MPHELL: Multi-Precision (Hyper) Elliptic curves Library

Titouan Coladon, Philippe Elbaz-Vincent, Cyril Hugounenq

Univ. Grenoble Alpes, IF, mphell@univ-grenoble-alpes.fr

This work is supported by ANR ARRAND (ANR-15-CE39-0002) and SECURIOT-2-AAP FUI 23.

Atelier PARI-GP, Grenoble, 24 January, 2020

This work is supported by the French National Research Agency in the framework of the "Investissements d’avenir" program (ANR-15-IDEX-02)
Requirements of our library

We want to address the need of a **fast** arithmetic library and possibly secured for Elliptic Curve Cryptography:

- Secure against **Simple Power Analysis (SPA)**;
- **Easy to customize**:
 - Customizable arithmetics (GMP, Intel IPPCP, MBedTLS);
 - Customizable curves;
 - Integration possible (PARIGP, PARITWINE, Demo. FIC 2020 de MbedTLS).
- **Usable in industrial context**:
 - microcontrollers (e.g., STM32);
 - ARM (32 bits and 64 bits);
 - Linux OS (32 bits and 64 bits).
- **Competitive against other Elliptic Curve Cryptographic libraries.**

The library has been designed with GNU/Linux systems as main targets (frequent on embedded systems) and for curves over prime fields.
SPA over Elliptic Curves

SPA over a Weierstrass curve without protection against SPA

SPA over a Jacobi Quartic curve with protection against SPA
There already exists libraries implementing elliptic curve arithmetics for cryptography such as:

- Intel IPPCP (fast, Intel architectures only, non resistant to SPA)
- MbedTLS, OpenSSL, LibreSSL, Libgcrypt, MIRACL, WolfSSL, libECC.
- NACL, libSodium usable only with hardcoded Edwards Elliptic Curves.
ELLIPTIC CURVE ARITHMETIC:

WEIERSTRASS: $Y^2 = x^3 + a \cdot X + b$, using PROJECTIVE, JACOBIAN and COZ coordinates

TWISTED EDWARDS: $a \cdot X^2 + Y^2 = 1 + d \cdot X^2 \cdot Y^2$, using PROJECTIVE or EXTENDED coordinates

JACOBI QUARTIC: $Y^2 = X^4 + 2 \cdot a \cdot X^2 + 1$, using EXTENDED coordinates

UNIFIED ADDITION is available for all these curves

FIELD ARITHMETIC:

- Montgomery
- Classic

BIG NUMBER:

- IPPCP
- GMP
- MbedTLS
Elliptic Curve formulae

We propose for each type of elliptic curves implemented (Weierstrass, Jacobi Quartic, Edwards) two types of formulas:

- Dedicated arithmetic operations, and sliding windows multiplication to be fast when security is not required

- Unified arithmetic operations, to be protected against Simple Power Analysis when security is required.
Weierstrass

- **PROJECTIVE**: \((X, Y, Z)\) matching the affine point \((x, y)\) where \(x = \frac{X}{Z}\), \(y = \frac{Y}{Z}\), the neutral element is \((0, 1, 0)\).

- **JACOBIAN**: \((X, Y, Z)\) matching the affine point \((x, y)\) where \(x = \frac{X}{Z^2}\), \(y = \frac{Y}{Z^3}\), the neutral element is \((a^2, a^3, 0)\) with \(a \neq 0\).

The Montgomery multiplication, using COZ arithmetic is used when unified arithmetic is required.
Twisted Edwards

- **PROJECTIVE**: (X, Y, Z) matching the affine point (x, y) where $x = \frac{X}{Z}$, $y = \frac{Y}{Z}$, the neutral element is $(0, 1, 0)$.

- **EXTENDED**: (X, Y, T, Z) matching the affine point (x, y) where $x = \frac{X}{Z}$, $y = \frac{Y}{Z}$, and $T = \frac{XY}{Z}$ the neutral element is $(0, 1, 0, 1)$.
Jacobi’s quartic

EXTENDED: \((X, Y, T, Z)\) satisfying
\[Y^2 = Z^2 + 2aX^2 + T^2; \quad X^2 = ZT; \]
\(a \neq 1.\)

Here
\((X : Y : T : Z) = (sX : sY : T : sZ)\)
for all nonzero \(s.\)
- **WEIERSTRASS ↔ JACOBI QUARTIC**, but you need θ such that $(\theta, 0)$ is a 2-torsion point on the Weierstrass elliptic curve.

- **WEIERSTRASS ↔ TWISTED EDWARDS**, but you need α, β such that $(\alpha, 0)$ is a 2-torsion point on the Weierstrass elliptic curve and that $3\alpha^2 + a_w = \beta^2$.

This work is supported by the French National Research Agency in the framework of the "Investissements d'avenir" program (ANR-15-IDEX-02).
Hardcoded Curves

- Brainpool curves
- ANSSI (FR256v1)
- NIST Curves
- Ed25519
- Jq256 (Generated by us)
Performances (EC multiplications)

Number of EC multiplications per second

- PARI GP 2.12
- MPHELL 4 (GMP)
- MPHELL 4 (IPPCP)

Platforms:
- Seep256
- Seep384
- Seep521
- BP256
- BP384
- BP512
- Prime256
Performances (ECDSA Signatures)

Number of ecdsa signatures per second on Intel x86 64 bits

- MPHELL
- OpenSSL
- MbedTLS
- libECC
- Intel IPPCP
- MIRACL
- LibGCrypt
- libSodium

Bars for different curves:
- Secp256
- Secp384
- Secp521
- BP256
- BP384
- BP512
- Prime256
- Ed25519
- JQ_256_3
Performances (ECDSA Verifications)

Number of ecdsa verifications per second on Intel x86 64 bits

- MPHELL
- OpenSSL
- MbedTLS
- libECC
- Intel IPPCP
- MIRACL
- LibGCRYPT
- LibSODIUM

Key:
- Secp256
- Secp384
- Secp521
- BP256
- BP384
- BP512
- Prime256
- Ed25519
- JQ_256_3
Performances (ECDSA Signatures)

Number of ecdsa signatures per second on STM32F4

- MbedTLS
- MPHELL_MbedTLS
- MPHELL_GMP
Performances (ECDSA Verifications)

Number of ecdsa verifications per second on STM32F4

- MbedTLS
- MPHELL_MbedTLS
- MPHELL_GMP

Bars for different curves:
- Secp256
- Secp384
- Secp521
- BP256
- BP384
- BP512
- Prime256
- Ed25519
- JQ_256_3
Performances (ECDSA Signatures)

Number of ecdsa signatures per second on Raspberry PI 4

- MbedTLS
- MPHELL 4 (GMP)
- MPHELL 4 (MbedTLS)
Performances (ECDSA Verifications)

Number of ecdsa signatures per second on Raspberry PI 4

- MbedTLS
- MPHELL 4 (GMP)
- MPHELL 4 (MbedTLS)
Conclusion

We present a new open source (LGPL3) elliptic curve library for cryptography

- suitable for embedded systems and industrial use (already tested with industrial partners);
- performant compared to other libraries;
- unified operations for providing SPA counter-measures.

Web site of MPHELL:

https://www-fourier.univ-grenoble-alpes.fr/mphell/
Eddsa for more curves.

[BSI18] BSI.

[Cor16] Marie-Angela Cornélie.
Implantations et protections de mécanismes cryptographiques logiciels et matériels.
On various families of twisted Jacobi quartics.

[Pon16] Simon Pontie.
Sécurisation matérielle pour la cryptographie à base de courbes elliptiques.

[Sch91] Claus-Peter Schnorr.
Efficient signature generation by smart cards.
[Tea98] KCDSA Task Force Team.
The korean certificate-based digital signature algorithm.
IEEE P1363a, 1998.
The ECDSA signing of a message M with the hashing function H consists of:

1. $k \leftarrow \{1, n-1\}$,
2. $Q = [k]B$,
3. $r = x_Q \mod n$ if $r == 0$ go to first step,
4. $s = k^{-1}(r \cdot d + H(M)) \mod n$ if $s == 0$ go to first step,
5. return (r, s).
The ECDSA verification of a signed message \(M, (r, s) \) with the hashing function \(H \) consists of:

- checking that \(r, s \in \{1, n - 1\} \),
- \(u_1 = s^{-1} \cdot H(M) \mod n \),
- \(u_2 = s^{-1} \cdot r \mod n \),
- \(Q = [u_1]B + [u_2]P \),
- \(v = x_Q \),
- return the boolean value of the test \(v == r \).

Other standards of signing with elliptic curve do exist such as: ECGDSA [BSI18], ECSDSA [Sch91], EdDSA [BJL+15], ECKCDSA [Tea98]. This list is non-exhaustive.