GP/PARI CALCULATOR Version 2.8.0 (development 19355-c7ae729)
i686 running mingw (ix86/GMP-6.0.0 kernel) 32-bit version
compiled: Aug 26 2016, gcc version 5.4.0 20160609 (GCC)
threading engine: single
(readline v6.2 enabled, extended help enabled)
Copyright (C) 2000-2016 The PARI Group
PARI/GP is free software, covered by the GNU General Public License, and comes WITHOUT ANY WARRANTY WHATSOEVER.
Type ? for help, \q to quit.
Type ?15 for how to get moral (and possibly technical) support.
parisize = 4000000, primelimit = 500000
? f=x^4-213115048384*x^2+11354436394676863413121
%1 = x^4 - 213115048384*x^2 + 11354436394676863413121
? allocatemem
*** Warning: new stack size = 8000000 (7.629 Mbytes).
? allocatemem
*** Warning: new stack size = 16000000 (15.259 Mbytes).
? nf1=bnfinit(f);
? nf1.fu
%3 = [Mod(1/326431*x^2 - 325624, x^4 - 213115048384*x^2 + 11354436394676863413121), Mod(1/106557197761*x^3 + 1/326431*x^2 - 326433/326431*x - 326432, x^4 - 213115048384*x^2 + 11354436394676863413121), Mod(808/106557197761*x^3 - 263757864/326431*x - 652863, x^4 - 213115048384*x^2 + 11354436394676863413121)]
? \p 50
realprecision = 57 significant digits (50 digits displayed)
? nf2=bnfinit(f);
? nf2.fu
*** at top-level: nf2.fu
*** ^--
*** _.fu: missing units in bnf.
*** Break loop: type 'break' to go back to GP prompt
break> break
? \p 100
realprecision = 105 significant digits (100 digits displayed)
? nf3=bnfinit(f);
? nf3.fu
%6 = [Mod(1/326431*x^2 - 325624, x^4 - 213115048384*x^2 + 11354436394676863413121), Mod(1/106557197761*x^3 + 1/326431*x^2 - 326433/326431*x - 326432, x^4 - 213115048384*x^2 + 11354436394676863413121), Mod(808/106557197761*x^3 - 263757864/326431*x - 652863, x^4 - 213115048384*x^2 + 11354436394676863413121)]
?