Algebraic number theory, class field theory

Marine Rougnant

10/03/25 - 14/03/25

1 Number field

Exercise 1.

Consider the field $L = \mathbb{Q}(\sqrt[3]{5})$.

- 1. Compute the discriminant of L and deduce the list of prime numbers that ramify in the extension L/\mathbb{Q} .
- 2. For each of the following primes, compute: the decomposition into prime ideals, the residual degree, and the ramification index.

3. Is the extension L/\mathbb{Q} Galois?

Exercise 2. Let $Q = x^3 - 111x^2 + 6064x - 189804$.

- 1. Check that Q is irreducible.
- 2. Compute a nicer defining polynomial P for the same field
- 3. Check that they really define the same number field.
- 4. Initialise the number field $F = \mathbb{Q}(\alpha)$ defined by P (nfinit).
- 5. What are
 - the signature of F?
 - the discriminant of F?
 - a \mathbb{Z} -basis of \mathbb{Z}_F ?
- 6. You can represent elements in polynomial form (Mod(...,P)) or as column vectors of coefficients on the basis of \mathbb{Z}_F . What are the coefficients of $-\frac{5}{2}\alpha^2 + \frac{19}{2}\alpha 3$ on the basis? Is it an algebraic integer? What are its trace and norm?
- 7. Compute the prime decomposition of 2, 3, 19. How many primes ideals are there above them? What are their ramification indices? Residue degree? Compute a basis of these prime ideals. Compute the image of some elements in the residue field (nfmodpr).
- 8. Compute a product of some ideals in F (idealmul, idealpow, idealfactorback). Factor it as a product of prime ideals (idealfactor). Check the valuations separately (idealval).
- 9. Is F Galois (galoisinit)? Does it have automorphisms (nfgaloisconj)? What is the Galois group of its Galois closure (polgalois)? Compute a defining polynomial of its Galois closure (nfsplitting).

2 Class group and units

Exercise 3.

To compute the class group and unit group, use bnfinit. Let's denote by L the number field defined by $P = x^3 - x^2 - 92x - 236$

- 1. What is L[7]? Find a way to recover it using L.xxx.
- 2. What is the structure of the class group?
- 3. What are the corresponding generators of the class group?
- 4. What is the rank of the unit group? What are generators of the unit group?
- 5. Explore and experiment with bnfisprincipal:
 - (a) Compute the prime decomposition of 13. Let pr_i be the i-th component of the output.
 - (b) Express the class of each ideal pr_i in terms of the generators of the class group. Are they principal ideals?
 - (c) Use idealfactorback and bnfisprincipal(L,pr) to compute the Hermite normal form of the ideal pr1. Compare with idealhnf(L,pr1).
 - (d) Show that the square of the ideal pr1 is a principal ideal.

Exercise 4.

Consider the quartic field $K = \mathbb{Q}(\sqrt[4]{65})$.

- 1. Initialize K.
- 2. Determine a \mathbb{Z} -basis of \mathcal{O}_K (see nfbasis).
- 3. Find a polynomial over \mathbb{Q} for the fourth term in the \mathbb{Z} -basis (see real and polroots).
- 4. Compute the discriminant ok K. Deduce the list of the ramified primes in K.
- 5. What is $\left[\mathcal{O}_K : \mathbb{Z}(\sqrt[4]{65})\right]$?
- 6. Determine the prime ideal factorizations of 2, 3, 5, and 7 in K.
- 7. What is the class group of K? (you need a bnf structure of K).
- 8. Give a system of fundamental units of K.
- 9. What is the regulator of K? (see bnfreg)

3 Ramification groups

Exercise 5.

Consider the number field $L = \mathbb{Q}(\sqrt{-5})$.

- 1. Compute the discriminant of L and deduce the list of prime numbers that ramify in the extension L/\mathbb{Q} .
- 2. For each of the following primes, compute: the decomposition into prime ideals, the residual degree, and the ramification index.

- 3. Check that the extension L/\mathbb{Q} is Galois.
- 4. Let p be the prime lying above 11. Compute the inertia group and the ramification group of p (idealramgroups).

5. Let K be the subfield of L fixed by the inertia group of 11. Compute its discriminant.

Exercise 6.

Consider $P = x^4 - x^3 - 3x^2 + x - 1$ and denote by K its splitting field.

- 1. Compute the polynomial Q defing K (use polredbest).
- 2. Initialize the number field K.
- 3. Which primes ramify in K/\mathbb{Q} ?
- 4. Compute the decomposition of 3 in prime ideals. How many prime ideals are above 3? With which residue degree and ramification index? Denote by pr the first one.
- 5. Use idealramgroups to compute the decomposition group of pr and its inertia group.

4 Subfields

Exercise 7.

Let $K = \mathbb{Q}[X]/P(X) = \mathbb{Q}(\alpha)$ be the number fields defined by $P = y^8 - y^6 + 2y^2 + 1$. Explore and experiment with nfsubfields:

- 1. Give the number of subfields of K (up to isomorphisms).
- 2. How many of them have degree 4 over \mathbb{Q} ?
- 3. For each of these (degree 4) subfields L_i :
 - (a) give the absolute equation (ie the polynomial P_i definig L_i/\mathbb{Q}),
 - (b) the embedding $L_i \subset K$ (ie a root of P_i as a polynomial in α),
 - (c) the image in K of the element $a = y^2 + y \in L_i$ (see minpoly).

Exercise 8. Abelian extensions of \mathbb{Q}

Recall that every Abelian extension of \mathbb{Q} is contained in a cyclotomic field (Kronecker–Weber).

- 1. Compute every subfield of $\mathbb{Q}(\zeta_{60})$ of degree 8 (see polsubcyclo).
- 2. Computes the subfield fixed by the subgroup of $(\mathbb{Z}/60\mathbb{Z})^{\times}$ generated by -1 (see galoissubcyclo)

Exercise 9.

- 1. Let $K = \mathbb{Q}[\alpha]$ the field defined by $P = x^4 x^3 3x + 4$. Use **nfinit** to compute K.
- 2. We consider

$$Q=y^3+(-\alpha-1)y^2+(\alpha^3+\alpha-2)y+(-\alpha^3+3)\in\mathbb{Q}[\alpha][y].$$

Check that Q is irreducible over K using nffactor.

Remark: by default, $\mathbb{Q}[x,y] = \mathbb{Q}[y][x]$. To force $\mathbb{Q}[x,y] = \mathbb{Q}[x][y]$, you have to specify y=varhigher("y").

- 3. Consider the extension $L = K[\beta]$ where β is a root of Q. What is the degree of the extension L/\mathbb{Q} ?
- 4. Compute a polynomial which defines L/\mathbb{Q} using rnfequation.
- 5. With nfsubfields, find the number of subfields of L. Do some of them are isomorphic?

5 Hilbert class field

Exercise 10.

Consider the number field K defined by $P = y^2 - y + 1007$.

- 1. Initialize K and check that the class group is isomorphic to $\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$.
- 2. Using bnrclassfield, compute the Hilbert class field H of K. The output is a couple of polynomial of degree 3, why?
- 3. With nfcompositum, compute a single defining polynomial of H/K. Find a way to get this polynomial without using the function nfcompositum (see the documentation of bnrclassfield).
- 4. Give a single absolute defining polynomial of H/\mathbb{Q} .

6 Ray class field

Exercise 11.

Consider the number field K defined by $P=y^2-y+1007$ and le prime ideal $\mathfrak p$ above 13 given by pr = idealprimedec(bnf,13)[1].

- 1. Use bnrinit to initialize the ray class group structure corresponding to \mathfrak{p} .
- 2. Find its structure (bnr.cyc).
- 3. Using bnrclassfield, compute the ray class field L of K. Give:
 - (a) its degree (see bnrdisc),
 - (b) its definition as a compositum of several extensions of K (use rnfpolredbest and lift to simplify the relative defining polynomials),
 - (c) an absolute defining polynomial.