Products of Eisenstein series

François Brunault, ÉNS Lyon

January 18, 2017

Notations. For any integer $N \ge 1$, we define the congruence subgroups

$$\begin{split} & \Gamma(N) = \left\{ g \in \operatorname{SL}_2(\mathbf{Z}) : g \equiv \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \pmod{N} \right\}, \\ & \Gamma_1(N) = \left\{ g \in \operatorname{SL}_2(\mathbf{Z}) : g \equiv \begin{pmatrix} 1 & * \\ 0 & 1 \end{pmatrix} \pmod{N} \right\}, \\ & \Gamma_0(N) = \left\{ g \in \operatorname{SL}_2(\mathbf{Z}) : g \equiv \begin{pmatrix} * & * \\ 0 & * \end{pmatrix} \pmod{N} \right\}. \end{split}$$

Note that $\Gamma(N) \subset \Gamma_1(N) \subset \Gamma_0(N)$ and that $\Gamma_0(N)/\Gamma_1(N) \cong (\mathbb{Z}/N\mathbb{Z})^{\times}$.

For any weight $k \ge 0$ and any congruence subgroup $\Gamma \subset SL_2(\mathbf{Z})$, the space $\mathcal{M}_k(\Gamma)$ of modular forms of weight k and level Γ decomposes into a direct sum

$$\mathcal{M}_k(\Gamma) = \mathcal{S}_k(\Gamma) \oplus \mathcal{E}_k(\Gamma).$$

The space of Eisenstein series $\mathcal{E}_k(\Gamma)$ is easy to describe (explicit bases are known), while the space of cusp forms $\mathcal{S}_k(\Gamma)$ is more mysterious.

A question

Let *f* be a modular form of weight $k \ge 2$ and some level.

Can we write *f* as a linear combination of products of two Eisenstein series of lower weights?

Potential applications.

- Compute a large number of Fourier coefficients of f.
- Ocompute the Fourier expansion of *f* at arbitrary cusps.
- Ocompute the action of Atkin-Lehner operators on *f*.
- Compute the automorphic representation associated to a newform f.

More precisely: let $k \ge 2$ and let Γ be a congruence subgroup of $SL_2(\mathbf{Z})$. Multiplying Eisenstein series gives a linear map

$$\mu_{k,\Gamma}: \bigoplus_{k_1+k_2=k} \mathcal{E}_{k_1}(\Gamma) \otimes \mathcal{E}_{k_2}(\Gamma) \to \mathcal{M}_k(\Gamma).$$

What is the image of $\mu_{k,\Gamma}$?

- It is surjective for $\Gamma = SL_2(\mathbf{Z})$ (Kohnen–Zagier, 1977).
- It is surjective for k ≥ 3 and Γ = Γ₁(N) (Borisov–Gunnells, ~2000).
- It is surjective for k = 2 and $\Gamma = \Gamma(N)$ (Khuri-Makdisi, 2011).
- Under technical assumptions on *N*, every cusp form of weight $k \ge 4$ on $\Gamma_0(N)$ can be written using products of explicit Eisenstein series on $\Gamma_1(N)$ (Dickson–Neururer, 2016).

Remark. The map $\mu_{k,\Gamma}$ is not surjective in general: for k = 2 and $\Gamma = \Gamma_0(N)$, we have $\mathcal{E}_1(\Gamma_0(N)) = \{0\}$ so that the image of $\mu_{2,\Gamma_0(N)}$ is $\mathcal{E}_2(\Gamma_0(N))$.

Let us start with the definition of some Eisenstein series.

Definition

For a weight $k \ge 1$ and $(a, b) \in (\mathbb{Z}/N\mathbb{Z})^2$, we define

$$F_{a,b}^{(k)}(\tau) = c_{a,b}^{(k)} + \sum_{\substack{m,n \ge 1 \\ n \equiv a(N)}} \zeta_N^{bm} n^{k-1} q_N^{mn} + (-1)^k \sum_{\substack{m,n \ge 1 \\ n \equiv -a(N)}} \zeta_N^{-bm} n^{k-1} q_N^{mn},$$

where $c_{a,b}^{(k)} \in \mathbf{C}$ is an explicit constant, $\zeta_N = e^{2\pi i/N}$ and $q_N = e^{2\pi i \tau/N}$.

These Eisenstein series are well-behaved with respect to the action of $SL_2(Z)$:

Proposition

For any
$$g \in SL_2(\mathbf{Z})$$
, we have $F_{a,b}^{(k)}|_k g = F_{(a,b)\cdot g}^{(k)}$ except in the case $k = 2$ and $(a,b) = (0,0)$.

Definition

$$F_{a,b}^{(k)}(\tau) = c_{a,b}^{(k)} + \sum_{\substack{m,n \ge 1 \\ n \equiv a(N)}} \zeta_N^{bm} n^{k-1} q_N^{mn} + (-1)^k \sum_{\substack{m,n \ge 1 \\ n \equiv -a(N)}} \zeta_N^{-bm} n^{k-1} q_N^{mn},$$

In particular, we get the following propositions.

Proposition

The series $F_{a,b}^{(k)}$ is a modular form of weight k on $\Gamma(N)$, except in the case k = 2 and (a, b) = (0, 0) where it is only quasi-modular. In fact, the series $\{F_{a,b}^{(k)}\}_{a,b\in\mathbb{Z}/N\mathbb{Z}}$ span the space $\mathcal{E}_k(\Gamma(N))$.

Proposition

The series $F_{0,b}^{(k)}$ belongs to $\mathcal{E}_k(\Gamma_1(N))$, except in the case k = 2 and b = 0.

The work of Borisov and Gunnells

Borisov and Gunnells introduced the notion of *toric modular form*. They come from toric geometry, but can also be defined as follows.

Definition

Let $\mathcal{T}_*(N)$ be the graded subalgebra of $\mathcal{M}_*(\Gamma_1(N))$ generated by the weight 1 Eisenstein series $\{F_{0,b}^{(1)}\}_{b\in \mathbb{Z}/N\mathbb{Z}}$. A toric modular form of weight k and level N is an element of $\mathcal{T}_k(N)$.

In particular, a toric modular form of weight 2 is a linear combination of products $F_{0,b}^{(1)}F_{0,b'}^{(1)}$ with $b, b' \in \mathbf{Z}/N\mathbf{Z}$.

The toric modular forms enjoy many remarkable properties.

Theorem (Borisov–Gunnells)

Assume $N \ge 5$.

- The ring $T_*(N)$ is stable under the Hecke operators.
- So For $k \ge 3$, the cuspidal part of $\mathcal{T}_k(N)$ is the whole space $\mathcal{S}_k(\Gamma_1(N))$.
- So For k = 2, the cuspidal part of T₂(N) is the span of the eigenforms f satisfying L(f, 1) ≠ 0.

Moreover, consider the map $\mu : (\mathbf{Z}/N\mathbf{Z})^2 \to \mathcal{M}_2(\Gamma_1(N))$ defined by

$$\mu(u, v) = F_{0,u}^{(1)} F_{0,v}^{(1)}.$$

The last part of the theorem implies that μ factors through modular symbols:

Here

•
$$E_N = \{(u, v) \in (\mathbf{Z}/N\mathbf{Z})^2 : \gcd(u, v, N) = 1\},\$$

- $M_N = H_1(X_1(N), \{\text{cusps}\}, \mathbf{Z}),$
- ξ(u, v) is the unimodular symbol {g0, g∞} for any matrix g ∈ SL₂(Z) such that g ≡ (^{*}_u ^{*}_v) (mod N).

Theorem (Borisov-Gunnells)

The map $\overline{\mu}$ is Hecke-equivariant.

Back to our original problem

Let *E* be an elliptic curve of conductor *N*, and let $f_E \in S_2(\Gamma_0(N))$ be the newform of weight 2 associated to *E*.

We want to express f_E as a linear combination of pairwise products of Eisenstein series of weight 1.

The results of Borisov and Gunnells suggest the following strategy:

Compute the (minus) modular symbol $x_E^- \in M_N$ associated to *E*. We have $x_E^- = \sum_{(u,v) \in E_N} a_{u,v} \xi(u,v)$ for some $a_{u,v} \in \mathbf{Z}$.

3 Compute
$$F = \mu(x_E^-) = \sum a_{u,v} F_{0,u}^{(1)} F_{0,v}^{(1)}$$
.

- So By Hecke equivariance, we have $F = \alpha f_E \mod \mathcal{E}_2(\Gamma_1(N))$ for some $\alpha \in \mathbf{Q}(\zeta_N)$.
- The main theorem then implies that $\alpha \neq 0$ precisely when $L(E, 1) \neq 0$.

Problem. Computing with modular symbols on $\Gamma_1(N)$ is very expensive!

Definition

The trace map $Tr : \mathcal{M}_2(\Gamma_1(N)) \to \mathcal{M}_2(\Gamma_0(N))$ is defined by

$$\mathsf{Tr}(f) = \sum_{\delta \in (\mathbf{Z}/N)^{ imes}} f|_2 \langle \delta
angle$$

where $\langle \delta \rangle \in \Gamma_0(N)$ is any matrix congruent to $\begin{pmatrix} \delta^{-1} \\ 0 \end{pmatrix}$ modulo N.

So, let's compute the trace of $\mu(u, v) = F_{0,u}^{(1)} F_{0,v}^{(1)}$.

$$\operatorname{Tr}(\mu(\boldsymbol{u},\boldsymbol{v})) = \sum_{\boldsymbol{\delta}\in(\mathbf{Z}/N)^{\times}} F_{0,\boldsymbol{\delta}\boldsymbol{u}}^{(1)} F_{0,\boldsymbol{\delta}\boldsymbol{v}}^{(1)}$$
$$\sim \sum_{\boldsymbol{\delta}\in(\mathbf{Z}/N)^{\times}} \sum_{\boldsymbol{m},\boldsymbol{n}\geq1} \zeta_{N}^{\boldsymbol{\delta}\boldsymbol{u}\boldsymbol{m}} q^{\boldsymbol{m}\boldsymbol{n}} \sum_{\boldsymbol{m}',\boldsymbol{n}'\geq1} \zeta_{N}^{\boldsymbol{\delta}\boldsymbol{v}\boldsymbol{m}'} q^{\boldsymbol{m}'\boldsymbol{n}'}$$
$$\sim \sum_{\boldsymbol{m},\boldsymbol{m}'\geq1} \left(\sum_{\boldsymbol{\delta}\in(\mathbf{Z}/N)^{\times}} \zeta_{N}^{\boldsymbol{\delta}(\boldsymbol{u}\boldsymbol{m}+\boldsymbol{v}\boldsymbol{m}')}\right) \sum_{\boldsymbol{n},\boldsymbol{n}'\geq1} q^{\boldsymbol{m}\boldsymbol{n}+\boldsymbol{m}'\boldsymbol{n}'}$$
$$\sim \sum_{\boldsymbol{m},\boldsymbol{m}'\geq1} \operatorname{tr}_{\mathbf{Q}(\boldsymbol{\zeta}_{N})/\mathbf{Q}} (\zeta_{N}^{\boldsymbol{u}\boldsymbol{m}+\boldsymbol{v}\boldsymbol{m}'}) \sum_{\boldsymbol{n},\boldsymbol{n}'\geq1} q^{\boldsymbol{m}\boldsymbol{n}+\boldsymbol{m}'\boldsymbol{n}'}$$

An analogue of μ for $\Gamma_0(N)$

We define

$$\mu_0: \mathbf{P}^1(\mathbf{Z}/N\mathbf{Z}) \to \mathcal{M}_2(\Gamma_0(N))$$
$$(u:v) \mapsto \operatorname{Tr} \mu(u,v) = \operatorname{Tr}(F_{0,u}^{(1)}F_{0,v}^{(1)}).$$

- The map μ_0 satisfies the Manin relations modulo $\mathcal{E}_2(\Gamma_0(N))$.
- So we have a commutative diagram

$$\begin{array}{ccc} \mathbf{P}^{1}(\mathbf{Z}/N\mathbf{Z}) & \xrightarrow{\mu_{0}} & \mathcal{M}_{2}(\Gamma_{0}(N)) \\ & & \downarrow^{\xi} & & \downarrow \\ & \mathcal{H}_{1}(X_{0}(N), \{\mathrm{cusps}\}, \mathbf{Z}) & \xrightarrow{\bar{\mu}_{0}} & \mathcal{M}_{2}(\Gamma_{0}(N))/\mathcal{E}_{2}(\Gamma_{0}(N)). \end{array}$$

• The map $\bar{\mu}_0$ is Hecke-equivariant.

Computations for elliptic curves

Given an elliptic curve E/\mathbf{Q} of conductor *N*, we compute:

- The Hecke eigensymbol $x_E^- \in H_1(X_0(N), \{\text{cusps}\}, \mathbb{Z})^-$.
- 2 The modular form $F = \mu_0(x_E^-)$.

Then we know that $F = \alpha_E f_E + G$ for some $\alpha_E \in \mathbf{Q}$ and $G \in \mathcal{E}_2(\Gamma_0(N))$.

Actually it seems to be the case that *G* belongs to the subspace $\mathcal{E}'_2(\Gamma_0(N))$ generated by $\{\operatorname{Tr}(\mathcal{F}^{(2)}_{0,b})\}_{b\in \mathbb{Z}/N\mathbb{Z}, b\neq 0}$. In general \mathcal{E}'_2 is a proper subspace of \mathcal{E}_2 .

We checked that for all elliptic curves of conductor $N \le 10^3$ we have

$$\alpha_E \neq \mathbf{0} \Leftrightarrow L(E, \mathbf{1}) \neq \mathbf{0}$$

in accordance with Borisov–Gunnells.

Computations for elliptic curves

We have

$$F = \alpha_E f_E + \sum_{\substack{d \mid N \\ d \neq N}} \alpha_d \operatorname{Tr}(F_{0,d}^{(2)}) \qquad (\alpha_E, \alpha_d \in \mathbf{Q}).$$
(1)

How to compute α_E and α_d ?

- Since *f_E* vanishes at all cusps, it is sufficient to evaluate *F* and Tr(*F*⁽²⁾_{0,d}) at the cusps to get the α_d's.
- Since f_E = q + O(q²), it is sufficient to compute the coefficient of q of both sides of (1) to get α_E.

Remark. It gives an algebraic method to decide whether L(E, 1) is zero or not.

Question. According to the data α_E is a rational number with small denominator. Is there a formula for α_E ?

A linear algebra question

In order to speed up the computation of $F = \mu_0(x_E^-)$, we want to express x_E^- as a linear combination of *fewest possible* unimodular symbols $\{g0, g\infty\}$.

By Manin's theorem, we have a presentation of $H = H_1(X_0(N), \{\text{cusps}\}, \mathbf{Q})$:

• Generators: $\xi(u : v) = \{g_{u,v}0, g_{u,v}\infty\}$ for $(u : v) \in \mathbf{P}^1(\mathbf{Z}/N\mathbf{Z})$.

• Manin's relations:
$$\begin{cases} \xi(u:v) + \xi(v:-u) = 0, \\ \xi(u:v) + \xi(v:-u-v) + \xi(-u-v:u) = 0. \end{cases}$$

In order to get the minus part H^- , we set $\xi^-(u : v) := \frac{1}{2}(\xi(u : v) - \xi(-u : v))$. Then H^- is generated by the $\xi^-(u : v)$ together with the obvious relations.

What is the shortest expression of x_E^- in terms of Manin symbols $\xi^-(u : v)$?

What to do if L(E, 1) = 0?

Possible approaches:

- Multiply *f_E* by a known Eisenstein series of weight 2 to get a modular form *g* of weight 4. Then apply Borisov-Gunnells' theory to *g*.
 Problem: *g* is a cusp form but not necessarily an eigenform.
- Use Eisenstein series on Γ(N) and Khuri-Makdisi's theorem. Note that the trace map M₂(Γ(N)) → M₂(Γ₁(N)) is very easy to compute: it sends ∑ a_nq_Nⁿ to ∑ a_{Nn}qⁿ, so there is some hope to do something similar as above.

Thank you for your attention!