const_vecsmall(v[i], i+1);
2467 0 : return shallowconcat1(w);
2468 : }
2469 : static GEN
2470 0 : vecsmall_increase(GEN x)
2471 0 : { pari_APPLY_ulong(x[i]+1) }
2472 :
2473 : static GEN
2474 0 : vecvecsmall_increase(GEN x)
2475 0 : { pari_APPLY_same(vecsmall_increase(gel(x,i))) }
2476 :
2477 : static GEN
2478 0 : pcgrp_lift(GEN G, long deg)
2479 : {
2480 0 : GEN ord = pcgrp_get_ord(G), pw = pcgrp_get_pow(G), br = pcgrp_get_br(G);
2481 0 : long i, l = lg(br);
2482 0 : GEN Ord = vecsmall_prepend(ord, deg);
2483 0 : GEN Pw = vec_prepend(vecvecsmall_increase(pw), cgetg(1,t_VECSMALL));
2484 0 : GEN Br = cgetg(l+1, t_VEC);
2485 0 : gel(Br,1) = const_vec(l-1, cgetg(1, t_VECSMALL));
2486 0 : for (i = 1; i < l; i++)
2487 0 : gel(Br,i+1) = vecvecsmall_increase(gel(br, i));
2488 0 : return mkvec3(Ord, Pw, Br);
2489 : }
2490 :
2491 : static GEN
2492 0 : brl_add(GEN x, GEN a)
2493 : {
2494 0 : pari_APPLY_same(vecsmall_concat(const_vecsmall(uel(a,i),1),gel(x,i)))
2495 : }
2496 :
2497 : static void
2498 0 : pcgrp_insert(GEN G, long j, GEN a)
2499 : {
2500 0 : GEN pw = pcgrp_get_pow(G), br = pcgrp_get_br(G);
2501 0 : gel(pw,j) = vecsmall_concat(gel(a,1),gel(pw, j));
2502 0 : gel(br,j) = brl_add(gel(br, j), gel(a,2));
2503 0 : }
2504 :
2505 : static long
2506 0 : getfr(GEN f, GEN h)
2507 : {
2508 0 : long i, l = lg(f);
2509 0 : for (i = 1; i < l; i++)
2510 0 : if (zv_equal(gel(f,i), h)) return i;
2511 0 : pari_err_BUG("galoisinit");
2512 0 : return 0;
2513 : }
2514 :
2515 : static long
2516 0 : get_pow(GEN pf, ulong o, GEN pw, GEN gen)
2517 : {
2518 0 : long i, n = lg(pf)-1;
2519 0 : GEN p1 = perm_powu(pf, o);
2520 0 : GEN p2 = pc_to_perm(pw, gen, n);
2521 0 : for(i = 0; ; i++)
2522 : {
2523 0 : if (zv_equal(p1, p2)) break;
2524 0 : p2 = perm_mul(gel(gen,1), p2);
2525 : }
2526 0 : return i;
2527 : }
2528 :
2529 : struct galois_perm
2530 : {
2531 : GEN L;
2532 : GEN M;
2533 : GEN den;
2534 : GEN mod, mod2;
2535 : long x;
2536 : GEN cache;
2537 : };
2538 :
2539 : static void
2540 0 : galoisperm_init(struct galois_perm *gp, GEN L, GEN M, GEN den, GEN mod, GEN mod2, long x)
2541 : {
2542 0 : gp->L = L;
2543 0 : gp->M = M;
2544 0 : gp->den = den;
2545 0 : gp->mod = mod;
2546 0 : gp->mod2 = mod2;
2547 0 : gp->x = x;
2548 0 : gp->cache = zerovec(lg(L)-1);
2549 0 : }
2550 :
2551 : static void
2552 0 : galoisperm_free(struct galois_perm *gp)
2553 : {
2554 0 : long i, l = lg(gp->cache);
2555 0 : for (i=1; i<l; i++)
2556 0 : if (!isintzero(gel(gp->cache,i)))
2557 0 : gunclone(gel(gp->cache,i));
2558 0 : }
2559 :
2560 : static GEN
2561 0 : permtoaut(GEN p, struct galois_perm *gp)
2562 : {
2563 0 : pari_sp av = avma;
2564 0 : if (isintzero(gel(gp->cache,p[1])))
2565 : {
2566 0 : GEN pol = permtopol(p, gp->L, gp->M, gp->den, gp->mod, gp->mod2, gp->x);
2567 0 : gel(gp->cache,p[1]) = gclone(pol);
2568 : }
2569 0 : set_avma(av);
2570 0 : return gel(gp->cache,p[1]);
2571 : }
2572 :
2573 : static GEN
2574 0 : pc_evalcache(GEN W, GEN u, GEN sp, GEN T, GEN p, struct galois_perm *gp)
2575 : {
2576 : GEN v;
2577 0 : long ns = sp[1];
2578 0 : if (!isintzero(gel(W,ns))) return gel(W,ns);
2579 0 : v = RgX_to_FpX(permtoaut(sp, gp), p);
2580 0 : gel(W,ns) = FpX_FpXQV_eval(v, u, T, p);
2581 0 : return gel(W,ns);
2582 : }
2583 :
2584 : static ulong
2585 0 : findp(GEN D, GEN P, GEN S, long o, GEN *Tmod)
2586 : {
2587 : forprime_t iter;
2588 : ulong p;
2589 0 : long n = degpol(P);
2590 0 : u_forprime_init(&iter, n*maxss(expu(n)-3, 2), ULONG_MAX);
2591 0 : while ((p = u_forprime_next(&iter)))
2592 : {
2593 : GEN F, F1, Sp;
2594 0 : if (smodis(D, p) == 0)
2595 0 : continue;
2596 0 : F = gel(Flx_factor(ZX_to_Flx(P, p), p), 1);
2597 0 : F1 = gel(F,1);
2598 0 : if (degpol(F1) != o)
2599 0 : continue;
2600 0 : Sp = RgX_to_Flx(S, p);
2601 0 : if (gequal(Flx_rem(Sp, F1, p), Flx_Frobenius(F1, p)))
2602 : {
2603 0 : *Tmod = FlxV_to_ZXV(F);
2604 0 : return p;
2605 : }
2606 : }
2607 0 : return 0;
2608 : }
2609 :
2610 : static GEN
2611 0 : nilp_froblift(GEN genG, GEN autH, long j, GEN pcgrp,
2612 : GEN idp, GEN incl, GEN H, struct galois_lift *gl, struct galois_perm *gp)
2613 : {
2614 0 : pari_sp av = avma;
2615 0 : GEN T = gl->T, p = gl->p, pe = gl->Q;
2616 0 : ulong pp = itou(p);
2617 0 : long e = gl->e;
2618 0 : GEN pf = cgetg(lg(gl->L), t_VECSMALL);
2619 0 : GEN Tp = ZX_to_Flx(T, pp);
2620 0 : GEN Hp = ZX_to_Flx(H, pp);
2621 0 : GEN ord = pcgrp_get_ord(pcgrp);
2622 0 : GEN pcp = gel(pcgrp_get_pow(pcgrp),j+1);
2623 0 : long o = uel(ord,1);
2624 0 : GEN ordH = vecslice(ord,2,lg(ord)-1);
2625 0 : long n = zv_prod(ordH), k = lg(ordH)-1, l = k-j, m = upowuu(o, l), v = varn(T);
2626 0 : GEN factTp = gel(Flx_factor(Tp, pp), 1);
2627 0 : long fp = degpol(gel(factTp, 1));
2628 0 : GEN frobp = Flxq_autpow(Flx_Frobenius(Tp, pp), fp-1, Tp, pp);
2629 0 : GEN frob = ZpX_ZpXQ_liftroot(T, Flx_to_ZX(frobp), T, p, e);
2630 0 : if (galoisfrobeniustest(frob, gl, pf))
2631 : {
2632 0 : GEN pfi = perm_inv(pf);
2633 0 : long d = get_pow(pfi, uel(ord,j+1), pcp, genG);
2634 0 : return mkvec3(pfi, mkvec2(const_vecsmall(d,1),zero_zv(l+1)), gel(factTp, 1));
2635 : }
2636 : else
2637 : {
2638 0 : GEN frobG = FpXQ_powers(frob, usqrt(degpol(T)), T, pe);
2639 0 : GEN autHp = RgXV_to_FlxV(autH,pp);
2640 0 : GEN inclp = RgX_to_Flx(incl,pp);
2641 0 : GEN factHp = gel(Flx_factor(Hp, pp),1);
2642 0 : long fr = getfr(factHp, idp);
2643 0 : GEN minHp = FlxV_minpolymod(autHp, factHp, pp);
2644 0 : GEN permfact_Hp = factperm(minHp);
2645 0 : GEN permfact_Gp = FlxV_Flx_gcd(FlxC_Flxq_eval(factHp, inclp, Tp, pp), Tp, pp);
2646 0 : GEN bezout_Gpe = bezout_lift_fact(T, FlxV_to_ZXV(permfact_Gp), p, e);
2647 0 : GEN id = gmael(Flx_factor(gel(permfact_Gp, fr),pp),1,1);
2648 0 : GEN orbgen = genorbit(ordH, permfact_Hp, fr, n, k, j);
2649 0 : GEN orb = gel(orbgen,1), gen = gel(orbgen,2);
2650 0 : long nborb = lg(orb)-1;
2651 0 : GEN A = cgetg(l+1, t_VECSMALL);
2652 0 : GEN W = zerovec(lg(gl->L)-1);
2653 0 : GEN U = zeromatcopy(nborb,degpol(T));
2654 0 : GEN br = pcgrp_get_br(pcgrp), brj = gcopy(gel(br, j+1));
2655 0 : GEN Ui = cgetg(nborb+1, t_VEC);
2656 : long a, b, i;
2657 0 : for(a = 0; a < m; a++)
2658 : {
2659 : pari_timer ti;
2660 : pari_sp av2;
2661 0 : GEN B = pol_0(v);
2662 0 : long aa = a;
2663 0 : if (DEBUGLEVEL>=4) timer_start(&ti);
2664 0 : for(i = 1; i <= l; i++)
2665 : {
2666 0 : uel(A,i) = aa % o;
2667 0 : aa /= o;
2668 : }
2669 0 : gel(br,j+1) = brl_add(brj, A);
2670 0 : for(b = 1; b <= nborb; b++)
2671 : {
2672 0 : GEN br = pc_bracket(pc_exp(gel(gen,b)), mkvecsmall(j+1), pcgrp);
2673 0 : GEN sp = pc_to_perm(br, genG, degpol(T));
2674 0 : long u = sp[1];
2675 0 : long s = permprodeval(permfact_Hp, gel(gen,b), fr);
2676 0 : if (isintzero(gmael(U,u,s)))
2677 : {
2678 0 : GEN Ub = pc_evalcache(W, frobG, sp, T, pe, gp);
2679 0 : gmael(U,u,s) = FpXQ_mul(Ub, gel(bezout_Gpe,s), T, pe);
2680 : }
2681 0 : gel(Ui, b) = gmael(U,u,s);
2682 : }
2683 0 : av2 = avma;
2684 0 : for(b = 1; b <= nborb; b++)
2685 0 : B = FpX_add(B, gel(Ui,b), pe);
2686 0 : if (DEBUGLEVEL >= 4) timer_printf(&ti,"Testing candidate %ld",a);
2687 0 : if (galoisfrobeniustest(B, gl, pf))
2688 : {
2689 0 : GEN pfi = perm_inv(pf);
2690 0 : long d = get_pow(pfi, uel(ord,j+1), pcp, genG);
2691 0 : gel(br,j+1) = brj;
2692 0 : return gerepilecopy(av,mkvec3(pfi,mkvec2(const_vecsmall(d,1),A),id));
2693 : }
2694 0 : set_avma(av2);
2695 : }
2696 0 : return gc_NULL(av);
2697 : }
2698 : }
2699 :
2700 : static GEN
2701 0 : galoisgenlift_nilp(GEN PG, GEN O, GEN V, GEN T, GEN frob, GEN sigma,
2702 : struct galois_borne *gb, struct galois_frobenius *gf, struct galois_perm *gp)
2703 : {
2704 0 : long j, n = degpol(T), deg = gf->deg;
2705 0 : ulong p = gf->p;
2706 0 : GEN L = gp->L, M = gp->M, den = gp->den;
2707 0 : GEN S = fixedfieldinclusion(O, gel(V,2));
2708 0 : GEN incl = vectopol(S, M, den, gb->ladicabs, shifti(gb->ladicabs,-1), varn(T));
2709 0 : GEN H = gel(V,3);
2710 0 : GEN PG1 = gmael(PG, 1, 1);
2711 0 : GEN PG2 = gmael(PG, 1, 2);
2712 0 : GEN PG3 = gmael(PG, 1, 3);
2713 0 : GEN PG4 = gmael(PG, 1, 4);
2714 0 : long lP = lg(PG1);
2715 0 : GEN PG5 = pcgrp_lift(gmael(PG, 1, 5), deg);
2716 0 : GEN res = cgetg(6, t_VEC), res1, res2, res3;
2717 0 : gel(res,1) = res1 = cgetg(lP + 1, t_VEC);
2718 0 : gel(res,2) = res2 = cgetg(lP + 1, t_VEC);
2719 0 : gel(res,3) = res3 = cgetg(lP + 1, t_VEC);
2720 0 : gel(res,4) = vecsmall_prepend(PG4, p);
2721 0 : gel(res,5) = PG5;
2722 0 : gel(res1, 1) = frob;
2723 0 : gel(res2, 1) = ZX_to_Flx(gel(gf->Tmod,1), p);
2724 0 : gel(res3, 1) = sigma;
2725 0 : for (j = 1; j < lP; j++)
2726 : {
2727 : struct galois_lift gl;
2728 0 : GEN Lden = makeLden(L,den,gb);
2729 : GEN pf;
2730 0 : initlift(T, den, uel(PG4,j), L, Lden, gb, &gl);
2731 0 : pf = nilp_froblift(vecslice(res1,1,j), PG3, j, PG5, gel(PG2,j), incl, H, &gl, gp);
2732 0 : if (!pf) return NULL;
2733 0 : if (DEBUGLEVEL>=2)
2734 0 : err_printf("found: %ld/%ld: %Ps: %Ps\n", n, j+1, gel(pf,2),gel(pf,1));
2735 0 : pcgrp_insert(PG5, j+1, gel(pf,2));
2736 0 : gel(res1, j+1) = gel(pf,1);
2737 0 : gel(res2, j+1) = gel(pf,3);
2738 0 : gel(res3, j+1) = gcopy(permtoaut(gel(pf,1), gp));
2739 : }
2740 0 : if (DEBUGLEVEL >= 4) err_printf("GaloisConj: Fini!\n");
2741 0 : return res;
2742 : }
2743 :
2744 : static GEN
2745 5419 : galoisgenlift(GEN PG, GEN Pg, GEN O, GEN L, GEN M, GEN frob,
2746 : struct galois_borne *gb, struct galois_frobenius *gf)
2747 : {
2748 : struct galois_test td;
2749 : GEN res, res1;
2750 5419 : GEN PG1 = gel(PG, 1), PG2 = gel(PG, 2);
2751 5419 : long lP = lg(PG1), j, n = lg(L)-1;
2752 5419 : inittest(L, M, gb->bornesol, gb->ladicsol, &td);
2753 5419 : res = cgetg(3, t_VEC);
2754 5419 : gel(res,1) = res1 = cgetg(lP + 1, t_VEC);
2755 5419 : gel(res,2) = vecsmall_prepend(PG2, gf->deg);
2756 5419 : gel(res1, 1) = vecsmall_copy(frob);
2757 11304 : for (j = 1; j < lP; j++)
2758 : {
2759 6648 : GEN pf = galoisgenliftauto(O, gel(PG1, j), gf->psi[Pg[j]], n, &td);
2760 6648 : if (!pf) { freetest(&td); return NULL; }
2761 5885 : gel(res1, j+1) = pf;
2762 : }
2763 4656 : if (DEBUGLEVEL >= 4) err_printf("GaloisConj: Fini!\n");
2764 4656 : freetest(&td);
2765 4656 : return res;
2766 : }
2767 :
2768 : static ulong
2769 29828 : psi_order(GEN psi, ulong d)
2770 : {
2771 29828 : long i, l = lg(psi);
2772 29828 : ulong s = 1;
2773 66980 : for (i=1; i<l; i++)
2774 37152 : s = clcm(s, d/cgcd(uel(psi, i)-1, d));
2775 29828 : return s;
2776 : }
2777 :
2778 : static GEN
2779 30030 : galoisgen(GEN T, GEN L, GEN M, GEN den, GEN bad, struct galois_borne *gb,
2780 : const struct galois_analysis *ga)
2781 : {
2782 : struct galois_test td;
2783 : struct galois_frobenius gf, ogf;
2784 30030 : pari_sp ltop = avma;
2785 30030 : long x, n = degpol(T), is_central;
2786 : ulong po;
2787 30030 : GEN sigma, res, frob, O, PG, V, ofrob = NULL;
2788 :
2789 30030 : if (!ga->deg) return NULL;
2790 30030 : x = varn(T);
2791 30030 : if (DEBUGLEVEL >= 9) err_printf("GaloisConj: denominator:%Ps\n", den);
2792 30030 : if (n == 12 && ga->ord==3 && !ga->p4)
2793 : { /* A4 is very probable: test it first */
2794 98 : pari_sp av = avma;
2795 98 : if (DEBUGLEVEL >= 4) err_printf("GaloisConj: Testing A4 first\n");
2796 98 : inittest(L, M, gb->bornesol, gb->ladicsol, &td);
2797 98 : PG = a4galoisgen(&td);
2798 98 : freetest(&td);
2799 98 : if (PG) return gerepileupto(ltop, PG);
2800 0 : set_avma(av);
2801 : }
2802 29932 : if (n == 24 && ga->ord==3 && ga->p4)
2803 : { /* S4 is very probable: test it first */
2804 77 : pari_sp av = avma;
2805 : struct galois_lift gl;
2806 77 : if (DEBUGLEVEL >= 4) err_printf("GaloisConj: Testing S4 first\n");
2807 77 : initlift(T, den, ga->p4, L, makeLden(L,den,gb), gb, &gl);
2808 77 : PG = s4galoisgen(&gl);
2809 77 : if (PG) return gerepileupto(ltop, PG);
2810 0 : set_avma(av);
2811 : }
2812 29855 : if (n == 36 && ga->ord==3 && ga->p4)
2813 : { /* F36 is very probable: test it first */
2814 14 : pari_sp av = avma;
2815 : struct galois_lift gl;
2816 14 : if (DEBUGLEVEL >= 4) err_printf("GaloisConj: Testing 3x3:4 first (p=%ld)\n",ga->p4);
2817 14 : initlift(T, den, ga->p4, L, makeLden(L,den,gb), gb, &gl);
2818 14 : PG = f36galoisgen(&gl);
2819 14 : if (PG) return gerepileupto(ltop, PG);
2820 0 : set_avma(av);
2821 : }
2822 29841 : frob = galoisfindfrobenius(T, L, den, bad, &gf, gb, ga);
2823 29842 : if (!frob) return gc_NULL(ltop);
2824 29828 : po = psi_order(gf.psi, gf.deg);
2825 29828 : if (!(ga->group&ga_easy) && po < (ulong) gf.deg && gf.deg/radicalu(gf.deg)%po == 0)
2826 : {
2827 0 : is_central = 1;
2828 0 : if (!bad) bad = gb->dis;
2829 0 : if (po > 1)
2830 : {
2831 0 : ofrob = frob; ogf = gf;
2832 0 : frob = perm_powu(frob, po);
2833 0 : gf.deg /= po;
2834 : }
2835 29828 : } else is_central = 0;
2836 29828 : sigma = permtopol(frob, L, M, den, gb->ladicabs, shifti(gb->ladicabs,-1), x);
2837 29826 : if (is_central && gf.fp != gf.deg)
2838 0 : { gf.p = findp(bad, T, sigma, gf.deg, &gf.Tmod); gf.fp = gf.deg;
2839 0 : gf.psi = const_vecsmall(lg(gf.Tmod)-1, 1);
2840 : }
2841 29826 : if (gf.deg == n) /* cyclic */
2842 : {
2843 24386 : GEN Tp = ZX_to_Flx(gel(gf.Tmod,1), gf.p);
2844 24387 : res = mkvec5(mkvec(frob), mkvec(Tp), mkvec(sigma), mkvecsmall(gf.p), cyclic_pc(n));
2845 24387 : return gerepilecopy(ltop, res);
2846 : }
2847 5440 : O = perm_cycles(frob);
2848 5440 : if (DEBUGLEVEL >= 9) err_printf("GaloisConj: Frobenius:%Ps\n", sigma);
2849 5440 : PG = galoisgenfixedfield0(O, L, sigma, T, is_central ? bad: NULL,
2850 : is_central ? &V: NULL, &gf, gb);
2851 5440 : if (PG == NULL) return gc_NULL(ltop);
2852 5419 : if (is_central && lg(gel(PG,1))!=3)
2853 0 : {
2854 : struct galois_perm gp;
2855 0 : galoisperm_init(&gp, L, M, den, gb->ladicabs, shifti(gb->ladicabs,-1), varn(T));
2856 0 : res = galoisgenlift_nilp(PG, O, V, T, frob, sigma, gb, &gf, &gp);
2857 0 : galoisperm_free(&gp);
2858 : }
2859 : else
2860 : {
2861 5419 : if (is_central && po > 1)
2862 : { /* backtrack powering of frob */
2863 0 : frob = ofrob; gf = ogf;
2864 0 : O = perm_cycles(ofrob);
2865 0 : sigma = permtopol(ofrob, L, M, den, gb->ladicabs, shifti(gb->ladicabs,-1), x);
2866 0 : PG = galoisgenfixedfield0(O, L, sigma, T, NULL, NULL, &gf, gb);
2867 0 : if (PG == NULL) return gc_NULL(ltop);
2868 : }
2869 5419 : res = galoisgenlift(gg_get_std(gel(PG,1)), gel(PG,2), O, L, M, frob, gb, &gf);
2870 : }
2871 5419 : if (!res) return gc_NULL(ltop);
2872 4656 : return gerepilecopy(ltop, res);
2873 : }
2874 :
2875 : /* T = polcyclo(N) */
2876 : static GEN
2877 966 : conjcyclo(GEN T, long N)
2878 : {
2879 966 : pari_sp av = avma;
2880 966 : long i, k = 1, d = eulerphiu(N), v = varn(T);
2881 966 : GEN L = cgetg(d+1,t_COL);
2882 14546 : for (i=1; i<=N; i++)
2883 13580 : if (ugcd(i, N)==1)
2884 : {
2885 6356 : GEN s = pol_xn(i, v);
2886 6356 : if (i >= d) s = ZX_rem(s, T);
2887 6356 : gel(L,k++) = s;
2888 : }
2889 966 : return gerepileupto(av, gen_sort(L, (void*)&gcmp, &gen_cmp_RgX));
2890 : }
2891 :
2892 : static GEN
2893 1246 : aut_to_groupelts(GEN aut, GEN L, ulong p)
2894 : {
2895 1246 : pari_sp av = avma;
2896 1246 : long i, d = lg(aut)-1;
2897 1246 : GEN P = ZV_to_Flv(L, p);
2898 1246 : GEN N = FlxV_Flv_multieval(aut, P, p);
2899 1246 : GEN q = perm_inv(vecsmall_indexsort(P));
2900 1246 : GEN G = cgetg(d+1, t_VEC);
2901 35945 : for (i=1; i<=d; i++)
2902 34699 : gel(G,i) = perm_mul(vecsmall_indexsort(gel(N,i)), q);
2903 1246 : return gerepilecopy(av, vecvecsmall_sort_shallow(G));
2904 : }
2905 :
2906 : static ulong
2907 7 : galois_find_totally_split(GEN P, GEN Q)
2908 : {
2909 7 : pari_sp av = avma;
2910 : forprime_t iter;
2911 : ulong p;
2912 7 : long n = degpol(P);
2913 7 : u_forprime_init(&iter, n*maxss(expu(n)-3, 2), ULONG_MAX);
2914 714 : while ((p = u_forprime_next(&iter)))
2915 : {
2916 714 : if (Flx_is_totally_split(ZX_to_Flx(P, p), p)
2917 7 : && (!Q || Flx_is_squarefree(ZX_to_Flx(Q, p), p)))
2918 7 : return gc_ulong(av, p);
2919 707 : set_avma(av);
2920 : }
2921 0 : return 0;
2922 : }
2923 :
2924 : GEN
2925 1253 : galoisinitfromaut(GEN T, GEN aut, ulong l)
2926 : {
2927 1253 : pari_sp ltop = avma;
2928 1253 : GEN nf, A, G, L, M, grp, den=NULL;
2929 : struct galois_analysis ga;
2930 : struct galois_borne gb;
2931 : long n;
2932 : pari_timer ti;
2933 :
2934 1253 : T = get_nfpol(T, &nf);
2935 1253 : n = degpol(T);
2936 1253 : if (nf)
2937 0 : { if (!den) den = nf_get_zkden(nf); }
2938 : else
2939 : {
2940 1253 : if (n <= 0) pari_err_IRREDPOL("galoisinit",T);
2941 1253 : RgX_check_ZX(T, "galoisinit");
2942 1253 : if (!ZX_is_squarefree(T))
2943 0 : pari_err_DOMAIN("galoisinit","issquarefree(pol)","=",gen_0,T);
2944 1253 : if (!gequal1(gel(T,n+2))) pari_err_IMPL("galoisinit(nonmonic)");
2945 : }
2946 1253 : if (lg(aut)-1 != n)
2947 7 : return gen_0;
2948 1246 : ga.l = l? l: galois_find_totally_split(T, NULL);
2949 1246 : if (!l) aut = RgXV_to_FlxV(aut, ga.l);
2950 1246 : gb.l = utoipos(ga.l);
2951 1246 : if (DEBUGLEVEL >= 1) timer_start(&ti);
2952 1246 : den = galoisborne(T, den, &gb, degpol(T));
2953 1246 : if (DEBUGLEVEL >= 1) timer_printf(&ti, "galoisborne()");
2954 1246 : L = ZpX_roots(T, gb.l, gb.valabs);
2955 1246 : if (DEBUGLEVEL >= 1) timer_printf(&ti, "ZpX_roots");
2956 1246 : M = FpV_invVandermonde(L, den, gb.ladicabs);
2957 1246 : if (DEBUGLEVEL >= 1) timer_printf(&ti, "FpV_invVandermonde()");
2958 1246 : A = aut_to_groupelts(aut, L, ga.l);
2959 1246 : G = groupelts_to_group(A);
2960 1246 : if (!G) G = trivialgroup();
2961 1239 : else A = group_elts(G,n);
2962 1246 : grp = cgetg(9, t_VEC);
2963 1246 : gel(grp,1) = T;
2964 1246 : gel(grp,2) = mkvec3(utoipos(ga.l), utoipos(gb.valabs), gb.ladicabs);
2965 1246 : gel(grp,3) = L;
2966 1246 : gel(grp,4) = M;
2967 1246 : gel(grp,5) = den;
2968 1246 : gel(grp,6) = A;
2969 1246 : gel(grp,7) = gel(G,1);
2970 1246 : gel(grp,8) = gel(G,2);
2971 1246 : return gerepilecopy(ltop, grp);
2972 : }
2973 :
2974 : GEN
2975 1239 : galoissplittinginit(GEN T, GEN D)
2976 : {
2977 1239 : pari_sp av = avma;
2978 1239 : GEN R = nfsplitting0(T, D, 3), P = gel(R,1), aut = gel(R,2);
2979 1232 : ulong p = itou(gel(R,3));
2980 1232 : return gerepileupto(av, galoisinitfromaut(P, aut, p));
2981 : }
2982 :
2983 : /* T: polynomial or nf, den multiple of common denominator of solutions or
2984 : * NULL (unknown). If T is nf, and den unknown, use den = denom(nf.zk) */
2985 : static GEN
2986 96909 : galoisconj4_main(GEN T, GEN den, long flag)
2987 : {
2988 96909 : pari_sp ltop = avma;
2989 : GEN nf, G, L, M, aut, grp;
2990 : struct galois_analysis ga;
2991 : struct galois_borne gb;
2992 : long n;
2993 : pari_timer ti;
2994 :
2995 96909 : T = get_nfpol(T, &nf);
2996 96909 : n = poliscyclo(T);
2997 96906 : if (n) return flag? galoiscyclo(n, varn(T)): conjcyclo(T, n);
2998 95471 : n = degpol(T);
2999 95470 : if (nf)
3000 54159 : { if (!den) den = nf_get_zkden(nf); }
3001 : else
3002 : {
3003 41311 : if (n <= 0) pari_err_IRREDPOL("galoisinit",T);
3004 41311 : RgX_check_ZX(T, "galoisinit");
3005 41313 : if (!ZX_is_squarefree(T))
3006 7 : pari_err_DOMAIN("galoisinit","issquarefree(pol)","=",gen_0,T);
3007 41311 : if (!gequal1(gel(T,n+2))) pari_err_IMPL("galoisinit(nonmonic)");
3008 : }
3009 95462 : if (n == 1)
3010 : {
3011 21 : if (!flag) { G = cgetg(2, t_COL); gel(G,1) = pol_x(varn(T)); return G;}
3012 21 : ga.l = 3;
3013 21 : ga.deg = 1;
3014 21 : den = gen_1;
3015 : }
3016 95441 : else if (!galoisanalysis(T, &ga, 1, NULL)) return gc_NULL(ltop);
3017 :
3018 28717 : if (den)
3019 : {
3020 18115 : if (typ(den) != t_INT) pari_err_TYPE("galoisconj4 [2nd arg integer]", den);
3021 18115 : den = absi_shallow(den);
3022 : }
3023 28717 : gb.l = utoipos(ga.l);
3024 28717 : if (DEBUGLEVEL >= 1) timer_start(&ti);
3025 28717 : den = galoisborne(T, den, &gb, degpol(T));
3026 28718 : if (DEBUGLEVEL >= 1) timer_printf(&ti, "galoisborne()");
3027 28718 : L = ZpX_roots(T, gb.l, gb.valabs);
3028 28718 : if (DEBUGLEVEL >= 1) timer_printf(&ti, "ZpX_roots");
3029 28718 : M = FpV_invVandermonde(L, den, gb.ladicabs);
3030 28717 : if (DEBUGLEVEL >= 1) timer_printf(&ti, "FpV_invVandermonde()");
3031 28717 : if (n == 1)
3032 : {
3033 21 : G = cgetg(3, t_VEC);
3034 21 : gel(G,1) = cgetg(1, t_VEC);
3035 21 : gel(G,2) = cgetg(1, t_VECSMALL);
3036 : }
3037 : else
3038 28696 : G = gg_get_std(galoisgen(T, L, M, den, NULL, &gb, &ga));
3039 28718 : if (DEBUGLEVEL >= 6) err_printf("GaloisConj: %Ps\n", G);
3040 28718 : if (!G) return gc_NULL(ltop);
3041 27927 : if (DEBUGLEVEL >= 1) timer_start(&ti);
3042 27927 : grp = cgetg(9, t_VEC);
3043 27927 : gel(grp,1) = T;
3044 27927 : gel(grp,2) = mkvec3(utoipos(ga.l), utoipos(gb.valabs), gb.ladicabs);
3045 27927 : gel(grp,3) = L;
3046 27927 : gel(grp,4) = M;
3047 27927 : gel(grp,5) = den;
3048 27927 : gel(grp,6) = group_elts(G,n);
3049 27927 : gel(grp,7) = gel(G,1);
3050 27927 : gel(grp,8) = gel(G,2);
3051 27927 : if (flag) return gerepilecopy(ltop, grp);
3052 8523 : aut = galoisvecpermtopol(grp, gal_get_group(grp), gb.ladicabs, shifti(gb.ladicabs,-1));
3053 8523 : settyp(aut, t_COL);
3054 8523 : if (DEBUGLEVEL >= 1) timer_printf(&ti, "Computation of polynomials");
3055 8523 : return gerepileupto(ltop, gen_sort(aut, (void*)&gcmp, &gen_cmp_RgX));
3056 : }
3057 :
3058 : /* Heuristic computation of #Aut(T), pinit = first prime to be tested */
3059 : long
3060 35887 : numberofconjugates(GEN T, long pinit)
3061 : {
3062 35887 : pari_sp av = avma;
3063 35887 : long c, nbtest, nbmax, n = degpol(T);
3064 : ulong p;
3065 : forprime_t S;
3066 :
3067 35887 : if (n == 1) return 1;
3068 35887 : nbmax = (n < 10)? 20: (n<<1) + 1;
3069 35887 : nbtest = 0;
3070 : #if 0
3071 : c = ZX_sturm(T); c = ugcd(c, n-c); /* too costly: finite primes are cheaper */
3072 : #else
3073 35887 : c = n;
3074 : #endif
3075 35887 : u_forprime_init(&S, pinit, ULONG_MAX);
3076 338261 : while((p = u_forprime_next(&S)))
3077 : {
3078 338246 : GEN L, Tp = ZX_to_Flx(T,p);
3079 : long i, nb;
3080 338221 : if (!Flx_is_squarefree(Tp, p)) continue;
3081 : /* unramified */
3082 280002 : nbtest++;
3083 280002 : L = Flx_nbfact_by_degree(Tp, &nb, p); /* L[i] = #factors of degree i */
3084 280020 : if (L[n/nb] == nb) {
3085 233662 : if (c == n && nbtest > 10) break; /* probably Galois */
3086 : }
3087 : else
3088 : {
3089 82191 : c = ugcd(c, L[1]);
3090 287532 : for (i = 2; i <= n; i++)
3091 229645 : if (L[i]) { c = ugcd(c, L[i]*i); if (c == 1) break; }
3092 82198 : if (c == 1) break;
3093 : }
3094 255660 : if (nbtest == nbmax) break;
3095 244138 : if (DEBUGLEVEL >= 6)
3096 0 : err_printf("NumberOfConjugates [%ld]:c=%ld,p=%ld\n", nbtest,c,p);
3097 244138 : set_avma(av);
3098 : }
3099 35889 : if (DEBUGLEVEL >= 2) err_printf("NumberOfConjugates:c=%ld,p=%ld\n", c, p);
3100 35889 : return gc_long(av,c);
3101 : }
3102 : static GEN
3103 0 : galoisconj4(GEN nf, GEN d)
3104 : {
3105 0 : pari_sp av = avma;
3106 : GEN G, T;
3107 0 : G = galoisconj4_main(nf, d, 0);
3108 0 : if (G) return G; /* Success */
3109 0 : set_avma(av); T = get_nfpol(nf, &nf);
3110 0 : G = cgetg(2, t_COL); gel(G,1) = pol_x(varn(T)); return G; /* Fail */
3111 :
3112 : }
3113 :
3114 : /* d multiplicative bound for the automorphism's denominators */
3115 : static GEN
3116 69911 : galoisconj_monic(GEN nf, GEN d)
3117 : {
3118 69911 : pari_sp av = avma;
3119 69911 : GEN G, NF, T = get_nfpol(nf,&NF);
3120 69910 : if (degpol(T) == 2)
3121 : { /* fast shortcut */
3122 24539 : GEN b = gel(T,3);
3123 24539 : long v = varn(T);
3124 24539 : G = cgetg(3, t_COL);
3125 24540 : gel(G,1) = deg1pol_shallow(gen_m1, negi(b), v);
3126 24542 : gel(G,2) = pol_x(v);
3127 24541 : return G;
3128 : }
3129 45371 : G = galoisconj4_main(nf, d, 0);
3130 45368 : if (G) return G; /* Success */
3131 35879 : set_avma(av); return galoisconj1(nf);
3132 : }
3133 :
3134 : GEN
3135 69911 : galoisconj(GEN nf, GEN d)
3136 : {
3137 : pari_sp av;
3138 69911 : GEN NF, S, L, T = get_nfpol(nf,&NF);
3139 69911 : if (NF) return galoisconj_monic(NF, d);
3140 74 : RgX_check_QX(T, "galoisconj");
3141 74 : av = avma;
3142 74 : T = Q_primpart(T);
3143 74 : if (ZX_is_monic(T)) return galoisconj_monic(T, d);
3144 0 : S = galoisconj_monic(poltomonic(T,&L), NULL);
3145 0 : return gerepileupto(av, gdiv(RgXV_unscale(S, L),L));
3146 : }
3147 :
3148 : /* FIXME: obsolete, use galoisconj(nf, d) directly */
3149 : GEN
3150 63 : galoisconj0(GEN nf, long flag, GEN d, long prec)
3151 : {
3152 : (void)prec;
3153 63 : switch(flag) {
3154 56 : case 2:
3155 56 : case 0: return galoisconj(nf, d);
3156 7 : case 1: return galoisconj1(nf);
3157 0 : case 4: return galoisconj4(nf, d);
3158 : }
3159 0 : pari_err_FLAG("nfgaloisconj");
3160 : return NULL; /*LCOV_EXCL_LINE*/
3161 : }
3162 :
3163 : /******************************************************************************/
3164 : /* Galois theory related algorithms */
3165 : /******************************************************************************/
3166 : GEN
3167 30386 : checkgal(GEN gal)
3168 : {
3169 30386 : if (typ(gal) == t_POL) pari_err_TYPE("checkgal [apply galoisinit first]",gal);
3170 30386 : if (typ(gal) != t_VEC || lg(gal) != 9) pari_err_TYPE("checkgal",gal);
3171 30379 : return gal;
3172 : }
3173 :
3174 : GEN
3175 51551 : galoisinit(GEN nf, GEN den)
3176 : {
3177 : GEN G;
3178 51551 : if (is_vec_t(typ(nf)) && lg(nf)==3 && is_vec_t(typ(gel(nf,2))))
3179 14 : return galoisinitfromaut(gel(nf,1), gel(nf,2), 0);
3180 51538 : G = galoisconj4_main(nf, den, 1);
3181 51526 : return G? G: gen_0;
3182 : }
3183 :
3184 : static GEN
3185 17849 : galoispermtopol_i(GEN gal, GEN perm, GEN mod, GEN mod2)
3186 : {
3187 17849 : switch (typ(perm))
3188 : {
3189 17611 : case t_VECSMALL:
3190 17611 : return permtopol(perm, gal_get_roots(gal), gal_get_invvdm(gal),
3191 : gal_get_den(gal), mod, mod2,
3192 17611 : varn(gal_get_pol(gal)));
3193 238 : case t_VEC: case t_COL: case t_MAT:
3194 238 : return galoisvecpermtopol(gal, perm, mod, mod2);
3195 : }
3196 0 : pari_err_TYPE("galoispermtopol", perm);
3197 : return NULL; /* LCOV_EXCL_LINE */
3198 : }
3199 :
3200 : GEN
3201 17849 : galoispermtopol(GEN gal, GEN perm)
3202 : {
3203 17849 : pari_sp av = avma;
3204 : GEN mod, mod2;
3205 17849 : gal = checkgal(gal);
3206 17849 : mod = gal_get_mod(gal);
3207 17849 : mod2 = shifti(mod,-1);
3208 17849 : return gerepilecopy(av, galoispermtopol_i(gal, perm, mod, mod2));
3209 : }
3210 :
3211 : GEN
3212 91 : galoiscosets(GEN O, GEN perm)
3213 : {
3214 91 : long i, j, k, u, f, l = lg(O);
3215 91 : GEN RC, C = cgetg(l,t_VECSMALL), o = gel(O,1);
3216 91 : pari_sp av = avma;
3217 91 : f = lg(o); u = o[1]; RC = zero_zv(lg(perm)-1);
3218 371 : for(i=1,j=1; j<l; i++)
3219 : {
3220 280 : GEN p = gel(perm,i);
3221 280 : if (RC[ p[u] ]) continue;
3222 763 : for(k=1; k<f; k++) RC[ p[ o[k] ] ] = 1;
3223 224 : C[j++] = i;
3224 : }
3225 91 : set_avma(av); return C;
3226 : }
3227 :
3228 : static GEN
3229 91 : fixedfieldfactor(GEN L, GEN O, GEN perm, GEN M, GEN den, GEN mod, GEN mod2,
3230 : long x,long y)
3231 : {
3232 91 : pari_sp ltop = avma;
3233 91 : long i, j, k, l = lg(O), lo = lg(gel(O,1));
3234 91 : GEN V, res, cosets = galoiscosets(O,perm), F = cgetg(lo+1,t_COL);
3235 :
3236 91 : gel(F, lo) = gen_1;
3237 91 : if (DEBUGLEVEL>=4) err_printf("GaloisFixedField:cosets=%Ps \n",cosets);
3238 91 : if (DEBUGLEVEL>=6) err_printf("GaloisFixedField:den=%Ps mod=%Ps \n",den,mod);
3239 91 : V = cgetg(l,t_COL); res = cgetg(l,t_VEC);
3240 315 : for (i = 1; i < l; i++)
3241 : {
3242 224 : pari_sp av = avma;
3243 224 : GEN G = cgetg(l,t_VEC), Lp = vecpermute(L, gel(perm, cosets[i]));
3244 938 : for (k = 1; k < l; k++)
3245 714 : gel(G,k) = FpV_roots_to_pol(vecpermute(Lp, gel(O,k)), mod, x);
3246 763 : for (j = 1; j < lo; j++)
3247 : {
3248 1834 : for(k = 1; k < l; k++) gel(V,k) = gmael(G,k,j+1);
3249 539 : gel(F,j) = vectopol(V, M, den, mod, mod2, y);
3250 : }
3251 224 : gel(res,i) = gerepileupto(av,gtopolyrev(F,x));
3252 : }
3253 91 : return gerepileupto(ltop,res);
3254 : }
3255 :
3256 : static void
3257 7434 : chk_perm(GEN perm, long n)
3258 : {
3259 7434 : if (typ(perm) != t_VECSMALL || lg(perm)!=n+1)
3260 0 : pari_err_TYPE("galoisfixedfield", perm);
3261 7434 : }
3262 :
3263 : static int
3264 12313 : is_group(GEN g)
3265 : {
3266 12313 : if (typ(g) == t_VEC && lg(g) == 3)
3267 : {
3268 1974 : GEN a = gel(g,1), o = gel(g,2);
3269 1974 : return typ(a)==t_VEC && typ(o)==t_VECSMALL && lg(a) == lg(o);
3270 : }
3271 10339 : return 0;
3272 : }
3273 :
3274 : GEN
3275 5775 : galoisfixedfield(GEN gal, GEN perm, long flag, long y)
3276 : {
3277 5775 : pari_sp ltop = avma;
3278 : GEN T, L, P, S, PL, O, res, mod, mod2, OL, sym;
3279 : long vT, n, i;
3280 5775 : if (flag<0 || flag>2) pari_err_FLAG("galoisfixedfield");
3281 5775 : gal = checkgal(gal); T = gal_get_pol(gal);
3282 5775 : vT = varn(T);
3283 5775 : L = gal_get_roots(gal); n = lg(L)-1;
3284 5775 : mod = gal_get_mod(gal);
3285 5775 : if (typ(perm) == t_VEC)
3286 : {
3287 4648 : if (is_group(perm)) perm = gel(perm, 1);
3288 10955 : for (i = 1; i < lg(perm); i++) chk_perm(gel(perm,i), n);
3289 4648 : O = vecperm_orbits(perm, n);
3290 : }
3291 : else
3292 : {
3293 1127 : chk_perm(perm, n);
3294 1127 : O = perm_cycles(perm);
3295 : }
3296 5775 : mod2 = shifti(mod,-1);
3297 5775 : OL = fixedfieldorbits(O, L);
3298 5775 : sym = fixedfieldsympol(OL, itou(gal_get_p(gal)));
3299 5775 : PL = sympol_eval(sym, OL, mod);
3300 5775 : P = FpX_center_i(FpV_roots_to_pol(PL, mod, vT), mod, mod2);
3301 5775 : if (flag==1) return gerepilecopy(ltop,P);
3302 1057 : S = fixedfieldinclusion(O, PL);
3303 1057 : S = vectopol(S, gal_get_invvdm(gal), gal_get_den(gal), mod, mod2, vT);
3304 1057 : if (flag==0)
3305 966 : res = cgetg(3, t_VEC);
3306 : else
3307 : {
3308 : GEN PM, Pden;
3309 : struct galois_borne Pgb;
3310 91 : long val = itos(gal_get_e(gal));
3311 91 : Pgb.l = gal_get_p(gal);
3312 91 : Pden = galoisborne(P, NULL, &Pgb, degpol(T)/degpol(P));
3313 91 : if (Pgb.valabs > val)
3314 : {
3315 7 : if (DEBUGLEVEL>=4)
3316 0 : err_printf("GaloisConj: increase p-adic prec by %ld.\n", Pgb.valabs-val);
3317 7 : PL = ZpX_liftroots(P, PL, Pgb.l, Pgb.valabs);
3318 7 : L = ZpX_liftroots(T, L, Pgb.l, Pgb.valabs);
3319 7 : mod = Pgb.ladicabs; mod2 = shifti(mod,-1);
3320 : }
3321 91 : PM = FpV_invVandermonde(PL, Pden, mod);
3322 91 : if (y < 0) y = 1;
3323 91 : if (varncmp(y, vT) <= 0)
3324 0 : pari_err_PRIORITY("galoisfixedfield", T, "<=", y);
3325 91 : setvarn(P, y);
3326 91 : res = cgetg(4, t_VEC);
3327 91 : gel(res,3) = fixedfieldfactor(L,O,gal_get_group(gal), PM,Pden,mod,mod2,vT,y);
3328 : }
3329 1057 : gel(res,1) = gcopy(P);
3330 1057 : gel(res,2) = gmodulo(S, T);
3331 1057 : return gerepileupto(ltop, res);
3332 : }
3333 :
3334 : /* gal a galois group output the underlying wss group */
3335 : GEN
3336 3633 : galois_group(GEN gal) { return mkvec2(gal_get_gen(gal), gal_get_orders(gal)); }
3337 :
3338 : GEN
3339 3052 : checkgroup(GEN g, GEN *S)
3340 : {
3341 3052 : if (is_group(g)) { *S = NULL; return g; }
3342 2695 : g = checkgal(g);
3343 2688 : *S = gal_get_group(g); return galois_group(g);
3344 : }
3345 :
3346 : GEN
3347 4627 : checkgroupelts(GEN G)
3348 : {
3349 : long i, n;
3350 4627 : if (typ(G)!=t_VEC) pari_err_TYPE("checkgroupelts", G);
3351 4613 : if (is_group(G))
3352 : { /* subgroup of S_n */
3353 371 : if (lg(gel(G,1))==1) return mkvec(mkvecsmall(1));
3354 371 : return group_elts(G, group_domain(G));
3355 : }
3356 4242 : if (lg(G)==9 && typ(gel(G,1))==t_POL)
3357 3913 : return gal_get_group(G); /* galoisinit */
3358 : /* vector of permutations ? */
3359 329 : n = lg(G)-1;
3360 329 : if (n==0) pari_err_DIM("checkgroupelts");
3361 5418 : for (i = 1; i <= n; i++)
3362 : {
3363 5131 : if (typ(gel(G,i)) != t_VECSMALL)
3364 28 : pari_err_TYPE("checkgroupelts (element)", gel(G,i));
3365 5103 : if (lg(gel(G,i)) != lg(gel(G,1)))
3366 14 : pari_err_DIM("checkgroupelts [length of permutations]");
3367 : }
3368 287 : return G;
3369 : }
3370 :
3371 : GEN
3372 224 : galoisisabelian(GEN gal, long flag)
3373 : {
3374 224 : pari_sp av = avma;
3375 224 : GEN S, G = checkgroup(gal,&S);
3376 224 : if (!group_isabelian(G)) { set_avma(av); return gen_0; }
3377 203 : switch(flag)
3378 : {
3379 49 : case 0: return gerepileupto(av, group_abelianHNF(G,S));
3380 49 : case 1: set_avma(av); return gen_1;
3381 105 : case 2: return gerepileupto(av, group_abelianSNF(G,S));
3382 0 : default: pari_err_FLAG("galoisisabelian");
3383 : }
3384 : return NULL; /* LCOV_EXCL_LINE */
3385 : }
3386 :
3387 : long
3388 56 : galoisisnormal(GEN gal, GEN sub)
3389 : {
3390 56 : pari_sp av = avma;
3391 56 : GEN S, G = checkgroup(gal, &S), H = checkgroup(sub, &S);
3392 56 : long res = group_subgroup_isnormal(G, H);
3393 56 : set_avma(av);
3394 56 : return res;
3395 : }
3396 :
3397 : static GEN
3398 308 : conjclasses_count(GEN conj, long nb)
3399 : {
3400 308 : long i, l = lg(conj);
3401 308 : GEN c = zero_zv(nb);
3402 4039 : for (i = 1; i < l; i++) c[conj[i]]++;
3403 308 : return c;
3404 : }
3405 : GEN
3406 308 : galoisconjclasses(GEN G)
3407 : {
3408 308 : pari_sp av = avma;
3409 308 : GEN c, e, cc = group_to_cc(G);
3410 308 : GEN elts = gel(cc,1), conj = gel(cc,2), repr = gel(cc,3);
3411 308 : long i, l = lg(conj), lc = lg(repr);
3412 308 : c = conjclasses_count(conj, lc-1);
3413 308 : e = cgetg(lc, t_VEC);
3414 3143 : for (i = 1; i < lc; i++) gel(e,i) = cgetg(c[i]+1, t_VEC);
3415 4039 : for (i = 1; i < l; i++)
3416 : {
3417 3731 : long ci = conj[i];
3418 3731 : gmael(e, ci, c[ci]) = gel(elts, i);
3419 3731 : c[ci]--;
3420 : }
3421 308 : return gerepilecopy(av, e);
3422 : }
3423 :
3424 : static GEN
3425 406 : groupelts_to_group_or_elts(GEN elts)
3426 : {
3427 406 : GEN G = groupelts_to_group(elts);
3428 406 : return G ? G: gcopy(elts);
3429 : }
3430 :
3431 : static GEN
3432 7 : vec_groupelts_to_group_or_elts(GEN x)
3433 413 : { pari_APPLY_same(groupelts_to_group_or_elts(gel(x,i))) }
3434 :
3435 : GEN
3436 1981 : galoissubgroups(GEN gal)
3437 : {
3438 1981 : pari_sp av = avma;
3439 1981 : GEN S, G = checkgroup(gal,&S);
3440 1981 : if (lg(gel(G,1))==1 && lg(S)>2)
3441 7 : return gerepileupto(av,
3442 : vec_groupelts_to_group_or_elts(groupelts_solvablesubgroups(S)));
3443 1974 : return gerepileupto(av, group_subgroups(G));
3444 : }
3445 :
3446 : GEN
3447 84 : galoissubfields(GEN G, long flag, long v)
3448 : {
3449 84 : pari_sp av = avma;
3450 84 : GEN L = galoissubgroups(G);
3451 84 : long i, l = lg(L);
3452 84 : GEN S = cgetg(l, t_VEC);
3453 1309 : for (i = 1; i < l; ++i) gel(S,i) = galoisfixedfield(G, gmael(L,i,1), flag, v);
3454 84 : return gerepileupto(av, S);
3455 : }
3456 :
3457 : GEN
3458 28 : galoisexport(GEN gal, long format)
3459 : {
3460 28 : pari_sp av = avma;
3461 28 : GEN S, G = checkgroup(gal,&S);
3462 28 : return gerepileupto(av, group_export(G,format));
3463 : }
3464 :
3465 : GEN
3466 497 : galoisidentify(GEN gal)
3467 : {
3468 497 : pari_sp av = avma;
3469 497 : GEN S, G = checkgroup(gal,&S);
3470 490 : long idx = group_ident(G,S), card = S ? lg(S)-1: group_order(G);
3471 490 : set_avma(av); return mkvec2s(card, idx);
3472 : }
3473 :
3474 : /* index of conjugacy class containing g */
3475 : static long
3476 36939 : cc_id(GEN cc, GEN g)
3477 : {
3478 36939 : GEN conj = gel(cc,2);
3479 36939 : long k = signe(gel(cc,4))? g[1]: vecvecsmall_search(gel(cc,1), g);
3480 36939 : return conj[k];
3481 : }
3482 :
3483 : static GEN
3484 4186 : Qevproj_RgX(GEN c, long d, GEN pro)
3485 4186 : { return RgV_to_RgX(Qevproj_down(RgX_to_RgC(c,d), pro), varn(c)); }
3486 : /* c in Z[X] / (X^o-1), To = polcyclo(o), T = polcyclo(expo), e = expo/o
3487 : * return c(X^e) mod T as an element of Z[X] / (To) */
3488 : static GEN
3489 3920 : chival(GEN c, GEN T, GEN To, long e, GEN pro, long phie)
3490 : {
3491 3920 : c = ZX_rem(c, To);
3492 3920 : if (e != 1) c = ZX_rem(RgX_inflate(c,e), T);
3493 3920 : if (pro) c = Qevproj_RgX(c, phie, pro);
3494 3920 : return c;
3495 : }
3496 : /* chi(g^l) = sum_{k=0}^{o-1} a_k zeta_o^{l*k} for all l;
3497 : * => a_k = 1/o sum_{l=0}^{o-1} chi(g^l) zeta_o^{-k*l}. Assume o > 1 */
3498 : static GEN
3499 861 : chiFT(GEN cp, GEN jg, GEN vze, long e, long o, ulong p, ulong pov2)
3500 : {
3501 861 : const long var = 1;
3502 861 : ulong oinv = Fl_inv(o,p);
3503 : long k, l;
3504 861 : GEN c = cgetg(o+2, t_POL);
3505 5642 : for (k = 0; k < o; k++)
3506 : {
3507 4781 : ulong a = 0;
3508 51478 : for (l=0; l<o; l++)
3509 : {
3510 46697 : ulong z = vze[Fl_mul(k,l,o)*e + 1];/* zeta_o^{-k*l} */
3511 46697 : a = Fl_add(a, Fl_mul(uel(cp,jg[l+1]), z, p), p);
3512 : }
3513 4781 : gel(c,k+2) = stoi(Fl_center(Fl_mul(a,oinv,p), p, pov2)); /* a_k */
3514 : }
3515 861 : c[1] = evalvarn(var) | evalsigne(1); return ZX_renormalize(c,o+2);
3516 : }
3517 : static GEN
3518 546 : cc_chartable(GEN cc)
3519 : {
3520 : GEN al, elts, rep, ctp, ct, dec, id, vjg, H, vord, operm;
3521 : long i, j, k, f, l, expo, lcl, n;
3522 : ulong p, pov2;
3523 :
3524 546 : elts = gel(cc,1); n = lg(elts)-1;
3525 546 : if (n == 1) return mkvec2(mkmat(mkcol(gen_1)), gen_1);
3526 532 : rep = gel(cc,3);
3527 532 : lcl = lg(rep);
3528 532 : vjg = cgetg(lcl, t_VEC);
3529 532 : vord = cgetg(lcl,t_VECSMALL);
3530 532 : id = identity_perm(lg(gel(elts,1))-1);
3531 532 : expo = 1;
3532 4879 : for(j=1;j<lcl;j++)
3533 : {
3534 4347 : GEN jg, h = id, g = gel(elts,rep[j]);
3535 : long o;
3536 4347 : vord[j] = o = perm_orderu(g);
3537 4347 : expo = ulcm(expo, o);
3538 4347 : gel(vjg,j) = jg = cgetg(o+1,t_VECSMALL);
3539 27671 : for (l=1; l<=o; l++)
3540 : {
3541 23324 : jg[l] = cc_id(cc, h); /* index of conjugacy class of g^(l-1) */
3542 23324 : if (l < o) h = perm_mul(h, g);
3543 : }
3544 : }
3545 : /* would sort conjugacy classes by inc. order */
3546 532 : operm = vecsmall_indexsort(vord);
3547 :
3548 : /* expo > 1, exponent of G */
3549 532 : p = unextprime(2*n+1);
3550 1043 : while (p%expo != 1) p = unextprime(p+1);
3551 : /* compute character table modulo p: idempotents of Z(KG) */
3552 532 : al = conjclasses_algcenter(cc, utoipos(p));
3553 532 : dec = algsimpledec_ss(al,1);
3554 532 : ctp = cgetg(lcl,t_VEC);
3555 4879 : for(i=1; i<lcl; i++)
3556 : {
3557 4347 : GEN e = ZV_to_Flv(gmael3(dec,i,3,1), p); /*(1/n)[(dim chi)chi(g): g in G]*/
3558 4347 : ulong d = usqrt(Fl_mul(e[1], n, p)); /* = chi(1) <= sqrt(n) < sqrt(p) */
3559 4347 : gel(ctp,i) = Flv_Fl_mul(e,Fl_div(n,d,p), p); /*[chi(g): g in G]*/
3560 : }
3561 : /* Find minimal f such that table is defined over Q(zeta(f)): the conductor
3562 : * of the class field Q(\zeta_e)^H defined by subgroup
3563 : * H = { k in (Z/e)^*: g^k ~ g, for all g } */
3564 532 : H = coprimes_zv(expo);
3565 3458 : for (k = 2; k < expo; k++)
3566 : {
3567 2926 : if (!H[k]) continue;
3568 2548 : for (j = 2; j < lcl; j++) /* skip g ~ 1 */
3569 2366 : if (umael(vjg,j,(k % vord[j])+1) != umael(vjg,j,2)) { H[k] = 0; break; }
3570 : }
3571 532 : f = znstar_conductor_bits(Flv_to_F2v(H));
3572 : /* lift character table to Z[zeta_f] */
3573 532 : pov2 = p>>1;
3574 532 : ct = cgetg(lcl, t_MAT);
3575 532 : if (f == 1)
3576 : { /* rational representation */
3577 938 : for (j=1; j<lcl; j++) gel(ct,j) = cgetg(lcl,t_COL);
3578 938 : for(j=1; j<lcl; j++)
3579 : {
3580 791 : GEN jg = gel(vjg,j); /* jg[l+1] = class of g^l */
3581 791 : long t = lg(jg) > 2? jg[2]: jg[1];
3582 6706 : for(i=1; i<lcl; i++)
3583 : {
3584 5915 : GEN cp = gel(ctp,i); /* cp[i] = chi(g_i) mod \P */
3585 5915 : gcoeff(ct,j,i) = stoi(Fl_center(cp[t], p, pov2));
3586 : }
3587 : }
3588 : }
3589 : else
3590 : {
3591 385 : const long var = 1;
3592 385 : ulong ze = Fl_powu(pgener_Fl(p),(p-1)/expo, p); /* seen as zeta_e^(-1) */
3593 385 : GEN vze = Fl_powers(ze, expo-1, p); /* vze[i] = ze^(i-1) */
3594 385 : GEN vzeZX = const_vec(p, gen_0);
3595 385 : GEN T = polcyclo(expo, var), vT = const_vec(expo,NULL), pro = NULL;
3596 385 : long phie = degpol(T), id1 = gel(vjg,1)[1]; /* index of 1_G, always 1 ? */
3597 385 : gel(vT, expo) = T;
3598 385 : if (f != expo)
3599 : {
3600 147 : long phif = eulerphiu(f);
3601 147 : GEN zf = ZX_rem(pol_xn(expo/f,var), T), zfj = zf;
3602 147 : GEN M = cgetg(phif+1, t_MAT);
3603 147 : gel(M,1) = col_ei(phie,1);
3604 518 : for (j = 2; j <= phif; j++)
3605 : {
3606 371 : gel(M,j) = RgX_to_RgC(zfj, phie);
3607 371 : if (j < phif) zfj = ZX_rem(ZX_mul(zfj, zf), T);
3608 : }
3609 147 : pro = Qevproj_init(M);
3610 : }
3611 385 : gel(vzeZX,1) = pol_1(var);
3612 3416 : for (i = 2; i <= expo; i++)
3613 : {
3614 3031 : GEN t = ZX_rem(pol_xn(expo-(i-1), var), T);
3615 3031 : if (pro) t = Qevproj_RgX(t, phie, pro);
3616 3031 : gel(vzeZX, vze[i]) = t;
3617 : }
3618 3941 : for(i=1; i<lcl; i++)
3619 : { /* loop over characters */
3620 3556 : GEN cp = gel(ctp,i), C, cj; /* cp[j] = chi(g_j) mod \P */
3621 3556 : long dim = cp[id1];
3622 3556 : gel(ct, i) = C = const_col(lcl-1, NULL);
3623 3556 : gel(C,operm[1]) = utoi(dim); /* chi(1_G) */
3624 40978 : for (j=lcl-1; j > 1; j--)
3625 : { /* loop over conjugacy classes, decreasing order: skip 1_G */
3626 37422 : long e, jperm = operm[j], o = vord[jperm];
3627 37422 : GEN To, jg = gel(vjg,jperm); /* jg[l+1] = class of g^l */
3628 :
3629 37422 : if (gel(C, jperm)) continue; /* done already */
3630 35903 : if (dim == 1) { gel(C, jperm) = gel(vzeZX, cp[jg[2]]); continue; }
3631 861 : e = expo / o;
3632 861 : cj = chiFT(cp, jg, vze, e, o, p, pov2);
3633 861 : To = gel(vT, o); if (!To) To = gel(vT,o) = polcyclo(o, var);
3634 861 : gel(C, jperm) = chival(cj, T, To, e, pro, phie);
3635 3920 : for (k = 2; k < o; k++)
3636 : {
3637 3059 : GEN ck = RgX_inflate(cj, k); /* chi(g^k) */
3638 3059 : gel(C, jg[k+1]) = chival(ck, T, To, e, pro, phie);
3639 : }
3640 : }
3641 : }
3642 : }
3643 532 : ct = gen_sort_shallow(ct,(void*)cmp_universal,cmp_nodata);
3644 1736 : i = 1; while (!vec_isconst(gel(ct,i))) i++;
3645 532 : if (i > 1) swap(gel(ct,1), gel(ct,i));
3646 532 : return mkvec2(ct, utoipos(f));
3647 : }
3648 : GEN
3649 553 : galoischartable(GEN gal)
3650 : {
3651 553 : pari_sp av = avma;
3652 553 : GEN cc = group_to_cc(gal);
3653 546 : return gerepilecopy(av, cc_chartable(cc));
3654 : }
3655 :
3656 : static void
3657 1491 : checkgaloischar(GEN ch, GEN repr)
3658 : {
3659 1491 : if (gvar(ch) == 0) pari_err_PRIORITY("galoischarpoly",ch,"=",0);
3660 1491 : if (!is_vec_t(typ(ch))) pari_err_TYPE("galoischarpoly", ch);
3661 1491 : if (lg(repr) != lg(ch)) pari_err_DIM("galoischarpoly");
3662 1491 : }
3663 :
3664 : static long
3665 1547 : galoischar_dim(GEN ch)
3666 : {
3667 1547 : pari_sp av = avma;
3668 1547 : long d = gtos(simplify_shallow(lift_shallow(gel(ch,1))));
3669 1547 : return gc_long(av,d);
3670 : }
3671 :
3672 : static GEN
3673 12355 : galoischar_aut_charpoly(GEN cc, GEN ch, GEN p, long d)
3674 : {
3675 12355 : GEN q = p, V = cgetg(d+2, t_POL);
3676 : long i;
3677 12355 : V[1] = evalsigne(1)|evalvarn(0);
3678 25970 : for (i = 1; i <= d; i++)
3679 : {
3680 13615 : gel(V,i+1) = gel(ch, cc_id(cc,q));
3681 13615 : if (i < d) q = perm_mul(q, p);
3682 : }
3683 12355 : return liftpol_shallow(RgXn_expint(RgX_neg(V),d+1));
3684 : }
3685 :
3686 : static GEN
3687 1491 : galoischar_charpoly(GEN cc, GEN ch, long o)
3688 : {
3689 1491 : GEN chm, V, elts = gel(cc,1), repr = gel(cc,3);
3690 1491 : long i, d, l = lg(ch), v = gvar(ch);
3691 1491 : checkgaloischar(ch, repr);
3692 1491 : chm = v < 0 ? ch: gmodulo(ch, polcyclo(o, v));
3693 1491 : V = cgetg(l, t_COL); d = galoischar_dim(ch);
3694 13846 : for (i = 1; i < l; i++)
3695 12355 : gel(V,i) = galoischar_aut_charpoly(cc, chm, gel(elts,repr[i]), d);
3696 1491 : return V;
3697 : }
3698 :
3699 : GEN
3700 1435 : galoischarpoly(GEN gal, GEN ch, long o)
3701 : {
3702 1435 : pari_sp av = avma;
3703 1435 : GEN cc = group_to_cc(gal);
3704 1435 : return gerepilecopy(av, galoischar_charpoly(cc, ch, o));
3705 : }
3706 :
3707 : static GEN
3708 56 : cc_char_det(GEN cc, GEN ch, long o)
3709 : {
3710 56 : long i, l = lg(ch), d = galoischar_dim(ch);
3711 56 : GEN V = galoischar_charpoly(cc, ch, o);
3712 280 : for (i = 1; i < l; i++) gel(V,i) = leading_coeff(gel(V,i));
3713 56 : return odd(d)? gneg(V): V;
3714 : }
3715 :
3716 : GEN
3717 56 : galoischardet(GEN gal, GEN ch, long o)
3718 : {
3719 56 : pari_sp av = avma;
3720 56 : GEN cc = group_to_cc(gal);
3721 56 : return gerepilecopy(av, cc_char_det(cc, ch, o));
3722 : }
|