Products of Eisenstein series

François Brunault, ÉNS Lyon

January 18, 2017

Notations. For any integer $N \geq 1$, we define the congruence subgroups

$$
\left.\begin{array}{rl}
\Gamma(N) & =\left\{g \in \mathrm{SL}_{2}(\mathbf{Z}): g \equiv\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\right. \\
\Gamma_{1}(N) & (\bmod N)\}, \\
\Gamma_{0}(N) & =\left\{g \in \mathrm{SL}_{2}(\mathbf{Z}): g \equiv\left(\begin{array}{ll}
1 & * \\
0 & 1
\end{array}\right)\right.
\end{array}(\operatorname{(\operatorname {mod}N)\} }\}, \mathrm{SL}_{2}(\mathbf{Z}): g \equiv\left(\begin{array}{ll}
* & * \\
0 & *
\end{array}\right) \quad(\bmod N)\right\} . .
$$

Note that $\Gamma(N) \subset \Gamma_{1}(N) \subset \Gamma_{0}(N)$ and that $\Gamma_{0}(N) / \Gamma_{1}(N) \cong(\mathbf{Z} / N Z)^{\times}$.
For any weight $k \geq 0$ and any congruence subgroup $\Gamma \subset \mathrm{SL}_{2}(\mathbf{Z})$, the space $\mathcal{M}_{k}(\Gamma)$ of modular forms of weight k and level Γ decomposes into a direct sum

$$
\mathcal{M}_{k}(\Gamma)=\mathcal{S}_{k}(\Gamma) \oplus \mathcal{E}_{k}(\Gamma)
$$

The space of Eisenstein series $\mathcal{E}_{k}(\Gamma)$ is easy to describe (explicit bases are known), while the space of cusp forms $\mathcal{S}_{k}(\Gamma)$ is more mysterious.

A question

Let f be a modular form of weight $k \geq 2$ and some level.
Can we write f as a linear combination of products of two Eisenstein series of lower weights?

Potential applications.

(1) Compute a large number of Fourier coefficients of f.
(2) Compute the Fourier expansion of f at arbitrary cusps.
(3) Compute the action of Atkin-Lehner operators on f.
(9) Compute the automorphic representation associated to a newform f.

More precisely: let $k \geq 2$ and let Γ be a congruence subgroup of $\mathrm{SL}_{2}(\mathbf{Z})$. Multiplying Eisenstein series gives a linear map

$$
\mu_{k, \Gamma}: \bigoplus_{k_{1}+k_{2}=k} \mathcal{E}_{k_{1}}(\Gamma) \otimes \mathcal{E}_{k_{2}}(\Gamma) \rightarrow \mathcal{M}_{k}(\Gamma) .
$$

What is the image of $\mu_{k, \Gamma}$?

- It is surjective for $\Gamma=\mathrm{SL}_{2}(\mathbf{Z})$ (Kohnen-Zagier, 1977).
- It is surjective for $k \geq 3$ and $\Gamma=\Gamma_{1}(N)$ (Borisov-Gunnells, ~2000).
- It is surjective for $k=2$ and $\Gamma=\Gamma(N)$ (Khuri-Makdisi, 2011).
- Under technical assumptions on N, every cusp form of weight $k \geq 4$ on $\Gamma_{0}(N)$ can be written using products of explicit Eisenstein series on $\Gamma_{1}(N)$ (Dickson-Neururer, 2016).
Remark. The map $\mu_{k, \Gamma}$ is not surjective in general: for $k=2$ and $\Gamma=\Gamma_{0}(N)$, we have $\mathcal{E}_{1}\left(\Gamma_{0}(N)\right)=\{0\}$ so that the image of $\mu_{2, \Gamma_{0}(N)}$ is $\mathcal{E}_{2}\left(\Gamma_{0}(N)\right)$.

Let us start with the definition of some Eisenstein series.

Definition

For a weight $k \geq 1$ and $(a, b) \in(\mathbf{Z} / N Z)^{2}$, we define

$$
F_{a, b}^{(k)}(\tau)=c_{a, b}^{(k)}+\sum_{\substack{m, n \geq 1 \\ n \equiv a(N)}} \zeta_{N}^{b m} n^{k-1} q_{N}^{m n}+(-1)^{k} \sum_{\substack{m, n \geq 1 \\ n \equiv-a(N)}} \zeta_{N}^{-b m} n^{k-1} q_{N}^{m n},
$$

where $c_{a, b}^{(k)} \in \mathbf{C}$ is an explicit constant, $\zeta_{N}=e^{2 \pi i / N}$ and $q_{N}=e^{2 \pi i \tau / N}$.
These Eisenstein series are well-behaved with respect to the action of $\mathrm{SL}_{2}(\mathbf{Z})$:

Proposition

For any $g \in \mathrm{SL}_{2}(\mathbf{Z})$, we have $\left.F_{a, b}^{(k)}\right|_{k} g=F_{(a, b) \cdot g}^{(k)}$ except in the case $k=2$ and $(a, b)=(0,0)$.

Definition

$$
F_{a, b}^{(k)}(\tau)=c_{a, b}^{(k)}+\sum_{\substack{m, n \geq 1 \\ n \equiv a(N)}} \zeta_{N}^{b m} n^{k-1} q_{N}^{m n}+(-1)^{k} \sum_{\substack{m, n \geq 1 \\ n \equiv-a(N)}} \zeta_{N}^{-b m} n^{k-1} q_{N}^{m n},
$$

In particular, we get the following propositions.

Proposition

The series $F_{a, b}^{(k)}$ is a modular form of weight k on $\Gamma(N)$, except in the case $k=2$ and $(a, b)=(0,0)$ where it is only quasi-modular. In fact, the series $\left\{F_{a, b}^{(k)}\right\}_{a, b \in \mathbf{Z} / N Z}$ span the space $\mathcal{E}_{k}(\Gamma(N))$.

Proposition

The series $F_{0, b}^{(k)}$ belongs to $\mathcal{E}_{k}\left(\Gamma_{1}(N)\right)$, except in the case $k=2$ and $b=0$.

The work of Borisov and Gunnells

Borisov and Gunnells introduced the notion of toric modular form. They come from toric geometry, but can also be defined as follows.

Definition

Let $\mathcal{T}_{*}(N)$ be the graded subalgebra of $\mathcal{M}_{*}\left(\Gamma_{1}(N)\right)$ generated by the weight 1 Eisenstein series $\left\{F_{0, b}^{(1)}\right\}_{b \in \mathbf{Z} / N Z}$.
A toric modular form of weight k and level N is an element of $\mathcal{T}_{k}(N)$.
In particular, a toric modular form of weight 2 is a linear combination of products $F_{0, b}^{(1)} F_{0, b^{\prime}}^{(1)}$ with $b, b^{\prime} \in \mathbf{Z} / N \mathbf{Z}$.

The toric modular forms enjoy many remarkable properties.

Theorem (Borisov-Gunnells)

Assume $N \geq 5$.
(0) The ring $\mathcal{T}_{*}(N)$ is stable under the Hecke operators.
(2) For $k \geq 3$, the cuspidal part of $\mathcal{T}_{k}(N)$ is the whole space $\mathcal{S}_{k}\left(\Gamma_{1}(N)\right)$.
(3) For $k=2$, the cuspidal part of $\mathcal{T}_{2}(N)$ is the span of the eigenforms f satisfying $L(f, 1) \neq 0$.
Moreover, consider the map $\mu:(\mathbf{Z} / N \mathbf{Z})^{2} \rightarrow \mathcal{M}_{2}\left(\Gamma_{1}(N)\right)$ defined by

$$
\mu(u, v)=F_{0, u}^{(1)} F_{0, v}^{(1)} .
$$

(9) We have $\mu(u, v)+\mu(v,-u)=0$.
(c) We have $\mu(u, v)+\mu(v,-u-v)+\mu(-u-v, u) \in \mathcal{E}_{2}\left(\Gamma_{1}(N)\right)$.

The last part of the theorem implies that μ factors through modular symbols:

Here

- $E_{N}=\left\{(u, v) \in(\mathbf{Z} / N Z)^{2}: \operatorname{gcd}(u, v, N)=1\right\}$,
- $M_{N}=H_{1}\left(X_{1}(N),\{\right.$ cusps $\left.\}, \mathbf{Z}\right)$,
- $\xi(u, v)$ is the unimodular symbol $\{g 0, g \infty\}$ for any matrix $g \in \operatorname{SL}_{2}(\mathbf{Z})$ such that $g \equiv\left(\right.$| $*$ | |
| :---: | :---: |
| u | |$)(\bmod N)$.

Theorem (Borisov-Gunnells)

The map $\bar{\mu}$ is Hecke-equivariant.

Back to our original problem

Let E be an elliptic curve of conductor N, and let $f_{E} \in \mathcal{S}_{2}\left(\Gamma_{0}(N)\right)$ be the newform of weight 2 associated to E.
We want to express f_{E} as a linear combination of pairwise products of Eisenstein series of weight 1.
The results of Borisov and Gunnells suggest the following strategy:
(1) Compute the (minus) modular symbol $x_{E}^{-} \in M_{N}$ associated to E. We have $x_{E}^{-}=\sum_{(u, v) \in E_{N}} a_{u, v} \xi(u, v)$ for some $a_{u, v} \in \mathbf{Z}$.
(2) Compute $F=\mu\left(x_{E}^{-}\right)=\sum a_{u, v} F_{0, u}^{(1)} F_{0, v}^{(1)}$.
(3) By Hecke equivariance, we have $F=\alpha f_{E} \bmod \mathcal{E}_{2}\left(\Gamma_{1}(N)\right)$ for some $\alpha \in \mathbf{Q}\left(\zeta_{N}\right)$.
(9) The main theorem then implies that $\alpha \neq 0$ precisely when $L(E, 1) \neq 0$.

Problem. Computing with modular symbols on $\Gamma_{1}(N)$ is very expensive!

Definition

The trace map $\operatorname{Tr}: \mathcal{M}_{2}\left(\Gamma_{1}(N)\right) \rightarrow \mathcal{M}_{2}\left(\Gamma_{0}(N)\right)$ is defined by

$$
\operatorname{Tr}(f)=\left.\sum_{\delta \in(\mathbf{Z} / N)^{\times}} f\right|_{2}\langle\delta\rangle
$$

where $\langle\delta\rangle \in \Gamma_{0}(N)$ is any matrix congruent to $\left(\begin{array}{cc}\delta_{-1}^{-1} & * \\ 0 & \delta\end{array}\right)$ modulo N.
So, let's compute the trace of $\mu(u, v)=F_{0, u}^{(1)} F_{0, v}^{(1)}$.

$$
\begin{aligned}
\operatorname{Tr}(\mu(u, v)) & =\sum_{\delta \in(\mathbf{Z} / N)^{\times}} F_{0, \delta u}^{(1)} F_{0, \delta v}^{(1)} \\
& \sim \sum_{\delta \in(\mathbf{Z} / N)^{\times}} \sum_{m, n \geq 1} \zeta_{N}^{\delta u m} q^{m n} \sum_{m^{\prime}, n^{\prime} \geq 1} \zeta_{N}^{\delta v m^{\prime}} q^{m^{\prime} n^{\prime}} \\
& \sim \sum_{m, m^{\prime} \geq 1}\left(\sum_{\delta \in(\mathbf{Z} / N)^{\times}} \zeta_{N}^{\delta\left(u m+v m^{\prime}\right)}\right) \sum_{n, n^{\prime} \geq 1} q^{m n+m^{\prime} n^{\prime}} \\
& \sim \sum_{m, m^{\prime} \geq 1} \operatorname{tr}_{\mathbf{Q}\left(\zeta_{N}\right) / \mathbf{Q}}\left(\zeta_{N}^{u m+v m^{\prime}}\right) \sum_{n, n^{\prime} \geq 1} q^{m n+m^{\prime} n^{\prime}}
\end{aligned}
$$

An analogue of μ for $\Gamma_{0}(N)$

We define

$$
\begin{aligned}
\mu_{0}: \mathbf{P}^{1}(\mathbf{Z} / N \mathbf{Z}) & \rightarrow \mathcal{M}_{2}\left(\Gamma_{0}(N)\right) \\
(u: v) & \mapsto \operatorname{Tr} \mu(u, v)=\operatorname{Tr}\left(F_{0, u}^{(1)} F_{0, v}^{(1)}\right)
\end{aligned}
$$

(1) The map μ_{0} satisfies the Manin relations modulo $\mathcal{E}_{2}\left(\Gamma_{0}(N)\right)$.
(2) So we have a commutative diagram

(3) The map $\bar{\mu}_{0}$ is Hecke-equivariant.

Computations for elliptic curves

Given an elliptic curve E / \mathbf{Q} of conductor N, we compute:
(1) The Hecke eigensymbol $x_{E}^{-} \in H_{1}\left(X_{0}(N),\{\text { cusps }\}, \mathbf{Z}\right)^{-}$.
(2) The modular form $F=\mu_{0}\left(x_{E}^{-}\right)$.

Then we know that $F=\alpha_{E} f_{E}+\boldsymbol{G}$ for some $\alpha_{E} \in \mathbf{Q}$ and $G \in \mathcal{E}_{2}\left(\Gamma_{0}(N)\right)$.
Actually it seems to be the case that G belongs to the subspace $\mathcal{E}_{2}^{\prime}\left(\Gamma_{0}(N)\right)$ generated by $\left\{\operatorname{Tr}\left(F_{0, b}^{(2)}\right)\right\}_{b \in \mathbf{Z} / N z, b \neq 0}$. In general \mathcal{E}_{2}^{\prime} is a proper subspace of \mathcal{E}_{2}.

We checked that for all elliptic curves of conductor $N \leq 10^{3}$ we have

$$
\alpha_{E} \neq 0 \Leftrightarrow L(E, 1) \neq 0
$$

in accordance with Borisov-Gunnells.

Computations for elliptic curves

We have

$$
\begin{equation*}
F=\alpha_{E} f_{E}+\sum_{\substack{d \mid N \\ d \neq N}} \alpha_{d} \operatorname{Tr}\left(F_{0, d}^{(2)}\right) \quad\left(\alpha_{E}, \alpha_{d} \in \mathbf{Q}\right) . \tag{1}
\end{equation*}
$$

How to compute α_{E} and α_{d} ?

- Since f_{E} vanishes at all cusps, it is sufficient to evaluate F and $\operatorname{Tr}\left(F_{0, d}^{(2)}\right)$ at the cusps to get the α_{d} 's.
- Since $f_{E}=q+O\left(q^{2}\right)$, it is sufficient to compute the coefficient of q of both sides of (1) to get α_{E}.

Remark. It gives an algebraic method to decide whether $L(E, 1)$ is zero or not.
Question. According to the data α_{E} is a rational number with small denominator. Is there a formula for α_{E} ?

A linear algebra question

In order to speed up the computation of $F=\mu_{0}\left(x_{E}^{-}\right)$, we want to express x_{E}^{-} as a linear combination of fewest possible unimodular symbols $\{g 0, g \infty\}$.

By Manin's theorem, we have a presentation of $H=H_{1}\left(X_{0}(N),\{c u s p s\}, \mathbf{Q}\right)$:

- Generators: $\xi(u: v)=\left\{g_{u, v} 0, g_{u, v} \infty\right\}$ for $(u: v) \in \mathbf{P}^{1}(\mathbf{Z} / N Z)$.
- Manin's relations: $\left\{\begin{array}{l}\xi(u: v)+\xi(v:-u)=0, \\ \xi(u: v)+\xi(v:-u-v)+\xi(-u-v: u)=0 .\end{array}\right.$

In order to get the minus part H^{-}, we set $\xi^{-}(u: v):=\frac{1}{2}(\xi(u: v)-\xi(-u: v))$. Then H^{-}is generated by the $\xi^{-}(u: v)$ together with the obvious relations.

What is the shortest expression of x_{E}^{-}in terms of Manin symbols $\xi^{-}(u: v)$?

What to do if $L(E, 1)=0$?

Possible approaches:
(1) Multiply f_{E} by a known Eisenstein series of weight 2 to get a modular form g of weight 4. Then apply Borisov-Gunnells' theory to g. Problem: g is a cusp form but not necessarily an eigenform.
(2) Use Eisenstein series on $\Gamma(N)$ and Khuri-Makdisi's theorem. Note that the trace map $\mathcal{M}_{2}(\Gamma(N)) \rightarrow \mathcal{M}_{2}\left(\Gamma_{1}(N)\right)$ is very easy to compute: it sends $\sum a_{n} q_{N}^{n}$ to $\sum a_{N n} q^{n}$, so there is some hope to do something similar as above.

Thank you for your attention!

