Polynomials & Galois extensions

Marine Rougnant

10/03/25 - 14/03/25

1 Polynomials

Exercise 1.

- Implement a function mycyclo(m) constructing the cyclotomic polynomial $\Phi_m \in \mathbb{Z}[X]$ from the complex roots.
- Compare with polcyclo.

Exercise 2.

Write a command which prove the following :

$$\forall N \in \mathbb{N}, \, \Pi_{d|N} \Phi_d(X) = X^N - 1.$$

Exercise 3.

Consider the polynomial $pol = x^2 + 1$ and try :

```
factor(pol)
factor(pol *1.)
factor(pol * (1 + 0*I),I)
factor(pol * (1 + 0.*I), I)
factor(pol * Mod(1,2))
factor(pol * Mod(1, Mod(1,3)*(t<sup>2</sup>+1)))
```

Exercise 4.

- 1. Prove that $x^3 2$ and $x^3 3$ are irreducible over $\mathbb{Q}(i)$.
- 2. Factorize $x^8 x$ into irreducible polynomials over \mathbb{F}_2 .

Exercise 5.

Consider le polynomial $f = x^5 + x^4 + 5x^3 + 3x^2 + 3x - 1$.

- 1. Is f irreducible ? If not, give its factorization.
- 2. Can you predict if f is irreducible over \mathbb{Q}_2 ? \mathbb{Q}_5 ?
- 3. Factorize f over \mathbb{F}_3 . Check the result.
- 4. Write a Pari/GP command for checking the factorization over \mathbb{F}_p of a given polynomial P and a given prime p.

2 Galois extensions

Exercise 6.

- 1. Check that $F = \mathbb{Q}(\sqrt{2+\sqrt{2}})$ is a Galois extension of \mathbb{Q} and $Gal(F/\mathbb{Q}) \cong \mathbb{Z}/4\mathbb{Z}$.
- 2. (a) Find a polynomial defining $K = \mathbb{Q}(\sqrt{2}, \sqrt{3})$ (see polcompositum).

- (b) Check that K is Galois, with $Gal(K/\mathbb{Q}) \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.
- (c) List all the subgroups of $Gal(K/\mathbb{Q})$.
- (d) Give explicit generators of each of these subgroups.

Exercise 7.

Consider $K = \mathbb{Q}(\sqrt[3]{2})$ and L/\mathbb{Q} the Galois closure of K/\mathbb{Q} .

- 1. Compute the degree of the extension L/\mathbb{Q} and give the structure of its Galois group. Is K Galois ? S_3 is group GAP4(6,1)
- 2. Find the polynomial defining L (see galoisgetpol)
- 3. Give the list of all the subfields of L.

Exercise 8.

Let ζ be a 8th-root of unity and $K = \mathbb{Q}(\zeta)$.

- 1. Define f, the minimal polynomial of ζ over \mathbb{Q} .
- 2. Compute $Gal(K/\mathbb{Q})$. Is it an abelian group ? Give its structure.
- 3. Denote by σ an τ its generators. Give their the explicit action on ζ (see galoispermtopol).
- 4. Compute the polynomial defining the fixed field of K by the subgroup generated by τ .
- 5. Show that over that subfield we have : $x^4 + 1 = (x^2 \sqrt{-2}x 1)(x^2 + \sqrt{-2}x 1)$

Exercise 9.

Consider $K = \mathbb{Q}(\sqrt[3]{5}, \zeta_3).$

- 1. Compute f, the irreducible polynomial defining K.
- 2. Compute $G = Gal(K/\mathbb{Q})$.
- 3. Compute the character table of G (see galoischartable), and for each character, give :
 - the corresponding conjugacy class (see galoisconjclasses),
 - the list of characteristic polynomials $det(1 \rho(g)T)$, where g runs through representatives of the conjugacy classes (see galoischarpoly).