Quaternion algebras A GP tutorial

A. Page

Inria/Université de Bordeaux/IMB

09/01/2025

Institut Pascal, Saclay

Documentation

- \triangleright refcard-nf.pdf p.3 : list of functions with a short description.
- ▶ users.pdf Section 3.14: introduction and detailed descriptions of the functions.
- \triangleright in gp, $?11$: list of functions.
- \triangleright in gp, ?functionname: short description of the function.
- \triangleright in gp, ?? functionname: long description of the function.

To record the commands we will type during the tutorial:

? \l quatalg.log

Hamilton quaternions

The **Hamilton quaternion algebra** H is

 $H = \mathbb{R} + \mathbb{R}i + \mathbb{R}j + \mathbb{R}ij$

where
$$
i^2 = j^2 = -1
$$
 and $ji = -ij$.

It is a noncommutative division algebra.

Define

$$
\blacktriangleright \ \overline{x_1 + x_2 i + x_3 j + x_4 ij} = x_1 - x_2 i - x_3 j - x_4 ij \text{ (involution)};
$$

$$
\blacktriangleright \text{ trd}(w) = w + \overline{w} \in \mathbb{R} \text{ (reduced trace)};
$$

$$
\text{Ind}(w) = w\overline{w} \in \mathbb{R}_{\geq 0} \text{ (reduced norm)}.
$$

Creation

We create an object representing H as follows.

```
? H = alginit (1., 1/2);
? algdim(H)
\frac{6}{5} = 4
? algisdivision(H)
\frac{6}{6} = 1
? algiscommutative(H)
\frac{6}{6} = 0
```
Elements

We represent elements of H by column vectors of 4 real numbers. Functions operating on algebras are of the form α lgxxx(α l,...), and we can omit the α l to mean H.

? w = [Pi,2,sqrt(3),-7]~ % = [3.1415926535, 2, 1.7320508075, -7]~ ? algmul(,w,w) % = [-46.130395, 12.566370, 10.882796, -43.982297]~ ? alginv(,w) % = [0.047694, -0.030363, -0.026295, 0.106270]~ ? alginvol(,w) % = [3.1415926535, -2, -1.7320508075, 7]~ ? algtrace(,w) % = 6.2831853071795864769252867665590057684 ? algnorm(,w) % = 65.869604401089358618834490999876151135

Maps to matrix algebras

The algebra has two natural embeddings into matrix algebras, accessible via algtomatrix:

- $▶$ an embedding $\mathbb{H} \to M_2(\mathbb{C})$ (default)
- **•** an embedding $H \to M_4(\mathbb{R})$ (flag=1)

```
? W = \text{alatomatrix}(\cdot, w)\approx =
[3.1415926535 + 2*I -1.7320508075 + 7*I][1.7320508075 + 7 \star I \ 3.14159265358 - 2 \star I]? trace(W) – algtrace(, w)
\epsilon = 0.5 - 37? matdet(W) - algnorm(W)% = 0. E-36 + 0. E-37 \times T
```
Maps to matrix algebras

The algebra has two natural embeddings into matrix algebras, accessible via algtomatrix:

- ▶ an embedding $\mathbb{H} \to M_2(\mathbb{C})$ (default)
- **▶ an embedding** $H \rightarrow M_4(\mathbb{R})$ **(flag=1)**

```
? W2 = \text{alqtomatrix} (w, 1)\frac{6}{5} =
[3.141592653 -2 -1.732050807]
[2 3.141592653 7 1.732050807]
[1.732050807 -7 3.1415926535 -2][-7 -1.7320508075 2 3.1415926535]
? trace(W2) - 2 \times \text{alptrace}(, w)
\text{\%} = -4.701977403289150032 E-38
? matdet(W2) - algnorm(,w)^2
\% = 2.407412430484044816 E-35
```
$SU_2(\mathbb{C})$

In particular we recover the isomorphism from the reduced norm 1 group $\mathbb{H}^1 \to SU_2(\mathbb{C})$.

```
? u = w/sqrt(alqnorm(j,w))\frac{1}{6} = [0.387085, 0.246426, 0.213411, -0.862492] ~
? U = \text{alqtomatrix} (u)\approx =
[0.387085 + 0.246426 \star I - 0.213411 + 0.862492 \star I][0.213411 + 0.862492 \star I \quad 0.387085 - 0.246426 \star I]? exponent (\text{conj}(U) \sim * U - \text{mait}(2))\approx = -127
```
$SO_3(\mathbb{R})$

We also recover the isomorphism $\mathbb{H}^1/\{\pm 1\} \to SO_3(\mathbb{R})$

```
? C = \text{alqinvol}(H);
? rot(w) = ((alqtomatrix,(w,1)*C)^2)[^1,^1;? R = rot(u)\approx =
[-0.5788769485 0.7728982258 -0.2598649858]
[-0.5625370648 - 0.6092399668 - 0.5589085019][-0.5902995249 -0.1773555617 0.7874588723]
? exponent (R \sim \star R - matid(3))
\frac{6}{5} = -126
```
Quaternion algebras

More generally, a **quaternion algebra** over a field *K* of characteristic not 2 is one of the form

$$
(a,b)_K=K+Ki+Kj+Ki
$$

with $i^2=a$, $j^2=b$ and $ji=-ij,$ for some $a,b\in K^\times.$ It is a central simple algebra over *K*.

Define

▶ $\overline{x_1 + x_2i + x_3j + x_4i} = x_1 - x_2i - x_3j - x_4i$ (involution);

$$
\blacktriangleright \text{ trd}(w) = w + \overline{w} \in K \text{ (reduced trace)};
$$

$$
\text{Ind}(w) = w\overline{w} \in K \text{ (reduced norm)}.
$$

▶ $X^2 - \text{trd}(w)X + \text{nrd}(w) \in K[X]$ (reduced char. polynomial).

Creation

```
We create (a, b)_K with alginit. Requirement: a, b \in \mathbb{Z}_K.
```

```
? nf = nfinite(y^4-y-1);? al = alginit(nf, [-7, y]);
? algdim(al) \\dimension over nf
\frac{6}{5} = 4
? algdim(al,1) \\dimension over Q
\frac{6}{5} = 16
? algiscommutative(al)
\frac{6}{5} = 0? algissimple(al)
\frac{6}{5} = 1
```
We can recover the pair (*a*, *b*) that defines the algebra.

```
? [a,b] = algisquatalq(al)\frac{1}{6} = [-7, v]
```
Operations on elements

Elements are internally represented on a Q-basis. We can convert from and to the 1, *i*, *j*, *ij* basis with algquattobasis and algbasistoquat.

? z = algquattobasis(al, [-2,y,1+y,y/2]~) % = [-7,-1,0,-7,-4,-5,0,-7,-1,0,0,-9/2,-3,0,0,7]~ ? lift(algbasistoquat(al, alginvol(al, z))) % = [-2, -y, -y - 1, -1/2*y]~ ? algtrace(al, z) % = -4 ? algpoleval(al, algcharpoly(al,z), z) % = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]~

Maps to matrix algebras

The algebra *A*/*K* has two natural embeddings into matrix algebras, accessible via algtomatrix:

▶ an embedding $A \rightarrow M_2(L)$ where $L = K(\sqrt{2L})$ *a*) (default)

$$
\blacktriangleright \text{ an embedding } A \to M_4(K) \text{ (flag=1)}
$$

? Z = algtomatrix(al,z); liftall(Z) % = [y*x - 2 1/2*y^2*x + (y^2 + y)] [-1/2*y*x + (y + 1) -y*x - 2] ? trace(Z) - algtrace(al,z) % = Mod(0, x^2 + 7) ? matdet(Z) - algnorm(al,z) % = Mod(0, x^2 + 7)

Maps to matrix algebras

The algebra *A*/*K* has two natural embeddings into matrix algebras, accessible via algtomatrix:

- ▶ an embedding $A \rightarrow M_2(L)$ where $L = K(\sqrt{2L})$ *a*) (default)
- ▶ an embedding $A \rightarrow M_4(K)$ (flag=1)

```
? Z^2 = algtomatrix(al, z, 1); matsize(Z2)
\frac{1}{6} = [16, 16]
? trace(Z2) - 2 \star n felttrace(nf, algtrace(al, z))
\frac{6}{5} = 0? matdet(Z2) - nfeltnorm(nf,algnorm(al,z))^2
\frac{6}{5} = 0
```
Ramification

Let *v* be a place of *K*. Ramification at *v* is defined according to the behaviour of the quaternion algebra $(a, b)_K \otimes_K K$ ^r.

- \blacktriangleright a quaternion algebra over $\mathbb C$ is isomorphic to $M_2(\mathbb C)$ (split);
- \blacktriangleright g.a. over $\mathbb R$ is isomorphic to $M_2(\mathbb R)$ (split) or $\mathbb H$ (ramified);
- \triangleright g.a. over a *p*-adic field *E* is isomorphic to $M_2(E)$ (split) or a division algebra \mathbb{H}_F (ramified).

Theorem

- ▶ *The ramification set is finite of even cardinality.*
- ▶ *Quaternion algebras are isomorphic if and only if they have the same ramification set.*
- ▶ *Every finite set of noncomplex places of even cardinality is the ramification set of some quaternion algebra.*

Computing ramification

We can test for ramification at a place with algisramified.

```
? algisramified(al, 1) \\1st place at infinity
\approx = 1
? pr = idealprimedec(nf, 2)[1];? algisramified(al, pr)
```
 $\frac{6}{6} = 0$

We can test ramification without the algebra with nfhilbert.

```
? nfhilbert(nf, a, b, pr) \Hilbert symbol
\frac{1}{2} = 1 \sqrt{1}=split, -1=ramified
```
We get the ramification set with algramifiedplaces.

```
? algramifiedplaces(al)
\hat{\mathcal{S}} = [1, 7, \ldots, 1, 1, \ldots]? algisdivision(al)
\frac{6}{5} = 1
```
Construction from ramification

We can construct a quaternion algebra from its ramification set with alginit (nf , $[PR, H1]$) where PR is a vector of prime ideals and $HI \in \{0, 1\}^{r_1}$ specifies the ramified real places.

```
? al2 = alginit(nf, [pr], [0,1]]);
? #algramifiedplaces(al2)
\approx = 2
? algisramified(al2, pr)
\frac{6}{5} = 1
? algisquatalg(al2)
\frac{1}{6} = [-21, -294*y^3 + 127]
```
Lattices and orders

Let *A* be a quaternion algebra over a number field *K*. A **lattice** *L* ⊂ *A* is a Z-submodule generated by a Q-basis of *A*. An **order** $\mathcal{O} \subset A$ is a lattice that is also a subring (with unit).

Example:
$$
O = \mathbb{Z}_K + \mathbb{Z}_K i + \mathbb{Z}_K j + \mathbb{Z}_K ij
$$
 if $a, b \in \mathbb{Z}_K$.

Given a lattice *L*, its **left order** (resp. right order) is

$$
\mathcal{O}_I(L) = \{x \in A \mid xL \subseteq L\}, \text{ resp. } \mathcal{O}_r(L) = \{x \in A \mid Lx \subseteq L\}.
$$

A **maximal order** is an order not properly contained in an order. Maximal orders always exist but are not unique (for instance, most conjugates are distinct).

Integral basis

In PARI/GP, the Q-basis representation is with respect to a \mathbb{Z} -basis $\omega_1, \ldots, \omega_n$ of a maximal order containing the non-maximal order $\mathbb{Z}_K + \mathbb{Z}_K i + \mathbb{Z}_K i + \mathbb{Z}_K i$. We check that it is an order.

```
? mt = algorithmultable(al);? denominator(mt)
\approx = 1
```
We check that it is maximal from a formula for the discriminant det($(Tr(\omega_i\omega_i))_{1\leq i,j\leq n}$).

```
? algdisc(al)
```
- $% = 20597843435782144$
- ? $D = ide$ alnorm(nf, algramifiedplaces(al)[2]);
- ? 2^{\wedge} algdim(al,1) * (nf.disc $^{\wedge}2$ * D) $^{\wedge}2$
- $% = 20597843435782144$

Ramification and maximal orders

Let $\mathcal{O} \subset A$ be a maximal order, and let p be a prime ideal. \blacktriangleright If p is split, then

$$
\mathcal{O}/\mathfrak{p}\mathcal{O}\cong M_2(\mathbb{F}_\mathfrak{p}).
$$

 \blacktriangleright If p is ramified, then there exists a surjection

$$
\mathcal{O}/\mathfrak{p}\mathcal{O} \to \mathcal{O}/\mathfrak{P} \cong \mathbb{L}
$$

where \mathbb{L}/\mathbb{F}_p is the quadratic extension and $\mathfrak{P} \subset \mathcal{O}$ is a two-sided ideal with $\mathfrak{B}^2 = \mathfrak{p} \mathcal{O}$.

In both cases, several such maps exist.

Mod **p** splitting

We initialise a map $\mathcal{O}/p\mathcal{O} \to M_k(\mathbb{F}_q)$ as above with algmodprinit.

```
? pr3 = idealprimedec(nf, 3)[1];? pr3.f
\approx = 4
? modP3 = algmodprinit(al, pr3);
```

```
This map will be \mathcal{O}/\mathfrak{p}_3\mathcal{O} \rightarrow M_2(\mathbb{F}_{3^4}).
```

```
? pr7 = algorithmifiedplaces(al)[2];? pr7.f
\frac{6}{5} = 1
? modP7 = algmodprinit(al, pr7);
```
This map will be $\mathcal{O}/\mathfrak{p}_7 \mathcal{O} \to M_1(\mathbb{F}_{7^2})$.

Mod **p** splitting

We then compute the image of an element with α algmodpr.

```
? algmodpr(al, z, modP3)
\frac{6}{6} =
[x^3 + 2*x^2 + 2 x^3 + x^2 + 2*x + 2]\left[ 2 \times x^2 + x + 2 \right] 2 \times x^3 + x^2? algmodpr(al, z, modP7)
\frac{6}{6} =
[3*x + 3]? t = algquattobasis(al, [0,1,2,1/7*y^3+1/7*y-2/7]~)
? algmodpr(al, t, modP7)
\frac{6}{5} =
[5*x + 6]
```
Mod **p** splitting

We find preimages with algmodprlift.

```
? li1 = algmodprlift(al, [1, x; 0, 1], modP3)
\frac{1}{6} = [2, 2, 2, 1, 2, 2, 1, 0, 2, 1, 1, 0, 2, 2, 1, 1] ~
? algmodpr(al, li1, modP3)
\frac{6}{5} =
[1 x][0 1]
? li2 = algmodprlift(al, Mat(x), modP7)% = [6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]~
? algmodpr(al, li2, modP7)
\approx =
\lceil x \rceil
```
Real and complex splitting

Splitting at infinite places is not implemented yet but is very easy in the quaternion case.

```
? quatembed(al, x, pl) =
{
  [... cf GP code file ...]
};
```
The first real place is ramified, yielding a map $A \to \mathbb{H}$.

```
? quatembed(al,z,1)
\frac{1}{6} = [-2, -1.916825, 0.234504, -0.815773] ~
```
Real and complex splitting

The second real place is split, yielding a map $A \to M_2(\mathbb{R})$.

```
? quatembed(al,z,2)
\frac{6}{5} =
[0.453639 -3.824523]
[1.895127 -4.453639]
```
The third place is complex, yielding a map $A \to M_2(\mathbb{C})$.

```
? quatembed(al,z,3)
\frac{6}{5} =
[-4.735659 - 0.656479 \star I -0.576890 - 0.812000 \star I][ 2.119703 + 1.362221*I 0.735659 + 0.656479*I]
```
Eichler orders

Let $\mathfrak N$ be an ideal coprime to the discriminant and let $\mathcal O$ be a maximal order. We then have an isomorphism

$$
\mathcal{O}/\mathfrak{N}\mathcal{O} \to M_2(\mathbb{Z}_K/\mathfrak{N}).
$$

Let $\mathcal{O}_0(\mathfrak{N})$ denote the preimage of the set of upper-triangular matrices. This is an order, and an order of this form is called an **Eichler order of level** N.

A maximal order is an Eichler order of level 1.

Eichler order construction

We can obtain a basis for an Eichler order of given level with algeichlerbasis.

```
? eich = algeichlerbasis(al, Mat([pr3,3]))
\frac{6}{6} =
[1 0 0 0 0 0 0 0 0]
 ...
[0 27 0 0 0 20 9 6 25]
[0 0 27 0 0 26 8 0 2]
[0 0 0 27 0 17 5 13 7]
[0 0 0 0 27 25 24 2 17]
[0 0 0 0 0 1 0 0 0]
[0 0 0 0 0 0 1 0 0]
[0 0 0 0 0 0 0 1 0]
[0 0 0 0 0 0 0 0 1]
```
Lattice representation

We represent a lattice $L \subset A$ by a pair $[H, t]$ where

- ▶ *^H* [∈] *^Mn*(Z) is upper-triangular nonsingular, and
- \triangleright *t* ∈ $\mathbb{Q}_{>0}$,

representing the lattice $t \cdot H \cdot \mathbb{Z}^n$.

It is recommended to use *H* in Hermite normal form and primitive (GCD of all coefficients is 1). In this case, the representation is unique.

The prefix for functions working with lattices in algebras is alglat.

Lattice creation

We obtain a representation as above from an arbitrary basis of a lattice with alglathnf.

```
? lat1 = alglathnf(al,z);
? lat1[2]
\frac{6}{5} = 1/2
```
We created the lattice $L_1 = z\mathcal{O}$.

```
? lat2 = alglathnf(al,eich);
? lat2[2]
\frac{6}{5} = 1
```
We created the lattice $L_2 = \mathcal{O}_0(\mathfrak{p}_3^3)$.

Lattice operations

We can perform elementary operations on lattices

$$
\blacktriangleright \text{alglatadd for } L_1 + L_2,
$$

- ▶ alglatinter for *^L*¹ [∩] *^L*2,
- \blacktriangleright alglatmul for $L_1 \cdot L_2$.

The generalised index

$$
[L_2: L_1] = \frac{[L_2: L_1 \cap L_2]}{[L_1: L_1 \cap L_2]} \in \mathbb{Q}
$$

is computed with alglatindex.

? alglatsubset(al,lat1,lat2)

 $\frac{6}{5} = 0$

? alglatsubset(al,lat2,lat1)

 $\frac{6}{5} = 0$

- ? alglatindex(al,lat2,lat1)
- $% = 34828517376/12115625041$

Lattice operations

The **left transporter** from L_1 to L_2 is the lattice

$$
\{x\in A\mid x\cdot L_1\subset L_2\},
$$

and is computed by alglatlefttransporter. This allows us to compute $O_I(L)$, and in particular to check whether a lattice is an order.

```
? alglatlefttransporter(al, lat2, lat2) == lat2
\frac{6}{5} = 1
```
We can also use it for inversion.

```
? triv = alglathnf(al, matid(16));
```
? latlin $v =$ alglatlefttransporter(al, latl, triv);

? alglatmul(al, $latlinv$, $lat1$) == triv

 \approx = 1

More general central simple algebras

The Pari package can actually deal with arbitrary central simple algebras over number fields.

- \triangleright quaternion algebras \rightsquigarrow cyclic algebras
- ▶ ramification $→$ Hasse invariants

▶ . . .

Read the documentation for more details!

[Quaternion algebras](#page-0-0)

Have fun with GP !