Algebraic curves in PARI/GP, with an application to integrating algebraic functions

Nicolas Mascot

Trinity College Dublin

Atelier PARI/GP 2025 10 January 2025

A package for plane algebraic curves

Plane algebraic curves in PARI/GP

Package to handle plane algebraic curves C : F(x, y) = 0. Actually computes the <u>desingularisation</u> $\widetilde{C} \to C$ of (the projective closure of) C.

Main idea: represent "difficult" points of \widetilde{C} by formal parametrisations x(t), y(t).

Plane algebraic curves in PARI/GP

Package to handle plane algebraic curves C : F(x, y) = 0. Actually computes the <u>desingularisation</u> $\widetilde{C} \to C$ of (the projective closure of) C.

Main idea: represent "difficult" points of \tilde{C} by formal parametrisations x(t), y(t).

Supported ground fields:

- Finite fields (but cannot handle some small characteristics),
- Fields of characteristic 0 (as long as PARI can factor polynomials over them...)

Example: Creation, divisors, Riemann-Roch

```
C=crvinit(x^11+y^7-2*x*y^5,t,a);
crvprint(C)
```

```
P=[1,1]
D=[P,-2;2,6;1,1]
crvdivprint(C,D);
```

```
L=crvRR(C,D)
crvfndiv(C,L[1],1);
crvfndiv(C,L[2],1);
```

Example: Rational curves

```
f=x^5+y^7+Mod(b,b^2-2)*x^3*y^3;
C=crvinit(f,t,a);
crvprint(C)
```

```
[T,param]=crvrat(C,1,3)
```

```
lift(param)
substvec(f,[x,y],param)
```

```
lift(T)
crvfndiv(C,T,1);
```

crvrat(C)

```
C=crvinit(x^5+y^6+x^3*y,t,a);
crvprint(C)
crvishyperell(C)
crvhyperell(C)
```

```
C1=crvinit(x<sup>5</sup>+y<sup>7</sup>+x<sup>3</sup>*y<sup>4</sup>,t,a);
crvprint(C1)
crvell(C1,[1,-1,0])
```

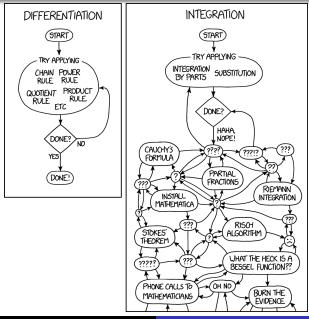
• Over finite fields:

Point counting, Zeta functions, group structure and word problem in Pic(C) (analogs of bnfinit and bnfisprincipal).

 Over number fields: Division polynomials, Galois representations. Bounding torsion of Pic(C), checking if divisors are torsion in Pic(C).

Symbolic integration of algebraic functions

Integration vs. differentiation



Nicolas Mascot Algebraic curves

Complicated integrals often cannot be solved, e.g.

$$\int e^{-x^2} \, \mathrm{d}x \quad \text{ or } \quad \int \frac{\mathrm{d}x}{\sqrt{x^3+1}}.$$
 But then what about $\int \frac{\mathrm{d}x}{x} = \log x ?$

A differential field is a set of functions which is closed under $+, -, \times, \div, '$. Example: $\mathbb{Q}(x)$.

Let \mathcal{F} be a differential field, and let y be a function.

A differential field is a set of functions which is closed under $+, -, \times, \div, '$. Example: $\mathbb{Q}(x)$.

Let \mathcal{F} be a differential field, and let y be a function.

• y is logarithmic over \mathcal{F} if y' = f'/f for some $f \in \mathcal{F}$.

• y is exponential over \mathcal{F} if y'/y = f' for some $f \in \mathcal{F}$. We then say that $\mathcal{F}(y)$ is a logarithmic / exponential extension of \mathcal{F} .

A differential field is a set of functions which is closed under $+, -, \times, \div, '$. Example: $\mathbb{Q}(x)$.

Let \mathcal{F} be a differential field, and let y be a function.

• y is logarithmic over \mathcal{F} if y' = f'/f for some $f \in \mathcal{F}$.

• y is exponential over \mathcal{F} if y'/y = f' for some $f \in \mathcal{F}$. We then say that $\mathcal{F}(y)$ is a logarithmic / exponential extension of \mathcal{F} .

An extension of \mathcal{F} is <u>elementary</u> if it can be obtained from \mathcal{F} as a <u>finite</u> succession of logarithmic / exponential / algebraic extensions.

An integral $\int f$ is <u>elementary</u> over \mathcal{F} if there exists an elementary extension of \mathcal{F} which contains a function F such that F' = f.

An extension of \mathcal{F} is elementary if it can be obtained from \mathcal{F} as a finite succession of logarithmic / exponential / algebraic extensions.

An integral $\int f$ is <u>elementary</u> over \mathcal{F} if there exists an elementary extension of \mathcal{F} which contains a function F such that F' = f.

Example

۲

$$\int \frac{dx}{x^{2} + 1} = \arctan x = \frac{1}{2\sqrt{-1}} \log \left(\frac{1 + \sqrt{-1}x}{1 - \sqrt{-1}x} \right)$$

is elementary over $\mathbb{Q}(x)$.

• More generally, $f(x) \in \mathbb{Q}(x) \Longrightarrow \int f(x) dx$ is elementary.

• OTOH,
$$\int e^{-x^2} dx$$
 is not elementary over $\mathbb{C}(x)$.

Integrating algebraic functions

Let f(x, y) be an algebraic function. This means $f \in \mathcal{F}$ where $\mathcal{F} = \mathbb{Q}(C) = \mathbb{Q}(x)[y]/(F(x, y))$ is the function field of a curve C : F(x, y) = 0.

Is $\int f(x, y) dx$ elementary over \mathcal{F} ? (\Leftrightarrow over $\mathbb{Q}(x)$?)

Integrating algebraic functions

Let f(x, y) be an algebraic function. This means $f \in \mathcal{F}$ where $\mathcal{F} = \mathbb{Q}(C) = \mathbb{Q}(x)[y]/(F(x, y))$ is the function field of a curve C : F(x, y) = 0.

Is
$$\int f(x,y) dx$$
 elementary over \mathcal{F} ? (\Leftrightarrow over $\mathbb{Q}(x)$?)

Usually not!

Example $\int \frac{x \, dx}{\sqrt{x^4 + 10x^2 - 96x - m}}$ is not elementary for most values of $m \in \mathbb{Q}$... but $\int \frac{x \, dx}{\sqrt{x^4 + 10x^2 - 96x - 71}}$ is elementary!

Definition

Let \mathcal{F} be a differential field. A Liouville sum over \mathcal{F} is an expression of the form $\int_{m}^{m} dg_{i}$

$$dg_0 + \sum_{i=1} c_i rac{\mathrm{d}g_i}{g_i}$$

where $g_0, g_1, \cdots, g_m \in \mathcal{F}$ and c_1, \cdots, c_m are constants.

Theorem (Liouville)

Let \mathcal{F} be a differential field of characteristic 0, and let $f \in \mathcal{F}$. $\int f$ is elementary over $\mathcal{F} \iff f \, dx$ is a Liouville sum over \mathcal{F} .

Minimal Liouville sums

Let
$$dg_0 + \sum_{i=1}^m c_i \frac{dg_i}{g_i}$$
 be a Liouville sum over \mathcal{F} .

Pick a \mathbb{Z} -basis e_1, \cdots, e_d of the \mathbb{Z} -span of c_1, \cdots, c_m

$$\rightsquigarrow c_i = \sum_{j=1}^d \lambda_{i,j} e_j, \quad \lambda_{i,j} \in \mathbb{Z}.$$

Then

$$\sum_{i=1}^m c_i \frac{\mathrm{d}g_i}{g_i} = \sum_{j=1}^d e_j \frac{\mathrm{d}G_j}{G_j}, \quad \text{where } G_j = \prod_{i=1}^m g_i^{\lambda_{i,j}} \in \mathcal{F}.$$

 \rightsquigarrow WLOG, we will assume *m* minimal, meaning that the c_i are \mathbb{Q} -linearly independent.

Controlling poles

Let $\mathcal{F} = \mathbb{Q}(C)$ function field of C : F(x, y) = 0, let $g \in \mathcal{F}$, and let $P \in C$.

- If g has a pole of order n ≥ 1 at P, then dg has a pole of order n+1 ≥ 2 at P.
- If $\operatorname{ord}_P(g) = n \neq 0$, then $\frac{dg}{g}$ has a simple pole at P with residue n.

Controlling poles

- If g has a pole of order n ≥ 1 at P, then dg has a pole of order n+1 ≥ 2 at P.
- If $\operatorname{ord}_P(g) = n \neq 0$, then $\frac{dg}{g}$ has a simple pole at P with residue n.

Consequence: Let $\omega = f(x) dx$ be a meromorphic differential on a curve *C*.

If
$$\omega = dg_0 + \sum_{i=1}^{m} c_i \frac{dg_i}{g_i}$$
 is a Liouville sum,

- If all the poles of ω are simple, then g_0 has no poles, so $dg_0 = 0$.
- Take *m* minimal; then the c_i form a \mathbb{Q} -basis of the \mathbb{Q} -span of the residues of $\sum_{i=1}^m c_i \frac{\mathrm{d}g_i}{g_i}$.

• In particular, if ω has no poles, then $\omega = 0$.

Controlling poles

Consequence: Let $\omega = f(x) dx$ be a meromorphic differential on a curve *C*.

If
$$\omega = dg_0 + \sum_{i=1}^m c_i \frac{dg_i}{g_i}$$
 is a Liouville sum,

- If all the poles of ω are simple, then g_0 has no poles, so $dg_0 = 0$.
- Take *m* minimal; then the c_i form a \mathbb{Q} -basis of the \mathbb{Q} -span of the residues of $\sum_{i=1}^m c_i \frac{\mathrm{d}g_i}{g_i}$.
- In particular, if ω has no poles, then $\omega = 0$.

Example

$$\int \frac{dx}{\sqrt{x^3+1}}$$
 is not elementary, because $\omega = \frac{dx}{y}$ has no poles on $C: y^2 = x^3 + 1$.

Reduction to simple poles

Let
$$f \in \mathcal{F} = \mathbb{Q}(C)$$
, and let $(f \, \mathsf{d} x)_{\infty} = \sum_{k=1}^{m} n_k P_k$

be the divisor of poles of $f \, dx$.

$$f dx = dg_0 + \sum_{i=1}^m c_i \frac{dg_i}{g_i} \Rightarrow g_0 \in \mathcal{L}(D)$$
, where $D = \sum_{k=1}^m (n_k - 1)P_k$.
 \rightsquigarrow Look for $g_0 \in \mathcal{L}(D)$ such that $f dx - dg_0$ only has simple poles.

Reduction to simple poles

Let
$$f \in \mathcal{F} = \mathbb{Q}(C)$$
, and let $(f \, dx)_{\infty} = \sum_{k=1}^{m} n_k P_k$

be the divisor of poles of $f \, dx$.

$$f dx = dg_0 + \sum_{i=1}^m c_i \frac{dg_i}{g_i} \Rightarrow g_0 \in \mathcal{L}(D)$$
, where $D = \sum_{k=1}^m (n_k - 1)P_k$.
 \rightsquigarrow Look for $g_0 \in \mathcal{L}(D)$ such that $f dx - dg_0$ only has simple poles.

If none exists, $\int f \, dx$ is not elementary. Otherwise, dg_0 is unique, and $\int f \, dx = g_0 + \int \omega_1$ where $\omega_1 = f \, dx - dg_0$ only has simple poles.

Let ω_1 have simple poles $P_1, \dots, P_m \in C$ with residues $\rho_1, \dots, \rho_m \in \overline{\mathbb{Q}}$. Let $K = \mathbb{Q}(\rho_1, \dots, \rho_m) \supseteq V = \mathbb{Q}$ -span of ρ_1, \dots, ρ_m . Let e_1, \dots, e_d be a \mathbb{Q} -basis of V such that $\rho_k = \sum_{j=1}^d r_{k,j} e_j$ for some $r_{k,j} \in \mathbb{Z}$. Let $D_j = \sum_{k=1}^m r_{k,j} P_k \in \text{Div}^0(C_K)$. **Claim:** $\int \omega_1$ elementary $\Longrightarrow D_i$ is torsion in $\text{Pic}^0(C_K)$ for all j.

Claim: $\int \omega_1$ elementary $\Longrightarrow D_j$ is torsion in $\operatorname{Pic}^0(C_K)$ for all j. Indeed, suppose $\omega_1 = \sum_{i=1}^n c_i \frac{\mathrm{d}g_i}{g_i}$.

WLOG d = n and the c_i form another \mathbb{Q} -basis of V, say $e_j = \sum_{i=1}^{d} rac{p_{i,j}}{q} c_i$ for some $p_{i,j}, q \in \mathbb{Z}$. As $\sum_{i=1}^{d} r_{k,j} e_j = \rho_k = \sum_{i=1}^{d} c_i \operatorname{ord}_{P_k}(g_i),$ $\sum^{d} e_j D_j = \sum^{d} e_j \sum^{m} r_{k,j} P_k = \sum^{m} \rho_k P_k$ $=\sum_{k=1}^{m}\sum_{i=1}^{d}c_{i}\operatorname{ord}_{P_{k}}(g_{i})=\sum_{i=1}^{d}c_{i}(g_{i})=\sum_{i=1}^{d}e_{j}\sum_{i=1}^{d}\frac{p_{i,j}}{q}(g_{i}).$

Nicolas Mascot

Algebraic curves

Let ω_1 have simple poles $P_1, \dots, P_m \in C$ with residues $\rho_1, \cdots, \rho_m \in \mathbb{O}.$ Let $K = \mathbb{Q}(\rho_1, \dots, \rho_m) \supseteq V = \mathbb{Q}$ -span of ρ_1, \dots, ρ_m . Let e_1, \dots, e_d be a \mathbb{Q} -basis of V such that $\rho_k = \sum_{i=1}^d r_{k,i} e_i$ for some $r_{k,i} \in \mathbb{Z}$. Let $D_i = \sum_{k=1}^m r_{k,i} P_k \in \text{Div}^0(C_K)$. If some D_i is not torsion, then $\int \omega_1$ is not elementary. Otherwise find $(g_j) = q_j D_j$ for $g_j \in K(C), q_j \in \mathbb{N}$. Then $\eta = \sum_{i=1}^{d} \frac{e_j}{q_j} \frac{\mathrm{d}g_j}{g_j} \text{ satisfies } \operatorname{Res}_{P_k} \eta = \sum_{i=1}^{d} \frac{e_j}{q_j} q_j r_{k,j} = \rho_k = \operatorname{Res}_{P_k} \omega_1,$

so $\omega_0=\omega_1-\eta$ has no poles, and

$$\int \omega_1 = \sum_{j=1}^d rac{e_j}{q_j} \log(g_j) + \int \omega_0$$
 is elementary $\iff \omega_0 = 0.$

Nicolas Mascot Algebraic curves

If some D_j is not torsion, then $\int \omega_1$ is not elementary.

Otherwise find
$$(g_j) = q_j D_j$$
 for $g_j \in K(C), q_j \in \mathbb{N}$.
$$\int \omega_1 = \sum_{j=1}^d \frac{e_j}{q_j} \log(g_j) + \int \omega_0$$

is elementary $\iff \omega_0 = 0$.

Remark

By Mordell-Weil, $\operatorname{Pic}^{0}(C_{\mathcal{K}}) \simeq T \times \mathbb{Z}^{r}$.

 $f \text{ complicated} \Longrightarrow K \text{ big} \Longrightarrow r \text{ big.}$

A 31-year-old example

🗉 ដ Groups	Q Conversations	 Search conversation 	ns within sci	- Q
D Google Groups no longer supports viewable.	s new Usenet posts or subscrip	otions. Historical content rem	^{ains} Dismiss	Learn more
÷			0 0	< >
Christmas present for your	favorite CAS 274 views			×
Henri Cohen to			Dec 21, 1993, 12:0	0:13 PM 🕁 🚦
Looking in my old files, I found the (maple notation)	following INDEFINITE integral			
int(x/sqrt(x^4+10*x^2-96*x-71),x);				
Of course this is an elliptic integral. special integral can be computed e				
 Can any CAS compute this (not l of course)? You are allowed to load 		tions		
2) Can YOU compute this?				
3) Find other non-trivial examples.				
Note: the experts in the field will kn theory behind this kind of computa relations with points of finite order continued fraction expansions. Thi obscure) hint for non-experts.	able elliptic integrals. In particular, on elliptic curves, and periodic			

A 31-year-old example

Consider $\int \frac{x \, \mathrm{d}x}{\sqrt{x^4 + 10x^2 - 96x - 71}}.$

We introduce
$$C: y^2 = x^4 + 10x^2 - 96x - 71$$
, and $\omega = \frac{x \, dx}{y}$.

C has two points at infinity, ∞_+ and ∞_- , and ω has poles at ∞_+ and ∞_- only, both simple and with residue -1 and +1.

The integral won't be elementary unless the divisor $-\infty_{+} + \infty_{-}$ is torsion in Pic⁰(C). Luckily, it is 8-torsion, as $g = x^8 + (y+20)x^6 - 128x^5 + (15y+54)x^4 - (80y+1408)x^3 + (27y+3124)x^2 - 528yx + 781y + 10001$ has divisor (g) = $-8\infty_{+} + 8\infty_{-}$. And even more luckily,

$$\int \frac{x \, \mathrm{d}x}{\sqrt{x^4 + 10x^2 - 96x - 71}} = \frac{1}{8} \log(g).$$

Another example

$$\begin{split} &\int \frac{\sqrt[3]{x^8 - 6}}{x} \, dx \\ &= \frac{3}{8}\sqrt[3]{x^8 - 6} \\ &+ \frac{1}{16}a^2 \log \left(\frac{\left(a^4 - 4a\right)x^8 + \left(48\sqrt[3]{x^8 - 6}^2 + \left(3a^5 - 12a^2\right)\sqrt[3]{x^8 - 6} + \left(-6a^4 + 72a\right)\right)}{x^8} \right) \\ &+ \left(\frac{1}{128}a^5 + \frac{1}{32}a^2\right) \log \left(\frac{8ax^8 + \left(48\sqrt[3]{x^8 - 6}^2 + \left(-3a^5 - 12a^2\right)\sqrt[3]{x^8 - 6} + \left(-6a^4 - 72a\right)\right)}{x^8} \right) \\ &\text{where } a^6 + 48 = 0. \end{split}$$

This involves spotting that some divisors on the genus 7 curve $y^3 = x^8 - 6$ defined over $\mathbb{Q}(\sqrt[6]{-48})$ are 8-torsion.

Let C curve over a number field K, and T = Pic⁰(C)_{tors}.
 If p is a prime of K above p ∈ N such that C has good reduction at p, then

Reduction mod p is injective on the prime-to-p part of T.

 Let C curve over a number field K, and T = Pic⁰(C)_{tors}. If p is a prime of K above p ∈ N such that C has good reduction at p, then
 Reduction mod p is injective on the prime-to-p part of T.

• Let $\overline{C}/\mathbb{F}_q$ have genus g. Then

$$Z(\overline{C}/\mathbb{F}_q,t) = \exp\sum_{d=1}^{+\infty} \frac{\#\overline{C}(\mathbb{F}_{q^d})}{d}t^d = \frac{L(t)}{(1-t)(1-qt)}$$

where $L(t) \in \mathbb{Z}[t]$ determined by $\#\overline{C}(\mathbb{F}_{q^d})$ for $d \leq g$.

Furthermore,
$$\#\operatorname{Pic}^0(\overline{C}) = L(t=1).$$

Let C curve over a number field K, and T = Pic⁰(C)_{tors}. If p is a prime of K above p ∈ N such that C has good reduction at p, then
 Reduction mod p is injective on the prime to p part of T.

Reduction mod p is injective on the prime-to-p part of T.

• Let
$$\overline{C}/\mathbb{F}_q$$
 have genus g. Then

$$Z(\overline{C}/\mathbb{F}_q,t) = \exp\sum_{d=1}^{+\infty} \frac{\#\overline{C}(\mathbb{F}_{q^d})}{d}t^d = \frac{L(t)}{(1-t)(1-qt)}$$

where $L(t) \in \mathbb{Z}[t]$ determined by $\#\overline{C}(\mathbb{F}_{q^d})$ for $d \leq g$.

Furthermore,
$$\#\operatorname{Pic}^0(\overline{C}) = L(t=1).$$

 \rightsquigarrow Can find $m \in \mathbb{N}$: $\#T \mid m$ with $\mathfrak{p}_1, \mathfrak{p}_2$ such that $p_1 \neq p_2$.

 \rightsquigarrow Can find $m \in \mathbb{N}$: $\#T \mid m$ with $\mathfrak{p}_1, \mathfrak{p}_2$ such that $p_1 \neq p_2$.

Let $D \in \text{Div}^0(C)$. If *m* is small, we compute $\mathcal{L}(dD)$ for $d \mid m$.

 \rightsquigarrow Can find $m \in \mathbb{N}$: $\#T \mid m$ with $\mathfrak{p}_1, \mathfrak{p}_2$ such that $p_1 \neq p_2$.

Let $D \in \text{Div}^{0}(C)$. If *m* is small, we compute $\mathcal{L}(dD)$ for $d \mid m$.

If *m* is large, we check the order of *D* in $Pic^{0}(\overline{C}_{p_{i}})$ by using Makdisi models.

 \rightsquigarrow Can find $m \in \mathbb{N}$: $\#T \mid m$ with $\mathfrak{p}_1, \mathfrak{p}_2$ such that $p_1 \neq p_2$.

Let $D \in \text{Div}^0(C)$. If *m* is small, we compute $\mathcal{L}(dD)$ for $d \mid m$.

If *m* is large, we check the order of *D* in $Pic^{0}(\overline{C}_{p_{i}})$ by using Makdisi models.

```
C=crvinit(x^9-y^5+2*x^4*y^2,t,a);
crvprint(C);
crvboundtorsion(C)
crvdivistorsion(C,[2,1;3,-1])
crvfndiv(C,%[2],1);
```

```
C=crvinit(y^2-x^6-2*x^5+3*x^4-8*x^3+8*x-4,t,a);
crvprint(C);
crvboundtorsion(C)
crvdivistorsion(C,[1,1;2,-1])
```

An example with 91-torsion

Let
$$f(x) = x^8 - 2x^7 + 7x^6 - 6x^5 - x^4 + 10x^3 - 6x^2 + 1$$
.
Then $\int \frac{2x^3 + 22x^2 + 47x - 91}{x\sqrt{f(x)}} dx$
 $= \log \left(A(x)\sqrt{f(x)} + B(x) \right) - 91 \log(x)$, where $A(x) =$

 $2 \pm 159739273 \times ^{W^{-}} = 50843222146612 \times ^{W^{+}} + 50322577935158 \times ^{W^{-}} = 3200657006642275 \times ^{W^{+}} + 142146272864033 \times ^{W^{-}} = 43679238719215767 \times ^{X^{+}} + 906737723875065613 \times ^{W^{-}} = 65130238760 \times ^{W^{-}} = 65130237500 \times ^{W^{-}} = 13200814095565000 \times ^{X^{+}} = 305750141659071447 \times ^{X^{+}} = 35450208069548856625 \times ^{Y^{-}} = 62530951565256713 \times ^{U^{-}} = 1320814095565000 \times ^{X^{+}} = 305750141659071447 \times ^{X^{+}} = 35450208069548856625 \times ^{Y^{-}} = 62530951565256713 \times ^{U^{-}} = 326219686005727208 \times ^{Y^{-}} = 1420055001446343761 \times ^{X^{-}} = 12059017833254020572708 \times ^{Y^{-}} = 12059142012347 \times ^{U^{-}} = 12055010938121586673 \times ^{U^{-}} = 2395421177533766713 \times ^{U^{-}} = 1205907783325463 \times ^{U^{-}} = 120590178032548 \times ^{U^{-}} = 12059010938121586673 \times ^{U^{-}} = 12059017832548 \times ^{U^{-}} = 12059017832548 \times ^{U^{-}} = 12059010938121586673 \times ^{U^{-}} = 012059104312143810 \times ^{U^{-}} = 110077033258 \times ^{U^{-}} = 1205901078312548 \times ^{U^{-}} = 1205901078312158673 \times ^{U^{-}} = 11007703321548 \times ^{U^{-}} = 1205901078312158673 \times ^{U^{-}} = 110077033215410172 \times ^{U^{-}} = 110077033258 \times ^{U^{-}} = 120590103832125825425 \times ^{U^{-}} = 120590103811248362 \times ^{U^{-}} = 110057039212406527293 \times ^{U^{-}} = 1583232565217161311 \times ^{U^{-}} = 29726675815815959903 \times ^{U^{-}} = 20717689103841004545 \times ^{U^{-}} = 141212060104061544643 \times ^{U^{-}} = 1751699053405333270 \times ^{U^{-}} = 158323256552171616311 \times ^{U^{-}} = 2997267581581591599033 \times ^{U^{-}} = 20732548838101510077 \times ^{U^{-}} = 11416174401197713 \times ^{U^{-}} = 1206472149212985 \times ^{U^{-}} = 1585904523037107162 \times ^{U^{-}} = 2997267581581591959033 \times ^{U^{-}} = 207325483830101007 \times ^{U^{-}} = 124161874 \times ^{U^{-}} = 20756758158159195903332104576 \times ^{U^{-}} = 206473492101937735574 \times ^{U^{-}} = 1206472149212085 \times ^{U^{-}} = 150509042303371054576 \times ^{U^{-}} = 29724801837914572 \times ^{U^{-}} = 1204631232095551 \times ^{U^{-}} = 120467349212911247710 \times ^{U^{-}} = 71519939351421766031 \times ^{U^{-}} = 432056451638415374 \times ^{U^{-}} = 1450663123039301447652 \times ^{U^{-}} = 77248018197$

and $B(x) \underset{\text{horror}}{\sim} A(x)$.

This is related to a rational 91-torsion point in $Pic^0(y^2 - f(x))$. (Curve found by Steffen Müller and Berno Reitsma)

Final examples

Let
$$-x^5 + yx + y^4 = 0$$
 (genus 5).
Then $\int \frac{x^3}{y} dx = \frac{4y^3}{11x} + \frac{1}{11} \log\left(\frac{y^3}{x}\right)$.

This involves spotting that some divisor is 11-torsion.

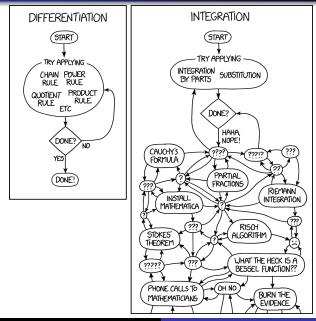
Our implementation takes 1 second; FriCAS takes 18 hours!

Same thing with

$$\int \frac{x^2 + 4y^3}{x^3} \, \mathrm{d}x = \frac{16y^3}{13x^2} + \frac{1}{13} \log \left(\frac{-x^{15} + 3yx^{10} - 3y^2x^5 + y^3}{x^{41}} \right)$$

where $-x^7 + yx^2 + y^4 = 0$ (genus 6, 13-torsion).

Conclusion



Thank you!