
Algorithms for lattices of compatibly embedded
finite fields

Luca De Feo2 Jean-Pierre Flori4

joint work with
Ludovic Brieulle1 Javad Doliskani3

Édouard Rousseau2 5 Éric Schost3

1Université d’Aix-Marseille 2Université de Versailles – Saint-Quentin-en-Yvelines
3University of Waterloo 4Agence nationale de sécurité des systèmes d’information

5Télécom Paristech

The embedding problem

Fq

k = Fq[X]/f (X)

K = Fq[Y]/g(Y)

ϕ

Let

I Fq be a field with q elements,

I f and
g be irreducible polynomials
in Fq[X] and Fq[Y],

I r = deg f , s = deg g and r |s.

There exists a field embedding

ϕ : k ↪→ K ,

unique
up to Fq-automorphisms of k .

Embedding description

Fq

k = Fq[α]

K

α

β

r

s

Determine
elements α and β such that

I α generates k = Fq[α],

I there exists ϕ : α 7→ β.

Naive solution: take

I α = X mod f (X), and

I β a root of f in K .

Cost of factorization: Õ(rs(ω+1)/2)

Some history

’91 Lenstra [8] proves that the isomorphism problem is in P.
I Based on Kummer theory, pervasive use of linear algebra.
I Does not prove precise complexity. Rough estimate: Ω(r3).

’92 Pinch’s algorithm [11]:
I Based on mapping algebraic groups over k ,K .
I Incomplete algorithm, no complexity analysis.

’96 Rains [12] generalizes Pinch’s algorithm.
I Complete algorithm, rigorous complexity analysis.
I Unpublished. Leaves open question of using elliptic curves.

’97 Magma [3] implements lattices of finite fields using on
polynomial factorization and linear algebra [4].

Some history (cont.)

’02 Allombert’s variant of Lenstra’s algorithm [1, 2]:
I Trades determinism for efficiency.
I Implementation integrated into Pari/GP [14].

’07 Magma implements Rains’ algorithm.

’16 Narayanan proves the first Õ(r2) upper bound [10].
I Variant of Allombert’s algorithm.
I Using asymptotically fast modular composition.

Now Knowledge systematization. Notable results:
I Better variants of Allombert’s algorithm.
I Õ(r2) upper bound without fast modular composition.
I Generalized Rains’ algorithm to elliptic curves.
I C/Flint [6] and Sage [5] implementations, experiments,

comparisons.

Allombert’s algorithm

Fq

Fq(ζ)

k

k ⊗ Fq(ζ)

K

K ⊗ Fq(ζ)

σ

σ

σ

σ

∼
Assuming gcd(r , q) = 1:

I Let h be an irreducible factor of the
r -th cyclotomic polynomial over Fq;

I Extend the action of Gal(k/Fq)
to the ring k[ζ] = k[Z]/h(Z):

σ : k[ζ] → k[ζ],
x ⊗ ζ 7→ σ(x)⊗ ζ;

I Solve Hilbert 90: find θ1 ∈ k[ζ]
such that σ(θ1) = ζθ1 using linear algebra;

I Compute θ2 ∈ K [ζ] similarly;

I Compute c = r
√
θr1/θ

r
2 ∈ Fq(ζ);

I Project θ1 7→ α ∈ k and cθ2 7→ β ∈ K .

Implementation (take 1)

Factorization

I The factor h of Φr is of degree ordr (q) = O(r);

I Computing it is Õ(r) using Shoup [13];

I Computing r -th roots in Fq(ζ) is Õ(r2) using
Kaltofen–Shoup [7].

Linear algebra

I Computing a matrix for σ over Fq is Õ(r2);

I Computing its kernel over Fq(ζ) is Õ((sr)ω).

Implementation (take 2, 3, 4, 5, . . .)

Reaching subquadratic complexity

1. Use the factorization h(S) = (S − ζ)b(S) to perform linear
algebra over Fq.

2. Use the factorization S r − 1 = (S − ζ)b(S)g(S) with h and g
in Fq[S] to replace linear algebra by modular composition.

100 200 300 400 500 600

degree r

0.0

0.5

1.0

1.5

2.0

2.5

se
co

n
d

s

Divide & conquer

Automorphism eval.

Multipoint eval.

Multipoint eval. (var)

PARI/GP

Allombert (rev)

Allombert’s algorithm where the auxiliary degree
s = ordr (q) ≤ 10. Dots represent individual runs, lines represent
degree 2 linear regressions.

0 250 500 750 1000 1250 1500 1750 2000

order of q mod r

0.0

0.5

1.0

1.5

2.0

2.5

3.0

ra
ti

o

Divide & conquer

Automorphism eval.

Multipoint eval.

Multipoint eval. (var)

PARI/GP

Allombert (rev)

r2

Allombert’s algorithm, as a function of the auxiliary degree
s = ordr (q) scaled down by r2.

Pinch’s algorithm

Fq

Fq[µ`]k K
∼ ∼

Pinch’s idea

I Find small ` such that k ' Fq[µ`],

I Pick `-th roots of unity α ∈ k ,
β ∈ K ,

I Find e s.t. α 7→ βe using brute force.

I Problem 1: worst case ` ∈ O(qr).

I Problem 2: potentially O(`)
exponents e to test depending on the
splitting of Φl over Fq.

Rains’ algorithm and variants

I Replace α, β with Gaussian periods:

η(α) =
∑
σ∈S

ασ

where (Z/`Z)× = 〈q〉 × S .
I Periods are normal elements, hence yield bases of k, K .
I Periods are unique up to Galois action, hence η(α) 7→ η(β)

always defines an isomorphism.
I The size of ` can be controlled by allowing auxiliary extensions.

I Use higher dimensional algebraic groups:
I Replace Fq[µ`] with the `-torsion of random elliptic curves

E/Fq;
I Replace Gaussian periods with elliptic periods [9];
I This removes the need for auxiliary extensions.

22 23 24 25 26 27 28 29

degree r

2−13

2−10

2−7

2−4

2−1

22

25

se
co

n
d

s

Allombert (AE) s ∈ [1, 7]

Allombert (AE) s ∈ [8, 63]

Allombert (AE) s ∈ [64, 511]

Allombert (AE) s ∈ [512, 4095]

Cyclotomic Rains’ s = 1

Conic Rains’

Elliptic Rains’

Allombert’s vs Rains’ at some fixed auxiliary extension degrees s.
Lines represent median times, shaded areas minimum and
maximum times.

Part II: Compatible embeddings

The compatibility problem

Context:

I E , F , G fields

I E subfield of F and F subfield of G

I φE ↪→F , φF ↪→G , φE ↪→G embeddings

E

F

G

φE ↪→F

φE ↪→G

φF ↪→G

φF ↪→G ◦ φE ↪→F
?
= φE ↪→G

The compatibility problem

E

FG

H

φE ↪→FφE ↪→G

φF ↪→G
φG ↪→H

φG ↪→H ◦ φE ↪→G
?
= φF ↪→H ◦ φE ↪→F

Bosma, Cannon and Steel ’97 [4]

I Based upon naive embedding algorithms.

I Supports arbitrary, user-defined finite fields.

I Allows to compute the embeddings in arbitrary order.

I Implemented by MAGMA.

The Bosma, Cannon and Steel framework

E

F

G

φE ↪→F

φE ↪→G

I Take φ′F ↪→G an arbitrary embedding between F and G

I Find σ ∈ Gal(G/Fp) such that σ ◦ φ′F ↪→G ◦ φE ↪→F = φE ↪→G

I Set φF ↪→G := σ ◦ φ′F ↪→G

I There are |Gal(F/E)| compatible morphisms

Bosma, Cannon and Steel framework

What about several subfields E1,E2, . . . ,Er ?
I Enforce these axioms on the lattice:

CE1 (Unicity) At most one morphism φE ↪→F

CE2 (Reflexivity) For each E , φE ↪→E = IdE
CE3 (Invertibility) For each pair (E ,F) with E ∼= F , φE ↪→F = φ−1

F ↪→E

CE4 (Transitivity) For any triple (E ,F ,G) with E subfield of F and
F subfield of G , if we have computed φE ↪→F and φF ↪→G , then
φE ↪→G = φF ↪→G ◦ φE ↪→F

CE5 (Intersections) For any triple (E ,F ,G) with E and F
subfields of G , we have that the field S = E ∩ F is embedded
in E and F , i.e. we have computed φS↪→E and φS↪→F

The Bosma, Cannon and Steel framework

E1 E2 Er

F

G

. . .

I Set F ′ the field generated by the fields Ei in F

I Set G ′ the field generated by the fields Ei in G

Theorem
There exists a unique isomorphism χ : F ′ → G ′ that is compatible
with all embeddings, i.e. such that for all i , φEi ↪→G ′ = χ ◦ φEi ↪→F ′ .

New problem: compute embeddings with common subfields

I We want to embed E in F
I additionnal information: S is a field embedded in E and F

I The naive algorithm can be sped up by replacing Fp with S as
base field
(degree [E : S] polynomial factorization vs degree [E : Fp])

I More generally: S the compositum of all known fields
embedded in E and F .

Some questions

I Bosma, Cannon and Steel framework + Allombert’s algorithm:
any smart optimizations possible?

I Allombert’s algorithm
with common subfield knowledge?

Demo

I Our implementations of Allombert’s algorithm + embedding
evaluation are being pushed into Flint
(https://github.com/wbhart/flint2/pull/351);

I A compatible embedding framework is being added to Nemo
(https://github.com/Nemocas/Nemo.jl/issues/233).

Go to the demo:
https://github.com/defeo/Nemo-embeddings-demo

https://github.com/wbhart/flint2/pull/351
http://nemocas.org/
https://github.com/Nemocas/Nemo.jl/issues/233
https://github.com/defeo/Nemo-embeddings-demo

Questions ?

References I

Bill Allombert.
Explicit computation of isomorphisms between finite fields.
Finite Fields Appl., 8(3):332 – 342, 2002.

Bill Allombert.
Explicit computation of isomorphisms between finite fields.
Revised version. https://www.math.u-bordeaux.fr/~ballombe/fpisom.ps,
2002.

Wieb Bosma, John Cannon, and Catherine Playoust.
The MAGMA algebra system I: the user language.
J. Symbolic Comput., 24(3-4):235–265, 1997.

Wieb Bosma, John Cannon, and Allan Steel.
Lattices of compatibly embedded finite fields.
Journal of Symbolic Computation, 24(3-4):351–369, 1997.

The Sage Developers.
SageMath, the Sage Mathematics Software System (Version 7.5.rc0), 2016.
http://www.sagemath.org.

William Hart.
Fast library for number theory: an introduction.
Mathematical Software-ICMS 2010, pages 88–91, 2010.

https://www.math.u-bordeaux.fr/~ballombe/fpisom.ps

References II

Erich Kaltofen and Victor Shoup.
Fast polynomial factorization over high algebraic extensions of finite fields.
In ISSAC ’97: Proceedings of the 1997 international symposium on Symbolic
and algebraic computation, pages 184–188, New York, NY, USA, 1997. ACM.

Hendrik W. Lenstra.
Finding isomorphisms between finite fields.
Mathematics of Computation, 56(193):329–347, 1991.

Preda Mihailescu, François Morain, and Éric Schost.
Computing the eigenvalue in the Schoof-Elkies-Atkin algorithm using abelian
lifts.
In ISSAC ’07: Proceedings of the 2007 international symposium on Symbolic
and algebraic computation, pages 285–292, New York, NY, USA, 2007. ACM.

Anand Kumar Narayanan.
Fast computation of isomorphisms between finite fields using elliptic curves.
arXiv preprint arXiv:1604.03072, 2016.

Richard G. E. Pinch.
Recognising elements of finite fields.
In Cryptography and Coding II, pages 193–197. Oxford University Press, 1992.

Eric M. Rains.
Efficient computation of isomorphisms between finite fields.
personal communication, 1996.

References III

Victor Shoup.
Fast construction of irreducible polynomials over finite fields.
Journal of Symbolic Computation, 17(5):371–391, 1994.

The PARI Group, Bordeaux.
PARI/GP, version 2.8.0, 2016.

	The embedding problem
	Using Kummer theory
	Using algebraic groups

