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Quaternion algebras

Documentation

▶ refcard-nf.pdf p.3 : list of functions with a short description.
▶ users.pdf Section 3.14: introduction and detailed

descriptions of the functions.
▶ in gp, ?11: list of functions.
▶ in gp, ?functionname: short description of the function.
▶ in gp, ??functionname: long description of the function.

To record the commands we will type during the tutorial:

? \l quatalg.log
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Hamilton quaternions

The Hamilton quaternion algebra H is

H = R+ Ri + Rj + Rij

where i2 = j2 = −1 and ji = −ij .

It is a noncommutative division algebra.

Define
▶ x1 + x2i + x3j + x4ij = x1 − x2i − x3j − x4ij (involution);
▶ trd(w) = w + w ∈ R (reduced trace);
▶ nrd(w) = ww ∈ R≥0 (reduced norm).



Quaternion algebras

Creation

We create an object representing H as follows.

? H = alginit(1.,1/2);
? algdim(H)
% = 4
? algisdivision(H)
% = 1
? algiscommutative(H)
% = 0
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Elements
We represent elements of H by column vectors of 4 real
numbers. Functions operating on algebras are of the form
algxxx(al,...), and we can omit the al to mean H.

? w = [Pi,2,sqrt(3),-7]~
% = [3.1415926535, 2, 1.7320508075, -7]~
? algmul(,w,w)
% = [-46.130395, 12.566370, 10.882796, -43.982297]~
? alginv(,w)
% = [0.047694, -0.030363, -0.026295, 0.106270]~
? alginvol(,w)
% = [3.1415926535, -2, -1.7320508075, 7]~
? algtrace(,w)
% = 6.2831853071795864769252867665590057684
? algnorm(,w)
% = 65.869604401089358618834490999876151135
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Maps to matrix algebras

The algebra has two natural embeddings into matrix algebras,
accessible via algtomatrix:
▶ an embedding H → M2(C) (default)
▶ an embedding H → M4(R) (flag=1)

? W = algtomatrix(,w)
% =
[3.1415926535 + 2*I -1.7320508075 + 7*I]
[1.7320508075 + 7*I 3.14159265358 - 2*I]
? trace(W) - algtrace(,w)
% = 0.E-37
? matdet(W) - algnorm(,w)
% = 0.E-36 + 0.E-37*I
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Maps to matrix algebras
The algebra has two natural embeddings into matrix algebras,
accessible via algtomatrix:
▶ an embedding H → M2(C) (default)
▶ an embedding H → M4(R) (flag=1)

? W2 = algtomatrix(,w,1)
% =
[3.141592653 -2 -1.732050807]
[2 3.141592653 7 1.732050807]
[1.732050807 -7 3.1415926535 -2]
[-7 -1.7320508075 2 3.1415926535]
? trace(W2) - 2*algtrace(,w)
% = -4.701977403289150032 E-38
? matdet(W2) - algnorm(,w)^2
% = 2.407412430484044816 E-35
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SU2(C)

In particular we recover the isomorphism from the reduced
norm 1 group H1 → SU2(C).

? u = w/sqrt(algnorm(,w))
% = [0.387085, 0.246426, 0.213411, -0.862492]~
? U = algtomatrix(,u)
% =
[0.387085 + 0.246426*I -0.213411 + 0.862492*I]
[0.213411 + 0.862492*I 0.387085 - 0.246426*I]
? exponent(conj(U)~ * U - matid(2))
% = -127
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SO3(R)

We also recover the isomorphism H1/{±1} → SO3(R)

? C = alginvol(H);
? rot(w) = ((algtomatrix(,w,1)*C)^2)[^1,^1];
? R = rot(u)
% =
[-0.5788769485 0.7728982258 -0.2598649858]
[-0.5625370648 -0.6092399668 -0.5589085019]
[-0.5902995249 -0.1773555617 0.7874588723]
? exponent(R~*R - matid(3))
% = -126
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Quaternion algebras

More generally, a quaternion algebra over a field K of
characteristic not 2 is one of the form

(a,b)K = K + Ki + Kj + Kij

with i2 = a, j2 = b and ji = −ij , for some a,b ∈ K×.
It is a central simple algebra over K .

Define
▶ x1 + x2i + x3j + x4ij = x1 − x2i − x3j − x4ij (involution);
▶ trd(w) = w + w ∈ K (reduced trace);
▶ nrd(w) = ww ∈ K (reduced norm).
▶ X 2 − trd(w)X + nrd(w) ∈ K [X ] (reduced char. polynomial).
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Creation
We create (a,b)K with alginit. Requirement: a,b ∈ ZK .

? nf = nfinit(y^4-y-1);
? al = alginit(nf,[-7,y]);
? algdim(al) \\dimension over nf
% = 4
? algdim(al,1) \\dimension over Q
% = 16
? algiscommutative(al)
% = 0
? algissimple(al)
% = 1

We can recover the pair (a,b) that defines the algebra.

? [a,b] = algisquatalg(al)
% = [-7, y]
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Operations on elements

Elements are internally represented on a Q-basis. We can
convert from and to the 1, i , j , ij basis with algquattobasis
and algbasistoquat.

? z = algquattobasis(al, [-2,y,1+y,y/2]~)
% = [-7,-1,0,-7,-4,-5,0,-7,-1,0,0,-9/2,-3,0,0,7]~
? lift(algbasistoquat(al, alginvol(al, z)))
% = [-2, -y, -y - 1, -1/2*y]~
? algtrace(al, z)
% = -4
? algpoleval(al, algcharpoly(al,z), z)
% = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]~
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Maps to matrix algebras
The algebra A/K has two natural embeddings into matrix
algebras, accessible via algtomatrix:
▶ an embedding A → M2(L) where L = K (

√
a) (default)

▶ an embedding A → M4(K ) (flag=1)

? Z = algtomatrix(al,z); liftall(Z)
% =
[ y*x - 2 1/2*y^2*x + (y^2 + y)]
[-1/2*y*x + (y + 1) -y*x - 2]
? trace(Z) - algtrace(al,z)
% = Mod(0, x^2 + 7)
? matdet(Z) - algnorm(al,z)
% = Mod(0, x^2 + 7)
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Maps to matrix algebras

The algebra A/K has two natural embeddings into matrix
algebras, accessible via algtomatrix:
▶ an embedding A → M2(L) where L = K (

√
a) (default)

▶ an embedding A → M4(K ) (flag=1)

? Z2 = algtomatrix(al,z,1); matsize(Z2)
% = [16, 16]
? trace(Z2) - 2*nfelttrace(nf,algtrace(al,z))
% = 0
? matdet(Z2) - nfeltnorm(nf,algnorm(al,z))^2
% = 0
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Ramification
Let v be a place of K . Ramification at v is defined according to
the behaviour of the quaternion algebra (a,b)K ⊗K Kv :
▶ a quaternion algebra over C is isomorphic to M2(C) (split);
▶ q.a. over R is isomorphic to M2(R) (split) or H (ramified);
▶ q.a. over a p-adic field E is isomorphic to M2(E) (split) or a

division algebra HE (ramified).

Theorem
▶ The ramification set is finite of even cardinality.
▶ Quaternion algebras are isomorphic if and only if they have

the same ramification set.
▶ Every finite set of noncomplex places of even cardinality is

the ramification set of some quaternion algebra.



Quaternion algebras

Computing ramification
We can test for ramification at a place with algisramified.

? algisramified(al, 1) \\1st place at infinity
% = 1
? pr = idealprimedec(nf,2)[1];
? algisramified(al, pr)
% = 0

We can test ramification without the algebra with nfhilbert.

? nfhilbert(nf, a, b, pr) \\Hilbert symbol
% = 1 \\1=split, -1=ramified

We get the ramification set with algramifiedplaces.

? algramifiedplaces(al)
% = [1, [7, ... , 1, 1, ...]]
? algisdivision(al)
% = 1
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Construction from ramification

We can construct a quaternion algebra from its ramification set
with alginit(nf,[PR,HI]) where PR is a vector of prime
ideals and HI ∈ {0,1}r1 specifies the ramified real places.

? al2 = alginit(nf, [[pr],[0,1]]);
? #algramifiedplaces(al2)
% = 2
? algisramified(al2,pr)
% = 1
? algisquatalg(al2)
% = [-21, -294*y^3 + 127]
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Lattices and orders

Let A be a quaternion algebra over a number field K .
A lattice L ⊂ A is a Z-submodule generated by a Q-basis of A.
An order O ⊂ A is a lattice that is also a subring (with unit).

Example: O = ZK + ZK i + ZK j + ZK ij if a,b ∈ ZK .

Given a lattice L, its left order (resp. right order) is

Ol(L) = {x ∈ A | xL ⊆ L}, resp. Or (L) = {x ∈ A | Lx ⊆ L}.

A maximal order is an order not properly contained in an order.
Maximal orders always exist but are not unique (for instance,
most conjugates are distinct).
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Integral basis
In PARI/GP, the Q-basis representation is with respect to a
Z-basis ω1, . . . , ωn of a maximal order containing the
non-maximal order ZK + ZK i + ZK j + ZK ij .
We check that it is an order.

? mt = algmultable(al);
? denominator(mt)
% = 1

We check that it is maximal from a formula for the
discriminant det((Tr(ωiωj))1≤i,j≤n).

? algdisc(al)
% = 20597843435782144
? D = idealnorm(nf, algramifiedplaces(al)[2]);
? 2^algdim(al,1) * (nf.disc^2 * D)^2
% = 20597843435782144



Quaternion algebras

Ramification and maximal orders

Let O ⊂ A be a maximal order, and let p be a prime ideal.
▶ If p is split, then

O/pO ∼= M2(Fp).

▶ If p is ramified, then there exists a surjection

O/pO → O/P ∼= L

where L/Fp is the quadratic extension and P ⊂ O is a
two-sided ideal with P2 = pO.

In both cases, several such maps exist.
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Mod p splitting
We initialise a map O/pO → Mk (Fq) as above with
algmodprinit.

? pr3 = idealprimedec(nf,3)[1];
? pr3.f
% = 4
? modP3 = algmodprinit(al, pr3);

This map will be O/p3O → M2(F34).

? pr7 = algramifiedplaces(al)[2];
? pr7.f
% = 1
? modP7 = algmodprinit(al, pr7);

This map will be O/p7O → M1(F72).
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Mod p splitting

We then compute the image of an element with algmodpr.

? algmodpr(al, z, modP3)
% =
[x^3 + 2*x^2 + 2 x^3 + x^2 + 2*x + 2]
[ 2*x^2 + x + 2 2*x^3 + x^2]
? algmodpr(al, z, modP7)
% =
[3*x + 3]
? t = algquattobasis(al,[0,1,2,1/7*y^3+1/7*y-2/7]~);
? algmodpr(al, t, modP7)
% =
[5*x + 6]
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Mod p splitting

We find preimages with algmodprlift.

? li1 = algmodprlift(al, [1,x;0,1], modP3)
% = [2,2,2,1,2,2,1,0,2,1,1,0,2,2,1,1]~
? algmodpr(al, li1, modP3)
% =
[1 x]
[0 1]
? li2 = algmodprlift(al, Mat(x), modP7)
% = [6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]~
? algmodpr(al, li2, modP7)
% =
[x]
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Real and complex splitting

Splitting at infinite places is not implemented yet but is very
easy in the quaternion case.

? quatembed(al,x,pl) =
{
[... cf GP code file ...]

};

The first real place is ramified, yielding a map A → H.

? quatembed(al,z,1)
% = [-2, -1.916825, 0.234504, -0.815773]~
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Real and complex splitting

The second real place is split, yielding a map A → M2(R).

? quatembed(al,z,2)
% =
[0.453639 -3.824523]
[1.895127 -4.453639]

The third place is complex, yielding a map A → M2(C).

? quatembed(al,z,3)
% =
[-4.735659 - 0.656479*I -0.576890 - 0.812000*I]
[ 2.119703 + 1.362221*I 0.735659 + 0.656479*I]
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Eichler orders

Let N be an ideal coprime to the discriminant and let O be a
maximal order. We then have an isomorphism

O/NO → M2(ZK/N).

Let O0(N) denote the preimage of the set of upper-triangular
matrices. This is an order, and an order of this form is called an
Eichler order of level N.
A maximal order is an Eichler order of level 1.



Quaternion algebras

Eichler order construction
We can obtain a basis for an Eichler order of given level with
algeichlerbasis.

? eich = algeichlerbasis(al, Mat([pr3,3]))
% =
[1 0 0 0 0 0 0 0 0]
...

[0 27 0 0 0 20 9 6 25]
[0 0 27 0 0 26 8 0 2]
[0 0 0 27 0 17 5 13 7]
[0 0 0 0 27 25 24 2 17]
[0 0 0 0 0 1 0 0 0]
[0 0 0 0 0 0 1 0 0]
[0 0 0 0 0 0 0 1 0]
[0 0 0 0 0 0 0 0 1]



Quaternion algebras

Lattice representation

We represent a lattice L ⊂ A by a pair [H, t ] where
▶ H ∈ Mn(Z) is upper-triangular nonsingular, and
▶ t ∈ Q>0,

representing the lattice t · H · Zn.

It is recommended to use H in Hermite normal form and
primitive (GCD of all coefficients is 1). In this case, the
representation is unique.

The prefix for functions working with lattices in algebras is
alglat.
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Lattice creation

We obtain a representation as above from an arbitrary basis of
a lattice with alglathnf.

? lat1 = alglathnf(al,z);
? lat1[2]
% = 1/2

We created the lattice L1 = zO.

? lat2 = alglathnf(al,eich);
? lat2[2]
% = 1

We created the lattice L2 = O0(p
3
3).
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Lattice operations
We can perform elementary operations on lattices
▶ alglatadd for L1 + L2,
▶ alglatinter for L1 ∩ L2,
▶ alglatmul for L1 · L2.

The generalised index

[L2 : L1] =
[L2 : L1 ∩ L2]

[L1 : L1 ∩ L2]
∈ Q

is computed with alglatindex.

? alglatsubset(al,lat1,lat2)
% = 0
? alglatsubset(al,lat2,lat1)
% = 0
? alglatindex(al,lat2,lat1)
% = 34828517376/12115625041
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Lattice operations
The left transporter from L1 to L2 is the lattice

{x ∈ A | x · L1 ⊂ L2},

and is computed by alglatlefttransporter.
This allows us to compute Ol(L), and in particular to check
whether a lattice is an order.

? alglatlefttransporter(al,lat2,lat2) == lat2
% = 1

We can also use it for inversion.

? triv = alglathnf(al,matid(16));
? lat1inv = alglatlefttransporter(al,lat1,triv);
? alglatmul(al,lat1inv,lat1) == triv
% = 1
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More general central simple algebras

The Pari package can actually deal with arbitrary central simple
algebras over number fields.

▶ quaternion algebras⇝ cyclic algebras
▶ ramification⇝ Hasse invariants
▶ . . .

Read the documentation for more details!
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Have fun with GP !


