Finding ECM friendly curves: A Galois approach

Sudarshan SHINDE

Université Pierre et Marie Curie, France

Motivation - ECM algorithm

```
Algorithm 1 ECM algorithm
INPUT : n
OUTPUT : a non-trivial factor of \(n\).
    1: \(B \leftarrow B_{n}\).
    2: while No factor is found do
    3: \(\quad E \leftarrow\) an elliptic curve on \(\mathbb{Q}\) and \(P \in E(\mathbb{Q})\), ord \((P)=\infty\).
    4: \(\quad P_{B} \leftarrow[B!] P=\left(x_{B}: y_{B}: z_{B}\right) \bmod n\)
    5: \(\quad g \leftarrow \operatorname{gcd}\left(z_{B}, n\right)\)
    6: \(\quad\) if \(g \notin\{1, n\}\) then return \(g\)
    7: end if
    8: end while
```


Idea of ECM

Idea

Let p be an unknown prime factor of n. If $\operatorname{ord}(P)$ in $E\left(\mathbb{F}_{p}\right)$ divides $B!$, then

$$
\left(x_{B}: y_{B}: z_{B}\right) \equiv(0: 1: 0) \bmod p
$$

In this case p divides $\operatorname{gcd}\left(z_{B}, n\right)$.

Sufficient condition

$\# E\left(\mathbb{F}_{p}\right)$ is B-smooth.

Idea of Montgomery
Lenstra : $\operatorname{Prob}\left(\# E\left(\mathbb{F}_{p}\right)\right.$ is B-smooth)
$\simeq \operatorname{Prob}(($ random integer $\simeq p$ is B - smooth $)$.
Montgomery: What if $\# E\left(\mathbb{F}_{p}\right)$ is even for all primes p ?

Algorithm 2 ECM algorithm + Montgomery
INPUT : n
OUTPUT : a non-trivial factor of n.
1: $B \leftarrow B_{n}, m \leftarrow B$!
2: while No factor is found do
3: $\quad E \leftarrow$ an elliptic curve from a family and $P=(x: y: z) \in$ $E(\mathbb{Q}) . \quad \triangleright$ Ex. higher probability that $2 \mid \# E\left(\mathbb{F}_{p}\right)$.
4: $\quad P_{m} \leftarrow[m] P=\left(x_{m}: y_{m}: z_{m}\right) \bmod n$
5: $\quad g \leftarrow \operatorname{gcd}\left(z_{m}, n\right)$
6: \quad if $g \notin\{1, n\}$ then return g
7: end if
8: end while

Motivation

Montgomery heuristic

Larger $\frac{\sum_{p<B}\left(\operatorname{val}_{2}\left(\# E\left(\mathbb{F}_{p}\right)\right)\right.}{\sum_{p<B} 1}$ means bigger chance of success with ECM.

Average valuation

We define average valuation of $\# E\left(\mathbb{F}_{p}\right)$ at $/$ using Chebotarev density as $\overline{v a l}_{l}=\sum_{k \geq 0} k \operatorname{Prob}\left(\operatorname{val}_{l}\left(\# E\left(\mathbb{F}_{p}\right)\right)=k\right)$.

How to change average valuation?
(1) Montgomery: Torsion points over \mathbb{Q}

Motivation

Montgomery heuristic

Larger $\frac{\sum_{p<B}\left(\operatorname{val}_{2}\left(\# E\left(\mathbb{F}_{p}\right)\right)\right.}{\sum_{p<B} 1}$ means bigger chance of success with ECM.

Average valuation

We define average valuation of $\# E\left(\mathbb{F}_{p}\right)$ at $/$ using Chebotarev density as $\overline{v a l}_{l}=\sum_{k \geq 0} k \operatorname{Prob}\left(\operatorname{val}_{l}\left(\# E\left(\mathbb{F}_{p}\right)\right)=k\right)$.

How to change average valuation?

(1) Montgomery: Torsion points over \mathbb{Q}
(2) Brier and Clavier: Torsion points over $\mathbb{Q}(i)$

$$
\overline{\operatorname{val}_{2}}\left(\# E\left(\mathbb{F}_{p}\right)\right)=\frac{1}{2} \overline{\operatorname{va}_{2}}\left(\# E\left(\mathbb{F}_{p}\right) \mid p \equiv 1(4)\right)+\frac{1}{2} \overline{\mathrm{val}_{2}}\left(\# E\left(\mathbb{F}_{p}\right) \mid p \equiv 3(4)\right)
$$

Motivation

Montgomery heuristic

Larger $\frac{\sum_{p<B}\left(\operatorname{val}_{2}\left(\# E\left(\mathbb{F}_{p}\right)\right)\right.}{\sum_{p<B} 1}$ means bigger chance of success with ECM.

Average valuation

We define average valuation of $\# E\left(\mathbb{F}_{p}\right)$ at $/$ using Chebotarev density as $\overline{v a l}_{l}=\sum_{k \geq 0} k \operatorname{Prob}\left(\operatorname{val}_{l}\left(\# E\left(\mathbb{F}_{p}\right)\right)=k\right)$.

How to change average valuation?

(1) Montgomery: Torsion points over \mathbb{Q}
(2) Brier and Clavier: Torsion points over $\mathbb{Q}(i)$

$$
\overline{\operatorname{val}_{2}}\left(\# E\left(\mathbb{F}_{p}\right)\right)=\frac{1}{2} \overline{\operatorname{va}_{2}}\left(\# E\left(\mathbb{F}_{p}\right) \mid p \equiv 1(4)\right)+\frac{1}{2} \overline{\mathrm{val}_{2}}\left(\# E\left(\mathbb{F}_{p}\right) \mid p \equiv 3(4)\right)
$$

(3) Barbulescu et al : Better valuation without additional torsion points (Suyama-11)

Motivation

Definition (m-torsion field)

Let E be an elliptic curve on \mathbb{Q}, m a positive integer. The m-torsion field $\mathbb{Q}(E[m])$ is defined as the smallest extension of \mathbb{Q} containing all the m-torsion points.

Let us note that $G=\operatorname{Gal}(\mathbb{Q}(E[m]) / \mathbb{Q})$ is always a subgroup of $\mathrm{GL}_{2}(\mathbb{Z} / m \mathbb{Z})$.

Theorem (Serre)

- For all primes I and $k \geq 1$, the index
$\left[\mathrm{GL}_{2}\left(\mathbb{Z} / I^{k} \mathbb{Z}\right): \operatorname{Gal}\left(\mathbb{Q}\left(E\left[I^{k}\right]\right) / \mathbb{Q}\right)\right]$ is non-decreasing and bounded by a constant depending on E and I.
- For all primes I outside a finite set depending on E and for all $k \geq 1, \mathrm{GL}_{2}\left(\mathbb{Z} / I^{k} \mathbb{Z}\right)=\operatorname{Gal}\left(\mathbb{Q}\left(E\left[I^{k}\right]\right) / \mathbb{Q}\right)$.

How to change the average valuation?

```
Theorem (Barbulescu et al. 2012)
Let I be a prime and \(E_{1}\) and \(E_{2}\) be two elliptic curves. If \(\forall n \in \mathbb{N}, \operatorname{Gal}\left(\mathbb{Q}\left(E_{1}\left[I^{n}\right]\right)\right) \simeq \operatorname{Gal}\left(\mathbb{Q}\left(E_{2}\left[I^{n}\right]\right)\right)\) then \(\mathrm{v}_{l}\left(E_{1}\right)=\mathrm{v}_{l}\left(E_{2}\right)\).
```

Thus in order to change the average valuation, we must change $\operatorname{Gal}\left(\mathbb{Q}\left(E_{2}\left[/^{n}\right]\right)\right)$ for at least one n.

Constructing the m-torsion field

Definition - Theorem

For an elliptic curve E and a an integer m, we define the m-division polynomial as

$$
\Psi_{(E, m)}(X)=\prod_{\left(x_{P}, \pm y_{P}\right) \in E[m]-O}\left(X-x_{P}\right) \quad \in \mathbb{Q}[X] .
$$

We have $\operatorname{deg}\left(\Psi_{(E, m)}\right)=\frac{m^{2}+2-3 \eta}{2}$ where $\eta=m \% 2$.
From now on, we will restrict ourselves to prime torsion.
Given $E: y^{2}=x^{3}+a x+b$ and a prime I, we construct :

$$
\mathbb{Q} \rightarrow \mathbb{Q}\left(x_{1}\right) \rightarrow \mathbb{Q}\left(x_{1}, x_{2}\right) \rightarrow \mathbb{Q}\left(x_{1}, x_{2}, y_{1}\right) \rightarrow \mathbb{Q}\left(x_{1}, x_{2}, y_{1}, y_{2}\right)
$$

where the polynomials defining the extensions are;
(1) (An irreducible factor of) $\Psi_{(E, I)}$
(2) An irreducible factor of $\Psi_{(E, l)}$ on $\mathbb{Q}\left(x_{1}\right)$.
(3) $f_{1}(y)=y^{2}-\left(x_{1}^{3}+a x_{1}+b\right)$.
(c) $f_{2}(y)=y^{2}-\left(x_{2}^{3}+a x_{2}+b\right)$.
$\mathbb{Q}\left(x_{1}, x_{2}, y_{1}, y_{2}\right)=\mathbb{Q}(E[/])$.

Computing Galois groups

Let P be an irreducible polynomial of degree n in $K[X]$ and let $\theta_{1}, \ldots, \theta_{n}$ be its roots in \bar{K}.

Definition (Resolvent polynomial)

Let $F\left(X_{1}, \ldots, X_{n}\right)$ be a polynomial in $K\left[X_{1}, \ldots, X_{n}\right]$ and G be a subgroup of S_{n} such that
$G=\left\{\sigma \in S_{n} \mid F\left(X_{\sigma(1)}, \ldots, X_{\sigma(n)}\right)=F\left(X_{1}, \ldots, X_{n}\right)\right\}$. We define the resolvent polynomial

$$
R_{G}(F, P)(X)=\prod_{\sigma \in S_{n} / G}\left(X-F\left(\theta_{\sigma(1)}, \ldots, \theta_{\sigma(n)}\right)\right) .
$$

Theorem

Let P be a polynomial of degree n, G a transitive subgroup of S_{n} and F as above. Then, $R_{G}(F, P)(X) \in K[X]$ and if it has a simple root in K then $G a l(P) \subset G$ upto conjugacy.

Computing Galois groups

Example : Let us consider the field $K=\mathbb{Q}(a, b, c, d)$ and the polynomial $P=X^{4}+a X^{3}+b X^{2}+c X+d$. Let $G=D_{8}=<(3,4),(1,3)(2,4),(1,4)(2,3)>$ and $F=X_{1} X_{2}+X_{3} X_{4}$.

Computing Galois groups

Example : Let us consider the field $K=\mathbb{Q}(a, b, c, d)$ and the polynomial $P=X^{4}+a X^{3}+b X^{2}+c X+d$. Let
$G=D_{8}=<(3,4),(1,3)(2,4),(1,4)(2,3)>$ and
$F=X_{1} X_{2}+X_{3} X_{4}$.
In this case,
$R_{G}(F, P)=X^{3}-\left(\theta_{1} \theta_{2}+\theta_{1} \theta_{3}+\theta_{1} \theta_{4}+\theta_{2} \theta_{3}+\theta_{2} \theta_{4}+\theta_{3} \theta_{4}\right) X^{2}+$ $\left(\theta_{1}^{2} \theta_{2} \theta_{3}+\theta_{1}^{2} \theta_{2} \theta_{4}+\theta_{1}^{2} \theta_{3} \theta_{4}+\theta_{1} \theta_{2}^{2} \theta_{3}+\theta_{1} \theta_{2}^{2} \theta_{4}+\theta_{1} \theta_{2} \theta_{3}^{2}+\theta_{1} \theta_{2} \theta_{4}^{2}+\right.$ $\left.\theta_{1} \theta_{3}^{2} \theta_{4}+\theta_{1} \theta_{3} \theta_{4}^{2}+\theta_{2}^{2} \theta_{3} \theta_{4}+\theta_{2} \theta_{3}^{2} \theta_{4}+\theta_{2} \theta_{3} \theta_{4}^{2}\right) X-\theta_{1}^{2} \theta_{2}^{2} \theta_{3}^{2}-\theta_{1}^{2} \theta_{2}^{2} \theta_{4}^{2}-$ $\theta_{1}^{2} \theta_{3}^{2} \theta_{4}^{2}-\theta_{2}^{2} \theta_{3}^{2} \theta_{4}^{2}-\theta_{1}^{3} \theta_{2} \theta_{3} \theta_{4}-\theta_{1} \theta_{2}^{3} \theta_{3} \theta_{4}-\theta_{1} \theta_{2} \theta_{3}^{3} \theta_{4}-\theta_{1} \theta_{2} \theta_{3} \theta_{4}^{3}$.

Computing Galois groups

Example : Let us consider the field $K=\mathbb{Q}(a, b, c, d)$ and the polynomial $P=X^{4}+a X^{3}+b X^{2}+c X+d$. Let
$G=D_{8}=<(3,4),(1,3)(2,4),(1,4)(2,3)>$ and $F=X_{1} X_{2}+X_{3} X_{4}$.
In this case,
$R_{G}(F, P)=X^{3}-\left(\theta_{1} \theta_{2}+\theta_{1} \theta_{3}+\theta_{1} \theta_{4}+\theta_{2} \theta_{3}+\theta_{2} \theta_{4}+\theta_{3} \theta_{4}\right) X^{2}+$ $\left(\theta_{1}^{2} \theta_{2} \theta_{3}+\theta_{1}^{2} \theta_{2} \theta_{4}+\theta_{1}^{2} \theta_{3} \theta_{4}+\theta_{1} \theta_{2}^{2} \theta_{3}+\theta_{1} \theta_{2}^{2} \theta_{4}+\theta_{1} \theta_{2} \theta_{3}^{2}+\theta_{1} \theta_{2} \theta_{4}^{2}+\right.$ $\left.\theta_{1} \theta_{3}^{2} \theta_{4}+\theta_{1} \theta_{3} \theta_{4}^{2}+\theta_{2}^{2} \theta_{3} \theta_{4}+\theta_{2} \theta_{3}^{2} \theta_{4}+\theta_{2} \theta_{3} \theta_{4}^{2}\right) X-\theta_{1}^{2} \theta_{2}^{2} \theta_{3}^{2}-\theta_{1}^{2} \theta_{2}^{2} \theta_{4}^{2}-$ $\theta_{1}^{2} \theta_{3}^{2} \theta_{4}^{2}-\theta_{2}^{2} \theta_{3}^{2} \theta_{4}^{2}-\theta_{1}^{3} \theta_{2} \theta_{3} \theta_{4}-\theta_{1} \theta_{2}^{3} \theta_{3} \theta_{4}-\theta_{1} \theta_{2} \theta_{3}^{3} \theta_{4}-\theta_{1} \theta_{2} \theta_{3} \theta_{4}^{3}$.

We now apply the fundamental theorem of symmetric polynomials to get $R_{G}(F, P)=X^{3}-b X^{2}+(a c-4 d) X-a^{2} d-c^{2}+4 b d$.

Computing Galois groups

Theorem

Let $P=X^{4}+b X^{2}+c X+d$ be an irreducible rational polynomial.
Then we have,
(1) $G a l(P) \subset D_{8}$ if, and only if, $X^{3}-b X^{2}-4 d X-c^{2}+4 b d$ has a rational root.
(2) $\operatorname{Gal}(P) \subset V_{4}=\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$ if, and only if, $X^{6}-6 b X^{5}+\left(13 b^{2}-24 d\right) X^{4}+\left(-12 b^{3}+96 b d\right) X^{3}+\left(4 b^{4}-\right.$ $\left.120 b^{2} d+144 d^{2}\right) X^{2}+\left(48 b^{3} d-288 b d^{2}\right) X+4 b^{3} c^{2}-16 b^{4} d+$ $27 c^{4}-144 b c^{2} d+272 b^{2} d^{2}-256 d^{3}$ has a rational root.

Remark

When $P=\Psi_{(E, m)}$ of degree $n \geq \frac{m^{2}-m}{2}$, we have
$\operatorname{deg}\left(R_{G}\right)=\left[S_{n}: G\right]>\left[S_{n}: \mathrm{GL}_{2}(\mathbb{Z} / m \mathbb{Z})\right]>\frac{\# S_{m^{2}-m}^{2}}{\# G \mathrm{~L}_{2}(\mathbb{Z} / m \mathbb{Z})}>\frac{\left(\frac{m^{2}-m}{2}\right)!}{\left.\# \mathrm{GL}_{2}(\mathbb{Z}) m \mathbb{Z}\right)}>\frac{2^{\frac{m^{2}-m}{2}}}{m^{4}}$.
(Hyper-exponential, in practice only $m=2,3,4$ work.)

Another method

Question : When does the Galois group of the field of I-torsion differs from its generic value?
Answer : When one of the 4 extensions given below has smaller degree than its generic value.

$$
\begin{gathered}
K_{4}=\mathbb{Q}\left(x_{1}, x_{2}, y_{1}, y_{2}\right)=\mathbb{Q}(E[/]) \\
\mid P_{3}=y^{2}-\left(x_{2}^{3}+a x_{2}+b\right) \\
K_{3}=\mathbb{Q}\left(x_{1}, x_{2}, y_{1}\right) \\
\mid P_{2}=y^{2}-\left(x_{1}^{3}+a x_{1}+b\right) \\
K_{2}=\mathbb{Q}\left(x_{1}, x_{2}\right) \\
\mid P_{1}=\text { a factor of } \Psi \text { of degree } \frac{l^{2}-1}{2} \\
K_{1}=\mathbb{Q}\left(x_{1}\right) \\
\mid P_{0}=\Psi \text { of degree } \frac{l^{2}-1}{2}
\end{gathered}
$$

This is equivalent to testing whether $\Psi_{(E, I)}$ factorizes on \mathbb{Q} or a factor of $\Psi_{(E, l)}$ factorizes on $\mathbb{Q}\left(x_{1}\right)$ or two polynomials of degree 2 factorize on appropriate fields.

Example :

Let $E: y^{2}=x^{3}+a x+b$ be a rational elliptic curve. Then $\Psi_{3}=x^{4}+2 a x^{2}+4 b x-\frac{1}{3} a^{2}$. We consider a partition of 4 of length 2.

- For [2, 2], we write,

$$
x^{4}+2 a x^{2}+4 b x-\frac{1}{3} a^{2}=\left(x^{2}+e_{2} x+e_{1}\right)\left(x^{2}+f_{2} x+f_{1}\right)
$$

and equate the coefficients on both sides. We get a system of polynomial equations,

$$
\left\{\begin{array} { l }
{ e _ { 2 } + f _ { 2 } = 0 } \\
{ e _ { 2 } f _ { 2 } + e _ { 1 } + f _ { 1 } = 2 a } \\
{ e _ { 1 } f _ { 2 } + e _ { 2 } f _ { 1 } = 4 b } \\
{ e _ { 1 } f _ { 1 } = - 1 / 3 a ^ { 2 } }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
f_{2}=-e_{2} \\
f_{1}=2 a+e_{2} f_{2}-e_{1} \\
e_{1}\left(e_{2}^{2}+2 a-e_{1}\right)+\frac{1}{3} a^{2}=0 . \\
e_{2}^{6}+4 a e_{2}^{4}+\frac{16}{3} e_{2}^{2} a^{2}-16 b^{2}=0
\end{array}\right.\right.
$$

Thus if $3 x^{6}+12 a x^{4}+16 a^{2} x^{2}-48 b^{2}$ does not have a rational root, then the factorization pattern of Ψ_{3} is not [2, 2].

Algorithm

Algorithm 1 (CONDITIONS)

INPUT : $F \in \mathbb{Q}[X]$ and $P \in \mathbb{Q}[X] / F$ of degree n.
OUTPUT : Necessary conditions under which P has a certain factorization pattern on $\mathbb{Q}[X] / F$.
(1) For every partition of n, create a system of equations as shown in the example.
(2) Solve it to get polynomial conditions.

Algorithm 2

INPUT : E a rational elliptic curve and $/$ a prime.
OUTPUT : Necessary conditions under which $\operatorname{Gal}(\mathbb{Q}(E[/]))$ is non-generic.
(1) For $i \in\{1,2,3,4\}$
(2) $F_{i}=\mu\left(K_{i-1}\right)$ (absolute polynomial of K_{i-1}.)
(3) CONDITIONS $\left(F_{i}, P_{i}\right)$

Case $I=3$

Theorem

Let $E: y^{2}=x^{3}+a x+b$ be a rational elliptic curve with $a b \neq 0$. Let Ψ_{3} be its 3-division polynomial and Δ its discriminant. Then we have,

Fact. Pattern of Ψ_{3}	Condition(s)	$\# G_{E}(3)$
$(1,1,2)$	C_{1} and a 3-torsion point	2
$(1,1,2)$	$C_{1} \quad 4$	
$(1,3)$	C_{2} or $\left[C_{2}\right.$ and a 3-torsion point $]$	6
$(1,3)$	C_{2}	12
$(2,2)$	C_{3}	8
(4)	C_{4}	16

$C_{1}=27 x^{12}+594 a x^{10}+972 b x^{9}+4761 a^{2} x^{8}+14256 a b x^{7}+$
$\left(17100 a^{3}+15120 b^{2}\right) x^{6}+61992 a^{2} b x^{5}+3 a\left(11519 a^{3}+52704 b^{2}\right) x^{4}+$
$432 b\left(293 a^{3}+972 b^{2}\right) x^{3}+486 a^{2}\left(59 a^{3}+312 b^{2}\right) x^{2}+$
$324 a b\left(587 a^{3}+3456 b^{2}\right) x-5329 a^{6}+162432 b^{2} a^{3}+1492992 b^{4}$
$C_{2 \prime}=x^{16}-24 b x^{12}+6 \Delta x^{8}-3 \Delta^{2}$
$C_{2}=3 x^{4}+6 a x^{2}+12 b x-a^{2}$
$C_{3}=3 x^{6}+12 a x^{4}+16 a^{2} x^{2}-48 b^{2}$
$C_{4}=x^{3}-2 \Delta$ i.e. the j of E is a cube.
(1) Let us assume that a family is given by the condition that $\exists x \in \mathbb{Q}$ such that $C(x, a, b)=0$.
(2) Replace a and b in C by random polynomials in t. We then compute the genus of $C(x, t)$.
(3) Compute genus g of C.

- If $g \geq 2$, only finitely many solutions.
- If $g=0$, try to find a rational point and parametrize.
- If $g=1$, try to find a rational point and put C in Weierstrass form and compute the rank r.
- If $r=0$, only finitely many points.
- If $r>0$, compute generators.

From conditions to families of curves : Example

Let $E: y^{2}=x^{3}+a x+b$ be a rational elliptic curve. We saw that if Ψ_{3} factorizes into two quadratic factors then
$C=3 x^{6}+12 a x^{4}+16 a^{2} x^{2}-48 b^{2}$ has a rational root. If we put $b=2 a$, we get $C=3 x^{6}+12 a x^{4}+16 a^{2} x^{2}-192 a^{2}$.
This curve is of genus 0 thus we get a parametrization

$$
a(t)=\frac{27 t^{3}(19 t+2)^{3}}{\left(242 t^{2}+54 t+3\right)\left(271 t^{2}+57 t+3\right)^{2}} \text { and } b(t)=2 a(t)
$$

Case $I=3$

Theorem

Let $E: y^{2}=x^{3}+a x+b$ be a rational elliptic curve with $a b \neq 0$. Let Ψ_{3} be its 3-division polynomial and Δ its discriminant. Then we have,

Fact. Pattern of Ψ_{3}	Condition(s)	$\# G_{E}(3)$
$(1,1,2)$	C_{1} and a 3-torsion point	2
$(1,1,2)$	$C_{1} \quad 4$	
$(1,3)$	C_{2}, or $\left[C_{2}\right.$ and a 3-torsion point $]$	6
$(1,3)$	C_{2}	12
$(2,2)$	C_{3}	8
(4)	C_{4}	16

$C_{1}=27 x^{12}+594 a x^{10}+972 b x^{9}+4761 a^{2} x^{8}+14256 a b x^{7}+$
$\left(17100 a^{3}+15120 b^{2}\right) x^{6}+61992 a^{2} b x^{5}+3 a\left(11519 a^{3}+52704 b^{2}\right) x^{4}+$ $432 b\left(293 a^{3}+972 b^{2}\right) x^{3}+486 a^{2}\left(59 a^{3}+312 b^{2}\right) x^{2}+$
$324 a b\left(587 a^{3}+3456 b^{2}\right) x-5329 a^{6}+162432 b^{2} a^{3}+1492992 b^{4}$
$C_{2 \prime}=x^{16}-24 b x^{12}+6 \Delta x^{8}-3 \Delta^{2}$
$C_{2}=3 x^{4}+6 a x^{2}+12 b x-a^{2}$
$C_{3}=3 x^{6}+12 a x^{4}+16 a^{2} x^{2}-48 b^{2}$
$C_{4}=x^{3}-2 \Delta$
In all the above cases, we obtained $g=0$.

Computing the generic valuation of a family

$$
\begin{aligned}
& \operatorname{Gal}\left(\mathbb{Q}(t)\left(E_{t}[/]\right) / \mathbb{Q}(t)\right) \xrightarrow{\text { eval }} \operatorname{Gal}(\mathbb{Q}(E[/]) / \mathbb{Q}) \\
& \mid \rho \stackrel{\rho}{\rho} \\
& \operatorname{GL}_{2}(\mathbb{Z} / / \mathbb{Z})= \\
& \mathrm{GL}_{2}(\mathbb{Z} / / \mathbb{Z})
\end{aligned}
$$

As the families are constructed to have $\operatorname{Gal}\left(\mathbb{Q}(t)\left(E_{t}[/]\right) / \mathbb{Q}(t)\right) \subset H$ where H is a subgroup of $\mathrm{GL}_{2}(\mathbb{Z} / \mathbb{Z})$, it suffices to find one value of $t \in \mathbb{Q}$ for which $\# \operatorname{Gal}(\mathbb{Q}(E[/]) / \mathbb{Q})=\# H$ to determine $\operatorname{Gal}\left(\mathbb{Q}(t)\left(E_{t}[/]\right) / \mathbb{Q}(t)\right)$.

Valuations $I=3$

Theorem

Let $E: y^{2}=x^{3}+a x+b, a b \neq 0$ be a rational elliptic curve. Then the generic average valuation $\overline{v a l}_{3}\left(E\left(\mathbb{F}_{p}\right)\right)$ is 0.68 , except when one the following cases occurs.

Conditions	A parametrization	Example (a, b)	Valuation
C_{1} and a 3-torsion point	a, b complicated.	$(5805,-285714)$	2.06
C_{1}	a, b complicated.	$(284445,97999902)$	
C_{2} and a 3-torsion point	$a=3 t^{2}, b=-\frac{243 t^{6}+162 t^{4}-9 t^{2}}{36}$	$(3,-11)$	1.41
$C_{2 \prime}$	$a=\frac{-192 t^{3}-254803968}{t^{4}}, b=\frac{-t^{6}-5308416 t^{3}-4696546738176}{3 t^{6}}$	$\left(-254804160,-\frac{4696552046593}{3}\right)$	1.68
C_{2}	$a=\frac{-36 t(t+2)^{3}}{\left(t^{2}+4 t+1\right)^{2}}, b=2 a$	$\left(\frac{-4608}{169}, \frac{-9216}{169}\right)$	1.22
C_{3}	$a=\frac{27 t^{3}(19 t+2)^{3}}{\left(242 t^{2}+54 t+3\right)\left(271 t^{2}+57 t+3\right)^{2}, b=2 a}$	$\left(\frac{250047}{32758739}, \frac{500094}{32758739)}\right.$	
C_{4}	$a=\frac{216}{\left(t^{3}-8\right)}, b=2 a$	$\left(\frac{-216}{7}, \frac{-432}{7}\right)$	1.08

$C_{1}=27 x^{12}+594 a x^{10}+972 b x^{9}+4761 a^{2} x^{8}+14256 a b x^{7}+$
$\left(17100 a^{3}+15120 b^{2}\right) x^{6}+61992 a^{2} b x^{5}+3 a\left(11519 a^{3}+52704 b^{2}\right) x^{4}+$
$432 b\left(293 a^{3}+972 b^{2}\right) x^{3}+486 a^{2}\left(59 a^{3}+312 b^{2}\right) x^{2}+$
$324 a b\left(587 a^{3}+3456 b^{2}\right) x-5329 a^{6}+162432 b^{2} a^{3}+1492992 b^{4}$
$C_{2 \prime}=x^{16}-24 b x^{12}+6 \Delta x^{8}-3 \Delta^{2}$
$C_{2}=3 x^{4}+6 a x^{2}+12 b x-a^{2}$
$C_{3}=3 x^{6}+12 a x^{4}+16 a^{2} x^{2}-48 b^{2}$
$C_{4}=x^{3}-2 \Delta$

Cryptographic application

Goal

- INPUT : A number field K, a prime I and $a(\alpha, \beta)$ and $b(\alpha, \beta)$.
- OUTPUT : Complete list of equations of negligible density necessary for non-generic valuation.

Popular parametrizations

- Montgomery $B y^{2}=x^{3}+A x^{2}+x$ or $y^{2}=x^{3}+\frac{3-A^{2}}{3 B^{2}} x+\frac{2 A^{3}-3 A}{27 B^{3}}$
- Edwards $a x^{2}+y^{2}=1+d x^{2} y^{2}$ or $y^{2}=x^{3}+\frac{3-\alpha^{2}}{3 \beta^{2}} x+\frac{2 \alpha^{3}-3 \alpha}{27 \beta^{3}}$ where $\alpha=-2 \frac{a+d}{a-d}$ and $\beta=\frac{4}{a-d}$.
- Hessian $y^{2}+a x y+b y=x^{3}$ or $y^{2}=x^{3}+\left(-27 a^{4}+648 a b\right) x+\left(54 a^{6}-1944 a^{3} b+11664 b^{2}\right)$.
- etc...

Valuation $m=4$, Montgomery curve

Theorem

Let $E: B y^{2}=x^{3}+A x^{2}+x$ be a rational elliptic curve with $B\left(A^{2}-4\right) \neq 0$. Then the generic average valuation $\overline{v a l}_{2}\left(E\left(\mathbb{F}_{p}\right)\right)$ is 3.33, except,

- If $A^{2}-4 \neq \square$ i.e. $E(\mathbb{Q})[2] \neq \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$, we note Ψ be the quartic factor of its 4-division polynomial. Then we have,

Fact. Pat. of Ψ	Condition(s)	$\# G_{E}(4)$	Valuation
$(2,2)$	$C_{2}\left(A=-2 \frac{t^{4}-4}{t^{4}+4}\right)$	4	3.40
(4)	$\frac{A \pm 2}{B}= \pm \square$ or $\frac{4 B^{2}}{A^{2}-4}=-t^{4}$	8	3.68

$$
C_{2}=x^{4}-4 A x^{3}+\left(4 A^{2}+8\right) x^{2}-16 A x+4 A^{2}
$$

- If $A^{2}-4=\square$ i.e. if $A=\frac{t^{2}+4}{2 t}$. Then we have,

Fact. Pat. of Ψ	Condition(s)	$\# G_{E}(4)$	Valuation
$(1,1,2)$	$A=\frac{t^{4}+24 t^{2}+16}{4\left(t^{2}+4\right) t}$ and $B=-t\left(t^{2}+4\right) \square$	2	4.82
$(1,1,2)$	$A=\frac{t^{4}+24 t^{2}+16}{4\left(t^{2}+4\right) t}$	4	3.91
$(2,2)$	$A=\frac{t^{2}+4}{2 t}$ and $\frac{A \pm 2}{B}=\square$	4	4.42
$(2,2)$	$A=\frac{t^{2}+4}{2 t}$	8	3.78

Thank you!

