
Computing classical modular forms for the
LMFDB

John Cremona

University of Warwick
—

joint work with Andrew Sutherland, John Voight, Andy Booker, Jonathan Bober,
Edgar Costa, David Roe and others

17 January 2019
Atelier PARI/GP 2019, Bordeaux

https://warwick.ac.uk/fac/sci/maths/people/staff/john_cremona/


Overview

1. The LMFDB
2. Tables of modular forms
3. Software for computing modular forms
4. How the new data was computed
5. What the new data looks like



The LMFDB

I could give a whole talk about the LMFDB but will not!

The L-Functions and Modular Forms DataBase is a large
collection of L-functions and mathematical objects which give
rise to them: number fields, modular forms (of various kinds),
elliptic curves (over Q and other fields) and curves of higher
genus, Galois representations, and more.

See the LMFDB website www.lmfdb.org.

www.lmfdb.org
www.lmfdb.org


The LMFDB classical modular form collection
In this talk I will only concern myself with the collection of
“classical modular forms” in the LMFDB, i.e. standard
holomorphic modular forms of integer level N ≥ 1, integer
weight k ≥ 1 and arbitrary character χ (a Dirichlet character
modulo N).

The space Sk(N, χ) of these is a finite-dimensional complex
vector space. The new subspace Sk(N, χ)new of forms not
induced from lower levels has a distinguished basis of so-called
newforms.

The computational task is to compute Sk(N, χ)new and its
newforms for as wide a range of (N, k, χ) as is practical,
including for each newform f all additional quantities of interest
to researchers, storing them in a database in a way which is
compact, yet also allows flexible searching.



Previous collections of classical modular forms

There have been several earlier collections of modular forms,
including some with particular restrictions on weight and
character. These include:
I The tables of Cohen, Skoruppa and Zagier: N ≤ 1000,

various weights and characters. c.1990, using Pari/GP.
I Weight 2 and trivial character, especially of dimension 1

because of the link with elliptic curves: Tingley 1972,
myself 1986-2016.

I William Stein’s tables: c.1998-2005, using C++ and then
Magma.



Classical modular forms in the LMFDB

The LMFDB modular forms collection has evolved roughly as
follows:
I 0.0: (pre 2015) database contained Stein’s data with a web

interface;
I 1.0: (2015–2018) new data computed by Stromberg and

Ehlen using Stein’s Sage code, same web interface;
I 2.0: (2018–, to be released in early 2019) new data

computed by many using Pari/GP, Magma, and/or C, new
database, new web interface: this talk.

Here is a comparison of the extent of these, provided by
Andrew Sutherland.



Classical modular forms in the LMFDB

Stein DB LMFDB old LMFDB new
Nonzero Snew

k (Γ1(N)) 315 756 7045
Nonzero Snew

k (N, χ) 8,579 3,416 45,444
Newforms (Galois orbits) 84,407 8,659 236,555
Rational newforms 25,806 2,292 48,324
Complex embeddings 1,095,619 77,434 1,3710,564
Eigenvalues ≈3,000,000 2,418,750 585,223,000
Weight 1 newforms 0 0 19,306
Weight 2 newforms 76,896 2,914 155,759
Newforms on Γ0(N) 83,694 5,731 171,238
Max dimension 340 208 39690
Max weight 78 200 316
Max level 7248 549 10,000

Computing the new data set has taken 6 months, and of the order of
a few CPU-decades.



Computing the new collection: the team

After some preparatory work, during the week of 27–31 August
2018, a workshop was held at MIT, with:

Alex Best, Jon Bober, Andy Booker, Edar Costa, me, David
Lowry-Duda, David Roe, Andrew Sutherland, John Voight,

funded by the US Simons Foundation, through the Simons
Collaboration on Arithmetic Geometry, Number Theory, and
Computation, and the UK EPSRC, through a “Programme
grant”, LMF.

Work has continued since the workshop and a release is
imminent. Here is a sneak preview: http://cmfs.lmfdb.
xyz/ModularForm/GL2/Q/holomorphic/

http://cmfs.lmfdb.xyz/ModularForm/GL2/Q/holomorphic/
http://cmfs.lmfdb.xyz/ModularForm/GL2/Q/holomorphic/


Computing the new collection: the methods

We did not develop any new methods for computing modular
forms, and neither did we write any new implementations,
except for a considerable amount of code to “post-process” the
data computed by available packages.

We used
I Magma (code originally by Stein with later work by

Donnelly): uses modular symbols; used only for weights
k ≥ 2

I Pari/GP version 2.11.1 (code by Cohen, Belabas et al.):
uses trace formulas; all weights especially k = 1

I C code of Bober and Booker: numerical and rigorous,
using arb



Computing the new collection: the strategy
One aim was to make sure that in as many cases as possible
everything would be computed by at least two of the above
methods. We agreed on the format of text data files (see
https://github.com/JohnCremona/CMFs#cmfs) and
wrote code to compare these for consistency.

For example, to compare the Pari and Magma output for fixed
(N, k, χ), after checking that the irreducible pieces have the
same dimensions, it was necessary to find an isomorphism
from each Hecke field in the Magma output to the Hecke field in
the Pari output and check that the q-expansion coefficients
matched. Using polredabs wherever possible, and iterated
polredbest otherwise, helped.

The largest dimension in the database currently is 39690 (for
form 983.2.c.a). For such large dimensions we do not compute
or store exact algebraic q-expansions, only the traces and all
complex embeddings of an for several n.

https://github.com/JohnCremona/CMFs#cmfs
http://cmfs.lmfdb.xyz/ModularForm/GL2/Q/holomorphic/983/2/c/a/


Storing and displaying the new collection

Each newform f ∈ Sk(N, χ)new has a q-expansion

∞∑
n=1

anqn where q = exp(2πiτ)

so is determined by the sequence of algebraic integers an

which generate an algebraic number field Kf = Q(a1, a1, . . . )
whose degree is the dimension of f . We have Kk ⊇ Q(χ), and
both Pari and Magma give the an as elements of a relative
extension Kf = Q(χ)(ν).

This for each newform f we wish to store, and possibly display,
the field Kf and the sequence (an) of algebraic integers in K.



Storing and displaying q-expansions
We use an absolute and integral representation for the an:
instead of writing each an as a polynomial in ν with coefficients
in Q or Q(χ), we compute an integral basis {βj} for the ring
Rf = Z[a1, a2, . . . ] which is an order in Kf . Now each an is a
Z-linear combination of the βj, and using LLL-reduction we
make these integers small. There are three steps in this:

1. choice of the best polynomial to define the field Kf

2. choice of an integral basis for the Hecke ring Z[. . . an . . . ]

3. each an is now stored as a list of d integers
Using LLL-reduction the integral basis is chosen so that the
coefficients in (3) are small.

This reduces considerably the volume of data stored, and also
makes it possible to display exact algebraic coefficients for
much higher dimensions than otherwise.



Implementation notes

We use the cypari package in Sage, so that we can do all
high-level coding using Python, calling Pari’s mf* functions to
do the real work.


