Group GAP4(128,393)

Name: (C8 : Q8) : C2
Maximal quotients:GAP4(64,134) GAP4(64,136) GAP4(64,137)
Real polynomial:
x^128-768*x^126+284320*x^124-67617600*x^122+11615485296*x^120-1536451829376*\
x^118+162916830956000*x^116-14234015915451840*x^114+1045331661457320440*x^11\
2-65503067567038671360*x^110+3543243716196749012256*x^108-166982832303449013\
455424*x^106+6907021564529390459836240*x^104-252274895291673511207145856*x^1\
02+8176442534570822646757766752*x^100-236114996321008822026409887936*x^98+60\
95367136202128148379764536476*x^96-141051952945260008399895980377344*x^94+29\
32402051383268881453690102052384*x^92-54865813567764711925138806640358976*x^\
90+925151174046838773114456580306770544*x^88-1407353656535142631193840187293\
1858048*x^86+193278495243144506760888644903060003424*x^84-239738729567692919\
2911909558154513316544*x^82+26861824489069367017465331568201230980808*x^80-2\
71853237398324945856961335309565390022656*x^78+24842228371285844750003598764\
40089743738016*x^76-20486106192205273358366082616082210977113408*x^74+152335\
227966657064881491133304070346169995984*x^72-1020417685163767676680485671344\
614216309403008*x^70+6149834767593349345351592940127349597830103776*x^68-332\
99264170519678612560599818835022042983460288*x^66+16172443357895519129765388\
5355319417109842904518*x^64-703194549787983953275424641479611634773654666496\
*x^62+2731657311633167110685543635955425543546156487136*x^60-945845242710028\
4923557242490625380448927148150208*x^58+291169777262194570221394858813796678\
96307659455440*x^56-79467019199799922826882302101372366893788405366656*x^54+\
191695657575826965052016089082124972136335747216288*x^52-4073574281634767602\
29267372603690603203734670107968*x^50+75981430936728601943102717944132591629\
4051408980936*x^48-1239107305369562686194506686921730753313489658065408*x^46\
+1759319013624208263702150205875136080942965481673056*x^44-21648814040918377\
41204830505594993567032459038702272*x^42+22974268422684593505444181166109220\
63662209887484784*x^40-2091523606429546301391950290892473576036000969959552*\
x^38+1624074189145307589754828797319189430562562451721504*x^36-1068975358885\
658532170797235562730249819096242067008*x^34+5923784126745869670964409128961\
34849029076984131484*x^32-27432184557021951431949830177990130468245368981785\
6*x^30+105283954165360670189550831048803816739828930271584*x^28-331815528602\
48169054780343838176693316958689372352*x^26+84988545373475901087363161659889\
15024289248349264*x^24-1748574533958786121701215558863209542668312853376*x^2\
2+285232369551095810920310287515911160861431885856*x^20-36365009806547173877\
175763348051768026388875840*x^18+3569029830223161480327879385069919031216730\
872*x^16-265543263998493004736140694997388959503539200*x^14+1475076303060813\
3421185006719923255849157856*x^12-601618573065451186222736235253551003248064\
*x^10+17624709830864862319652025264354718317168*x^8-358621980385742363642252\
854241152080000*x^6+4785965436299339864247925728520647072*x^4-37475480576184\
486120564264962908992*x^2+129776690608750744740376401311361
Common denominator of the automorphisms:
6881351532470615996357643676615036238743043541767538898092481945106707488726\
7274380353186522228818139045252951624967945516115862991744043548892640016524\
6474384574953161713918972088346004699396239833369969048868583846951862059287\
4956893927627160743697634678958708841448040520789140833355194970768894233492\
2430190710873593128027483972775522855677831989560424428925716977069069454653\
6968760865295583619997496992706286703969994861931879147477329327793661450750\
8812929877105853984415672544416955509398047080542149036700587866273148512137\
3013781361725496239245019197626716942034698871818158846588580700261111259326\
033078693064313386431896129324070068999313571184640
Complex polynomial:
x^128+768*x^126+284320*x^124+67617600*x^122+11615485296*x^120+1536451829376*\
x^118+162916830956000*x^116+14234015915451840*x^114+1045331661457320440*x^11\
2+65503067567038671360*x^110+3543243716196749012256*x^108+166982832303449013\
455424*x^106+6907021564529390459836240*x^104+252274895291673511207145856*x^1\
02+8176442534570822646757766752*x^100+236114996321008822026409887936*x^98+60\
95367136202128148379764536476*x^96+141051952945260008399895980377344*x^94+29\
32402051383268881453690102052384*x^92+54865813567764711925138806640358976*x^\
90+925151174046838773114456580306770544*x^88+1407353656535142631193840187293\
1858048*x^86+193278495243144506760888644903060003424*x^84+239738729567692919\
2911909558154513316544*x^82+26861824489069367017465331568201230980808*x^80+2\
71853237398324945856961335309565390022656*x^78+24842228371285844750003598764\
40089743738016*x^76+20486106192205273358366082616082210977113408*x^74+152335\
227966657064881491133304070346169995984*x^72+1020417685163767676680485671344\
614216309403008*x^70+6149834767593349345351592940127349597830103776*x^68+332\
99264170519678612560599818835022042983460288*x^66+16172443357895519129765388\
5355319417109842904518*x^64+703194549787983953275424641479611634773654666496\
*x^62+2731657311633167110685543635955425543546156487136*x^60+945845242710028\
4923557242490625380448927148150208*x^58+291169777262194570221394858813796678\
96307659455440*x^56+79467019199799922826882302101372366893788405366656*x^54+\
191695657575826965052016089082124972136335747216288*x^52+4073574281634767602\
29267372603690603203734670107968*x^50+75981430936728601943102717944132591629\
4051408980936*x^48+1239107305369562686194506686921730753313489658065408*x^46\
+1759319013624208263702150205875136080942965481673056*x^44+21648814040918377\
41204830505594993567032459038702272*x^42+22974268422684593505444181166109220\
63662209887484784*x^40+2091523606429546301391950290892473576036000969959552*\
x^38+1624074189145307589754828797319189430562562451721504*x^36+1068975358885\
658532170797235562730249819096242067008*x^34+5923784126745869670964409128961\
34849029076984131484*x^32+27432184557021951431949830177990130468245368981785\
6*x^30+105283954165360670189550831048803816739828930271584*x^28+331815528602\
48169054780343838176693316958689372352*x^26+84988545373475901087363161659889\
15024289248349264*x^24+1748574533958786121701215558863209542668312853376*x^2\
2+285232369551095810920310287515911160861431885856*x^20+36365009806547173877\
175763348051768026388875840*x^18+3569029830223161480327879385069919031216730\
872*x^16+265543263998493004736140694997388959503539200*x^14+1475076303060813\
3421185006719923255849157856*x^12+601618573065451186222736235253551003248064\
*x^10+17624709830864862319652025264354718317168*x^8+358621980385742363642252\
854241152080000*x^6+4785965436299339864247925728520647072*x^4+37475480576184\
486120564264962908992*x^2+129776690608750744740376401311361
Common denominator of the automorphisms:
6881351532470615996357643676615036238743043541767538898092481945106707488726\
7274380353186522228818139045252951624967945516115862991744043548892640016524\
6474384574953161713918972088346004699396239833369969048868583846951862059287\
4956893927627160743697634678958708841448040520789140833355194970768894233492\
2430190710873593128027483972775522855677831989560424428925716977069069454653\
6968760865295583619997496992706286703969994861931879147477329327793661450750\
8812929877105853984415672544416955509398047080542149036700587866273148512137\
3013781361725496239245019197626716942034698871818158846588580700261111259326\
033078693064313386431896129324070068999313571184640

Database of Galois polynomials by Bill Allombert and Igor Schein.
Last Modified: Sat, 16 Jun 2018 12:23:16 +0200
Copyleft © 2002-2008 the PARI group.