Algorithms for lattices of compatibly embedded finite fields

Luca De Feo ${ }^{2}$ Jean-Pierre Flori ${ }^{4}$

joint work with
Ludovic Brieulle ${ }^{1}$ Javad Doliskani ${ }^{3}$ Édouard Rousseau ${ }^{2} 5$ Éric Schost ${ }^{3}$

${ }_{3}^{1}$ Universsité d'Aix-Marseille ${ }^{2}$ Université de Versailles - Saint-Quentin-en-Yvelines
${ }^{3}$ University of Waterloo ${ }^{4}$ Agence nationale de sécurité des systèmes d'information
${ }^{5}$ Télécom Paristech

The embedding problem

Let

- \mathbb{F}_{q} be a field with q elements,
- f and
g be irreducible polynomials
in $\mathbb{F}_{q}[X]$ and $\mathbb{F}_{q}[Y]$,
- $r=\operatorname{deg} f, s=\operatorname{deg} g$ and $r \mid s . \quad k=\mathbb{F}_{q}[X] / f(X)$

There exists a field embedding

$$
\varphi: k \hookrightarrow K
$$

unique up to \mathbb{F}_{q}-automorphisms of k.

Embedding description

Determine

elements α and β such that

- α generates $k=\mathbb{F}_{q}[\alpha]$,
- there exists $\varphi: \alpha \mapsto \beta$.

Naive solution: take

- $\alpha=X \bmod f(X)$, and
- β a root of f in K.

Cost of factorization: $\tilde{O}\left(r s^{(\omega+1) / 2}\right)$

Some history

'91 Lenstra [8] proves that the isomorphism problem is in P .

- Based on Kummer theory, pervasive use of linear algebra.
- Does not prove precise complexity. Rough estimate: $\Omega\left(r^{3}\right)$.
'92 Pinch's algorithm [11]:
- Based on mapping algebraic groups over k, K.
- Incomplete algorithm, no complexity analysis.
'96 Rains [12] generalizes Pinch's algorithm.
- Complete algorithm, rigorous complexity analysis.
- Unpublished. Leaves open question of using elliptic curves.
'97 Magma [3] implements lattices of finite fields using on polynomial factorization and linear algebra [4].

Some history (cont.)

'02 Allombert's variant of Lenstra's algorithm [1, 2]:

- Trades determinism for efficiency.
- Implementation integrated into Pari/GP [14].
'07 Magma implements Rains' algorithm.
'16 Narayanan proves the first $\tilde{O}\left(r^{2}\right)$ upper bound [10].
- Variant of Allombert's algorithm.
- Using asymptotically fast modular composition.

Now Knowledge systematization. Notable results:

- Better variants of Allombert's algorithm.
- $\tilde{O}\left(r^{2}\right)$ upper bound without fast modular composition.
- Generalized Rains' algorithm to elliptic curves.
- C/Flint [6] and Sage [5] implementations, experiments, comparisons.

Allombert's algorithm

Assuming $\operatorname{gcd}(r, q)=1$:

- Let h be an irreducible factor of the r-th cyclotomic polynomial over \mathbb{F}_{q};
- Extend the action of $\operatorname{Gal}\left(k / \mathbb{F}_{q}\right)$ to the ring $k[\zeta]=k[Z] / h(Z)$:

$$
\begin{array}{rll}
\sigma: & k[\zeta] & \rightarrow k[\zeta], \\
& x \otimes \zeta & \mapsto \sigma(x) \otimes \zeta
\end{array}
$$

- Solve Hilbert 90: find $\theta_{1} \in k[\zeta]$ such that $\sigma\left(\theta_{1}\right)=\zeta \theta_{1}$ using linear algebra;
- Compute $\theta_{2} \in K[\zeta]$ similarly;
- Compute $c=\sqrt[r]{\theta_{1}^{r} / \theta_{2}^{r}} \in \mathbb{F}_{q}(\zeta)$;
- Project $\theta_{1} \mapsto \alpha \in k$ and $c \theta_{2} \mapsto \beta \in K$.

Implementation (take 1)

Factorization

- The factor h of Φ_{r} is of degree $\operatorname{ord}_{r}(q)=O(r)$;
- Computing it is $\tilde{O}(r)$ using Shoup [13];
- Computing r-th roots in $\mathbb{F}_{q}(\zeta)$ is $\tilde{O}\left(r^{2}\right)$ using Kaltofen-Shoup [7].

Linear algebra

- Computing a matrix for σ over \mathbb{F}_{q} is $\tilde{O}\left(r^{2}\right)$;
- Computing its kernel over $\mathbb{F}_{q}(\zeta)$ is $\tilde{O}\left((s r)^{\omega}\right)$.

Implementation (take 2, 3, 4, 5, ...)

Reaching subquadratic complexity

1. Use the factorization $h(S)=(S-\zeta) b(S)$ to perform linear algebra over \mathbb{F}_{q}.
2. Use the factorization $S^{r}-1=(S-\zeta) b(S) g(S)$ with h and g in $\mathbb{F}_{q}[S]$ to replace linear algebra by modular composition.

Allombert's algorithm where the auxiliary degree $s=\operatorname{ord}_{r}(q) \leq 10$. Dots represent individual runs, lines represent degree 2 linear regressions.

Allombert's algorithm, as a function of the auxiliary degree $s=\operatorname{ord}_{r}(q)$ scaled down by r^{2}.

Pinch's algorithm

Pinch's idea

- Find small ℓ such that $k \simeq \mathbb{F}_{q}\left[\mu_{\ell}\right]$,
- Pick ℓ-th roots of unity $\alpha \in k$, $\beta \in K$,
- Find e s.t. $\alpha \mapsto \beta^{e}$ using brute force.
- Problem 1: worst case $\ell \in O\left(q^{r}\right)$.
- Problem 2: potentially $O(\ell)$
 exponents e to test depending on the splitting of $\Phi_{/}$over \mathbb{F}_{q}.

Rains' algorithm and variants

- Replace α, β with Gaussian periods:

$$
\eta(\alpha)=\sum_{\sigma \in S} \alpha^{\sigma}
$$

where $(\mathbb{Z} / \ell \mathbb{Z})^{\times}=\langle q\rangle \times S$.

- Periods are normal elements, hence yield bases of k, K.
- Periods are unique up to Galois action, hence $\eta(\alpha) \mapsto \eta(\beta)$ always defines an isomorphism.
- The size of ℓ can be controlled by allowing auxiliary extensions.
- Use higher dimensional algebraic groups:
- Replace $\mathbb{F}_{q}\left[\mu_{\ell}\right]$ with the ℓ-torsion of random elliptic curves E / \mathbb{F}_{q};
- Replace Gaussian periods with elliptic periods [9];
- This removes the need for auxiliary extensions.

Allombert's vs Rains' at some fixed auxiliary extension degrees s. Lines represent median times, shaded areas minimum and maximum times.

Part II: Compatible embeddings

The compatibility problem

Context:

- E, F, G fields
- E subfield of F and F subfield of G
- $\phi_{E \hookrightarrow F}, \phi_{F \hookrightarrow G}, \phi_{E \hookrightarrow G}$ embeddings

$$
\phi_{F \hookrightarrow G} \circ \phi_{E \hookrightarrow F} \stackrel{?}{=} \phi_{E \hookrightarrow G}
$$

The compatibility problem

Bosma, Cannon and Steel '97 [4]

- Based upon naive embedding algorithms.
- Supports arbitrary, user-defined finite fields.
- Allows to compute the embeddings in arbitrary order.
- Implemented by MAGMA.

The Bosma, Cannon and Steel framework

- Take $\phi_{F \hookrightarrow G}^{\prime}$ an arbitrary embedding between F and G
- Find $\sigma \in \operatorname{Gal}\left(G / \mathbb{F}_{p}\right)$ such that $\sigma \circ \phi_{F \hookrightarrow G}^{\prime} \circ \phi_{E \hookrightarrow F}=\phi_{E \hookrightarrow G}$
- Set $\phi_{F \hookrightarrow G}:=\sigma \circ \phi_{F \hookrightarrow G}^{\prime}$
- There are $|\operatorname{Gal}(F / E)|$ compatible morphisms

Bosma, Cannon and Steel framework

What about several subfields $E_{1}, E_{2}, \ldots, E_{r}$?

- Enforce these axioms on the lattice:

CE1 (Unicity) At most one morphism $\phi_{E \hookrightarrow F}$
CE2 (Reflexivity) For each $E, \phi_{E \hookrightarrow E}=\operatorname{Id}_{E}$
CE3 (Invertibility) For each pair (E, F) with $E \cong F, \phi_{E \hookrightarrow F}=\phi_{F \hookrightarrow E}^{-1}$
CE4 (Transitivity) For any triple (E, F, G) with E subfield of F and F subfield of G, if we have computed $\phi_{E \hookrightarrow F}$ and $\phi_{F \hookrightarrow G}$, then $\phi_{E \hookrightarrow G}=\phi_{F \hookrightarrow G} \circ \phi_{E \hookrightarrow F}$
CE5 (Intersections) For any triple (E, F, G) with E and F subfields of G, we have that the field $S=E \cap F$ is embedded in E and F, i.e. we have computed $\phi_{S \hookrightarrow E}$ and $\phi_{S \hookrightarrow F}$

The Bosma, Cannon and Steel framework

- Set F^{\prime} the field generated by the fields E_{i} in F
- Set G^{\prime} the field generated by the fields E_{i} in G

Theorem
There exists a unique isomorphism $\chi: F^{\prime} \rightarrow G^{\prime}$ that is compatible with all embeddings, i.e. such that for all $i, \phi_{E_{i} \hookrightarrow G^{\prime}}=\chi \circ \phi_{E_{i} \hookrightarrow F^{\prime}}$.

New problem: compute embeddings with common subfields

- We want to embed E in F
- additionnal information: S is a field embedded in E and F
- The naive algorithm can be sped up by replacing \mathbb{F}_{p} with S as base field (degree $[E: S]$ polynomial factorization vs degree $\left[E: \mathbb{F}_{p}\right]$)
- More generally: S the compositum of all known fields embedded in E and F.

Some questions

- Bosma, Cannon and Steel framework + Allombert's algorithm: any smart optimizations possible?
- Allombert's algorithm
with common subfield knowledge?

Demo

- Our implementations of Allombert's algorithm + embedding evaluation are being pushed into Flint (https://github.com/wbhart/flint2/pull/351);
- A compatible embedding framework is being added to Nemo (https://github.com/Nemocas/Nemo.jl/issues/233).

Go to the demo:
https://github.com/defeo/Nemo-embeddings-demo

Questions ?

References I

目
Bill Allombert.
Explicit computation of isomorphisms between finite fields.
Finite Fields Appl., 8(3):332-342, 2002.
Bill Allombert.
Explicit computation of isomorphisms between finite fields.
Revised version. https://www.math.u-bordeaux.fr/~ballombe/fpisom.ps, 2002.

氯 Wieb Bosma, John Cannon, and Catherine Playoust.
The MAGMA algebra system I: the user language.
J. Symbolic Comput., 24(3-4):235-265, 1997.

Wieb Bosma, John Cannon, and Allan Steel.
Lattices of compatibly embedded finite fields.
Journal of Symbolic Computation, 24(3-4):351-369, 1997.

The Sage Developers.
SageMath, the Sage Mathematics Software System (Version 7.5.rc0), 2016.
http://www.sagemath.org.
0
William Hart.
Fast library for number theory: an introduction.
Mathematical Software-ICMS 2010, pages 88-91, 2010.

References II

Erich Kaltofen and Victor Shoup.
Fast polynomial factorization over high algebraic extensions of finite fields.
In ISSAC '97: Proceedings of the 1997 international symposium on Symbolic and algebraic computation, pages 184-188, New York, NY, USA, 1997. ACM.

Hendrik W. Lenstra.
Finding isomorphisms between finite fields.
Mathematics of Computation, 56(193):329-347, 1991.

Preda Mihailescu, François Morain, and Éric Schost.
Computing the eigenvalue in the Schoof-Elkies-Atkin algorithm using abelian lifts.
In ISSAC '07: Proceedings of the 2007 international symposium on Symbolic and algebraic computation, pages 285-292, New York, NY, USA, 2007. ACM.

Anand Kumar Narayanan.
Fast computation of isomorphisms between finite fields using elliptic curves.
arXiv preprint arXiv:1604.03072, 2016.
Richard G. E. Pinch.
Recognising elements of finite fields.
In Cryptography and Coding II, pages 193-197. Oxford University Press, 1992.
Eric M. Rains.
Efficient computation of isomorphisms between finite fields.
personal communication, 1996.

References III

Victor Shoup.Fast construction of irreducible polynomials over finite fields.
Journal of Symbolic Computation, 17(5):371-391, 1994.
国
The PARI Group, Bordeaux.
PARI/GP, version 2.8.0, 2016.

