Finding torsion bases on elliptic curves over Finite Fields

Márton Tot Bagi

7th January 2025

Motivation

- \triangleright Isogeny-based cryptography is a promising post-quantum alternative
- ▶ Evaluation isogenies between supersingular elliptic curves is efficient if kernel is rational
- \triangleright When the kernel is not rational it is tricky to implement computations efficiently
- ▶ PEARL-SCALLOP (Allombert, Biasse, Eriksen, Kutas, Leonardi, Page, Scheidler, Tot Bagi): isogeny-based group action where the unerlying class group can be computed more efficiently as in CSIDH but is faster than SCALLOP and SCALLOP-HD
- \blacktriangleright There is a precomputation step which requires the evaluation of a single isogeny with non-rational kernel, however, if implemented naively computations will not finish in reasonable time

Introduction

- ▶ We will focus on elliptic curves of the form E : $y^2 = x^3 + ax + b$ over finite fields, with characteristic $p \neq 2, 3$
- ▶ We know that for any $p \nmid m$ the *m*-torsion group of E, $E[m]$, has the structure: $E[m] \simeq (\mathbb{Z}/m\mathbb{Z})^2$
- \blacktriangleright For an elliptic curve E defined over \mathbb{F}_q we will denote the Frobenius endomorphism with $\pi_q : (x, y) \mapsto (x^q, y^q)$

Problem

Let E be an elliptic curve over \mathbb{F}_q and assume that $E[m]$ is \mathbb{F}_q -rational. Find a basis of $E[m]$.

- \blacktriangleright The general strategy here is to find P, Q m-torsion points and check whether they generate the m -torsion (using the Weil-pairing)
- \blacktriangleright If not, find a new Q
- ▶ Basically this reduces the problem of finding an element of order m (and computing the order of an element)

Finding a point of order m

- \blacktriangleright Let us denote the order of the point P by $o(P)$
- \blacktriangleright Let P be a random (\mathbb{F}_q -rational) point on ET

Let
$$
Q = (\#E(\mathbb{F}_q)/m^2) \cdot P
$$

• If
$$
o(Q) = m
$$
 or $o(Q) = m^2$ done, else repeat

- \triangleright Small improvement, instead of just multiplying by $\#E(\mathbb{F}_q)/m^2$, we can do the following:
- \blacktriangleright Write $\#E(\mathbb{F}_q) = c \cdot d$, where c is the largest divisor of $\#E(\mathbb{F}_q)$ relative prime to m
- \blacktriangleright Then $R = (o(Q)/m) \cdot Q$, where $Q = c \cdot P$, with P a random point

Finding the order of a point

- \blacktriangleright Let Q be a point on E over \mathbb{F}_q
- \triangleright We want to find it's order $o(Q)$
- ▶ We know, that $#E(\mathbb{F}_q) \cdot Q = \mathcal{O} \implies o(Q)| \#E(\mathbb{F}_q)$

Let
$$
\#E(\mathbb{F}_q) = \prod_{i=1}^s p_i^{\alpha_i}
$$

- \blacktriangleright (# $E(\mathbb{F}_q)$ can be replaced by another multiple of the order, if we know one, as we do above)
- \blacktriangleright Let $Q_i = (\#E(\mathbb{F}_q)/\rho_i^{\alpha_i}) \cdot Q$, we know that $o(Q_i)|\rho_i^{\alpha_i}$
- \blacktriangleright Finding $o(Q_i)$: we need the smallest (positive) j, such that ρ_i^j $d'_i\cdot Q_i={\cal O}$
- \blacktriangleright $o(Q) = \prod o(Q_i)$
- ▶ Number of additions and doublings: $O(s \log(\#E(\mathbb{F}_q)))$

A faster algorithm

Let
$$
\#E(\mathbb{F}_q) = \prod_{i=1}^s p_i^{\alpha_i}
$$
 as before

- If $s = 1$, find the order of Q the same way as before
- \blacktriangleright Else let $R = \prod_{i=1}^{\lfloor s/2 \rfloor} p_i^{\alpha_i} \cdot Q$, find the order of R recursively
- ▶ (We know that $o(R)$ $\prod_{i=\lfloor s/2 \rfloor+1}^{s} p_i^{\alpha_i}$)
- ▶ Let $T = o(R) \cdot Q$, find it's order recursively
- \blacktriangleright $(o(T)|\prod_{i=1}^{\lfloor s/2\rfloor}p_i^{\alpha_i})$
- \triangleright $o(Q) = o(R) \cdot o(T)$
- ▶ Only $O(log(s) log(\#E(\mathbb{F}_q)))$ additions and doublings
- \triangleright Needs storing log(s) points, while the first algorithm needed only 2 points

Division field I

- \triangleright Now what if we don't know that the *m*-torsion is rational?
- \triangleright More generally, the *m*-division field is the smallest extension of \mathbb{F}_q over which the *m* torsion is rational.

Problem

Let E be an elliptic curve over \mathbb{F}_q . Find the degree of the m-division field.

- \triangleright One way to find it, is the division polynomial
- \blacktriangleright The division field is either the splitting field of the division polynomial, or a 2 degree extension of it
- \blacktriangleright However deciding between the two cases is expensive
- \blacktriangleright There exists a faster algorithm when m is an odd prime [\[vT97\]](#page-12-0)

Division field and the Frobenius endomorphism

- \blacktriangleright The algorithm utilizes the following facts:
- $\blacktriangleright \pi^n_q = \pi_{q^n}$, that is the *n*-th power of the Frobenius, is the Frobenius over the *n*-th degree extension of \mathbb{F}_q
- ▶ π_{q^n} acts as the identity on the *m*-torsion \iff $E[m] \subseteq E(\mathbb{F}_{q^n})$
- \blacktriangleright Hence, the order of $\pi_q|_{E[m]} =$ the degree of the m-division field
- \triangleright With the help of the minimal polynomial of the Frobenius, it can calculate the order of the Frobenius

Division field of prime powers I

- In Let $r = m^k$ an odd prime power
- ▶ Assume that the m^{k-1} -torsion is \mathbb{F}_q -rational
- \blacktriangleright Let P, Q be the basis of the r-torsion (not nessecarily defined over \mathbb{F}_q)
- \triangleright We want to find $o(\pi_q|_{E[r]})$, which is the smallest j, such that $\pi_{\bm{q}}^{j}(P)=P$ and $\pi_{\bm{q}}^{j}(Q)=Q$

Division field of prime powers II

- ▶ Because the m^{k-1} -torsion is \mathbb{F}_q -rational, we know that $m \cdot \pi_q(P) = \pi_q(m \cdot P) = m \cdot P$
- \blacktriangleright This means that we can write $\pi_q(P) = P + P'$, where P' is an *m*-torsion point
- \blacktriangleright From this we can see, that

$$
\pi_q^{\mathsf{s}}(P) = \pi_q^{\mathsf{s}-1}(P+P') = \pi_q^{\mathsf{s}-1}(P) + P' = \cdots = P + \mathsf{s}\cdot P'
$$

- \blacktriangleright The *r*-division field degree is either 1 or *m*
- \triangleright We can decide between the two cases using the division polynomial
- \triangleright From this we get an algorithm for every odd composite number

Thank you for your attention!

A van Tuyl.

The field of N-torsion points of an elliptic curve over a finite field.

PhD thesis, M. Sc. Thesis, McMaster University, 1997.

Why the algorithm for primes cannot be extended to composites

- \blacktriangleright We can determine the $\pi_q|_{E[r]}$ just by the image of a basis of the m-torsion
- \blacktriangleright Hence we can view $\pi_q|_{E[m]}$ as an element of $GL_2(m)$
- \blacktriangleright If m is prime, there exists a Jordan normal form of $\pi_{\bm{q}}|_{E[m]}$, whose order is the same as the order of the Frobenius and it's order can be determined (mostly) by the minimal polynomial of the Frobenius
- \blacktriangleright If m is not prime, there is no Jordan normal form

Random torsion points are not uniformly random

- ▶ Let us denote by $E[m^{\infty}]$ the points, which are contained in an m^k -torsion for some k . (Formally: $E[m^{\infty}] = \{P \in E : \exists k \in \mathbb{Z}_+ m^k\}$
- ▶ If the structure of $E[m^{\infty}] \cap E(\mathbb{F}_q)$ is not "nice" (i.e. not $(\mathbb{Z}/r\mathbb{Z})^2$ for some $m|r$), then choosing a random point with order m via the method explained will not result in a uniform distribution.
- ▶ This can cause problems: for example, if $E[m^{\infty}] \cap E(\mathbb{F}_q) \simeq \mathbb{Z}/m^2\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z}$, then almost all of the "random" points of order m will come from a specific subgroup, not generating the m -torsion
- ▶ This can be fixed by finding a basis for $E[m^{\infty}] \cap E(\mathbb{F}_{q})$ instead of $E[m]$. This is a bit more complicated and involves a (in our case not too difficult) discrete logarithm, but overall not much more expensive than the previous algorithm

Random point and square root

- \triangleright Choosing a random point works by choosing a random x, then checking whether $x^3 + ax + b$ has a square root in \mathbb{F}_q
- ▶ The current algorithm implemented for square root finding in PARI is the Tonelli-Shanks algorithm, whose complexity depends on r^2 , with $q-1=2^r\cdot w$, with w odd
- ▶ There exists however an algorithm with better asymptotic complexity, which also presents a big improvement in practice [?]
- \blacktriangleright It's runtime does not depend on r

Random point and square root II

- ▶ Let $a \in \mathbb{F}_q$. Find $x \in \mathbb{F}_q$, such that $x^2 = a$ (assume that such an x exists)
- ► Let $\beta = \sum_{i=0}^{n-1} x^{p^i}$, the trace of x. The main idea is that we can calculate β^2 efficiently using only \emph{a}
- \blacktriangleright $\beta^2 \in \mathbb{F}_p$, where we can find β with an existing algorithm \blacktriangleright From β we can recover x