[Tutorial]

S-units and compact representations in number fields

Karim Belabas
Use case / motivation

? T = x^6 + 2854*x^4 + 2036329*x^2 + 513996528;
? K = bnfinit(T); \ K = \mathbb{Q}[x]/(T), \text{ require class group and units}
? K.fu \ missing units
\ % = 0
? K = bnfinit(T, 1); \ impose units computation
? K.fu
\ ...huge result deleted...

Huge algebraic numbers are problematic because

- computing with them algebraically is expensive;
- approximations via floating point embeddings into \(\mathbb{C} \) require huge accuracy (cancellation);
- they are often intermediate results: we do not want a result in \(K \) but in \(K^*/(K^*)^2 \), or in \(\mathbb{Z}_K/p^k \), or a floating point approximation to complex embeddings, or ...
- they may overflow the possibilities of the implementation: try \(2^{2^{100}} \).
Number field structures

Let $K = \mathbb{Q}[x]/(T)$ be a number field of degree $[K : \mathbb{Q}] = n$; let

- (r_1, r_2) be its signature, S_∞ be the set of r_1 real places and r_2 complex places,
- $\mathbb{Z}_K = \mathbb{Z} \cdot b_1 \oplus \cdots \oplus \mathbb{Z} \cdot b_n$ be its ring of integers and d_K its absolute discriminant,
- $\text{Cl}(K)$ be its ideal class group,
- $U(K) = \mathbb{Z}_K^* \sim (\mathbb{Z}/w\mathbb{Z}) \cdot \zeta_w \bigoplus \mathbb{Z} \cdot u_1 \cdots \oplus \mathbb{Z} \cdot u_{r_1+r_2-1}$ be its unit group,
- For $S = S_0 \cup S_\infty$ a finite set of places, let

$$U_S(K) = \{ x \in K^*, v(S) = 0 \text{ for all } v \not\in S \}$$

be the S-unit group; i.e., $U_{S_\infty}(K) = U(K)$. The abelian group $U_S(K)$ is generated by ζ_w and $\#S - 1$ elements of infinite order.

In PARI-speak

- $K = \text{nfinit}(T)$ allows $K.\text{pol}, K.\text{sign}, K.\text{zk}, K.\text{disc}, K.\text{p}$ (ramified primes), \ldots
- $K = \text{bnfinit}(T)$ further allows $K.\text{clgp}, K.\text{tu}(w, \zeta_w), K.\text{fu}$ (fundamental units), \ldots
Number field elements

Elements of K are given as

- elements of \mathbb{Q} (rational form): $2, 1/3, \ldots$
- polynomials (algebraic form): $\text{Mod}(1 + x, T)$, or simply $1 + x$ (implicitly modulo T), \ldots
- vectors (basis form): $[a_1, \ldots, a_n] \sim \sum_i a_i w_i$, \ldots

These formats are recognized as inputs by all functions handling algebraic numbers as number field elements. The preferred output format are *rational* and *basis* form, in this order.

```gp
? K = nfinit(x^3 - 2);
? nfeltmul(K, x, x^2+1)
? nfelttrace(K, x+1)
? nfeltadd(K, x/2, [1,2,3] )
? nfbasistoaalg(K, %)
? nfalgtobasis(K, %)
```
Other lossy representations

For the record, let us mention

- chinese remainders (*idealchinese*), including sign conditions at real embeddings;
- projection to residue fields at maximal ideals (*nfmodpr*);
- complex embeddings (*nfeltembed*, floating point);
- projections to more general finite rings \((\mathbb{Z}_K/f)^*, f = f_0 f_\infty (*ideallog*)\);
- reduction in \(K^*/(K^*)^n\) (*idealredmodpower*).
- factorization into maximal ideals (*idealfactor*), up to units;

These representations alleviate coefficient explosion: they reduce the size of objects and/or the cost of handling them. But they all lose information.
NEW: Compact / factored representation (1/2)

In multiplicative contexts, an element of the form $\prod_i g_i^{e_i}$, where $g_i \in K^*$ and $e_i \in \mathbb{Z}$, can now be represented by a factorization matrix.

We do not have a UFD: the (g_i) need not be coprime! The goal is twofold:

- **avoid coefficient explosion**, measured by the size of the internal representation: compare $2^{1000} \cdot 3^{-2000}$ with its expanded form.

- **reduce costs of operations in multiplicative contexts**: it is easy to multiply or divide formally such objects, reduce modulo squares or larger powers, compute valuations, etc. More generally apply group morphisms $(K^*, \times) \rightarrow G$.
There are drawbacks:

- non-multiplicative operations remain expensive, for instance to perform addition we must expand the products first;

- some of them lose useful properties, for instance equality testing: a fast probabilistic algorithm proves that \(\prod g_i^{e_i} \neq 1 \), but it is hard to prove equality (the \(g_i \) are not coprime); failing to disprove equality, we may assume equality but we lose guarantees for later steps.

- non-generic simplifications are not taken into account: when expanded outputs are small, factored representations are likely to be larger;

- backward compatibility!
What does it change ? How to use it ? (1/2)

High level functions transparently use the mechanism behind the scenes (bnrclassfield, bnrstark, bnflog, thue...), whenever units or class group computations arise.

By default, when handling a \(\text{bnf} = \text{bnfinit}(T) \) provided by the user, this strategy is less efficient that it could be. It can fail because \(\text{bnf} \) contains floating point data that may not always allow exact algebraic reconstructions. It may also contain huge units in expanded form that contaminate later constructions.

\(\text{bnf} = \text{bnfinit}(T,1) \) makes the strategy foolproof for that \(\text{bnf} \), by computing all data in exact algebraic form, using factored representations. Drawback: uses much more memory, and is slower in the worst case although this is not noticeable on average in our tests.

We advise to use \(\text{bnfinit}(,1) \) for all computations and only disable it when it causes \(\text{bnfinit} \) to run into problems.
What does it change? How to use it? (2/2)

Caveats / compatibility:

- `bnf.fu` is specified to return units in **expanded** form. So use the new `bnfunits` instead, which returns units in **factored** form (and extra information for `bnfisunit`).

- `bnfisprincipal` is specified to return principal ideals in **expanded** form. So use the new `bnfisprincipal(,4)` flag.

Example: some random real quadratic field. Try these snippets with `bnfinit` instead of `bnfinit(,1).

```plaintext
D = 1000001273;
K = bnfinit(x^2 - D, 1);
bnfunits(K)
K.fu

P = idealprimedec(K,2)[1];
bnfisprincipal(K, P)
bnfisprincipal(K, P, 4) \ \ factored representation
bnfisprincipal(K, P, 3) \ \ expanded; no longer do this!
```
Addendum: S-units

`bnfunits` also allows to work with general S-units (together with `bnfisunit`). The functions `bnfsunit` and `bnfissunit` are now deprecated.

```plaintext
S = idealprimedec(K,2);
U = bnfunits(K, S)

bnfisunit(K, 2) \ \ \ \ \ \ \ not a unit
bnfisunit(K, 2, U) \ \ \ ...but an S-unit
```
Functions in multiplicative context work “out of the box” with factored representations.

```plaintext
? K = nfinit(x^3 - 2);
? u = [x, 2; [1,2,3]~, -1];
? v = [x+1, 1; [-1,2,3]~, 2];
? nffactorback(K, u)
%4 = [32/89, 2/89, -11/89]~
? nfeltmul(K, u, v)
%5 = 
  [ x  2]
  [ [1, 2, 3] -1]
  [ x + 1  1]
  [ [-1, 2, 3]~  2]
```
Using compact / factored representation

? nfeltpow(K, u, 2)
%6 =
[x 4]
[[1, 2, 3]~ -2]

? nfeltdiv(K, u, 2)
%7 =
[x 2]
[[1, 2, 3]~ -1]
[2 -1]

? nfeltnorm(K, u)
%8 = 4/89
Using compact / factored representation

? nffactorback(K, [u,v], [2,3]) \ still factored
%9 =
[x 4]
[[1, 2, 3]~ -2]
[x + 1 3]
[[-1, 2, 3]~ 6]
? nffactorback(K, %) \ now expand completely
%10 = [93209292/7921, 57744198/7921, 25490430/7921]~
? nfelttrace(K, u) \ not multiplicative ! Fails ...
? P = idealprimedec(K,5)[2]; nfmodpr(K, v, P)
%11 = 3*x + 3
? bid = idealstar(K, 5); ideallog(K, v, bid)
%12 = [7, 0]~