Some remarks and experiments on Greenberg's p-rationality conjecture

Razvan Barbulescu and Jishnu Ray
CNRS and IMJ-PRG (Sorbonne Université, Paris Diderot and CNRS)

The quest for open representations of $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$

Problem

Given an integer n and a prime p, find a continous representation

$$
\rho: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \operatorname{GL}_{n}\left(\mathbb{Z}_{p}\right)
$$

such that $\left[\mathrm{GL}_{n}\left(\mathbb{Z}_{p}\right): \operatorname{Im}(\rho)\right]$ is finite.

Chronology

- $n=2$ (Serre 1972)

$$
\begin{aligned}
\rho: \lim _{\leftarrow} \operatorname{Gal}\left(\mathbb{Q}\left(E\left[p^{k}\right]\right) / \mathbb{Q}\right) & \rightarrow \lim _{\leftarrow} \leftarrow \operatorname{Aut}\left(E\left[p^{k}\right]\right) \simeq \lim _{\leftarrow} \mathrm{GL}_{2}\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)=\mathrm{GL}_{2}\left(\mathbb{Z}_{p}\right) \\
\sigma & \mapsto(P=(x, y) \mapsto(\sigma(x), \sigma(y)) ;
\end{aligned}
$$

- $n=3$ case $p \equiv 8(\bmod 21)$ (Hamblen 2008) using deformation theory;
- $n=3$ case $p \equiv 1(\bmod 3)$ (Upton 2009) using abelian varieties;
- $\forall n \in \mathbb{N}$ (Greenberg 2016) under a new conjecture; It suffices to find examples in order to proove his construction for small values of n and p, for example $p=5,7,11,13,17,19$ and $n=4, \ldots, 63$.

p-rational fields

Notation

- M the compositum of all finite p-extensions of K which are unramified outside primes above p;
- $M^{a b}$ the maximal abelian extension of K contained in M;
- $\Gamma:=\operatorname{Gal}(M / K)$;
- $\Gamma^{a b} \cong \operatorname{Gal}\left(M^{a b} / K\right)$.

Proposition-Definition (Movahhedi 1990)

The number field K is said to be p-rational if the following equivalent conditions are satisfied:

1. $\operatorname{rank}_{\mathbb{Z}_{p}}\left(\Gamma^{a b}\right)=r_{2}+1$ and $\Gamma^{a b}$ is torsion-free as a \mathbb{Z}_{p}-module,
2. Γ is a free pro- p group with $r_{2}+1$ generators,
3. Γ is a free pro- p group.

If K satisfies Leopoldt's conjecture (Washington Sec 5.5), e.g. K is abelian, then the above conditions are also equivalent to
4. - $\left\{\alpha \in K^{\times} \left\lvert\, \begin{array}{c}\alpha \mathcal{O}_{K}=\mathfrak{a}^{p} \text { for some fractional ideal } \mathfrak{a} \\ \text { and } \alpha \in\left(K_{\mathfrak{p}}^{\times}\right)^{p} \text { for all } \mathfrak{p} \in S_{p}\end{array}\right.\right\}=\left(K^{\times}\right)^{p}$

- and the map $\mu(K)_{p} \rightarrow \prod_{\mathfrak{p} \in S_{p}} \mu\left(K_{\mathfrak{p}}\right)_{p}$ is an isomorphism.

Greenberg's contribution

Let K be a p-rational abelian number field and $\Omega=\operatorname{Gal}(K / \mathbb{Q})$ has exponent dividing $p-1$. The action of $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ on $\mu_{p^{\infty}}$ defines a continuous homomorphism χ_{cyc} from $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ to \mathbb{Z}_{p}^{*}. $\hat{\Omega}_{\text {odd }}$ is the set of characters non trivial on the complex multiplication.

Proposition

Assume also that one can find distinct characters $\chi_{1}, \ldots, \chi_{n}$ in $\hat{\Omega}_{\text {odd }} \bigcup\left\{\chi_{0}\right\}$ such that their product is χ_{0}. Then there exists a continuous homomorphism

$$
\rho: \operatorname{Gal}(M / \mathbb{Q}) \rightarrow \operatorname{GL}_{n}\left(\mathbb{Z}_{p}\right)
$$

such that $\rho_{0}(\Gamma)=S_{n}^{(0)}\left(\mathbb{Z}_{p}\right)$, the Sylow pro- p subgroup of $\mathrm{SL}_{n}\left(\mathbb{Z}_{p}\right)$. Furthermore, $\rho=\rho_{0} \otimes \kappa$ is a continuous homomorphism from $\operatorname{Gal}(M / \mathbb{Q})$ to $\mathrm{GL}_{n}\left(\mathbb{Z}_{p}\right)$ with open image.

Corollary

Let K be complex such that $\operatorname{Gal}(K / \mathbb{Q}) \simeq(\mathbb{Z} / 2 \mathbb{Z})^{t}$, where $t \geq 4$. For every $4 \leq n \leq 2^{t-1}-3$ there exists a continuous homomorphism $\rho: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathrm{GL}_{n}\left(\mathbb{Z}_{p}\right)$ with open image.

Greenberg's p-rationality conjecture

Conjecture (Greenberg 2016)

For any odd prime p and for any t, there exist a p-rational field K such that $\operatorname{Gal}(K / \mathbb{Q}) \cong(\mathbb{Z} / 2 \mathbb{Z})^{t}$.

Problem

Given a finite group G and a prime p, decide the following statements:

1. Greenberg's conjecture holds for G and p : there exists a number field of Galois group G which is p-rational, in this case we say that $\operatorname{GC}(G, p)$ is true;
2. the infinite version of Greenberg's conjecture holds for G and p : there exist infinitely many number fields of Galois group G which are p-rational, in this case we say that $\mathrm{GC}_{\infty}(G, p)$ is true.

A family of p-rational real quadratic fields

Lemma

For any prime $p \geq 5$ not belonging to $\left\{\left.\frac{1}{2} a^{2} \pm 1 \right\rvert\, a \in \mathbb{N}\right\}$ the real quadratic number field $K=\mathbb{Q}\left(\sqrt{p^{2}-1}\right)$ is p-rational.

Proof.

First note that $\varepsilon=p+\sqrt{p^{2}-1}$ is a fundamental unit of K.
By a result of Louboutin 1998 we have the effective bound

$$
h(K) \leq \sqrt{\operatorname{Disc}(K)} \frac{e \log (\operatorname{Disc}(K))}{4 \log \varepsilon}
$$

Since $\operatorname{Disc}(K) \leq p^{2}-1$, we conclude that $h(K)<p$ and hence $p \nmid h(K)$.
Let us show that ε is not a p-primary unit (p-th power locally but not globally). We have

$$
\begin{aligned}
\varepsilon^{p^{2}-1}-1 & \equiv\left(p^{2}-1\right)^{\frac{p^{2}-1}{2}}-1+p\left(p^{2}-1\right)^{\frac{p^{2}-3}{2}} \sqrt{p^{2}-1} \quad\left(\bmod p^{2} \mathbb{Z}\left[\sqrt{p^{2}-1}\right]\right) \\
& \equiv \pm p \sqrt{p^{2}-1} \quad\left(\bmod p^{2} \mathbb{Z}\left[\sqrt{p^{2}-1}\right]\right)
\end{aligned}
$$

Since $p^{2} \mathbb{Z}\left[\sqrt{p^{2}-1}\right] \subset p^{2} \mathcal{O}_{K}$ this shows that the p-adic logarithm of ε is not a multiple of p^{2}, so ε is not p-primary, hence K is p-rational.

Literature results

Lemma (Movahhedi 1990)

Assume K is a number field which satisfies Leopoldt's conjecture, $p>[K: \mathbb{Q}]+1$ an odd prime such that $p \nmid h(K)$. Then K is p-rational if and only if $R_{p}(K) / p^{r}$ is not divisible by p.

Lemma (Hartung 1974)

For any prime odd prime p there exist infinitely many square-free $D<0$ such that $h_{\mathbb{Q}(\sqrt{D})} \cdot D \not \equiv 0(\bmod p)$.

Lemma (Byeon 2001 *)

For $p \geq 5$, there exists infinitely many integers $D>0$ so that $h_{\mathbb{Q}(\sqrt{D})} \cdot D \not \equiv 0(\bmod p)$ and $\mathbb{Q}(\sqrt{D})$ has no p-primary units.

Conjectural results

Conjecture (Cohen and Martinet 1987)

Let K be a cyclic cubic number fields and m an integer non divisible by 3 . Then we have

$$
\operatorname{Prob}\left(m \mid h_{K}\right)=\prod_{p \mid m, p \equiv 1}\left(1-\frac{(p)_{\infty}^{2}}{(p)_{1}^{2}}\right) \prod_{p \mid m, p \equiv 2} \bmod 3\left(1-\frac{\left(p^{2}\right)_{\infty}}{\left(p^{2}\right)_{1}}\right)
$$

where $(p)_{\infty}=\prod_{k \geq 1}\left(1-p^{-k}\right)$ and $(p)_{1}=\left(1-p^{-1}\right)$.

Conjecture (Hofman and Zhang 2016)

For primes $p>3$ we have

$$
\operatorname{Prob}\left(p \text { divides } R_{K, p}^{\prime}\right)=\left\{\begin{array}{lll}
\frac{1}{p^{2}}, & \text { if } p \equiv 2 & (\bmod 3) \\
\frac{2}{p}-\frac{1}{p^{2}}, & \text { if } p \equiv 1 & (\bmod 3)
\end{array}\right.
$$

where $R_{K, p}^{\prime}$ is the normalized p-adic regulator.

Conjectural results

Conjecture (Cohen and Martinet 1987)

Let K be a cyclic cubic number fields and m an integer non divisible by 3 . Then we have

$$
\operatorname{Prob}\left(m \mid h_{K}\right)=\prod_{p \mid m, p \equiv 1}\left(1-\frac{(p)_{\infty}^{2}}{(p)_{1}^{2}}\right) \prod_{p \mid m, p \equiv 2} \prod_{\bmod 3}\left(1-\frac{\left(p^{2}\right)_{\infty}}{\left(p^{2}\right)_{1}}\right)
$$

where $(p)_{\infty}=\prod_{k \geq 1}\left(1-p^{-k}\right)$ and $(p)_{1}=\left(1-p^{-1}\right)$.

Conjecture (Hofman and Zhang 2016)

For primes $p>3$ we have

$$
\operatorname{Prob}\left(p \text { divides } R_{K, p}^{\prime}\right)=\left\{\begin{array}{lll}
\frac{1}{p^{2}}, & \text { if } p \equiv 2 & (\bmod 3) \\
\frac{2}{p}-\frac{1}{p^{2}}, & \text { if } p \equiv 1 & (\bmod 3)
\end{array}\right.
$$

where $R_{K, p}^{\prime}$ is the normalized p-adic regulator.

Theorem

Under the two conjectures above, for all prime $p>3, \mathrm{GC}_{\infty}(\mathbb{Z} / 3 \mathbb{Z}, p)$ holds.

Proof.

For any D let $K(D)$ be the set of cubic cyclic number fields with conductor less than D. Then we have

$$
\begin{aligned}
\limsup _{D \rightarrow \infty} \frac{\#\{K \in K(D) \text { non } p \text {-rational }\}}{\# K(D)} & \leq \limsup _{D \rightarrow \infty} \frac{\#\left\{K \in K(D), p \mid h_{K} R_{K, p}^{\prime}\right\}}{\# K(D)} \\
& \leq \operatorname{Prob}\left(p \mid h_{K}\right)+\operatorname{Prob}\left(p \mid R_{K, p}^{\prime}\right)<\frac{1}{2}
\end{aligned}
$$

Computational results PARI/GP (in sage)

Proposition (Greenberg) p-rationality of a compositum $\Leftrightarrow p$-rationality of its cyclic subfields.

p	t	d_{1}, \ldots, d_{t}
5	7	$2,3,11,47,97,4691,-178290313$
7	7	$2,5,11,17,41,619,-816371$
11	8	$2,3,5,7,37,101,5501,-1193167$
13	8	$3,5,7,11,19,73,1097,-85279$
17	8	$2,3,5,11,13,37,277,-203$
19	9	$2,3,5,7,29,31,59,12461,-7663849$
23	9	$2,3,5,11,13,19,59,2803,-194377$
29	9	$2,3,5,7,13,17,59,293,-11$
31	9	$3,5,7,11,13,17,53,326,-8137$
37	9	$2,3,5,19,23,31,43,569,-523$
41	9	$2,3,5,11,13,17,19,241,-1$

Greenberg's proposition \Rightarrow open image representations for $4 \leq n \leq 2^{t-1}-3$. Our example for $p=5$ extended the proven values of n from 13 to 63 .

Cohen-Lenstra-Martinet for $G=\mathbb{Z} / 3 \mathbb{Z}$

Conjecture (CLM)

If K is a cyclic cubic number field and m is an integer non divisible by 3 , then

$$
\operatorname{Prob}\left(m \mid h_{K}\right)=\prod_{p \mid m, p \equiv 1}\left(1-\frac{(p)_{\infty}^{2}}{(p)_{1}^{2}}\right) \prod_{p \mid m, p \equiv 2} \bmod 3\left(1-\frac{\left(p^{2}\right)_{\infty}}{\left(p^{2}\right)_{1}}\right),
$$

où $(p)_{\infty}=\prod_{k \geq 1}\left(1-p^{-k}\right)$ and $(p)_{1}=\left(1-p^{-1}\right)$.

p	theoretic density	stat. density cond. ≤ 8000	relative error	stat. density cond. $\leq 10^{7}$	relative error
5	0.00167	$\frac{3}{1265} \approx 0.0236$	46%		
7	0.0469	$\frac{55}{1269} \approx 0.0355$	24%		
11	0.0000689	0	100%		
13	0.00584	$\frac{6}{1269} \approx 0.00472$	19%		
19	0.0128	$\frac{11}{1269} \approx 0.0086$	48%		

In 1989 Cohen and Martinet wrote "we believe that the poor agreement [with the tables] is due to the fact that the discriminants are not sufficiently large".

Cohen-Lenstra-Martinet for $G=\mathbb{Z} / 3 \mathbb{Z}$

Conjecture (CLM)

If K is a cyclic cubic number field and m is an integer non divisible by 3 , then

$$
\operatorname{Prob}\left(m \mid h_{K}\right)=\prod_{p \mid m, p \equiv 1}\left(1-\frac{(p)_{\infty}^{2}}{(p)_{1}^{2}}\right) \prod_{p \mid m, p \equiv 2} \bmod 3\left(1-\frac{\left(p^{2}\right)_{\infty}}{\left(p^{2}\right)_{1}}\right),
$$

où $(p)_{\infty}=\prod_{k \geq 1}\left(1-p^{-k}\right)$ and $(p)_{1}=\left(1-p^{-1}\right)$.

p	theoretic density	stat. density cond. ≤ 8000	relative error	stat. density cond. ≤ 10	relative error
5	0.00167	$\frac{3}{1269} \approx 0.0236$	46%	$\frac{3316}{1714450} \approx 0.00193$	15.5%
7	0.0469	$\frac{45}{1269} \approx 0.0355$	24%	$\frac{78063}{1714450} \approx 0.0456$	3%
11	0.0000689	0	100%	$\frac{133}{1714450} \approx 0.0000775$	12.5%
13	0.00584	$\frac{6}{1269} \approx 0.00472$	19%	$\frac{10232}{1714450} \approx 0.00584$	2%
19	0.0128	$\frac{11}{1269} \approx 0.0086$	48%	$\frac{21938}{1714450} \approx 0.0128$	0.2%

In 1989 Cohen and Martinet wrote "we believe that the poor agreement [with the tables] is due to the fact that the discriminants are not sufficiently large".

The case when $G=(\mathbb{Z} / 3 \mathbb{Z})^{2}$: class number

Conjecture

If k_{1}, k_{2}, k_{3} are the three cubic subfields of a number field K of Galois $\mathbb{Z} / 3 \mathbb{Z} \times \mathbb{Z} / 3 \mathbb{Z}$ then $\operatorname{Prob}(p \nmid h(K))=\prod_{i} \operatorname{Prob}\left(p \nmid h\left(k_{i}\right)\right)=\operatorname{Prob}\left(p \nmid h\left(k_{1}\right)\right)^{3}$.

p	theoretic density	stat. density cond. $\leq 10^{6}$	relative error
5	0.00334	$\frac{933}{203559} \approx 0.00458$	37%
7	0.0916	$\frac{2312}{203559} \approx 0.0354$	28%
11	0.000138	$\frac{26}{203559} \approx 0.000128$	7.5%
13	0.0116	$\frac{6432}{20359} \approx 0.0316$	72%
17	0.0000140	$\frac{4}{203559} \approx 0.0000197$	40.5%
19	0.0254	$\frac{3536}{203559} \approx 0.0173$	31.5%

The case when $G=(\mathbb{Z} / 3 \mathbb{Z})^{2}$: p-adic regulator

Lemma

Let p be an odd prime and $K=\mathbb{Q}(\sqrt{a}, \sqrt{b})$ with a, b and $a b$ positive rational numbers which are not squares. Let R denote the normalized p-adic regulator of K, then R_{1}, R_{2} and R_{3} the p-adic regulators of $\mathbb{Q}(\sqrt{a}), \mathbb{Q}(\sqrt{b})$ and $\mathbb{Q}(\sqrt{a b})$. Then there exists an integer α such that

$$
R=2^{\alpha} R_{1} R_{2} R_{3}
$$

Conjecture

Let $q=2$ or $3, p>q$ a prime and t an integer. Then the density of totally real number fields K such that $\operatorname{Gal}(K)=(\mathbb{Z} / q \mathbb{Z})^{t}$ for which the normalized p-adic regulator is divisible by p for at least one of the cyclic subgroups is

1. $\operatorname{Prob}\left(\exists F \subset K, R_{F, p}^{\prime} \equiv 0[p] \mid \operatorname{Gal}(K)=(\mathbb{Z} / 2 \mathbb{Z})^{t}\right.$ tot. real $)=1-\left(1-\frac{1}{p}\right)^{2^{t}-1}$
2. $\operatorname{Prob}\left(\exists F \subset K, R_{F, p}^{\prime} \equiv 0[p] \mid \operatorname{Gal}(K)=(\mathbb{Z} / 3 \mathbb{Z})^{t}\right)=1-(1-\mathcal{P})^{\frac{3^{t}-1}{2}}$, where

$$
\mathcal{P}= \begin{cases}\frac{2}{p}-\frac{1}{p^{2}}, & \text { if } p \equiv 1 \quad(\bmod 3) \\ \frac{1}{p^{2}}, & \text { otherwise }\end{cases}
$$

p	experimental density	Conj density	relative error
5	$\frac{29301}{37820} \approx 0.775$	0.790	2%
7	$\frac{19538}{37820} \approx 0.517$	0.660	22%
11	$\frac{17872}{37820} \approx 0.473$	0.487	3%

An arithmétic criterion that $p \nmid R_{p}(K) / r^{p}$

Lemma

For all integers $a \neq 21,23(\bmod 25)$ the number field defined by f_{a} as defined in Equation (??) has no $R_{K, 5} \not \equiv 0$ $(\bmod 5)$.

Proof.

We have $\operatorname{Disc}\left(f_{a}\right)=\operatorname{Disc}(\mathbb{Q}(\alpha))\left[\mathcal{O}_{\mathbb{Q}(\alpha)}: \mathbb{Z}[\alpha]\right]^{2}$ where α is a root of f_{a} in its number field. Since

$$
\operatorname{Disc}(a)=a^{4}+6 a^{3}+27 a^{2}+54 a+81
$$

5 is not ramified and doesn't divide the index $\left[\mathcal{O}_{\mathbb{Q}(\alpha)}: \mathbb{Z}[\alpha]\right]$. The definition of Schirokauer maps implies that if $f \equiv g\left(\bmod p^{2} \mathbb{Z}[x]\right)$ are two polynomials then they have the same Schirokauer maps.
For each a in the interval $\left[1,5^{2}\right]$ other than 21 and 23 we compute the matrix

$$
\left(\begin{array}{ccc}
\lambda_{0}(\alpha) & \lambda_{1}(\alpha) & \lambda_{2}(\alpha) \\
\lambda_{0}\left(-\frac{\alpha+1}{\alpha}\right) & \lambda_{1}\left(-\frac{\alpha+1}{\alpha}\right) & \lambda_{2}\left(-\frac{\alpha+1}{\alpha}\right)
\end{array}\right),
$$

where α is a root of f_{a} in its number field. Here the λ_{i} 's are defined as in Algorithm ??. Note that $\frac{\alpha+1}{\alpha}$ is the image of α by an automorphism of f_{a}. One verifies that in each case the normalized 5 -adic regulator is not divisible by 5 . Hence, for any integer $a \not \equiv 21,23(\bmod 25)$, the 5 -adic regulator of $\left\{\alpha,-\frac{\alpha+1}{\alpha}\right\}$ divided by 25 is not divisible by 5 . Finally, the normalized 5 -adic regulator of f_{a} is not divisible by 5 .

An arithmétic criterion that $p \nmid h(K)$

Lemma

Let m be an odd prime, p be inert in $\mathbb{Z}\left[\zeta_{\frac{m-1}{2}}\right], \epsilon \in C_{m}^{+}$be any cyclotomic unit. If ϵ is not a p-th power, then $p \nmid h_{m}^{+}$. In particular, if $p \nmid m-1$ then the class number of the unique cubic cyclic subfield of $\mathbb{Q}\left(\zeta_{m}\right)^{+}$is not divisible by p.

Proof.

By [?, Thm. 8.2], $h_{m}^{+}=\left[E_{m}^{+}: C_{m}^{+}\right]$where $h_{m}^{+}, E_{m}^{+}, C_{m}^{+}$denote the class number, the group of units and the group of cyclotomic units of the maximal real subfield $\mathbb{Q}\left(\zeta_{m}\right)^{+}$of $\mathbb{Q}\left(\zeta_{m}\right)$. Let $v \in C_{m}^{+}$generate the group of cyclotomic units as a module over $\mathbb{Z}\left[\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{m}\right)^{+} / \mathbb{Q}\right)\right]$ (cf. Washington Prop. 8.11). Note that E_{m}^{+}is a $\mathbb{Z}\left[\zeta_{\frac{m-1}{2}}\right]$ module via the action $u^{\frac{\zeta_{m-1}}{2}}:=\sigma(u)$, where $u \in E_{m}^{+}$and σ is a generator of the Galois group $\mathbb{Z}\left[\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{m}\right)^{+} / \mathbb{Q}\right)\right]$. We are going to show that if v is not a p-th power in E_{m}^{+}then for all $\omega \in \mathbb{Z}\left[\zeta_{\frac{m-1}{2}}\right], p \nmid \omega$ V^{ω} is not a p-th power. Assume on the contrary, $v^{\omega}=u^{p}$ for some $u \in E_{M}^{+}$. Then $v^{N(\omega)}=u^{\frac{p N(\omega)}{\omega}}$ where $N(\omega)$ denotes the Norm of ω. With $a:=N(\omega)^{-1}[p], v^{a N(\omega)}=u^{a p \frac{N(\omega)}{\omega}}$. But this implies that $v \in\left(u^{a \frac{N(\omega)}{\omega}} E_{m}^{+}\right)^{p}$ which is a contradiction.
By Leopoldt p. 41, we can decompose h_{m}^{+}as a product of class numbers of cyclic subfields of $\mathbb{Q}\left(\zeta_{m}\right)^{+}$and a rational number which is divisible by primes not dividing $m-1$. Thus if $p \nmid m-1, p$ does not divide the class number of the unique cubic cyclic subfield of $\mathbb{Q}\left(\zeta_{m}\right)^{+}$.

Algorithms to find examples

Lemma (Pitoun and Varescon 2015)

Let K be a number field which satisfies Leopoldt's conjecture. Let e be the ramification index of p in K. Then there exists $n \geq 2+e$ so that the invariant factors of $\mathcal{A}_{p^{n}}$ can be divided into two sets
$F I\left(\mathcal{A}_{p^{n}}\right)=\left[b_{1}, \ldots, b_{s}, a_{1}, \ldots, a_{r_{2}+1}\right]$ such that

1. $\min \left(\operatorname{val}_{p}\left(a_{i}\right)\right)>\max \left(\operatorname{val}_{p}\left(b_{i}\right)\right)+1$;
2. $F I\left(\mathcal{A}_{p^{n+1}}\right)=\left[b_{1}, \ldots, b_{s}, p a_{1}, \ldots, p a_{r_{2}+1}\right]$.

Moreover, K is p-rational if and only if $\operatorname{val}_{p}\left(b_{1}\right)=\operatorname{val}_{p}\left(b_{2}\right)=\cdots=\operatorname{val}_{p}\left(b_{s}\right)=0$.

Using the algorithm in practice

Input a prime p and a list of cyclic cubic fields
Output for each number field the information whether it is p-rationality
for K in list of cyclic cubic fields do
Apply the arithmetic criterion to certify that p does divides h_{K} when it is possible
Apply the arithmetic criterion to certify that p does not divides $R_{K, p}^{\prime}$ when it is possible
if we have certificates that $p \nmid h_{K} R_{K, p}^{\prime}$ then
return True and certificates
else
Apply the algorithm of Pitoun and Varescon to decide if K is p-rational
Return answer and certificate
end if
end for

Main result

Theorem

1. For all odd primes $p, \mathrm{GC}_{\infty}(\mathbb{Z} / 2 \mathbb{Z}, p)$ holds.
2. Assume there exist infinitely many odd integers a $\not \equiv 21,23(\bmod 25)$ so that $m:=\frac{1}{4}\left(a^{2}+27\right)$ is prime and [arithmetic conditions not published in the arxiv version]. Then $\mathrm{GC}_{\infty}(\mathbb{Z} / 3 \mathbb{Z}, 5)$ holds.
3. Under conjectures based on heuristics and numerical experiments, when $q=2$ or 3 , for any prime p and any integer t such that $p>5 q^{t}, \mathrm{GC}_{\infty}\left((\mathbb{Z} / q \mathbb{Z})^{t}, p\right)$ holds.
