Ha Tran on Thu, 13 Jun 2013 09:42:41 +0200

 unIsubscribe

• To: pari-users@pari.math.u-bordeaux1.fr
• Subject: unIsubscribe
• From: Ha Tran <hatran1104@gmail.com>
• Date: Thu, 13 Jun 2013 09:42:29 +0200
• Delivery-date: Thu, 13 Jun 2013 09:42:41 +0200
• Dkim-signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=gmail.com; s=20120113; h=mime-version:date:message-id:subject:from:to:content-type; bh=Av0nDGVisyYPdMRDJ+qSr9eoBJWqvANyFFSJoSgV7PI=; b=mr/dY+Z4tO056u5/yx2HUuDGbybqq+WCkDftcoPoq/HWx6mGiS4qy/Zrk/ZdJGsEfK ocrlGRjk+v8oGuchNpg6g5UQWw+heQYt31jpCuHgEQRX3Wj1cdqCj8niw5l4D89b5+TS e9YPPVBH6IjMlXu93+uSZbKziWq5Ky7vNibICNnW8DQGBZUJY8ROcAwiDJv7X+T8qL/Q K8/vOgbxS9tgkKH62rAYbtc9Y8e+13Rd1sERNntQGG+qG3CyMWIZl9GoRoLLeA7905LM NCM1FA85Heozm4Kb5/1hVA3Hv8xE0aWJgGsYfxalElpOen1rqJi1kJh2/zYuebOCr0hy zLJg==

Dear helpers,

I have a problem in using the function "ploth"  in pari gp.

Actually, I need to compute a infinite sums:

ff(x,vp,re,wp)=log (sum(s1=-\infinity,\infinity,sum(s2=-\infinity,\infinity, exp(g(x,vp,re,wp))))  for a<x<b;

and with the accuracy epsilon =10^(-5), by using a function to limit this sum, let call limitshortvec(x,vp,re), I have the bounds of s1 and s2 (lis1 and lis2), then I define:

ff(x,vp,re,wp)=limitshortvec(x,vp,re);log (sum(s1=-lis1,lis1,sum(s2=-lis2,lis2, exp(g(x,vp,re,wp))))  for a<x<b;

Finally, I have to "link" these functions "ff"" together, for example:

h(x)=if(a<=x &&x<=b,ff(x,vp1,re1,wpr1),if(b<x &&x<=c,ff(x,vp2,re2,wpr2)))

then plot h:

ploth(x=a,c,h(x))

then Pari gp gives an announcement:

“1347953757 [main] gp 6648 child_copy: linked dll data write copy failed, 0x2CC000..0x2CF1B0, done 0, windows pid 6648, Win32 error 487”

However, it is ok with the function “plot”.

Moreover, if I delete the function “limitshortvec” in ff and just compute a finite sum, for instance:

ff(x,vp,re,wp)= log (sum(s1=-10,10,sum(s2=-10,10, exp(g(x,vp,re,wp))))

then this function works well.

Therefore, I do not know what problem is, if the function h is not well defined or window system or Pari gp has some errors. (The fact that I can use the function “plot” for h showing that the function h is still well defined in some way).

I wonder if there is anyone who can help me correct this problem.

Thank you so much.

Ha Tran.