Code coverage tests

This page documents the degree to which the PARI/GP source code is tested by our public test suite, distributed with the source distribution in directory src/test/. This is measured by the gcov utility; we then process gcov output using the lcov frond-end.

We test a few variants depending on Configure flags on the pari.math.u-bordeaux.fr machine (x86_64 architecture), and agregate them in the final report:

The target is to exceed 90% coverage for all mathematical modules (given that branches depending on DEBUGLEVEL or DEBUGMEM are not covered). This script is run to produce the results below.

LCOV - code coverage report
Current view: top level - basemath - Flxq_log.c (source / functions) Hit Total Coverage
Test: PARI/GP v2.18.1 lcov report (development 30571-c0dfe82732) Lines: 447 532 84.0 %
Date: 2025-12-09 09:22:05 Functions: 29 29 100.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /* Copyright (C) 2013 The PARI group.
       2             : 
       3             : This file is part of the PARI/GP package.
       4             : 
       5             : PARI/GP is free software; you can redistribute it and/or modify it under the
       6             : terms of the GNU General Public License as published by the Free Software
       7             : Foundation; either version 2 of the License, or (at your option) any later
       8             : version. It is distributed in the hope that it will be useful, but WITHOUT
       9             : ANY WARRANTY WHATSOEVER.
      10             : 
      11             : Check the License for details. You should have received a copy of it, along
      12             : with the package; see the file 'COPYING'. If not, write to the Free Software
      13             : Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */
      14             : 
      15             : #include "pari.h"
      16             : #include "paripriv.h"
      17             : 
      18             : #define DEBUGLEVEL DEBUGLEVEL_fflog
      19             : 
      20             : /* Let [ be the following order on Fp: 0 [ p-1 [ 1 [ p-2 [ 2 .. [ p\2
      21             : and [[ the lexicographic extension of [ to Fp[T]. Compute the
      22             : isomorphism (Fp[X], [[) -> (N,<) on P */
      23             : 
      24             : static long
      25      391137 : Flx_cindex(GEN P, ulong p)
      26             : {
      27      391137 :   long d = degpol(P), i;
      28      391137 :   ulong s = 0, p2 = (p-1)>>1;
      29     1776971 :   for (i = 0; i <= d; ++i)
      30             :   {
      31     1385834 :     ulong x = P[d-i+2];
      32     1385834 :     if (x<=p2) x = 2*x; else x = 1+2*(p-1-x);
      33     1385834 :     s = p*s+x;
      34             :   }
      35      391137 :   return s;
      36             : }
      37             : 
      38             : /* Compute the polynomial immediately after t for the [[ order */
      39             : 
      40             : static void
      41      423819 : Flx_cnext(GEN t, ulong p)
      42             : {
      43             :   long i;
      44      423819 :   long p2 = p>>1;
      45      540417 :   for(i=2;;i++)
      46      540417 :     if (t[i]==p2)
      47      116598 :       t[i]=0;
      48             :     else
      49             :     {
      50      423819 :       t[i] = t[i]<p2 ? p-1-t[i]: p-t[i];
      51      423819 :       break;
      52             :     }
      53      423819 : }
      54             : 
      55             : static int
      56          28 : has_deg1_auto(GEN T, ulong p, ulong pi)
      57             : {
      58          28 :   long i, n = degpol(T);
      59          28 :   GEN a = polx_Flx(get_Flx_var(T));
      60         672 :   for (i=1; i<n; i++)
      61             :   {
      62         644 :     a = Flxq_powu_pre(a, p, T, p, pi);
      63         644 :     if (degpol(a)==1) return 1;
      64             :   }
      65          28 :   return 0;
      66             : }
      67             : 
      68             : static void
      69        1057 : smallirred_Flx_next(GEN a, ulong p, ulong pi)
      70             : {
      71             :   do
      72             :   {
      73             :     long i;
      74        1449 :     for(i=2;;i++)
      75        1449 :       if (++uel(a,i)==p) uel(a,i)=0;
      76        1057 :       else break;
      77        1057 :   } while (!Flx_is_irred(a, p) || has_deg1_auto(a,p,pi) );
      78          28 : }
      79             : 
      80             : 
      81             : /* For p = 1 [3], we do not always get full rank using the default model
      82             :  * this is a table of working models to use
      83             :  * this save time   */
      84             : static GEN
      85          28 : smallirred_table(ulong p, ulong n)
      86             : {
      87          28 :   switch(p)
      88             :   {
      89           0 :     case 7:
      90           0 :       if (n==21) return mkvecsmall3(3,5,1);
      91           0 :       if (n==31) return mkvecsmall3(5,1,1);
      92           0 :       break;
      93           0 :     case 13:
      94           0 :       if (n==19) return mkvecsmall3(8,0,1);
      95           0 :       if (n==23) return mkvecsmall3(2,1,1);
      96           0 :       if (n==37) return mkvecsmall3(3,1,1);
      97           0 :       break;
      98           0 :     case 19:
      99           0 :       if (n==17) return mkvecsmall2(12,2);
     100           0 :       if (n==29) return mkvecsmall2(7,2);
     101           0 :       if (n==32) return mkvecsmall3(15,1,1);
     102           0 :       if (n==38) return mkvecsmall3(6,1,1);
     103           0 :       break;
     104           0 :     case 31:
     105           0 :       if (n==21) return mkvecsmall2(6,4);
     106           0 :       if (n==23) return mkvecsmall3(4,1,1);
     107           0 :       if (n==24) return mkvecsmall4(9,2,1,1);
     108           0 :       if (n==26) return mkvecsmall4(18,0,0,1);
     109           0 :       if (n==27) return mkvecsmall3(13,3,1);
     110           0 :       break;
     111           0 :     case 37:
     112           0 :       if (n==22) return mkvecsmall2(15,13);
     113           0 :       if (n==24) return mkvecsmall2(11,4);
     114           0 :       if (n==29) return mkvecsmall3(20,5,1);
     115           0 :       break;
     116           0 :     case 43:
     117           0 :       if (n==23) return mkvecsmall3(12,1,1);
     118           0 :       if (n==26) return mkvecsmall4(15,0,0,1);
     119           0 :       if (n==27) return mkvecsmall3(1,0,25);
     120           0 :       break;
     121           0 :     case 61:
     122           0 :       if (n==26) return mkvecsmall3(37,1,1);
     123           0 :       if (n==29) return mkvecsmall3(8,2,1);
     124           0 :       break;
     125           0 :     case 67:
     126           0 :       if (n==26) return mkvecsmall4(60,0,0,1);
     127           0 :       if (n==27) return mkvecsmall2(7,7);
     128           0 :       break;
     129           0 :     case 73:
     130           0 :       if (n==26) return mkvecsmall3(50,1,1);
     131           0 :       if (n==27) return mkvecsmall3(14,0,1);
     132           0 :       break;
     133           0 :     case 79:
     134           0 :       if (n==23) return mkvecsmall3(36,1,1);
     135           0 :       if (n==26) return mkvecsmall4(22,0,0,1);
     136           0 :       if (n==27) return mkvecsmall3(66,0,2);
     137           0 :       if (n==28) return mkvecsmall3(13,1,1);
     138           0 :       if (n==29) return mkvecsmall4(1,0,0,1);
     139           0 :       break;
     140           0 :     case 103:
     141           0 :       if (n==23) return mkvecsmall2(10,2);
     142           0 :       break;
     143           0 :     case 153:
     144           0 :       if (n==23) return mkvecsmall2(33,1);
     145           0 :       break;
     146             :   }
     147          28 :   return NULL;
     148             : }
     149             : 
     150             : /* Avoid automorphisms of degree 1 */
     151             : static GEN
     152          28 : smallirred_Flx(ulong p, ulong n, long sv, ulong pi)
     153             : {
     154          28 :   GEN a = zero_zv(n+2);
     155          28 :   GEN b = smallirred_table(p, n);
     156          28 :   a[1] = sv; a[3] = 1; a[n+2] = 1;
     157          28 :   if (b)
     158             :   {
     159           0 :     long i, lb = lg(b);
     160           0 :     for (i = 1 ; i < lb; i++) a[i+1] = b[i];
     161             :   }
     162             :   else
     163          28 :     smallirred_Flx_next(a, p, pi);
     164          28 :   return a;
     165             : }
     166             : 
     167             : struct Flxq_log_rel
     168             : {
     169             :   long nbrel;
     170             :   GEN rel;
     171             :   long nb;
     172             :   long r, off, nbmax, nbexp;
     173             :   ulong nbtest;
     174             : };
     175             : 
     176             : static GEN
     177        4641 : cindex_Flx(long c, long d, ulong p, long v)
     178             : {
     179        4641 :   GEN P = cgetg(d+3, t_VECSMALL);
     180             :   long i;
     181        4641 :   P[1] = v;
     182       31689 :   for (i = 0; i <= d; ++i)
     183             :   {
     184       27048 :     ulong x = c%p;
     185       27048 :     P[i+2] = (x&1) ? p-1-(x>>1) : x>>1;
     186       27048 :     c/=p;
     187             :   }
     188        4641 :   return Flx_renormalize(P, d+3);
     189             : }
     190             : 
     191             : static GEN
     192       10939 : factorel(GEN h, ulong p)
     193             : {
     194       10939 :   GEN F = Flx_factor(h, p);
     195       10940 :   GEN F1 = gel(F, 1), F2 = gel(F, 2);
     196       10940 :   long i, l1 = lg(F1)-1;
     197       10940 :   GEN p2 = cgetg(l1+1, t_VECSMALL);
     198       10940 :   GEN e2 = cgetg(l1+1, t_VECSMALL);
     199       51734 :   for (i = 1; i <= l1; ++i)
     200             :   {
     201       40794 :     p2[i] = Flx_cindex(gel(F1, i), p);
     202       40794 :     e2[i] = F2[i];
     203             :   }
     204       10940 :   return mkmat2(p2, e2);
     205             : }
     206             : 
     207             : static long
     208       74256 : Flx_addifsmooth3(pari_sp *av, struct Flxq_log_rel *r, GEN h, long u, long v, long w, ulong p)
     209             : {
     210       74256 :   long off = r->off;
     211       74256 :   r->nbtest++;
     212       74256 :   if (Flx_is_smooth(h, r->r, p))
     213             :   {
     214        5670 :     GEN z = factorel(h, p);
     215        5670 :     if (v<0)
     216        1225 :       z = mkmat2(vecsmall_append(gel(z,1),off+u),vecsmall_append(gel(z,2),-1));
     217             :     else
     218       13335 :       z = famatsmall_reduce(mkmat2(
     219        4445 :             vecsmall_concat(gel(z,1),mkvecsmall3(off+u,off+v,off+w)),
     220        4445 :             vecsmall_concat(gel(z,2),mkvecsmall3(-1,-1,-1))));
     221        5670 :     gel(r->rel,++r->nbrel) = gc_GEN(*av,z);
     222        5670 :     if (DEBUGLEVEL && (r->nbrel&511UL)==0)
     223           0 :       err_printf("%ld%% ",r->nbrel*100/r->nbexp);
     224        5670 :     *av = avma;
     225       68586 :   } else set_avma(*av);
     226       74256 :   return r->nbrel==r->nb || r->nbrel==r->nbmax;
     227             : }
     228             : 
     229             : static void
     230      423871 : Flx_renormalize_inplace(GEN x, long lx)
     231             : {
     232             :   long i;
     233     4699534 :   for (i = lx-1; i>1; i--)
     234     4696891 :     if (x[i]) break;
     235      423871 :   setlg(x, i+1);
     236      424034 : }
     237             : 
     238             : /* Let T*X^e=C^3-R
     239             :  *  a+b+c = 0
     240             :  * (C+a)*(C+b)*(C+c) = C^3+ (a*b+a*c+b*c)*C+a*b*c
     241             :  *  = R + (a*b+a*c+b*c)*C+a*b*c
     242             :  *  = R + (a*b-c^2)*C+a*b*c */
     243             : static void
     244          14 : Flxq_log_cubic(struct Flxq_log_rel *r, GEN C, GEN R, ulong p, ulong pi)
     245             : {
     246          14 :   long l = lg(C);
     247          14 :   GEN a = zero_zv(l); /*We allocate one extra word to catch overflow*/
     248          14 :   GEN b = zero_zv(l);
     249          14 :   pari_sp av = avma;
     250             :   long i,j,k;
     251        2800 :   for(i=0; ; i++, Flx_cnext(a, p))
     252             :   {
     253        2800 :     Flx_renormalize_inplace(a, l+1);
     254        2800 :     r->nb++;
     255        2800 :     if (Flx_addifsmooth3(&av, r, Flx_add(a, C, p), i, -1, -1, p)) return;
     256       29400 :     for(j=2; j<=l; j++) b[j] = 0;
     257      353129 :     for(j=0; j<=i; j++, Flx_cnext(b, p))
     258             :     {
     259             :       GEN h,c;
     260             :       GEN pab,pabc,pabc2;
     261      350343 :       Flx_renormalize_inplace(b, l+1);
     262      350343 :       c = Flx_neg(Flx_add(a,b,p),p);
     263      350343 :       k = Flx_cindex(c, p);
     264      350343 :       if (k > j) continue;
     265       71456 :       pab  = Flx_mul_pre(a, b, p, pi);
     266       71456 :       pabc = Flx_mul_pre(pab,c,p,pi);
     267       71456 :       pabc2= Flx_sub(pab,Flx_sqr_pre(c,p,pi),p);
     268       71456 :       h = Flx_add(R,Flx_add(Flx_mul_pre(C,pabc2,p,pi),pabc,p), p);
     269       71456 :       h = Flx_normalize(h, p);
     270       71456 :       if (Flx_addifsmooth3(&av, r, h, i, j, k, p)) return;
     271             :     }
     272             :   }
     273             : }
     274             : 
     275             : static GEN
     276          59 : Flxq_log_find_rel(GEN b, long r, GEN T, ulong p, ulong pi, GEN *g, long *e)
     277             : {
     278          59 :   pari_sp av = avma;
     279             :   while (1)
     280         808 :   {
     281             :     GEN M, z;
     282         867 :     *g = Flxq_mul_pre(*g, b, T, p, pi); (*e)++;
     283         867 :     M = Flx_halfgcd_all_pre(*g,T,p,pi,&z,NULL);
     284         867 :     if (Flx_is_smooth_pre(gcoeff(M,1,1), r, p, pi)
     285         227 :      && Flx_is_smooth_pre(z, r, p, pi))
     286             :     {
     287          59 :       GEN F = factorel(z, p);
     288          59 :       GEN G = factorel(gcoeff(M,1,1), p);
     289          59 :       GEN rel = mkmat2(vecsmall_concat(gel(F, 1),gel(G, 1)),
     290          59 :           vecsmall_concat(gel(F, 2),zv_neg(gel(G, 2))));
     291          59 :       return gc_all(av,2,&rel,g);
     292             :     }
     293         808 :     if (gc_needed(av,2))
     294             :     {
     295           0 :       if (DEBUGMEM>1) pari_warn(warnmem,"Flxq_log_find_rel");
     296           0 :       *g = gc_GEN(av, *g);
     297             :     }
     298             :   }
     299             : }
     300             : 
     301             : /* Generalised Odlyzko formulae ( EUROCRYPT '84, LNCS 209, pp. 224-314, 1985. ) */
     302             : /* Return the number of monic, k smooth, degree n polynomials for k=1..r */
     303             : static GEN
     304        2233 : smoothness_vec(ulong p, long r, long n)
     305             : {
     306             :   long i,j,k;
     307        2233 :   GEN R = cgetg(r+1, t_VEC), pp = utoipos(p);
     308        2233 :   GEN V = cgetg(n+1, t_VEC);
     309       20496 :   for (j = 1; j <= n; ++j)
     310       18263 :     gel(V, j) =  binomialuu(p+j-1,j);
     311        2233 :   gel(R, 1) = gel(V, n);
     312        5341 :   for (k = 2; k <= r; ++k)
     313             :   {
     314        3108 :     GEN W = cgetg(n+1, t_VEC);
     315        3108 :     GEN Ik = ffnbirred(pp, k);
     316       36029 :     for (j = 1; j <= n; ++j)
     317             :     {
     318       32921 :       long l = j/k;
     319       32921 :       GEN s = gen_0;
     320       32921 :       pari_sp av2 = avma;
     321       32921 :       if (l*k == j)
     322             :       {
     323       10801 :         s = binomial(addiu(Ik,l-1), l);
     324       10801 :         l--;
     325             :       }
     326      119847 :       for (i = 0; i <= l; ++i)
     327       86926 :         s = addii(s, mulii(gel(V, j-k*i), binomial(addis(Ik,i-1), i)));
     328       32921 :       gel(W, j) = gc_INT(av2, s);
     329             :     }
     330        3108 :     V = W;
     331        3108 :     gel(R, k) = gel(V, n);
     332             :   }
     333        2233 :   return R;
     334             : }
     335             : 
     336             : /* Solve N^2*pr/6 + N*prC = N+fb
     337             :    N^2*pr/6 + N*(prC-1) -fb = 0
     338             :  */
     339             : 
     340             : static GEN
     341        1729 : smooth_cost(GEN fb, GEN pr, GEN prC)
     342             : {
     343        1729 :   GEN a = gdivgu(pr,6);
     344        1729 :   GEN b = gsubgs(prC,1);
     345        1729 :   GEN c = gneg(fb);
     346        1729 :   GEN vD = gsqrt(gsub(gsqr(b),gmul2n(gmul(a,c),2)),BIGDEFAULTPREC);
     347        1729 :   return ceil_safe(gdiv(gsub(vD,b),gmul2n(a,1)));
     348             : }
     349             : 
     350             : /* Return best choice of r.
     351             :    We loop over d until there is sufficiently many triples (a,b,c) (a+b+c=0)
     352             :    of degree <=d with respect to the probability of smoothness of (a*b-c^2)*C
     353             :  */
     354             : 
     355             : static GEN
     356         315 : smooth_best(long p, long n, long *pt_r, long *pt_nb)
     357             : {
     358         315 :   pari_sp av = avma, av2;
     359         315 :   GEN bestc = NULL, pp = utoipos(p);
     360         315 :   long bestr = 0, bestFB = 0;
     361         315 :   long r,d, dC = (n+2)/3;
     362         819 :   for (r = 1; r < dC; ++r)
     363             :   {
     364         504 :     GEN fb = ffsumnbirred(pp, r);
     365         504 :     GEN smoothC = smoothness_vec(p,r,dC);
     366         504 :     GEN prC = gdiv(gel(smoothC,r), powuu(p,dC));
     367         504 :     ulong rels = 0;
     368         504 :     av2 = avma;
     369        2023 :     for(d=0; d<dC && rels < ULONG_MAX; d++)
     370             :     {
     371             :       GEN c;
     372        1729 :       long dt = dC+2*d;
     373        1729 :       GEN smooth = smoothness_vec(p,r,dt);
     374        1729 :       GEN pr = gdiv(gel(smooth,r), powuu(p,dt));
     375        1729 :       GEN FB = addii(fb,powuu(p,d));
     376        1729 :       GEN N = smooth_cost(subiu(FB,rels),pr,prC);
     377        1729 :       GEN Nmax = powuu(p,d+1);
     378        1729 :       if (gcmp(N,Nmax) >= 0)
     379             :       {
     380        1519 :         rels = itou_or_0(addui(rels, gceil(gmul(gdivgu(sqri(Nmax),6),pr))));
     381        1519 :         if (!rels) rels = ULONG_MAX;
     382        1519 :         set_avma(av2);
     383        1519 :         continue;
     384             :       }
     385         210 :       c = gdivgu(addii(powuu(p,2*d),sqri(N)),6);
     386         210 :       FB = addii(FB,N);
     387         210 :       if ((!bestc || gcmp(gmul2n(c,r), gmul2n(bestc,bestr)) < 0))
     388             :       {
     389         133 :         if (DEBUGLEVEL)
     390           0 :           err_printf("r=%ld d=%ld fb=%Ps early rels=%lu P=%.5Pe -> C=%.5Pe \n",
     391             :                       r, dt, FB, rels, pr, c);
     392         133 :         bestc = c;
     393         133 :         bestr = r;
     394         133 :         bestFB = itos_or_0(FB);
     395             :       }
     396         210 :       break;
     397             :     }
     398             :   }
     399         315 :   *pt_r=bestr;
     400         315 :   *pt_nb=bestFB;
     401         315 :   return bestc ? gc_upto(av, gceil(bestc)): NULL;
     402             : }
     403             : 
     404             : static GEN
     405          28 : check_kernel(long r, GEN M, long nbi, long nbrow, GEN T, ulong p, ulong pi, GEN m)
     406             : {
     407          28 :   pari_sp av = avma;
     408          28 :   long N = 3*upowuu(p, r);
     409          28 :   GEN K = FpMs_leftkernel_elt(M, nbrow, m);
     410          28 :   long i, f=0, tbs;
     411          28 :   long lm = lgefint(m), u=1;
     412             :   GEN tab, g;
     413          28 :   GEN q = powuu(p,degpol(T));
     414          28 :   GEN idx = diviiexact(subiu(q,1),m);
     415             :   pari_timer ti;
     416          28 :   if (DEBUGLEVEL) timer_start(&ti);
     417         224 :   while (signe(gel(K,u))==0)
     418         196 :     u++;
     419          28 :   K = FpC_Fp_mul(K, Fp_inv(gel(K, u), m), m);
     420          28 :   g = Flxq_pow_pre(cindex_Flx(u, r, p, T[1]), idx, T, p, pi);
     421          28 :   tbs = maxss(1, expu(nbi/expi(m)));
     422          28 :   tab = Flxq_pow_init_pre(g, q, tbs, T, p, pi);
     423          28 :   setlg(K, N);
     424       46662 :   for (i=1; i<N; i++)
     425             :   {
     426       46634 :     GEN k = gel(K,i);
     427       46634 :     pari_sp av = avma;
     428       51027 :     long t = signe(k) && Flx_equal(Flxq_pow_table_pre(tab, k, T, p, pi),
     429        4393 :                                    Flxq_pow_pre(cindex_Flx(i,r,p,T[1]), idx, T, p, pi));
     430       46634 :     set_avma(av);
     431       46634 :     if (!t)
     432       42241 :       gel(K,i) = cgetineg(lm);
     433             :     else
     434        4393 :       f++;
     435             :   }
     436          28 :   if (DEBUGLEVEL) timer_printf(&ti,"found %ld/%ld logs", f, nbi);
     437          28 :   if (f < maxss(3,maxss(p/2,nbi/p))) return NULL; /* Not enough logs found */
     438          28 :   return gc_GEN(av, K);
     439             : }
     440             : 
     441             : static GEN
     442          28 : Flxq_log_rec(GEN W, GEN a, long r, GEN T, ulong p, ulong pi, GEN m)
     443             : {
     444          28 :   long AV = 0, u = 1;
     445          28 :   GEN g = a, b;
     446             :   pari_timer ti;
     447         280 :   while (!equali1(gel(W,u)))
     448         252 :    u++;
     449          28 :   b = cindex_Flx(u, r, p, T[1]);
     450             :   while(1)
     451           2 :   {
     452             :     long i, l;
     453             :     GEN V, F, E, Ao;
     454          30 :     timer_start(&ti);
     455          30 :     V = Flxq_log_find_rel(b, r, T, p, pi, &g, &AV);
     456          30 :     if (DEBUGLEVEL>1) timer_printf(&ti,"%ld-smooth element",r);
     457          30 :     F = gel(V,1); E = gel(V,2);
     458          30 :     l = lg(F);
     459          30 :     Ao = gen_0;
     460         257 :     for(i=1; i<l; i++)
     461             :     {
     462         229 :       GEN R = gel(W,F[i]);
     463         229 :       if (signe(R)<=0)
     464           2 :         break;
     465         227 :       Ao = Fp_add(Ao, mulis(R, E[i]), m);
     466             :     }
     467          30 :     if (i==l) return subis(Ao,AV);
     468             :   }
     469             : }
     470             : 
     471             : static int
     472         301 : Flxq_log_use_index_cubic(GEN m, GEN T0, ulong p)
     473             : {
     474         301 :   pari_sp av = avma;
     475         301 :   long n = get_Flx_degree(T0), r, nb;
     476         301 :   GEN cost = smooth_best(p, n, &r, &nb);
     477         301 :   GEN cost_rho = sqrti(shifti(m,2));
     478         301 :   int use = (cost && gcmp(cost,cost_rho)<0);
     479         301 :   set_avma(av);
     480         301 :   return use;
     481             : }
     482             : 
     483             : static GEN
     484          14 : Flxq_log_index_cubic(GEN a0, GEN b0, GEN m, GEN T0, ulong p)
     485             : {
     486          14 :   ulong pi = SMALL_ULONG(p)? 0: get_Fl_red(p);
     487          14 :   long n = get_Flx_degree(T0), r, nb;
     488          14 :   pari_sp av = avma;
     489             :   struct Flxq_log_rel rel;
     490             :   long nbi;
     491             :   GEN W, M, S, T, a, b, Ao, Bo, e, C, R;
     492             :   pari_timer ti;
     493          14 :   GEN cost = smooth_best(p, n, &r, &nb);
     494          14 :   GEN cost_rho = sqrti(shifti(m,2));
     495          14 :   if (!cost || gcmp(cost,cost_rho)>=0) return gc_NULL(av);
     496          14 :   nbi = itos(ffsumnbirred(stoi(p), r));
     497          14 :   if (DEBUGLEVEL)
     498             :   {
     499           0 :     err_printf("Size FB=%ld, looking for %ld relations, %Ps tests needed\n", nbi, nb,cost);
     500           0 :     timer_start(&ti);
     501             :   }
     502          14 :   T = smallirred_Flx(p,n,get_Flx_var(T0), pi);
     503             :   for(;;)
     504             :   {
     505          14 :     S = Flx_ffisom(T0,T,p);
     506          14 :     a = Flx_Flxq_eval_pre(a0, S, T, p, pi);
     507          14 :     b = Flx_Flxq_eval_pre(b0, S, T, p, pi);
     508          14 :     C = Flx_shift(pol1_Flx(get_Flx_var(T)), (n+2)/3);
     509          14 :     R = Flxq_powu_pre(C,3,T,p,pi);
     510          14 :     if (DEBUGLEVEL)
     511           0 :       timer_printf(&ti," model change: %Ps",Flx_to_ZX(T));
     512          14 :     rel.nbmax=2*nb;
     513          14 :     M = cgetg(rel.nbmax+1, t_VEC);
     514          14 :     rel.rel = M;
     515          14 :     rel.nbrel = 0; rel.r = r; rel.off = 3*upowuu(p,r);
     516          14 :     rel.nb = nbi; rel.nbexp = nb; rel.nbtest=0;
     517          14 :     Flxq_log_cubic(&rel, C, R, p, pi);
     518          14 :     setlg(M,1+rel.nbrel);
     519          14 :     if (DEBUGLEVEL)
     520             :     {
     521           0 :       err_printf("\n");
     522           0 :       timer_printf(&ti," %ld relations, %ld generators (%ld tests)",rel.nbrel,rel.nb,rel.nbtest);
     523             :     }
     524          14 :     W = check_kernel(r, M, nbi, rel.off + rel.nb - nbi, T, p, pi, m);
     525          14 :     if (W) break;
     526           0 :     if (DEBUGLEVEL) timer_start(&ti);
     527           0 :     smallirred_Flx_next(T,p, pi);
     528             :   }
     529          14 :   if (DEBUGLEVEL) timer_start(&ti);
     530          14 :   Ao = Flxq_log_rec(W, a, r, T, p, pi, m);
     531          14 :   if (DEBUGLEVEL) timer_printf(&ti,"smooth element");
     532          14 :   Bo = Flxq_log_rec(W, b, r, T, p, pi, m);
     533          14 :   if (DEBUGLEVEL) timer_printf(&ti,"smooth generator");
     534          14 :   e = Fp_div(Ao, Bo, m);
     535          14 :   if (!Flx_equal(Flxq_pow_pre(b0, e, T0, p, pi), a0)) pari_err_BUG("Flxq_log");
     536          14 :   return gc_upto(av, e);
     537             : }
     538             : 
     539       21214 : INLINE GEN Flx_frob(GEN u, ulong p) { return Flx_inflate(u, p); }
     540             : 
     541             : static GEN
     542       32334 : rel_Coppersmith(long r, GEN u, GEN v, long h, GEN R, long d, ulong p, ulong pi)
     543             : {
     544             :   GEN a, b, F, G, M;
     545       32334 :   if (degpol(Flx_gcd_pre(u,v,p,pi))) return NULL;
     546       32138 :   a = Flx_add(Flx_shift(u, h), v, p);
     547       32411 :   if (lgpol(a)==0 || !Flx_is_smooth_pre(a, r, p, pi)) return NULL;
     548        8386 :   b = Flx_add(Flx_mul_pre(R, Flx_frob(u, p), p, pi),
     549             :               Flx_shift(Flx_frob(v, p),d), p);
     550        8433 :   if (!Flx_is_smooth_pre(b, r, p, pi)) return NULL;
     551        2526 :   F = factorel(a, p); G = factorel(b, p);
     552        5052 :   M = mkmat2(vecsmall_concat(gel(F, 1), vecsmall_append(gel(G, 1), 2*p)),
     553        5052 :              vecsmall_concat(zv_z_mul(gel(F, 2),p), vecsmall_append(zv_neg(gel(G, 2)),d)));
     554        2526 :   return famatsmall_reduce(M);
     555             : }
     556             : 
     557             : GEN
     558        1357 : Flxq_log_Coppersmith_worker(GEN u, long i, GEN V, GEN R)
     559             : {
     560        1357 :   long r = V[1], h = V[2], d = V[3], p = V[4], pi = V[5], dT = V[6];
     561        1357 :   pari_sp ltop = avma;
     562        1357 :   GEN v = zero_zv(dT+2);
     563        1357 :   GEN L = cgetg(2*i+1, t_VEC);
     564        1357 :   pari_sp av = avma;
     565             :   long j;
     566        1357 :   long nbtest=0, rel = 1;
     567        1357 :   ulong lu = Flx_lead(u), lv;
     568       70660 :   for (j=1; j<=i; j++)
     569             :   {
     570             :     GEN z;
     571       69303 :     Flx_cnext(v, p);
     572       69344 :     Flx_renormalize_inplace(v, dT+2);
     573       69501 :     lv = Flx_lead(v);
     574       69488 :     set_avma(av);
     575       69481 :     if (lu != 1 && lv != 1) continue;
     576       40073 :     if (degpol(Flx_gcd_pre(u, v, p, pi))!=0) continue;
     577       26960 :     if (lu==1)
     578             :     {
     579       14916 :       z = rel_Coppersmith(r, u, v, h, R, d, p, pi);
     580       14962 :       nbtest++;
     581       14962 :       if (z) { gel(L, rel++) = z; av = avma; }
     582             :     }
     583       27006 :     if (i==j) continue;
     584       26921 :     if (lv==1)
     585             :     {
     586       17424 :       z = rel_Coppersmith(r, v, u, h, R, d, p, pi);
     587       17451 :       nbtest++;
     588       17451 :       if (z) { gel(L, rel++) = z; av = avma; }
     589             :     }
     590             :   }
     591        1357 :   setlg(L,rel);
     592        1357 :   return gc_GEN(ltop, mkvec2(stoi(nbtest), L));
     593             : }
     594             : 
     595             : static GEN
     596          14 : Flxq_log_Coppersmith(long nbrel, long r, GEN T, ulong p, ulong pi)
     597             : {
     598             :   pari_sp av;
     599          14 :   long dT = degpol(T);
     600          14 :   long h = dT/p, d = dT-(h*p);
     601          14 :   GEN R = Flx_sub(Flx_shift(pol1_Flx(T[1]), dT), T, p);
     602          14 :   GEN u = zero_zv(dT+2);
     603             :   GEN done;
     604          14 :   long nbtest = 0, rel = 0;
     605          14 :   GEN M = cgetg(nbrel+1, t_VEC);
     606          14 :   long i = 1;
     607          14 :   GEN worker = snm_closure(is_entry("_Flxq_log_Coppersmith_worker"),
     608             :                mkvec2(mkvecsmalln(6, r,h,d,p,pi,dT), R));
     609             :   struct pari_mt pt;
     610          14 :   long running, pending = 0, stop=0;
     611          14 :   if (DEBUGLEVEL) err_printf("Coppersmith (R = %ld): ",degpol(R));
     612          14 :   mt_queue_start(&pt, worker);
     613          14 :   av = avma;
     614        1401 :   while ((running = !stop) || pending)
     615             :   {
     616             :     GEN L;
     617             :     long l, j;
     618        1387 :     Flx_cnext(u, p);
     619        1387 :     Flx_renormalize_inplace(u, dT+2);
     620        1387 :     mt_queue_submit(&pt, 0, running ? mkvec2(u, stoi(i)): NULL);
     621        1387 :     done = mt_queue_get(&pt, NULL, &pending);
     622        1387 :     if (!done) continue;
     623        1357 :     L = gel(done, 2); nbtest += itos(gel(done,1));
     624        1357 :     l = lg(L);
     625        1357 :     if (l > 1)
     626             :     {
     627        3393 :       for (j=1; j<l; j++)
     628             :       {
     629        2468 :         if (rel>nbrel) break;
     630        2429 :         gel(M,++rel) = gel(L,j);
     631        2429 :         if (DEBUGLEVEL && (rel&511UL)==0)
     632           0 :           err_printf("%ld%%[%ld] ",rel*100/nbrel,i);
     633             :       }
     634         964 :       av = avma;
     635             :     }
     636         393 :     else set_avma(av);
     637        1357 :     if (rel>nbrel) stop = 1;
     638        1357 :     i++;
     639             :   }
     640          14 :   mt_queue_end(&pt);
     641          14 :   if (DEBUGLEVEL) err_printf(": %ld tests\n", nbtest);
     642          14 :   return M;
     643             : }
     644             : 
     645             : static GEN Flxq_log_Coppersmith_d(GEN W, GEN g, long r, GEN T, ulong p, ulong pi, GEN mo);
     646             : 
     647             : static GEN
     648          50 : Flxq_log_from_rel(GEN W, GEN rel, long r, GEN T, ulong p, ulong pi, GEN m)
     649             : {
     650          50 :   pari_sp av = avma;
     651          50 :   GEN F = gel(rel,1), E = gel(rel,2), o = gen_0;
     652          50 :   long i, l = lg(F);
     653         356 :   for(i=1; i<l; i++)
     654             :   {
     655         306 :     GEN R = gel(W, F[i]);
     656         306 :     if (signe(R)==0) /* Already failed */
     657           0 :       return NULL;
     658         306 :     else if (signe(R)<0) /* Not yet tested */
     659             :     {
     660           0 :       setsigne(gel(W,F[i]),0);
     661           0 :       R = Flxq_log_Coppersmith_d(W, cindex_Flx(F[i],r,p,T[1]), r, T, p, pi, m);
     662           0 :       if (!R) return NULL;
     663             :     }
     664         306 :     o = Fp_add(o, mulis(R, E[i]), m);
     665             :   }
     666          50 :   return gc_INT(av, o);
     667             : }
     668             : 
     669             : static GEN
     670          51 : Flxq_log_Coppersmith_d(GEN W, GEN g, long r, GEN T, ulong p, ulong pi, GEN mo)
     671             : {
     672          51 :   pari_sp av = avma, av2;
     673          51 :   long dg = degpol(g), k = r-1, m = maxss((dg-k)/2,0);
     674          51 :   long i, j, l = dg-m, N;
     675          51 :   GEN v = cgetg(k+m+1,t_MAT);
     676          51 :   long dT = degpol(T);
     677          51 :   long h = dT/p, d = dT-h*p;
     678          51 :   GEN R = Flx_rem_pre(Flx_shift(pol1_Flx(T[1]), dT), T, p, pi);
     679          51 :   GEN z = Flx_rem_pre(Flx_shift(pol1_Flx(T[1]), h), g, p, pi);
     680         345 :   for(i=1; i<=k+m; i++)
     681             :   {
     682         294 :     gel(v,i) = Flx_to_Flv(Flx_shift(z,-l),m);
     683         294 :     z = Flx_rem_pre(Flx_shift(z,1),g,p,pi);
     684             :   }
     685          51 :   v = Flm_ker(v,p);
     686         282 :   for(i=1; i<=k; i++)
     687         231 :     gel(v,i) = Flv_to_Flx(gel(v,i),T[1]);
     688          51 :   N = upowuu(p,k);
     689          51 :   av2 = avma;
     690        2184 :   for (i=1; i<N; i++)
     691             :   {
     692             :     GEN p0,q,qh,a,b;
     693        2183 :     ulong el = i;
     694        2183 :     set_avma(av2);
     695        2183 :     q = pol0_Flx(T[1]);
     696       12512 :     for (j=1; j<=k; j++)
     697             :     {
     698       10329 :       ulong r = el % p;
     699       10329 :       el /= p;
     700       10329 :       if (r) q = Flx_add(q, Flx_Fl_mul(gel(v,j), r, p), p);
     701             :     }
     702        2183 :     qh = Flx_shift(q, h);
     703        2183 :     p0 = Flx_rem_pre(qh, g, p, pi);
     704        2183 :     b = Flx_sub(Flx_mul_pre(R, Flx_frob(q, p), p, pi),
     705             :                 Flx_shift(Flx_frob(p0, p), d), p);
     706        2183 :     if (lgpol(b)==0 || !Flx_is_smooth_pre(b, r, p, pi)) continue;
     707          56 :     a = Flx_div_pre(Flx_sub(qh, p0, p), g, p, pi);
     708          56 :     if (degpol(Flx_gcd_pre(a, q, p, pi)) && degpol(Flx_gcd_pre(a, p0, p, pi)))
     709           0 :       continue;
     710          56 :     if (!(lgpol(a)==0 || !Flx_is_smooth_pre(a, r, p, pi)))
     711             :     {
     712          50 :       GEN F = factorel(b, p);
     713          50 :       GEN G = factorel(a, p);
     714          50 :       GEN FG = vecsmall_concat(vecsmall_append(gel(F, 1), 2*p), gel(G, 1));
     715          50 :       GEN E  = vecsmall_concat(vecsmall_append(gel(F, 2), -d),
     716          50 :           zv_z_mul(gel(G, 2),-p));
     717          50 :       GEN R  = famatsmall_reduce(mkmat2(FG, E));
     718          50 :       GEN l  = Flxq_log_from_rel(W, R, r, T, p, pi, mo);
     719          50 :       if (!l) continue;
     720          50 :       l = Fp_divu(l,p,mo);
     721          50 :       if (dg <= r)
     722             :       {
     723           0 :         long idx = Flx_cindex(g, p);
     724           0 :         affii(l, gel(W, idx));
     725           0 :         if (DEBUGLEVEL>1) err_printf("Found %lu\n", idx);
     726             :       }
     727          50 :       return gc_INT(av, l);
     728             :     }
     729             :   }
     730           1 :   set_avma(av);
     731           1 :   return NULL;
     732             : }
     733             : 
     734             : static GEN
     735          28 : Flxq_log_Coppersmith_rec(GEN W, long r2, GEN a, long r, GEN T, ulong p, ulong pi, GEN m)
     736             : {
     737          28 :   GEN b = polx_Flx(T[1]);
     738          28 :   long AV = 0;
     739          28 :   GEN g = a, bad = pol0_Flx(T[1]);
     740             :   pari_timer ti;
     741             :   while(1)
     742           1 :   {
     743             :     long i, l;
     744             :     GEN V, F, E, Ao;
     745          29 :     timer_start(&ti);
     746          29 :     V = Flxq_log_find_rel(b, r2, T, p, pi, &g, &AV);
     747          29 :     if (DEBUGLEVEL>1) timer_printf(&ti,"%ld-smooth element",r2);
     748          29 :     F = gel(V,1); E = gel(V,2);
     749          29 :     l = lg(F);
     750          29 :     Ao = gen_0;
     751         220 :     for(i=1; i<l; i++)
     752             :     {
     753         192 :       GEN Fi = cindex_Flx(F[i], r2, p, T[1]);
     754             :       GEN R;
     755         192 :       if (degpol(Fi) <= r)
     756             :       {
     757         141 :         if (signe(gel(W,F[i]))==0)
     758           0 :           break;
     759         141 :         else if (signe(gel(W,F[i]))<0)
     760             :         {
     761           0 :           setsigne(gel(W,F[i]),0);
     762           0 :           R = Flxq_log_Coppersmith_d(W,Fi,r,T,p,pi,m);
     763             :         } else
     764         141 :           R = gel(W,F[i]);
     765             :       }
     766             :       else
     767             :       {
     768          51 :         if (Flx_equal(Fi,bad)) break;
     769          51 :         R = Flxq_log_Coppersmith_d(W,Fi,r,T,p,pi,m);
     770          51 :         if (!R) bad = Fi;
     771             :       }
     772         192 :       if (!R) break;
     773         191 :       Ao = Fp_add(Ao, mulis(R, E[i]), m);
     774             :     }
     775          29 :     if (i==l) return subis(Ao,AV);
     776             :   }
     777             : }
     778             : 
     779             : static GEN
     780          14 : Flxq_log_index_Coppersmith(GEN a0, GEN b0, GEN m, GEN T0, ulong p)
     781             : {
     782          14 :   ulong pi = SMALL_ULONG(p)? 0: get_Fl_red(p);
     783          14 :   pari_sp av = avma;
     784          14 :   GEN  M, S, a, b, Ao=NULL, Bo=NULL, W, e;
     785             :   pari_timer ti;
     786          14 :   double rf = p ==3 ? 1.2 : .9;
     787          14 :   long n = degpol(T0), r = (long) sqrt(n*rf);
     788             :   GEN T;
     789          14 :   long r2 = 3*r/2;
     790          14 :   long nbi = itos(ffsumnbirred(utoipos(p), r)), nbrel=nbi*5/4;
     791          14 :   if (DEBUGLEVEL)
     792             :   {
     793           0 :     err_printf("Coppersmith: Parameters r=%ld r2=%ld\n", r,r2);
     794           0 :     err_printf("Coppersmith: Size FB=%ld rel. needed=%ld\n", nbi, nbrel);
     795           0 :     timer_start(&ti);
     796             :   }
     797          14 :   T = smallirred_Flx(p,n,get_Flx_var(T0), pi);
     798          14 :   S = Flx_ffisom(T0,T,p);
     799          14 :   a = Flx_Flxq_eval_pre(a0, S, T, p, pi);
     800          14 :   b = Flx_Flxq_eval_pre(b0, S, T, p, pi);
     801          14 :   if (DEBUGLEVEL) timer_printf(&ti,"model change");
     802          14 :   M = Flxq_log_Coppersmith(nbrel, r, T, p, pi);
     803          14 :   if (DEBUGLEVEL) timer_printf(&ti,"relations");
     804          14 :   W = check_kernel(r, M, nbi, 3*upowuu(p,r), T, p, pi, m);
     805          14 :   timer_start(&ti);
     806          14 :   Ao = Flxq_log_Coppersmith_rec(W, r2, a, r, T, p, pi, m);
     807          14 :   if (DEBUGLEVEL) timer_printf(&ti,"smooth element");
     808          14 :   Bo = Flxq_log_Coppersmith_rec(W, r2, b, r, T, p, pi, m);
     809          14 :   if (DEBUGLEVEL) timer_printf(&ti,"smooth generator");
     810          14 :   e = Fp_div(Ao, Bo, m);
     811          14 :   if (!Flx_equal(Flxq_pow_pre(b0,e,T0,p,pi), a0)) pari_err_BUG("Flxq_log");
     812          14 :   return gc_upto(av, e);
     813             : }
     814             : 
     815             : GEN
     816          28 : Flxq_log_index(GEN a, GEN b, GEN m, GEN T, ulong p)
     817             : {
     818          28 :   long d = get_Flx_degree(T);
     819          28 :   if (p==3 || (p==5 && d>41))
     820          14 :     return Flxq_log_index_Coppersmith(a, b, m, T, p);
     821          14 :   else    return Flxq_log_index_cubic(a, b, m, T, p);
     822             : }
     823             : 
     824             : int
     825      164210 : Flxq_log_use_index(GEN m, GEN T, ulong p)
     826             : {
     827      164210 :   long d = get_Flx_degree(T);
     828      164210 :   if (p==3 || (p==5 && d>41))
     829       24276 :     return 1;
     830      139934 :   else if (d<=4 || d==6)
     831      139633 :     return 0;
     832             :   else
     833         301 :     return Flxq_log_use_index_cubic(m, T, p);
     834             : }

Generated by: LCOV version 1.16