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The embedding problem

Fq

k = Fq[X ]/f (X )

K = Fq[Y ]/g(Y )

ϕ

Let

I Fq be a field with q elements,

I f and
g be irreducible polynomials
in Fq[X ] and Fq[Y ],

I r = deg f , s = deg g and r |s.

There exists a field embedding

ϕ : k ↪→ K ,

unique
up to Fq-automorphisms of k .



Embedding description

Fq

k = Fq[α]

K

α

β

r

s

Determine
elements α and β such that

I α generates k = Fq[α],

I there exists ϕ : α 7→ β.

Naive solution: take

I α = X mod f (X ), and

I β a root of f in K .

Cost of factorization: Õ(rs(ω+1)/2)



Some history

’91 Lenstra [8] proves that the isomorphism problem is in P.
I Based on Kummer theory, pervasive use of linear algebra.
I Does not prove precise complexity. Rough estimate: Ω(r3).

’92 Pinch’s algorithm [11]:
I Based on mapping algebraic groups over k ,K .
I Incomplete algorithm, no complexity analysis.

’96 Rains [12] generalizes Pinch’s algorithm.
I Complete algorithm, rigorous complexity analysis.
I Unpublished. Leaves open question of using elliptic curves.

’97 Magma [3] implements lattices of finite fields using on
polynomial factorization and linear algebra [4].



Some history (cont.)

’02 Allombert’s variant of Lenstra’s algorithm [1, 2]:
I Trades determinism for efficiency.
I Implementation integrated into Pari/GP [14].

’07 Magma implements Rains’ algorithm.

’16 Narayanan proves the first Õ(r2) upper bound [10].
I Variant of Allombert’s algorithm.
I Using asymptotically fast modular composition.

Now Knowledge systematization. Notable results:
I Better variants of Allombert’s algorithm.
I Õ(r2) upper bound without fast modular composition.
I Generalized Rains’ algorithm to elliptic curves.
I C/Flint [6] and Sage [5] implementations, experiments,

comparisons.



Allombert’s algorithm

Fq

Fq(ζ)

k

k ⊗ Fq(ζ)

K

K ⊗ Fq(ζ)

σ

σ

σ

σ

∼
Assuming gcd(r , q) = 1:

I Let h be an irreducible factor of the
r -th cyclotomic polynomial over Fq;

I Extend the action of Gal(k/Fq)
to the ring k[ζ] = k[Z ]/h(Z ):

σ : k[ζ] → k[ζ],
x ⊗ ζ 7→ σ(x)⊗ ζ;

I Solve Hilbert 90: find θ1 ∈ k[ζ]
such that σ(θ1) = ζθ1 using linear algebra;

I Compute θ2 ∈ K [ζ] similarly;

I Compute c = r
√
θr1/θ

r
2 ∈ Fq(ζ);

I Project θ1 7→ α ∈ k and cθ2 7→ β ∈ K .



Implementation (take 1)

Factorization

I The factor h of Φr is of degree ordr (q) = O(r);

I Computing it is Õ(r) using Shoup [13];

I Computing r -th roots in Fq(ζ) is Õ(r2) using
Kaltofen–Shoup [7].

Linear algebra

I Computing a matrix for σ over Fq is Õ(r2);

I Computing its kernel over Fq(ζ) is Õ((sr)ω).



Implementation (take 2, 3, 4, 5, . . . )

Reaching subquadratic complexity

1. Use the factorization h(S) = (S − ζ)b(S) to perform linear
algebra over Fq.

2. Use the factorization S r − 1 = (S − ζ)b(S)g(S) with h and g
in Fq[S ] to replace linear algebra by modular composition.
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Pinch’s algorithm

Fq

Fq[µ`]k K
∼ ∼

Pinch’s idea

I Find small ` such that k ' Fq[µ`],

I Pick `-th roots of unity α ∈ k ,
β ∈ K ,

I Find e s.t. α 7→ βe using brute force.

I Problem 1: worst case ` ∈ O(qr ).

I Problem 2: potentially O(`)
exponents e to test depending on the
splitting of Φl over Fq.



Rains’ algorithm and variants

I Replace α, β with Gaussian periods:

η(α) =
∑
σ∈S

ασ

where (Z/`Z)× = 〈q〉 × S .
I Periods are normal elements, hence yield bases of k, K .
I Periods are unique up to Galois action, hence η(α) 7→ η(β)

always defines an isomorphism.
I The size of ` can be controlled by allowing auxiliary extensions.

I Use higher dimensional algebraic groups:
I Replace Fq[µ`] with the `-torsion of random elliptic curves

E/Fq;
I Replace Gaussian periods with elliptic periods [9];
I This removes the need for auxiliary extensions.
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Part II: Compatible embeddings



The compatibility problem

Context:

I E , F , G fields

I E subfield of F and F subfield of G

I φE ↪→F , φF ↪→G , φE ↪→G embeddings

E

F

G

φE ↪→F

φE ↪→G

φF ↪→G

φF ↪→G ◦ φE ↪→F
?
= φE ↪→G



The compatibility problem

E

FG

H

φE ↪→FφE ↪→G

φF ↪→G
φG ↪→H

φG ↪→H ◦ φE ↪→G
?
= φF ↪→H ◦ φE ↪→F



Bosma, Cannon and Steel ’97 [4]

I Based upon naive embedding algorithms.

I Supports arbitrary, user-defined finite fields.

I Allows to compute the embeddings in arbitrary order.

I Implemented by MAGMA.



The Bosma, Cannon and Steel framework

E

F

G

φE ↪→F

φE ↪→G

I Take φ′F ↪→G an arbitrary embedding between F and G

I Find σ ∈ Gal(G/Fp) such that σ ◦ φ′F ↪→G ◦ φE ↪→F = φE ↪→G

I Set φF ↪→G := σ ◦ φ′F ↪→G

I There are |Gal(F/E )| compatible morphisms



Bosma, Cannon and Steel framework

What about several subfields E1,E2, . . . ,Er ?
I Enforce these axioms on the lattice:

CE1 (Unicity) At most one morphism φE ↪→F

CE2 (Reflexivity) For each E , φE ↪→E = IdE
CE3 (Invertibility) For each pair (E ,F ) with E ∼= F , φE ↪→F = φ−1

F ↪→E

CE4 (Transitivity) For any triple (E ,F ,G ) with E subfield of F and
F subfield of G , if we have computed φE ↪→F and φF ↪→G , then
φE ↪→G = φF ↪→G ◦ φE ↪→F

CE5 (Intersections) For any triple (E ,F ,G ) with E and F
subfields of G , we have that the field S = E ∩ F is embedded
in E and F , i.e. we have computed φS↪→E and φS↪→F



The Bosma, Cannon and Steel framework

E1 E2 Er

F

G

. . .

I Set F ′ the field generated by the fields Ei in F

I Set G ′ the field generated by the fields Ei in G

Theorem
There exists a unique isomorphism χ : F ′ → G ′ that is compatible
with all embeddings, i.e. such that for all i , φEi ↪→G ′ = χ ◦ φEi ↪→F ′ .



New problem: compute embeddings with common subfields

I We want to embed E in F
I additionnal information: S is a field embedded in E and F

I The naive algorithm can be sped up by replacing Fp with S as
base field
(degree [E : S ] polynomial factorization vs degree [E : Fp])

I More generally: S the compositum of all known fields
embedded in E and F .



Some questions

I Bosma, Cannon and Steel framework + Allombert’s algorithm:
any smart optimizations possible?

I Allombert’s algorithm
with common subfield knowledge?



Demo

I Our implementations of Allombert’s algorithm + embedding
evaluation are being pushed into Flint
(https://github.com/wbhart/flint2/pull/351);

I A compatible embedding framework is being added to Nemo
(https://github.com/Nemocas/Nemo.jl/issues/233).

Go to the demo:
https://github.com/defeo/Nemo-embeddings-demo

https://github.com/wbhart/flint2/pull/351
http://nemocas.org/
https://github.com/Nemocas/Nemo.jl/issues/233
https://github.com/defeo/Nemo-embeddings-demo


Questions ?
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