Finding torsion bases on elliptic curves over Finite Fields

Márton Tot Bagi

7th January 2025

Motivation

- Isogeny-based cryptography is a promising post-quantum alternative
- Evaluation isogenies between supersingular elliptic curves is efficient if kernel is rational
- When the kernel is not rational it is tricky to implement computations efficiently
- PEARL-SCALLOP (Allombert, Biasse, Eriksen, Kutas, Leonardi, Page, Scheidler, Tot Bagi): isogeny-based group action where the unerlying class group can be computed more efficiently as in CSIDH but is faster than SCALLOP and SCALLOP-HD
- There is a precomputation step which requires the evaluation of a single isogeny with non-rational kernel, however, if implemented naively computations will not finish in reasonable time

Introduction

- We will focus on elliptic curves of the form
 E: y² = x³ + ax + b over finite fields, with characteristic
 p ≠ 2, 3
- We know that for any p ∤ m the m-torsion group of E, E[m], has the structure: E[m] ≃ (ℤ/mℤ)²
- For an elliptic curve *E* defined over \mathbb{F}_q we will denote the Frobenius endomorphism with $\pi_q : (x, y) \mapsto (x^q, y^q)$

Problem

Let *E* be an elliptic curve over \mathbb{F}_q and assume that *E*[*m*] is \mathbb{F}_q -rational. Find a basis of *E*[*m*].

- The general strategy here is to find P, Q m-torsion points and check whether they generate the m-torsion (using the Weil-pairing)
- ▶ If not, find a new Q
- Basically this reduces the problem of finding an element of order *m* (and computing the order of an element)

Finding a point of order m

- Let us denote the order of the point P by o(P)
- Let P be a random (\mathbb{F}_q -rational) point on ET

• Let
$$Q = (\#E(\mathbb{F}_q)/m^2) \cdot P$$

• If
$$o(Q) = m$$
 or $o(Q) = m^2$ done, else repeat

- Small improvement, instead of just multiplying by #E(F_q)/m², we can do the following:
- Write #E(𝔽_q) = c ⋅ d, where c is the largest divisor of #E(𝔽_q) relative prime to m
- ▶ Then $R = (o(Q)/m) \cdot Q$, where $Q = c \cdot P$, with P a random point

Finding the order of a point

- Let Q be a point on E over \mathbb{F}_q
- We want to find it's order o(Q)
- We know, that $\#E(\mathbb{F}_q) \cdot Q = \mathcal{O} \implies o(Q) | \#E(\mathbb{F}_q)$

• Let
$$\#E(\mathbb{F}_q) = \prod_{i=1}^{s} p_i^{\alpha_i}$$

- (#E(𝔽_q) can be replaced by another multiple of the order, if we know one, as we do above)
- ▶ Let $Q_i = (\#E(\mathbb{F}_q)/p_i^{\alpha_i}) \cdot Q$, we know that $o(Q_i)|p_i^{\alpha_i}$
- ► Finding o(Q_i): we need the smallest (positive) j, such that p^j_i · Q_i = O
- ► $o(Q) = \prod o(Q_i)$
- Number of additions and doublings: $O(s \log(\#E(\mathbb{F}_q)))$

A faster algorithm

• Let
$$\#E(\mathbb{F}_q) = \prod_{i=1}^s p_i^{\alpha_i}$$
 as before

- If s = 1, find the order of Q the same way as before
- Else let $R = \prod_{i=1}^{\lfloor s/2 \rfloor} p_i^{\alpha_i} \cdot Q$, find the order of R recursively
- (We know that $o(R) | \prod_{i=\lfloor s/2 \rfloor + 1}^{s} p_i^{\alpha_i}$)
- Let $T = o(R) \cdot Q$, find it's order recursively
- $(o(T)|\prod_{i=1}^{\lfloor s/2 \rfloor} p_i^{\alpha_i})$
- $\blacktriangleright o(Q) = o(R) \cdot o(T)$
- Only $O(\log(s) \log(\#E(\mathbb{F}_q)))$ additions and doublings
- Needs storing log(s) points, while the first algorithm needed only 2 points

Division field I

- Now what if we don't know that the *m*-torsion is rational?
- More generally, the *m*-division field is the smallest extension of \mathbb{F}_q over which the *m* torsion is rational.

Problem

Let E be an elliptic curve over \mathbb{F}_q . Find the degree of the *m*-division field.

- One way to find it, is the division polynomial
- The division field is either the splitting field of the division polynomial, or a 2 degree extension of it
- However deciding between the two cases is expensive
- There exists a faster algorithm when m is an odd prime [vT97]

Division field and the Frobenius endomorphism

- ► The algorithm utilizes the following facts:
- ▶ $\pi_q^n = \pi_{q^n}$, that is the *n*-th power of the Frobenius, is the Frobenius over the *n*-th degree extension of \mathbb{F}_q
- π_{q^n} acts as the identity on the *m*-torsion $\iff E[m] \subseteq E(\mathbb{F}_{q^n})$
- ► Hence, the order of π_q|_{E[m]} = the degree of the m-division field
- With the help of the minimal polynomial of the Frobenius, it can calculate the order of the Frobenius

Division field of prime powers I

- Let $r = m^k$ an odd prime power
- Assume that the m^{k-1} -torsion is \mathbb{F}_q -rational
- Let P, Q be the basis of the r-torsion (not nessecarily defined over 𝔽_q)
- We want to find $o(\pi_q|_{E[r]})$, which is the smallest j, such that $\pi_q^j(P) = P$ and $\pi_q^j(Q) = Q$

Division field of prime powers II

- Because the m^{k-1} -torsion is \mathbb{F}_q -rational, we know that $m \cdot \pi_q(P) = \pi_q(m \cdot P) = m \cdot P$
- This means that we can write $\pi_q(P) = P + P'$, where P' is an *m*-torsion point
- From this we can see, that

$$\pi_q^s(P) = \pi_q^{s-1}(P+P') = \pi_q^{s-1}(P) + P' = \dots = P + s \cdot P'$$

- ▶ The *r*-division field degree is either 1 or *m*
- We can decide between the two cases using the division polynomial
- From this we get an algorithm for every odd composite number

Thank you for your attention!

A van Tuyl.

The field of N-torsion points of an elliptic curve over a finite field.

PhD thesis, M. Sc. Thesis, McMaster University, 1997.

Why the algorithm for primes cannot be extended to composites

- We can determine the $\pi_q|_{E[r]}$ just by the image of a basis of the *m*-torsion
- Hence we can view $\pi_q|_{E[m]}$ as an element of $GL_2(m)$
- ► If *m* is prime, there exists a Jordan normal form of π_q|_{E[m]}, whose order is the same as the order of the Frobenius and it's order can be determined (mostly) by the minimal polynomial of the Frobenius
- ▶ If *m* is not prime, there is no Jordan normal form

Random torsion points are not uniformly random

- Let us denote by E[m[∞]] the points, which are contained in an m^k-torsion for some k. (Formally: E[m[∞]] = {P ∈ E : ∃k ∈ Z₊m^k}
- If the structure of E[m[∞]] ∩ E(F_q) is not "nice" (i.e. not (Z/rZ)² for some m|r), then choosing a random point with order m via the method explained will not result in a uniform distribution.
- This can cause problems: for example, if E[m[∞]] ∩ E(𝔽_q) ≃ ℤ/m²ℤ × ℤ/mℤ, then almost all of the "random" points of order *m* will come from a specific subgroup, not generating the *m*-torsion
- This can be fixed by finding a basis for E[m[∞]] ∩ E(𝔽_q) instead of E[m]. This is a bit more complicated and involves a (in our case not too difficult) discrete logarithm, but overall not much more expensive than the previous algorithm

Random point and square root

- Choosing a random point works by choosing a random x, then checking whether $x^3 + ax + b$ has a square root in \mathbb{F}_q
- ► The current algorithm implemented for square root finding in PARI is the Tonelli-Shanks algorithm, whose complexity depends on r², with q - 1 = 2^r · w, with w odd
- There exists however an algorithm with better asymptotic complexity, which also presents a big improvement in practice [?]
- It's runtime does not depend on r

Random point and square root II

- ▶ Let $a \in \mathbb{F}_q$. Find $x \in \mathbb{F}_q$, such that $x^2 = a$ (assume that such an x exists)
- Let $\beta = \sum_{i=0}^{n-1} x^{p^i}$, the trace of x. The main idea is that we can calculate β^2 efficiently using only a
- β² ∈ 𝔽_p, where we can find β with an existing algorithm
 From β we can recover x