Package: pari
Version: 2.9.1
The function bnrL1 seems to behave strangely when increasing the precision. See an example below, and I have a few more as well.
Here is a transcript:
GP/PARI CALCULATOR Version 2.9.1 (released)
i386 running darwin (x86-64 kernel) 64-bit version
compiled: Dec 13 2016, Apple LLVM version 7.3.0 (clang-703.0.31)
threading engine: single
(readline v6.3 enabled, extended help enabled)
Copyright (C) 2000-2016 The PARI Group
PARI/GP is free software, covered by the GNU General Public License, and comes WITHOUT ANY WARRANTY WHATSOEVER.
Type ? for help, \q to quit.
Type ?15 for how to get moral (and possibly technical) support.
parisize = 8000000, primelimit = 500000
?
? \p
realprecision = 38 significant digits
?
? k = bnfinit(y^2 - 10);
?
? idealprimedec(k,37)
%2 = [[37, [-11, 1]~, 1, 1, [11, 10; 1, 11]], [37, [11, 1]~, 1, 1, [-11, 10; 1, -11]]]
?
? mod = bnrinit(k,%2[1],1);
?
? bnrL1(mod)
%4 = [[2, 3.0095920786364782369990403834981908201 + 9.2371292997717389890091769501149766065*I], [2, 5.7042158952633300720074884057178150136 + 5.1097069313919591082984490484130547203*I],
[2, 0.42412739236900351415803576245000120303], [2, 5.7042158952633300720074884057178150136 - 5.1097069313919591082984490484130547203*I], [2, 3.0095920786364782369990403834981908201 - 9.2371292997717389890091769501149766065*I], [1, -1.8184464592320668234836989635607089938]]
?
? \p 100
realprecision = 115 significant digits (100 digits displayed)
?
? k = bnfinit(y^2 - 10);
?
? idealprimedec(k,37)
%6 = [[37, [-11, 1]~, 1, 1, [11, 10; 1, 11]], [37, [11, 1]~, 1, 1, [-11, 10; 1, -11]]]
?
? mod = bnrinit(k,%6[1],1);
?
? bnrL1(mod)
%8 = [[2, 3.009592078636478236999040383498190820659209195115095567491866710828527138789587495894937984515950415 + 9.237129299771738989009176950114976606158943088386722951652715501478488958761003908149244478925169896*I],
[2, 5.704215895263330072007488405717815013403777361239689787479190590476446834559081925297572238713011821 + 5.109706931391959108298449048413054720485638174168431921664027664858573632269853208099799401067556843*I], [2, 0.4241273923690035141580357624500012030345436701781039876865172008671447420377166484485167712081741842],
[2, 5.704215895263330072007488405717815013403777361239689787479190590476446834559081925297572238713011821 - 5.109706931391959108298449048413054720485638174168431921664027664858573632269853208099799401067556843*I], [2, 3.009592078636478236999040383498190820659209195115095567491866710828527138789587495894937984515950415
- 9.237129299771738989009176950114976606158943088386722951652715501478488958761003908149244478925169896*I], [1, -1.818446459232066823483698963560708993786253942768121617451744167233054107866175751026084044360792694]]
?
?
? \p 300
realprecision = 308 significant digits (300 digits displayed)
?
? k = bnfinit(y^2 - 10);
?
? idealprimedec(k,37)
%10 = [[37, [-11, 1]~, 1, 1, [11, 10; 1, 11]], [37, [11, 1]~, 1, 1, [-11, 10; 1, -11]]]
?
? mod = bnrinit(k,%10[1],1);
?
? bnrL1(mod)
*** at top-level: bnrL1(mod)
*** ^----------
*** bnrL1: the PARI stack overflows !
current stack size: 8000000 (7.629 Mbytes)
[hint] set 'parisizemax' to a non-zero value in your GPRC
*** Break loop: type 'break' to go back to GP prompt
break> break
? allocatemem()
*** Warning: new stack size = 16000000 (15.259 Mbytes).
? allocatemem()
*** Warning: new stack size = 32000000 (30.518 Mbytes).
? allocatemem()
*** Warning: new stack size = 64000000 (61.035 Mbytes).
? allocatemem()
*** Warning: new stack size = 128000000 (122.070 Mbytes).
?
?
? allocatemem()
*** Warning: new stack size = 256000000 (244.141 Mbytes).
? bnrL1(mod)
%12 = [[2, -3357213980049413909056228397880784199438635802300889518254753543879006335945935246534103562452926850938007008895036730534389781502124884314184811241425862050587040099915640993043512.61200155529858193877303352869653360537164586850792206171021875519786511542378050767940749445284535376809161221349997914
- 4930740595360392969559615306498660511333534259759102853809459751563802607243101937554089319138458941159223648742965806868788224776230341501424264602165383683981638276626122780703524.56954815050881823435546978662945843638791458799468034736876408075942907407046595202978811606211025042600798701811266772*I],
[2, -13788166077433588637771072277850422163388680872068995106837509924786791814440127345823659558129650172260118605862437493565502426622893408624281994976359919534776556569494146125648.2012114364681037973484250077454865315462213870333687765709987472037838614447512962794472216414165532656797812398418177712
- 14323009357886146219619559025678550321299110081305229929184883106777309102139689916529348637013383871964473641361287129415297430291525907527826792256424215042535710241878197402023.3471780099023503938881913773601558234387519754821160800689298893306625034282432686353520551359402447785323020310785439192*I],
[2, -49740154702873939258248045408537261282963871039314253277322415946995228234358171705380204261659728670960354166344746662882251252014094550794530187890890129666836411157297792009277.8303467202250016421370891357100250101925461683945191730163726198441307794699655785368504462967833500723944386211055864140],
[2, -13788166077433588637771072277850422163388680872068995106837509924786791814440127345823659558129650172260118605862437493565502426622893408624281994976359919534776556569494146125648.2012114364681037973484250077454865315462213870333687765709987472037838614447512962794472216414165532656797812398418177712
+ 14323009357886146219619559025678550321299110081305229929184883106777309102139689916529348637013383871964473641361287129415297430291525907527826792256424215042535710241878197402023.3471780099023503938881913773601558234387519754821160800689298893306625034282432686353520551359402447785323020310785439192*I],
[2, -3357213980049413909056228397880784199438635802300889518254753543879006335945935246534103562452926850938007008895036730534389781502124884314184811241425862050587040099915640993043512.61200155529858193877303352869653360537164586850792206171021875519786511542378050767940749445284535376809161221349997914
+ 4930740595360392969559615306498660511333534259759102853809459751563802607243101937554089319138458941159223648742965806868788224776230341501424264602165383683981638276626122780703524.56954815050881823435546978662945843638791458799468034736876408075942907407046595202978811606211025042600798701811266772*I],
[1, -1.81844645923206682348369896356070899378625394276812161745174416723305410786617575102608404436079269363084091946884532649219086776276783010195066598966307319778699563022006784535960742891826980392823261333202564351329409675394690247234863908478847872088577927039528859733513654223545244791808555088555]]