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The embedding problem

Let

» F, be a field with g elements, K =F,Y]/g(Y)
» f and

g be irreducible polynomials
in Fg[X] and Fq[Y],

> r:degfyszdegg and r|5. k:Fq[X]/f(X)

There exists a field embedding

v k=K, F,

unique
up to Fg-automorphisms of k.



Embedding description

Determine
elements a and 3 such that

> o generates k = [Fg[a],

> there exists p : a — f.

Naive solution: take
» a =X mod f(X), and
» [ aroot of fin K.

Cost of factorization: O(rs(“’+1)/2)




Some history

'91 Lenstra [8] proves that the isomorphism problem is in P.

» Based on Kummer theory, pervasive use of linear algebra.
» Does not prove precise complexity. Rough estimate: Q(r3).

'92 Pinch’s algorithm [11]:

» Based on mapping algebraic groups over k, K.

> Incomplete algorithm, no complexity analysis.
'96 Rains [12] generalizes Pinch'’s algorithm.

» Complete algorithm, rigorous complexity analysis.

» Unpublished. Leaves open question of using elliptic curves.
'97 Magma [3] implements lattices of finite fields using on

polynomial factorization and linear algebra [4].



Some history (cont.)

'02 Allombert’s variant of Lenstra’s algorithm [1, 2]:
» Trades determinism for efficiency.
» Implementation integrated into Pari/GP [14].
'07 Magma implements Rains’ algorithm.

'16 Narayanan proves the first O(r?) upper bound [10].
» Variant of Allombert's algorithm.
» Using asymptotically fast modular composition.
Now Knowledge systematization. Notable results:
Better variants of Allombert’s algorithm.
O(r?) upper bound without fast modular composition.
Generalized Rains’ algorithm to elliptic curves.
C/Flint [6] and Sage [5] implementations, experiments,
comparisons.

vV vy vy



Allombert’s algorithm

Assuming ged(r, q) = 1:
> Let h be an irreducible factor of the Fq(C) ~ K® Fq(C)

r-th cyclotomic polynomial over Fg; K %
» Extend the action of Gal(k/Fq)
to the ring k[¢] = k[Z]/h(2): Fq(C)
k
x®@¢ = ox)®C(
» Solve Hilbert 90: find 61 € k[(]
such that o(0;) = (6 using linear algebra;

K

7

g

» Compute 6> € K[(] similarly;

» Compute ¢ = \’/m € Fq(Q);

» Project 1 — a € k and ctr — (B € K.



Implementation (take 1)

Factorization
» The factor h of ®, is of degree ord,(q) = O(r);
» Computing it is O(r) using Shoup [13];

» Computing r-th roots in Fo(¢) is O(r?) using
Kaltofen-Shoup [7].

Linear algebra

» Computing a matrix for o over F, is O(r?);
» Computing its kernel over Fy(¢) is O((sr)*).



Implementation (take 2, 3, 4, 5, ...)

Reaching subquadratic complexity

1. Use the factorization h(S) = (S — ¢)b(S) to perform linear
algebra over .

2. Use the factorization S" — 1 = (S — {)b(S)g(S) with hand g
in F4[S] to replace linear algebra by modular composition.



T
Divide & conquer
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Allombert’s algorithm where the auxiliary degree
s = ord,(q) < 10. Dots represent individual runs, lines represent
degree 2 linear regressions.



—— Divide & conquer
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Allombert’s algorithm, as a function of the auxiliary degree
s = ord,(q) scaled down by r2.



Pinch's algorithm

Pinch’s idea
» Find small ¢ such that k ~ Fq[1u],
» Pick ¢-th roots of unity a € k,
B €K,
» Find e s.t. a+ (3¢ using brute force.
» Problem 1: worst case £ € O(q").

» Problem 2: potentially O(¢)
exponents e to test depending on the
splitting of ®; over F.

k — Fqlpe] — K



Rains’ algorithm and variants

» Replace «, 5 with Gaussian periods:

na) =) o’

c€eS

where (Z/0Z)* = (q) x S.
» Periods are normal elements, hence yield bases of k, K.
» Periods are unique up to Galois action, hence n(a) — n(5)
always defines an isomorphism.
» The size of ¢ can be controlled by allowing auxiliary extensions.

> Use higher dimensional algebraic groups:
» Replace Fg[p¢] with the ¢-torsion of random elliptic curves
E/Fg;
» Replace Gaussian periods with elliptic periods [9];
» This removes the need for auxiliary extensions.
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Part Il: Compatible embeddings



The compatibility problem

Context:
» E, F, G fields
» FE subfield of F and F subfield of G

> OEsF, PF—G, PE—sc embeddings

G
‘\‘ch—>G
¢E<—>G F

E ¢E‘—>F

?
PFG O PEF = PEG



The compatibility problem

P6sH DFG

G F

¢E\<—x %%F

?
PGsH © PEG = PFsH O PEF

H
E



Bosma, Cannon and Steel '97 [4]

v

Based upon naive embedding algorithms.

v

Supports arbitrary, user-defined finite fields.

v

Allows to compute the embeddings in arbitrary order.
Implemented by MAGMA.

v



The Bosma, Cannon and Steel framework

G
x

N

PEG F

£ PEF

v

Take ¢, an arbitrary embedding between F and G
Find o € Gal(G/Fp) such that o o ¢, - 0 pesF = PEsG
Set ¢pryg =00 Pr ¢

There are | Gal(F/E)| compatible morphisms

v

v

v



Bosma, Cannon and Steel framework

What about several subfields E;, Ep, ..., E, ?
» Enforce these axioms on the lattice:

CE1 (Unicity) At most one morphism ¢g,r

CE2 (Reflexivity) For each E, ¢pr,g = Idg

CE3 (Invertibility) For each pair (E, F) with E = F, ¢er = dfl, ¢

CE4 (Transitivity) For any triple (E, F, G) with E subfield of F and
F subfield of G, if we have computed ¢g,r and ¢r. ¢, then
PEG = PFsG © PEF

CE5 (Intersections) For any triple (E, F, G) with E and F
subfields of G, we have that the field S = E N F is embedded

in E and F, i.e. we have computed ¢s.g and ¢s,r



The Bosma, Cannon and Steel framework

Eq

» Set F’ the field generated by the fields E; in F
» Set G’ the field generated by the fields E; in G

Theorem
There exists a unique isomorphism x : F' — G’ that is compatible
with all embeddings, i.e. such that for all i, ¢ 6/ = x © P F'.



New problem: compute embeddings with common subfields

» We want to embed E in F

» additionnal information: S is a field embedded in E and F

» The naive algorithm can be sped up by replacing F, with S as
base field

(degree [E : S] polynomial factorization vs degree [E : Fp])

» More generally: S the compositum of all known fields
embedded in E and F.



Some questions

» Bosma, Cannon and Steel framework + Allombert's algorithm:
any smart optimizations possible?

» Allombert's algorithm
with common subfield knowledge?



Demo

» Qur implementations of Allombert’s algorithm + embedding
evaluation are being pushed into Flint
(https://github.com/wbhart/flint2/pull/351);

» A compatible embedding framework is being added to Nemo
(https://github.com/Nemocas/Nemo. j1/issues/233).

Go to the demo:
https://github.com/defeo/Nemo-embeddings-demo


https://github.com/wbhart/flint2/pull/351
http://nemocas.org/
https://github.com/Nemocas/Nemo.jl/issues/233
https://github.com/defeo/Nemo-embeddings-demo

Questions ?
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