Group GAP4(128,951)
Name: (C2 x Q32) : C2
Maximal quotients:GAP4(64,147) GAP4(64,191)
Real polynomial:
x^128-2016*x^126+1896384*x^124-1110721248*x^122+456106627368*x^120-140194916\
328096*x^118+33629218567852320*x^116-6480688956973666848*x^114+1025040489199\
429607856*x^112-135277258752922339712736*x^110+15091800599267839929337632*x^\
108-1438434127408539098599314336*x^106+118160194171695884196997615992*x^104-\
8426861599645250669921032811232*x^102+525006609519086137365260639285376*x^10\
0-28725080623233296031219618977532768*x^98+138650102122598221511519903849683\
4172*x^96-59269375267733940703180682887105238880*x^94+2251359129521902423424\
837308769645743680*x^92-76210085702432070304536220248829782262752*x^90+23046\
41116299801068874103602825519557655816*x^88-62391907756570169644948681002508\
456656037152*x^86+1514800046711431564288573985041079853574766496*x^84-330310\
53966882469567398461379828433715092003872*x^82+64766144560158325142636749768\
0846138422871274256*x^80-11429817606920506572290556474094090483098543639648*\
x^78+181676447020966298735596812248881166841404962354080*x^76-26021286415704\
64226102657694622824249976281348386976*x^74+33592044208936552602700945072848\
117533083109923549848*x^72-3908722643026888378152085276968306755627590264891\
35456*x^70+4098690607620813690025494183783173370057284327286935040*x^68-3871\
6551990955850850217408473323808142165667077197211488*x^66+329250603524570804\
432051955421221861389003559082581817350*x^64-2518710288841732622753226134447\
805242936605277162038262688*x^62+1731405650668955978828745431018680535451720\
0140420908152384*x^60-106816010740917884717075733320725863121734732275770177\
896864*x^58+590521053856492043143296869555230928913692497249156768318200*x^5\
6-2920333222412853396748011947024610829688279283905337930420192*x^54+1289289\
1051228226512671648506574561095439751484669090224287072*x^52-506981744160355\
07090468483513269449365604715902182382180493152*x^50+17710689795734166716248\
1602307837017969461289509142823832544464*x^48-548054670374988012967468503147\
283198044834476565964992923823264*x^46+1497483285959858989668866557568942114\
096502288386953745424043872*x^44-3600047202067798853995554371937271364420982\
137803793576207757792*x^42+7585238797621056483012446356850653333036087476466\
266242457612264*x^40-1394747543935748759360845027448601258042824831498950968\
6813782688*x^38+222780848519933850729446523938238299825467939751206227004714\
05696*x^36-30757006820304039742588135746125733321677709607891853368244791584\
*x^34+36505363026565586579774984796393961692380546847400827695791096956*x^32\
-37034511463572400656189705029386188742003528408334260663569810720*x^30+3191\
5445202093550885542725783131143022543825627518624480060550080*x^28-232079941\
45324754653264628824107163178396662838901947402134548384*x^26+14137121706112\
986332210842121762969781313119017097379659567355608*x^24-7156287168834166307\
909117028924808086058215761467954834961086560*x^22+2983275618823817609211510\
504977990310152529339036011805480684000*x^20-1013548041617093499263241875892\
599282340495551119464093424476768*x^18+2771751223090713975729014393242046752\
86009959321270379015896688*x^16-60093409959666487549700354850250464987465457\
478616589839124512*x^14+1013254465202401400756666713379291870485443484726227\
5773480416*x^12-129565796350757193438008775462200579167473288838575832533859\
2*x^10+121389858527344731713052750606368830114941277806736888781832*x^8-7928\
840380844838285589539099274657070412561535499968456992*x^6+33422576039653619\
8588943795124445084041072051059936974080*x^4-7946117600751958604320006005316\
593484334552141689424928*x^2+78829955029969982851642102824360039654981554672\
161281
Common denominator of the automorphisms:
5915056673317155600434052207774354302379825153181029968300687607572683798919\
2809119020722065725815032409267943666664152279887953405894889097195473208367\
8314009044195431781371550940626285394690261691588380996085729659229360104457\
8428804337924305217285376125536500847952837346447054003907398197575506544559\
9205482909291973746231970515932965705761731107681457013801305996739439560988\
5569344758164720588996253864908050879309094773273452570331670049796544790066\
1489523983249884781225705858976308912271595078833412878530368668080825794274\
0471816685389380685565910360431243565237894828733293218499528808721605141088\
9281601825791556039000195027116282541599354621311969104045595071598307853210\
7486160586573544177713241793596143163278255242221059486980578957052108710323\
9815835988582569501488761035458369624018755184692905359751444538873286837226\
5012394378611256271148460572577385994361992123203496554420292545838677148152\
8452194477285983680635899293016412060283073260395462131185677949322627263636\
3320540091784542783595681447428445571772098480547236035347039872520058350318\
0081953964508968941967478800989559844274434710537813544008103821065290960804\
1395544949859553998044056828230347127703585240108942633736242080671755214848\
000
Complex polynomial:
x^128+2016*x^126+1896384*x^124+1110721248*x^122+456106627368*x^120+140194916\
328096*x^118+33629218567852320*x^116+6480688956973666848*x^114+1025040489199\
429607856*x^112+135277258752922339712736*x^110+15091800599267839929337632*x^\
108+1438434127408539098599314336*x^106+118160194171695884196997615992*x^104+\
8426861599645250669921032811232*x^102+525006609519086137365260639285376*x^10\
0+28725080623233296031219618977532768*x^98+138650102122598221511519903849683\
4172*x^96+59269375267733940703180682887105238880*x^94+2251359129521902423424\
837308769645743680*x^92+76210085702432070304536220248829782262752*x^90+23046\
41116299801068874103602825519557655816*x^88+62391907756570169644948681002508\
456656037152*x^86+1514800046711431564288573985041079853574766496*x^84+330310\
53966882469567398461379828433715092003872*x^82+64766144560158325142636749768\
0846138422871274256*x^80+11429817606920506572290556474094090483098543639648*\
x^78+181676447020966298735596812248881166841404962354080*x^76+26021286415704\
64226102657694622824249976281348386976*x^74+33592044208936552602700945072848\
117533083109923549848*x^72+3908722643026888378152085276968306755627590264891\
35456*x^70+4098690607620813690025494183783173370057284327286935040*x^68+3871\
6551990955850850217408473323808142165667077197211488*x^66+329250603524570804\
432051955421221861389003559082581817350*x^64+2518710288841732622753226134447\
805242936605277162038262688*x^62+1731405650668955978828745431018680535451720\
0140420908152384*x^60+106816010740917884717075733320725863121734732275770177\
896864*x^58+590521053856492043143296869555230928913692497249156768318200*x^5\
6+2920333222412853396748011947024610829688279283905337930420192*x^54+1289289\
1051228226512671648506574561095439751484669090224287072*x^52+506981744160355\
07090468483513269449365604715902182382180493152*x^50+17710689795734166716248\
1602307837017969461289509142823832544464*x^48+548054670374988012967468503147\
283198044834476565964992923823264*x^46+1497483285959858989668866557568942114\
096502288386953745424043872*x^44+3600047202067798853995554371937271364420982\
137803793576207757792*x^42+7585238797621056483012446356850653333036087476466\
266242457612264*x^40+1394747543935748759360845027448601258042824831498950968\
6813782688*x^38+222780848519933850729446523938238299825467939751206227004714\
05696*x^36+30757006820304039742588135746125733321677709607891853368244791584\
*x^34+36505363026565586579774984796393961692380546847400827695791096956*x^32\
+37034511463572400656189705029386188742003528408334260663569810720*x^30+3191\
5445202093550885542725783131143022543825627518624480060550080*x^28+232079941\
45324754653264628824107163178396662838901947402134548384*x^26+14137121706112\
986332210842121762969781313119017097379659567355608*x^24+7156287168834166307\
909117028924808086058215761467954834961086560*x^22+2983275618823817609211510\
504977990310152529339036011805480684000*x^20+1013548041617093499263241875892\
599282340495551119464093424476768*x^18+2771751223090713975729014393242046752\
86009959321270379015896688*x^16+60093409959666487549700354850250464987465457\
478616589839124512*x^14+1013254465202401400756666713379291870485443484726227\
5773480416*x^12+129565796350757193438008775462200579167473288838575832533859\
2*x^10+121389858527344731713052750606368830114941277806736888781832*x^8+7928\
840380844838285589539099274657070412561535499968456992*x^6+33422576039653619\
8588943795124445084041072051059936974080*x^4+7946117600751958604320006005316\
593484334552141689424928*x^2+78829955029969982851642102824360039654981554672\
161281
Common denominator of the automorphisms:
5915056673317155600434052207774354302379825153181029968300687607572683798919\
2809119020722065725815032409267943666664152279887953405894889097195473208367\
8314009044195431781371550940626285394690261691588380996085729659229360104457\
8428804337924305217285376125536500847952837346447054003907398197575506544559\
9205482909291973746231970515932965705761731107681457013801305996739439560988\
5569344758164720588996253864908050879309094773273452570331670049796544790066\
1489523983249884781225705858976308912271595078833412878530368668080825794274\
0471816685389380685565910360431243565237894828733293218499528808721605141088\
9281601825791556039000195027116282541599354621311969104045595071598307853210\
7486160586573544177713241793596143163278255242221059486980578957052108710323\
9815835988582569501488761035458369624018755184692905359751444538873286837226\
5012394378611256271148460572577385994361992123203496554420292545838677148152\
8452194477285983680635899293016412060283073260395462131185677949322627263636\
3320540091784542783595681447428445571772098480547236035347039872520058350318\
0081953964508968941967478800989559844274434710537813544008103821065290960804\
1395544949859553998044056828230347127703585240108942633736242080671755214848\
000
Database of Galois polynomials by Bill Allombert and Igor Schein.
Last Modified: Sat, 16 Jun 2018 12:23:16 +0200
Copyleft © 2002-2008 the PARI group.