
Algebraic curves in PARI/GP,

with an application to

integrating algebraic functions

Nicolas Mascot

Trinity College Dublin

Atelier PARI/GP 2025
10 January 2025

Nicolas Mascot Algebraic curves



A package for
plane algebraic curves

Nicolas Mascot Algebraic curves



Plane algebraic curves in PARI/GP

Package to handle plane algebraic curves C : F (x , y) = 0.

Actually computes the desingularisation C̃ → C of (the
projective closure of) C .

CC̃

Main idea: represent “difficult” points of C̃ by formal
parametrisations x(t), y(t).

Supported ground fields:
Finite fields (but cannot handle some small
characteristics),
Fields of characteristic 0 (as long as PARI can factor
polynomials over them...)
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Example: Creation, divisors, Riemann-Roch

C=crvinit(x^11+y^7-2*x*y^5,t,a);

crvprint(C)

P=[1,1]

D=[P,-2;2,6;1,1]

crvdivprint(C,D);

L=crvRR(C,D)

crvfndiv(C,L[1],1);

crvfndiv(C,L[2],1);
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Example: Rational curves

f=x^5+y^7+Mod(b,b^2-2)*x^3*y^3;

C=crvinit(f,t,a);

crvprint(C)

[T,param]=crvrat(C,1,3)

lift(param)

substvec(f,[x,y],param)

lift(T)

crvfndiv(C,T,1);

crvrat(C)
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Example: Hyperelliptic / elliptic curves

C=crvinit(x^5+y^6+x^3*y,t,a);

crvprint(C)

crvishyperell(C)

crvhyperell(C)

C1=crvinit(x^5+y^7+x^3*y^4,t,a);

crvprint(C1)

crvell(C1,[1,-1,0])
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Other functionalities

Over finite fields:
Point counting, Zeta functions, group structure and word
problem in Pic(C ) (analogs of bnfinit and bnfisprincipal).

Over number fields:
Division polynomials, Galois representations.
Bounding torsion of Pic(C ), checking if divisors are
torsion in Pic(C ).
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Symbolic integration of
algebraic functions
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Integration vs. differentiation
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(Non-)elementary integrals

Complicated integrals often cannot be solved, e.g.∫
e−x2 dx or

∫
dx√
x3 + 1

.

But then what about

∫
dx

x
= log x?
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Differential algebra

A differential field is a set of functions which is closed under
+,−,×,÷,′.
Example: Q(x).

Let F be a differential field, and let y be a function.

y is logarithmic over F if y ′ = f ′/f for some f ∈ F .
y is exponential over F if y ′/y = f ′ for some f ∈ F .

We then say that F(y) is a logarithmic / exponential
extension of F .

An extension of F is elementary if it can be obtained from F
as a finite succession of logarithmic / exponential / algebraic
extensions.

An integral
∫
f is elementary over F if there exists an

elementary extension of F which contains a function F such
that F ′ = f .

Example ∫
dx

x2 + 1
= arctan x =

1

2
√
−1

log

(
1 +

√
−1x

1−
√
−1x

)
is elementary over Q(x).

More generally, f (x) ∈ Q(x) =⇒
∫

f (x) dx is elementary.

OTOH,

∫
e−x2 dx is not elementary over C(x).
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Integrating algebraic functions

Let f (x , y) be an algebraic function.
This means f ∈ F where F = Q(C ) = Q(x)[y ]/

(
F (x , y)

)
is

the function field of a curve C : F (x , y) = 0.

Is

∫
f (x , y) dx elementary over F? (⇔ over Q(x)?)

Usually not!

Example ∫
x dx√

x4 + 10x2 − 96x −m

is not elementary for most values of m ∈ Q... but∫
x dx√

x4 + 10x2 − 96x − 71
is elementary!
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Liouville’s criterion

Definition

Let F be a differential field. A Liouville sum over F is an
expression of the form

dg0 +
m∑
i=1

ci
dgi
gi

where g0, g1, · · · , gm ∈ F and c1, · · · , cm are constants.

Theorem (Liouville)

Let F be a differential field of characteristic 0, and let f ∈ F .∫
f is elementary over F ⇐⇒ f dx is a Liouville sum over F .
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Minimal Liouville sums

Let dg0 +
m∑
i=1

ci
dgi
gi

be a Liouville sum over F .

Pick a Z-basis e1, · · · , ed of the Z-span of c1, · · · , cm

⇝ ci =
d∑

j=1

λi ,jej , λi ,j ∈ Z.

Then

m∑
i=1

ci
dgi
gi

=
d∑

j=1

ej
dGj

Gj
, where Gj =

m∏
i=1

g
λi,j

i ∈ F .

⇝ WLOG, we will assume m minimal, meaning that
the ci are Q-linearly independent.
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Controlling poles

Let F = Q(C ) function field of C : F (x , y) = 0, let g ∈ F ,
and let P ∈ C .

If g has a pole of order n ⩾ 1 at P , then dg has a pole of
order n + 1 ⩾ 2 at P .

If ordP(g) = n ̸= 0, then
dg

g
has a simple pole at P with

residue n.

Consequence: Let ω = f (x) dx be a meromorphic differential
on a curve C .

If ω = dg0 +
m∑
i=1

ci
dgi
gi

is a Liouville sum,

If all the poles of ω are simple, then g0 has no poles, so
dg0 = 0.
Take m minimal; then the ci form a Q-basis of the

Q-span of the residues of
m∑
i=1

ci
dgi
gi

.

In particular, if ω has no poles, then ω = 0.

Example∫
dx√
x3 + 1

is not elementary, because ω =
dx

y
has no poles

on C : y 2 = x3 + 1.
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Reduction to simple poles

Let f ∈ F = Q(C ), and let

(f dx)∞ =
m∑

k=1

nkPk

be the divisor of poles of f dx .

f dx=dg0+
m∑
i=1

ci
dgi
gi

⇒ g0 ∈ L(D), where D=
m∑

k=1

(nk − 1)Pk .

⇝ Look for g0 ∈ L(D) such that f dx − dg0 only has simple
poles.

If none exists,
∫
f dx is not elementary.

Otherwise, dg0 is unique, and

∫
f dx = g0 +

∫
ω1

where ω1 = f dx − dg0 only has simple poles.
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Torsion divisors

Let ω1 have simple poles P1, · · · ,Pm ∈ C with residues
ρ1, · · · , ρm ∈ Q.
Let K = Q(ρ1, · · · , ρm) ⊇ V = Q-span of ρ1, · · · , ρm.
Let e1, · · · , ed be a Q-basis of V such that ρk =

∑d
j=1 rk,jej

for some rk,j ∈ Z. Let Dj =
∑m

k=1 rk,jPk ∈ Div0(CK ).

Claim:
∫
ω1 elementary =⇒ Dj is torsion in Pic0(CK ) for all j .

If some Dj is not torsion, then
∫
ω1 is not elementary.

Otherwise find (gj) = qjDj for gj ∈ K (C ), qj ∈ N.∫
ω1 =

d∑
j=1

ej
qj

log(gj) +

∫
ω0

is elementary ⇐⇒ ω0 = 0.

Remark

By Mordell-Weil, Pic0(CK ) ≃ T × Zr .

f complicated =⇒ K big =⇒ r big.
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Claim:
∫
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Indeed, suppose ω1 =
n∑

i=1

ci
dgi
gi

.

WLOG d = n and the ci form another Q-basis of V , say

ej =
d∑

i=1

pi ,j
q
ci for some pi ,j , q ∈ Z.

As
d∑

j=1

rk,jej = ρk =
d∑

i=1

ci ordPk
(gi),

d∑
j=1

ejDj =
d∑

j=1

ej

m∑
k=1

rk,jPk =
m∑

k=1

ρkPk

=
m∑

k=1

d∑
i=1

ci ordPk
(gi) =

d∑
i=1

ci(gi) =
d∑

j=1

ej

d∑
i=1

pi ,j
q
(gi).
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ej
qj
qj rk,j =ρk=ResPk

ω1,
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A 31-year-old example
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A 31-year-old example

Consider

∫
x dx√

x4 + 10x2 − 96x − 71
.

We introduce C : y 2 = x4 + 10x2 − 96x − 71, and ω =
x dx

y
.

C has two points at infinity, ∞+ and ∞−, and ω has poles at
∞+ and ∞− only, both simple and with residue −1 and +1.

The integral won’t be elementary unless the divisor
−∞+ +∞− is torsion in Pic0(C ).
Luckily, it is 8-torsion, as
g = x8 + (y + 20)x6 − 128x5 + (15y + 54)x4 − (80y + 1408)x3 + (27y + 3124)x2 − 528yx + 781y + 10001

has divisor (g) = −8∞+ + 8∞−.
And even more luckily,∫

x dx√
x4 + 10x2 − 96x − 71

=
1

8
log(g).
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Another example

∫ 3
√
x8 − 6

x
dx

=
3

8
3
√
x8 − 6

+ 1
16
a2 log

(
(a4−4a)x8+

(
48 3√x8−6

2
+(3a5−12a2) 3√x8−6+(−6a4+72a)

)
x8

)
+
(

1
128

a5 + 1
32
a2
)
log

(
8ax8+

(
48 3√x8−6

2
+(−3a5−12a2) 3√x8−6+(−6a4−72a)

)
x8

)
where a6 + 48 = 0.

This involves spotting that some divisors on the genus 7 curve
y 3 = x8 − 6 defined over Q( 6

√
−48) are 8-torsion.
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Testing for torsion

Let C curve over a number field K , and T = Pic0(C )tors.
If p is a prime of K above p ∈ N such that C has good
reduction at p, then
Reduction mod p is injective on the prime-to-p part of T .

Let C/Fq have genus g . Then

Z (C/Fq, t) = exp
+∞∑
d=1

#C (Fqd )

d
td =

L(t)

(1− t)(1− qt)

where L(t) ∈ Z[t] determined by #C (Fqd ) for d ⩽ g .

Furthermore, #Pic0(C ) = L(t = 1).

⇝ Can find m ∈ N: #T | m with p1, p2 such that p1 ̸= p2.

Let D ∈ Div0(C ). If m is small, we compute L(dD) for d | m.

If m is large, we check the order of D in Pic0(C pi ) by using
Makdisi models.

C=crvinit(x^9-y^5+2*x^4*y^2,t,a);

crvprint(C);

crvboundtorsion(C)

crvdivistorsion(C,[2,1;3,-1])

crvfndiv(C,%[2],1);

C=crvinit(y^2-x^6-2*x^5+3*x^4-8*x^3+8*x-4,t,a);

crvprint(C);

crvboundtorsion(C)

crvdivistorsion(C,[1,1;2,-1])
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crvdivistorsion(C,[1,1;2,-1])
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An example with 91-torsion

Let f (x) = x8 − 2x7 + 7x6 − 6x5 − x4 + 10x3 − 6x2 + 1.

Then

∫
2x3 + 22x2 + 47x − 91

x
√
f (x)

dx

= log
(
A(x)

√
f (x) + B(x)

)
− 91 log (x), where A(x) =

2541597392873x87 − 50843222146612x86 + 503225277935158x85 − 3200657096642275x84 + 14214462728604033x83 − 44579238719215767x82+
90673772383763063x81 − 66130213758033706x80 − 273013962842426459x79 + 1133193576266076957x78 − 1828008617851129838x77 − 132504020527990792x76+
7070565814431437671x75 − 13820814098546580816x74 + 3057501416590971447x73 + 35452028969548856825x72 − 62530951562265159025x71−
2362196896005727208x70 + 149015656444634579168x69 − 167038416607981325445x68 − 122694173188447754583x67 + 429854211757535766713x66−
169097783352406328449x65 − 555714282810473603258x64 + 674362321557037184728x63 + 312058060938121586273x62 − 1092460331914324201172x61+
270596774739557247583x60 + 1120954182135661195118x59 − 880939983432258469781x58 − 730812820491441338716x57 + 1190924815315016075703x56+
170419784195319443610x55 − 1106709092024065627293x54 + 266886129712577113986x53 + 775632662462383198827x52 − 447168828060446122800x51−
414122686014061544643x50 + 415264647807791401896x49 + 156832329655217616311x48 − 289726675815819589903x47 − 26171689103841804545x46+
164791091923265170230x45 − 17516989634058353270x44 − 79259644357109747485x43 + 20976219234985836422x42 + 32932548858101510407x41−
13416187404910977913x40 − 12006472749426198850x39 + 6554509942630071562x38 + 3896330393014647662x37 − 2667133429777231104x36−
1144094547215340652x35 + 936921199572723790x34 + 310346663095096540x33 − 289283382597149122x32 − 79724891819739155x31 + 79204013977345574x30+
19845813628882518x29 − 19273182417066081x28 − 4834954816358415x27 + 4150468193299659x26 + 1140609211647771x25 − 781155386478148x24−
253519603406578x23 + 125209807355899x22 + 51311674993204x21 − 16187503455853x20 − 9131100534854x19 + 1456557718427x18 + 1374884510502x17−
30584589801x16 − 166171016046x15 − 18181479207x14 + 14582435700x13 + 3910302361x12 − 670862648x11 − 432933295x10 − 27794898x9 + 24199247x8+
6635509x7 + 89529x6 − 311768x5 − 83944x4 − 11733x3 − 982x2 − 47x − 1

and B(x) ∼
horror

A(x).

This is related to a rational 91-torsion point in Pic0
(
y 2 − f (x)

)
.

(Curve found by Steffen Müller and Berno Reitsma)
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Final examples

Let −x5 + yx + y 4 = 0 (genus 5).

Then

∫
x3

y
dx =

4y 3

11x
+

1

11
log

(
y 3

x

)
.

This involves spotting that some divisor is 11-torsion.

Our implementation takes 1 second; FriCAS takes 18 hours!

Same thing with∫
x2 + 4y 3

x3
dx =

16y 3

13x2
+

1

13
log

(
−x15 + 3yx10 − 3y 2x5 + y 3

x41

)
where −x7 + yx2 + y 4 = 0 (genus 6, 13-torsion).
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Conclusion
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Questions?

Thank you!
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