Max Alekseyev on Wed, 01 May 2013 17:18:45 +0200

 factoring polynomials modulo non-prime

• To: pari-users@pari.math.u-bordeaux.fr
• Subject: factoring polynomials modulo non-prime
• From: Max Alekseyev <maxale@gmail.com>
• Date: Wed, 1 May 2013 11:18:34 -0400
• Delivery-date: Wed, 01 May 2013 17:18:45 +0200
• Dkim-signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=gmail.com; s=20120113; h=mime-version:x-received:date:message-id:subject:from:to :content-type; bh=Rw/uaqjGkoGJ0wHf4K0kzBrt/yp1o0NTaT21OOK752I=; b=HHOmjD18hhsq3vI7fteKp4uKN/ji8C++o1ymLeJbLA0Vp2JwlhyD55yrB/Q9kY+4TQ kPieRMXiOave7YE3sCjpY8AkW9agqX7UsZjOeq3w7dtnk20628tR5aLr2cqaosY3Bwqq hRh7LoNw47iRyaZb9qS1BaoDOFSs4GRHvQ1pM6YZQW+gLEJtN9JhzI/7DbelleuHDWjy UJAoZ8JhY4xyoWrZt03WXbRF5W862zK5I53bnc6+gIwX2WXo4zcKBB2BQYltrZA05pmV xIOZRDOIUKki/Ql9UyahLgI99nw4Wyu66dwQMo+xNKAwGapG8O7Bxjqqim/I2oajz7iV i2ZA==

```The first result below is non-sense.
The second one seems to be the way how this situation should be
handled if PARI cannot factor a given polynomial.
Is this a bug?
Regards,
Max

? factor( (x^2 - 6*x + 1)*Mod(1,32) )
%1 =
[              Mod(1, 32)*x 1]

[Mod(1, 32)*x + Mod(26, 32) 1]

? factor( (x^2 - 6*x + 1)*Mod(1,64) )
***   at top-level: factor((x^2-6*x+1)*M
***                 ^--------------------
*** factor: not a prime number in Fl_sqrt [modulus]: 64.
***   Break loop: type 'break' to go back to GP
break>

```