Group GAP4(128,1097)
Name: (C4 : Q8) : C4
Maximal quotients:GAP4(64,196) GAP4(64,197) GAP4(64,200) GAP4(64,228) GAP4(64,230) GAP4(64,237) GAP4(64,238)
Real polynomial:
x^128-832*x^126+332256*x^124-84899440*x^122+15612426696*x^120-2203326634704*\
x^118+248497689188528*x^116-23029369446560736*x^114+1789548672663069348*x^11\
2-118402601707353650032*x^110+6750407523077216496720*x^108-33481056486599625\
8090928*x^106+14559365203289485567748688*x^104-558651429646802410366947520*x\
^102+19015667492638887191384863776*x^100-576766825572905990636103054256*x^98\
+15647698814886251490033466093226*x^96-380938781832654399041949140530320*x^9\
4+8344431960066262006080970616097296*x^92-1648458493844113943758097918424940\
16*x^90+2942703442064638035018170038889656152*x^88-4754600537537226854081140\
7719852873808*x^86+696261175995519918526824699979102658640*x^84-925134026603\
6032353213722479651204209264*x^82+111634220593429979677306392827414060988080\
*x^80-1224182780251111889367202809493365898071136*x^78+122057334088912201828\
50782564294697081532608*x^76-110683781084655083586108681104537713069188432*x\
^74+912988703691592652217984802074163988069850552*x^72-685006297599176692053\
7849001985950580711734544*x^70+467398301631277708840676453540959140516244093\
28*x^68-289927024861906548957069144785958437873528523776*x^66+16340849536305\
84352222494843749780065641327600723*x^64-83627480339135212437048179557056772\
08555575890768*x^62+38827795808701096568944017232131551565385050807632*x^60-\
163384434691339900730713036961963324670967102049472*x^58+6223402282354974926\
09472237545985864425477037803352*x^56-21428147383852509011960061978792893452\
58967077082768*x^54+6658561293734872833836043638288884365410928783584016*x^5\
2-18638732534260869648460806527453837994370375862129840*x^50+469014595469225\
80828486123719251834062103871154976816*x^48-10584391050049214783561319442607\
6184116520358854233184*x^46+213648108139251957680214269207743280214276519305\
232192*x^44-384576547272582710245314442205477257510070766718511248*x^42+6152\
44567097142701788207312512630785281815611730838584*x^40-87143587080653576319\
2656115374044480463215029442486736*x^38+108810257271494539605173735539296087\
4791602020139962544*x^36-119185500647267473489632612669826482171290933281319\
7696*x^34+1138870609252342972783361814833035729903358540787472778*x^32-94330\
7734840306836514733309245928535371810482859952464*x^30+672320015495566619332\
967795586039623615026007153522352*x^28-4088422401087601503765317435221725792\
36267194418427664*x^26+21003406036038354275052958212145390027489231703150606\
4*x^24-90096158274275387506740675674226456649383039843112512*x^22+3182410151\
9900244734300636084103001012556381839968096*x^20-910163703666187610274873092\
1506677016775896723043344*x^18+206434154967674881860467930982177273534876055\
9105476*x^16-361738225159726314306936381804764849872541120638512*x^14+473445\
61751201328773310412708346342987546624149424*x^12-44226466679486242736104205\
79489931024121348393568*x^10+27649473717514279231394963676158316029427190538\
4*x^8-10470258654511780748935550790666391773526830800*x^6+199441188835453404\
257332072680575976078174672*x^4-1155891650485381819567090394608059374364560*\
x^2+76549012350409844641945962351459258721
Common denominator of the automorphisms:
1244810319547682483676286555036673865018654710792138881467049169835550467291\
1041014750293478994724790643607881650425864268977782788191796186786808698579\
3079745796698074598049204846539669748919389943346159647253017397619957958510\
3712802147519488061813052547607282409418647440999307676321858921116951446740\
5381301209877234050884073585986124992519651560598463494669932512539403709207\
3680484172317456763629940133152082197732600897566534633466936450600451175739\
2375837807041826519440502739511532446871441730487262218631710407463753398537\
63051520
Complex polynomial:
x^128+832*x^126+332256*x^124+84899440*x^122+15612426696*x^120+2203326634704*\
x^118+248497689188528*x^116+23029369446560736*x^114+1789548672663069348*x^11\
2+118402601707353650032*x^110+6750407523077216496720*x^108+33481056486599625\
8090928*x^106+14559365203289485567748688*x^104+558651429646802410366947520*x\
^102+19015667492638887191384863776*x^100+576766825572905990636103054256*x^98\
+15647698814886251490033466093226*x^96+380938781832654399041949140530320*x^9\
4+8344431960066262006080970616097296*x^92+1648458493844113943758097918424940\
16*x^90+2942703442064638035018170038889656152*x^88+4754600537537226854081140\
7719852873808*x^86+696261175995519918526824699979102658640*x^84+925134026603\
6032353213722479651204209264*x^82+111634220593429979677306392827414060988080\
*x^80+1224182780251111889367202809493365898071136*x^78+122057334088912201828\
50782564294697081532608*x^76+110683781084655083586108681104537713069188432*x\
^74+912988703691592652217984802074163988069850552*x^72+685006297599176692053\
7849001985950580711734544*x^70+467398301631277708840676453540959140516244093\
28*x^68+289927024861906548957069144785958437873528523776*x^66+16340849536305\
84352222494843749780065641327600723*x^64+83627480339135212437048179557056772\
08555575890768*x^62+38827795808701096568944017232131551565385050807632*x^60+\
163384434691339900730713036961963324670967102049472*x^58+6223402282354974926\
09472237545985864425477037803352*x^56+21428147383852509011960061978792893452\
58967077082768*x^54+6658561293734872833836043638288884365410928783584016*x^5\
2+18638732534260869648460806527453837994370375862129840*x^50+469014595469225\
80828486123719251834062103871154976816*x^48+10584391050049214783561319442607\
6184116520358854233184*x^46+213648108139251957680214269207743280214276519305\
232192*x^44+384576547272582710245314442205477257510070766718511248*x^42+6152\
44567097142701788207312512630785281815611730838584*x^40+87143587080653576319\
2656115374044480463215029442486736*x^38+108810257271494539605173735539296087\
4791602020139962544*x^36+119185500647267473489632612669826482171290933281319\
7696*x^34+1138870609252342972783361814833035729903358540787472778*x^32+94330\
7734840306836514733309245928535371810482859952464*x^30+672320015495566619332\
967795586039623615026007153522352*x^28+4088422401087601503765317435221725792\
36267194418427664*x^26+21003406036038354275052958212145390027489231703150606\
4*x^24+90096158274275387506740675674226456649383039843112512*x^22+3182410151\
9900244734300636084103001012556381839968096*x^20+910163703666187610274873092\
1506677016775896723043344*x^18+206434154967674881860467930982177273534876055\
9105476*x^16+361738225159726314306936381804764849872541120638512*x^14+473445\
61751201328773310412708346342987546624149424*x^12+44226466679486242736104205\
79489931024121348393568*x^10+27649473717514279231394963676158316029427190538\
4*x^8+10470258654511780748935550790666391773526830800*x^6+199441188835453404\
257332072680575976078174672*x^4+1155891650485381819567090394608059374364560*\
x^2+76549012350409844641945962351459258721
Common denominator of the automorphisms:
1244810319547682483676286555036673865018654710792138881467049169835550467291\
1041014750293478994724790643607881650425864268977782788191796186786808698579\
3079745796698074598049204846539669748919389943346159647253017397619957958510\
3712802147519488061813052547607282409418647440999307676321858921116951446740\
5381301209877234050884073585986124992519651560598463494669932512539403709207\
3680484172317456763629940133152082197732600897566534633466936450600451175739\
2375837807041826519440502739511532446871441730487262218631710407463753398537\
63051520
Database of Galois polynomials by Bill Allombert and Igor Schein.
Last Modified: Sat, 16 Jun 2018 12:23:16 +0200
Copyleft © 2002-2008 the PARI group.