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Motivation
▶ Isogeny-based cryptography is a promising post-quantum

alternative
▶ Evaluation isogenies between supersingular elliptic curves

is efficient if kernel is rational
▶ When the kernel is not rational it is tricky to implement

computations efficiently
▶ PEARL-SCALLOP (Allombert, Biasse, Eriksen, Kutas,

Leonardi, Page, Scheidler, Tot Bagi): isogeny-based
group action where the unerlying class group can be
computed more efficiently as in CSIDH but is faster than
SCALLOP and SCALLOP-HD

▶ There is a precomputation step which requires the
evaluation of a single isogeny with non-rational kernel,
however, if implemented naively computations will not
finish in reasonable time



Introduction

▶ We will focus on elliptic curves of the form
E : y 2 = x3 + ax + b over finite fields, with characteristic
p ̸= 2, 3

▶ We know that for any p ∤ m the m-torsion group of E ,
E [m], has the structure: E [m] ≃ (Z/mZ)2

▶ For an elliptic curve E defined over Fq we will denote the
Frobenius endomorphism with πq : (x , y) 7→ (xq, yq)



A basic algorithm

Problem
Let E be an elliptic curve over Fq and assume that E [m] is
Fq-rational. Find a basis of E [m].

▶ The general strategy here is to find P ,Q m-torsion points
and check whether they generate the m-torsion (using the
Weil-pairing)

▶ If not, find a new Q

▶ Basically this reduces the problem of finding an element
of order m (and computing the order of an element)



Finding a point of order m

▶ Let us denote the order of the point P by o(P)

▶ Let P be a random (Fq-rational) point on ET
▶ Let Q = (#E (Fq)/m

2) · P
▶ If o(Q) = m or o(Q) = m2 done, else repeat
▶ Small improvement, instead of just multiplying by

#E (Fq)/m
2, we can do the following:

▶ Write #E (Fq) = c · d , where c is the largest divisor of
#E (Fq) relative prime to m

▶ Then R = (o(Q)/m) · Q, where Q = c · P , with P a
random point



Finding the order of a point

▶ Let Q be a point on E over Fq

▶ We want to find it’s order o(Q)

▶ We know, that #E (Fq) · Q = O =⇒ o(Q)|#E (Fq)

▶ Let #E (Fq) =
∏s

i=1 p
αi
i

▶ (#E (Fq) can be replaced by another multiple of the
order, if we know one, as we do above)

▶ Let Qi = (#E (Fq)/p
αi
i ) · Q, we know that o(Qi)|pαi

i

▶ Finding o(Qi): we need the smallest (positive) j , such
that pji · Qi = O

▶ o(Q) =
∏

o(Qi)

▶ Number of additions and doublings: O(s log(#E (Fq)))



A faster algorithm

▶ Let #E (Fq) =
∏s

i=1 p
αi
i as before

▶ If s = 1, find the order of Q the same way as before
▶ Else let R =

∏⌊s/2⌋
i=1 pαi

i ·Q, find the order of R recursively
▶ (We know that o(R)|

∏s
i=⌊s/2⌋+1 p

αi
i )

▶ Let T = o(R) · Q, find it’s order recursively
▶ (o(T )|

∏⌊s/2⌋
i=1 pαi

i )
▶ o(Q) = o(R) · o(T )

▶ Only O(log(s) log(#E (Fq))) additions and doublings
▶ Needs storing log(s) points, while the first algorithm

needed only 2 points



Division field I

▶ Now what if we don’t know that the m-torsion is rational?
▶ More generally, the m-division field is the smallest

extension of Fq over which the m torsion is rational.

Problem
Let E be an elliptic curve over Fq. Find the degree of the
m-division field.



Division field II

▶ One way to find it, is the division polynomial
▶ The division field is either the splitting field of the division

polynomial, or a 2 degree extension of it
▶ However deciding between the two cases is expensive
▶ There exists a faster algorithm when m is an odd prime

[vT97]



Division field and the Frobenius endomorphism

▶ The algorithm utilizes the following facts:
▶ πn

q = πqn , that is the n-th power of the Frobenius, is the
Frobenius over the n-th degree extension of Fq

▶ πqn acts as the identity on the m-torsion ⇐⇒
E [m] ⊆ E (Fqn)

▶ Hence, the order of πq|E [m] = the degree of the
m-division field

▶ With the help of the minimal polynomial of the
Frobenius, it can calculate the order of the Frobenius



Division field of prime powers I

▶ Let r = mk an odd prime power
▶ Assume that the mk−1-torsion is Fq-rational
▶ Let P ,Q be the basis of the r -torsion (not nessecarily

defined over Fq)
▶ We want to find o(πq|E [r ]), which is the smallest j , such

that πj
q(P) = P and πj

q(Q) = Q



Division field of prime powers II

▶ Because the mk−1-torsion is Fq-rational, we know that
m · πq(P) = πq(m · P) = m · P

▶ This means that we can write πq(P) = P + P ′, where P ′

is an m-torsion point
▶ From this we can see, that

πs
q(P) = πs−1

q (P + P ′) = πs−1
q (P) + P ′ = · · · = P + s · P ′

▶ The r -division field degree is either 1 or m
▶ We can decide between the two cases using the division

polynomial
▶ From this we get an algorithm for every odd composite

number
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Why the algorithm for primes cannot be extended
to composites

▶ We can determine the πq|E [r ] just by the image of a basis
of the m-torsion

▶ Hence we can view πq|E [m] as an element of GL2(m)

▶ If m is prime, there exists a Jordan normal form of
πq|E [m], whose order is the same as the order of the
Frobenius and it’s order can be determined (mostly) by
the minimal polynomial of the Frobenius

▶ If m is not prime, there is no Jordan normal form



Random torsion points are not uniformly random
▶ Let us denote by E [m∞] the points, which are contained

in an mk-torsion for some k . (Formally:
E [m∞] = {P ∈ E : ∃k ∈ Z+m

k}
▶ If the structure of E [m∞] ∩ E (Fq) is not "nice" (i.e. not

(Z/rZ)2 for some m|r), then choosing a random point
with order m via the method explained will not result in a
uniform distribution.

▶ This can cause problems: for example, if
E [m∞] ∩ E (Fq) ≃ Z/m2Z× Z/mZ, then almost all of
the "random" points of order m will come from a specific
subgroup, not generating the m-torsion

▶ This can be fixed by finding a basis for E [m∞] ∩ E (Fq)
instead of E [m]. This is a bit more complicated and
involves a (in our case not too difficult) discrete
logarithm, but overall not much more expensive than the
previous algorithm



Random point and square root

▶ Choosing a random point works by choosing a random x ,
then checking whether x3 + ax + b has a square root in Fq

▶ The current algorithm implemented for square root
finding in PARI is the Tonelli-Shanks algorithm, whose
complexity depends on r 2, with q − 1 = 2r · w , with w
odd

▶ There exists however an algorithm with better asymptotic
complexity, which also presents a big improvement in
practice [?]

▶ It’s runtime does not depend on r



Random point and square root II

▶ Let a ∈ Fq. Find x ∈ Fq, such that x2 = a (assume that
such an x exists)

▶ Let β =
∑n−1

i=0 xp
i , the trace of x . The main idea is that

we can calculate β2 efficiently using only a

▶ β2 ∈ Fp, where we can find β with an existing algorithm
▶ From β we can recover x


