Local behaviour of Galois representations

Devika Sharma

Weizmann Institute of Science, Israel

23rd June, 2017

Devika Sharma (Weizmann)

23rd June, 2017 1 / 14

Let p be a prime. Let $f = \sum_{n \ge 1}^{\infty} a_n(f)q^n$ be a normalized eigenform in $S_{k \ge 2}^{\text{new}}(N, \epsilon)$.

Let p be a prime. Let $f = \sum_{n \ge 1}^{\infty} a_n(f)q^n$ be a normalized eigenform in $S_{k \ge 2}^{\text{new}}(N, \epsilon)$. Let

$$\rho_f: G_{\mathbb{Q}} \longrightarrow \operatorname{GL}_2(K_{f,p}).$$

Let p be a prime. Let $f = \sum_{n \ge 1}^{\infty} a_n(f)q^n$ be a normalized eigenform in $S_{k \ge 2}^{\text{new}}(N, \epsilon)$. Let

$$\rho_f: G_{\mathbb{Q}} \longrightarrow \operatorname{GL}_2(K_{f,p}).$$

Let $G_p \subset G_Q$ be the decomposition group at p.

Let p be a prime. Let $f = \sum_{n \ge 1}^{\infty} a_n(f)q^n$ be a normalized eigenform in $S_{k \ge 2}^{\text{new}}(N, \epsilon)$. Let

$$\rho_f: G_{\mathbb{Q}} \longrightarrow \operatorname{GL}_2(K_{f,p}).$$

Let $G_p \subset G_Q$ be the decomposition group at p. Assume f is p-ordinary, i.e., $p \nmid a_p(f)$.

Let p be a prime. Let $f = \sum_{n \ge 1}^{\infty} a_n(f)q^n$ be a normalized eigenform in $S_{k \ge 2}^{\text{new}}(N, \epsilon)$. Let

$$\rho_f: G_{\mathbb{Q}} \longrightarrow \operatorname{GL}_2(K_{f,p}).$$

Let $G_p \subset G_Q$ be the decomposition group at p. Assume f is p-ordinary, i.e., $p \nmid a_p(f)$. Then Wiles showed,

$$\rho_f|_{G_p} = \begin{pmatrix} \eta & \nu \\ 0 & \eta' \end{pmatrix}$$

with η' unramified.

Let p be a prime. Let $f = \sum_{n \ge 1}^{\infty} a_n(f)q^n$ be a normalized eigenform in $S_{k \ge 2}^{\text{new}}(N, \epsilon)$. Let

$$\rho_f: G_{\mathbb{Q}} \longrightarrow \operatorname{GL}_2(K_{f,p}).$$

Let $G_p \subset G_Q$ be the decomposition group at p. Assume f is p-ordinary, i.e., $p \nmid a_p(f)$. Then Wiles showed,

$$\rho_f|_{G_p} = \begin{pmatrix} \eta & \nu \\ 0 & \eta' \end{pmatrix},$$

with η' unramified.

Natural to ask, when does $\rho_f|_{G_p}$ split?

Current status

Guess: $\rho_f|_{G_p}$ splits $\iff f$ has complex multiplication (CM).

Current status

Guess: $\rho_f|_{G_p}$ splits $\iff f$ has complex multiplication (CM).

f has CM $\Longrightarrow \rho_f|_{G_p}$ splits.

Current status

Guess: $\rho_f|_{G_p}$ splits $\iff f$ has complex multiplication (CM).

f has CM $\Longrightarrow \rho_f|_{G_p}$ splits.

f is non-CM $\stackrel{??}{\Longrightarrow} \rho_f|_{G_p}$ is non-split.

Every p-ordinary form f is part of a family of modular forms

$$\mathcal{H}_f := \{f_{k_0} : k_0 \ge 1\}$$

where $f = f_k$.

Every p-ordinary form f is part of a family of modular forms

$$\mathcal{H}_f := \{f_{k_0} : k_0 \ge 1\}$$

where $f = f_k$.

Theorem

For p = 3, every member of a non-CM family^{*} \mathcal{H}_f is non-split

Every p-ordinary form f is part of a family of modular forms

$$\mathcal{H}_f := \{f_{k_0} : k_0 \ge 1\}$$

where $f = f_k$.

Theorem

For p = 3, every member of a non-CM family^{*} \mathcal{H}_f is non-split if

- condition (C1)
- condition (C2)

are satisfied.

Let p = 3.

Let p = 3. Let $f \in S_2(N)$ correspond to an elliptic curve E over \mathbb{Q} .

Let p = 3. Let $f \in S_2(N)$ correspond to an elliptic curve E over \mathbb{Q} . Let

$$\overline{\rho} := \overline{\rho}_f : G_S \to \mathrm{GL}_2(\mathbb{F}_p)$$

be the corresponding residual representation.

Let p = 3. Let $f \in S_2(N)$ correspond to an elliptic curve E over \mathbb{Q} . Let

$$\overline{\rho} := \overline{\rho}_f : \mathcal{G}_S \to \mathrm{GL}_2(\mathbb{F}_p)$$

be the corresponding residual representation. The Galois action on the *p*-torsion points on *E* also gives \overline{p} .

Let p = 3. Let $f \in S_2(N)$ correspond to an elliptic curve E over \mathbb{Q} . Let

$$\overline{\rho} := \overline{\rho}_f : \mathcal{G}_S \to \mathrm{GL}_2(\mathbb{F}_p)$$

be the corresponding residual representation. The Galois action on the *p*-torsion points on *E* also gives \overline{p} .

Assume that

Let p = 3. Let $f \in S_2(N)$ correspond to an elliptic curve E over \mathbb{Q} . Let

$$\overline{\rho} := \overline{\rho}_f : \mathcal{G}_S \to \mathrm{GL}_2(\mathbb{F}_p)$$

be the corresponding residual representation. The Galois action on the *p*-torsion points on *E* also gives $\overline{\rho}$.

Assume that

• *p* ∤ *N*,

Let p = 3. Let $f \in S_2(N)$ correspond to an elliptic curve E over \mathbb{Q} . Let

$$\overline{\rho} := \overline{\rho}_f : \mathcal{G}_S \to \mathrm{GL}_2(\mathbb{F}_p)$$

be the corresponding residual representation. The Galois action on the *p*-torsion points on *E* also gives $\overline{\rho}$.

Assume that

- *p* ∤ *N*,
- *ρ* is surjective.

Let p = 3. Let $f \in S_2(N)$ correspond to an elliptic curve E over \mathbb{Q} . Let

$$\overline{\rho} := \overline{\rho}_f : G_S \to \mathrm{GL}_2(\mathbb{F}_p)$$

be the corresponding residual representation. The Galois action on the *p*-torsion points on *E* also gives \overline{p} .

Assume that

- *p* ∤ *N*,
- $\overline{\rho}$ is surjective. This implies that \mathcal{H}_f is a non-CM family.

H : field cut out by the projective image of $\overline{\rho}$

 $\begin{array}{lll} H & : & \mbox{field cut out by the projective image of } \overline{\rho} \\ {\rm Cl}_H & : & \mbox{class group of } H, \mbox{ and } \widetilde{\rm Cl}_H := {\rm Cl}_H/{\rm Cl}_H^p \end{array}$

- H : field cut out by the projective image of $\overline{
 ho}$
- Cl_H : class group of H, and $\operatorname{\widetilde{Cl}}_H := \operatorname{Cl}_H/\operatorname{Cl}_H^p$
 - E : global units of H, and $\widetilde{E} := E/E^p$

- H : field cut out by the projective image of $\overline{\rho}$
- Cl_{H} : class group of H, and $\widetilde{\operatorname{Cl}}_{H} := \operatorname{Cl}_{H}/\operatorname{Cl}_{H}^{p}$
 - E : global units of H, and $\widetilde{E} := E/E^p$

 $U_p := \prod_{\mathfrak{P}|p} U_{\mathfrak{P}}$, where $U_{\mathfrak{P}}$ are local units at $\mathfrak{P}|p$ in H

 $\begin{array}{rcl} H & : & \mbox{field cut out by the projective image of } \overline{\rho} \\ \mathrm{Cl}_{H} & : & \mbox{class group of } H, \mbox{ and } \widetilde{\mathrm{Cl}}_{H} := \mathrm{Cl}_{H}/\mathrm{Cl}_{H}^{p} \\ E & : & \mbox{global units of } H, \mbox{ and } \widetilde{E} := E/E^{p} \\ U_{p} & := & \prod_{\mathfrak{P}|p} U_{\mathfrak{P}}, \mbox{ where } U_{\mathfrak{P}} \mbox{ are local units at } \mathfrak{P}|p \mbox{ in } H \\ \widetilde{U}_{p} & := & U_{p}/U_{p}^{p} \end{array}$

$$\begin{array}{rcl} H & : & \mbox{field cut out by the projective image of } \overline{\rho} \\ \mathrm{Cl}_{H} & : & \mbox{class group of } H, \mbox{ and } \widetilde{\mathrm{Cl}}_{H} := \mathrm{Cl}_{H}/\mathrm{Cl}_{H}^{p} \\ E & : & \mbox{global units of } H, \mbox{ and } \widetilde{E} := E/E^{p} \\ U_{p} & := & \prod_{\mathfrak{P}|p} U_{\mathfrak{P}}, \mbox{ where } U_{\mathfrak{P}} \mbox{ are local units at } \mathfrak{P}|p \mbox{ in } H \\ \widetilde{U}_{p} & := & U_{p}/U_{p}^{p} \\ \widetilde{U}_{p,0} & \subset & \widetilde{U}_{p} \end{array}$$

$$\begin{array}{rcl} H & : & \mbox{field cut out by the projective image of } \overline{\rho} \\ \mathrm{Cl}_{H} & : & \mbox{class group of } H, \mbox{ and } \widetilde{\mathrm{Cl}}_{H} := \mathrm{Cl}_{H}/\mathrm{Cl}_{H}^{p} \\ E & : & \mbox{global units of } H, \mbox{ and } \widetilde{E} := E/E^{p} \\ U_{p} & := & \prod_{\mathfrak{P}|p} U_{\mathfrak{P}}, \mbox{ where } U_{\mathfrak{P}} \mbox{ are local units at } \mathfrak{P}|p \mbox{ in } H \\ \widetilde{U}_{p} & := & U_{p}/U_{p}^{p} \\ \widetilde{U}_{p,0} & \subset & \widetilde{U}_{p} \end{array}$$

Remark

The spaces $\widetilde{\operatorname{Cl}}_H$, \widetilde{E} , \widetilde{U}_p and $\widetilde{U}_{p,0}$ are all $\mathbb{F}_p[G_{\mathbb{Q}}]$ -modules.

Definition

Let W be the space $M_2(\mathbb{F}_p)$ with the conjugation action of $G_{\mathbb{Q}}$ via $\overline{\rho}$.

Definition

Let W be the space $M_2(\mathbb{F}_p)$ with the conjugation action of $G_{\mathbb{Q}}$ via $\overline{\rho}$. Let W_0 be the submodule of trace 0 matrices in W.

Definition

Let W be the space $M_2(\mathbb{F}_p)$ with the conjugation action of $G_{\mathbb{Q}}$ via $\overline{\rho}$. Let W_0 be the submodule of trace 0 matrices in W.

For a finite dimensional $\mathbb{F}_{\rho}[G_{\mathbb{Q}}]$ -module V,

Definition

Let W be the space $M_2(\mathbb{F}_p)$ with the conjugation action of $G_{\mathbb{Q}}$ via $\overline{\rho}$. Let W_0 be the submodule of trace 0 matrices in W.

For a finite dimensional $\mathbb{F}_{p}[G_{\mathbb{Q}}]$ -module V, let $V^{\mathrm{Ad}} :=$ sum of all J-H factors isomorphic to W_{0} .

Conditions

The conditions are $(C1) \ \widetilde{\operatorname{Cl}}_{H}^{\operatorname{Ad}} \text{ is trivial, and }$

Conditions

The conditions are

- $({\it C1}) ~ \widetilde{{
 m Cl}}_{\it H}^{
 m Ad}$ is trivial, and
- $({\it C2}) \ \ {\rm the \ composition} \ \widetilde{E}^{\rm Ad} \to \widetilde{U}_p^{\rm Ad} \twoheadrightarrow \widetilde{U}_{p,0}^{\rm Ad} \ {\rm is \ non-zero}.$

Conditions

The conditions are (C1) $\widetilde{\operatorname{Cl}}_{H}^{\operatorname{Ad}}$ is trivial, and (C2) the composition $\widetilde{E}^{\operatorname{Ad}} \to \widetilde{U}_{p}^{\operatorname{Ad}} \twoheadrightarrow \widetilde{U}_{p,0}^{\operatorname{Ad}}$ is non-zero.

Corollary

Let $f \in S_2(N)$, for $N \leq 1,000$, as above. Then every member of \mathcal{H}_f is non-split.

Conditions

The conditions are (C1) $\widetilde{\operatorname{Cl}}_{H}^{\operatorname{Ad}}$ is trivial, and (C2) the composition $\widetilde{E}^{\operatorname{Ad}} \to \widetilde{U}_{p}^{\operatorname{Ad}} \twoheadrightarrow \widetilde{U}_{p,0}^{\operatorname{Ad}}$ is non-zero.

Corollary

Let $f \in S_2(N)$, for $N \leq 1,000$, as above. Then every member of \mathcal{H}_f is non-split.

Remark

```
When N = 118, hypothesis (C2) fails.
```

Conditions

The conditions are (C1) $\widetilde{\operatorname{Cl}}_{\mathcal{H}}^{\operatorname{Ad}}$ is trivial, and (C2) the composition $\widetilde{E}^{\operatorname{Ad}} \to \widetilde{U}_{\rho}^{\operatorname{Ad}} \twoheadrightarrow \widetilde{U}_{\rho,0}^{\operatorname{Ad}}$ is non-zero.

Corollary

Let $f \in S_2(N)$, for $N \leq 1,000$, as above. Then every member of \mathcal{H}_f is non-split.

Remark

When N = 118, hypothesis (C2) fails.

We give an alternative argument to deal with such cases.

Conditions (C1) and (C2)

Conditions (C1) and (C2)

Note that W_0 is an irreducible $\operatorname{GL}_2(\mathbb{F}_p)$ -module, while the conditions (C1) and (C2) are over $\operatorname{PGL}_2(\mathbb{F}_p)$. This is because scalars act trivially on W_0 .

Conditions (C1) and (C2)

Note that W_0 is an irreducible $\operatorname{GL}_2(\mathbb{F}_p)$ -module, while the conditions (C1) and (C2) are over $\operatorname{PGL}_2(\mathbb{F}_p)$. This is because scalars act trivially on W_0 .

This works well in computations as the order of $\operatorname{GL}_2(\mathbb{F}_p)$ is 48, where as $\operatorname{PGL}_2(\mathbb{F}_p)$ is 24!

 $\widetilde{\operatorname{Cl}}_{\textit{H}}^{\operatorname{Ad}}$ is trivial

The field *H* is the splitting field of the 3-division polynomial Φ_3 .

 $\widetilde{\operatorname{Cl}}_{\textit{H}}^{\operatorname{Ad}}$ is trivial

The field *H* is the splitting field of the 3-division polynomial Φ_3 . It can be explicitly generated by composing Φ_3 , with the polynomial $x^3 - disc_E$ and $x^2 + 3$.

 $\widetilde{\operatorname{Cl}}_{\textit{H}}^{\operatorname{Ad}}$ is trivial

The field *H* is the splitting field of the 3-division polynomial Φ_3 . It can be explicitly generated by composing Φ_3 , with the polynomial $x^3 - disc_E$ and $x^2 + 3$.

In most examples,

 $p^3 \nmid |Cl_H| \Longrightarrow (C1)$ holds.

 $\widetilde{\operatorname{Cl}}_{\textit{H}}^{\operatorname{Ad}}$ is trivial

The field *H* is the splitting field of the 3-division polynomial Φ_3 . It can be explicitly generated by composing Φ_3 , with the polynomial $x^3 - disc_E$ and $x^2 + 3$.

In most examples,

$$p^3 \nmid |Cl_H| \Longrightarrow (C1)$$
 holds.

When $p^3 | |Cl_H|$, we compute the J-H factors to deduce that (C1) holds.

 $\widetilde{\operatorname{Cl}}_{\textit{H}}^{\operatorname{Ad}}$ is trivial

The field *H* is the splitting field of the 3-division polynomial Φ_3 . It can be explicitly generated by composing Φ_3 , with the polynomial $x^3 - disc_E$ and $x^2 + 3$.

In most examples,

$$p^3 \nmid |Cl_H| \Longrightarrow (C1)$$
 holds.

When $p^3 | |Cl_H|$, we compute the J-H factors to deduce that (C1) holds.

This uses PARI/GP!

The composition
$$\widetilde{E}^{\mathrm{Ad}} \to \widetilde{U}_p^{\mathrm{Ad}} \twoheadrightarrow \widetilde{U}_{p,0}^{\mathrm{Ad}}$$
 is non-zero

The composition
$$\widetilde{E}^{\mathrm{Ad}} o \widetilde{U}_p^{\mathrm{Ad}} woheadrightarrow \widetilde{U}_{p,0}^{\mathrm{Ad}}$$
 is non-zero

Facts:

• $\widetilde{E}^{\mathrm{Ad}} \simeq W_0$

The composition
$$\widetilde{E}^{\mathrm{Ad}} o \widetilde{U}_p^{\mathrm{Ad}} woheadrightarrow \widetilde{U}_{p,0}^{\mathrm{Ad}}$$
 is non-zero

Facts:

- $\widetilde{E}^{\text{Ad}} \simeq W_0$ $\widetilde{U}_{\rho}^{\text{Ad}} \simeq 5W_0$

The composition
$$\widetilde{E}^{\mathrm{Ad}} o \widetilde{U}_p^{\mathrm{Ad}} woheadrightarrow \widetilde{U}_{p,0}^{\mathrm{Ad}}$$
 is non-zero

Facts:

- $\begin{array}{l} \bullet ~~ \widetilde{E}^{\mathrm{Ad}}\simeq W_0 \\ \bullet ~~ \widetilde{U}_p^{\mathrm{Ad}}\simeq 5W_0 \\ \bullet ~~ \widetilde{U}_{p,0}^{\mathrm{Ad}}\simeq W_0 \end{array} \end{array}$

The composition
$$\widetilde{E}^{\mathrm{Ad}} o \widetilde{U}_p^{\mathrm{Ad}} woheadrightarrow \widetilde{U}_{p,0}^{\mathrm{Ad}}$$
 is non-zero

Facts:

- $\begin{array}{l} \bullet ~~ \widetilde{E}^{\mathrm{Ad}}\simeq W_0 \\ \bullet ~~ \widetilde{U}_p^{\mathrm{Ad}}\simeq 5W_0 \\ \bullet ~~ \widetilde{U}_{p,0}^{\mathrm{Ad}}\simeq W_0 \end{array} \end{array}$

To check that (C2) holds,

The composition
$$\widetilde{E}^{\mathrm{Ad}} o \widetilde{U}_p^{\mathrm{Ad}} woheadrightarrow \widetilde{U}_{p,0}^{\mathrm{Ad}}$$
 is non-zero

Facts:

- $\widetilde{E}^{\text{Ad}} \simeq W_0$ $\widetilde{U}_p^{\text{Ad}} \simeq 5W_0$
- $\widetilde{U}_{p,0}^{\mathrm{Ad}} \simeq W_0$

To check that (C2) holds, we find $e \in E$ satisfying

The composition
$$\widetilde{E}^{\mathrm{Ad}} o \widetilde{U}_p^{\mathrm{Ad}} woheadrightarrow \widetilde{U}_{p,0}^{\mathrm{Ad}}$$
 is non-zero

Facts:

- $\bullet ~\widetilde{E}^{\rm Ad} \simeq W_0$
- $\widetilde{U}_p^{\rm Ad} \simeq 5 W_0$
- $\widetilde{U}_{p,0}^{\mathrm{Ad}} \simeq W_0$

To check that (C2) holds, we find $e \in E$ satisfying

• $I(\mathfrak{P}|p)$ fixes e, for some $\mathfrak{P}|p$, and

The composition
$$\widetilde{E}^{\mathrm{Ad}} o \widetilde{U}_p^{\mathrm{Ad}} woheadrightarrow \widetilde{U}_{p,0}^{\mathrm{Ad}}$$
 is non-zero

Facts:

- $\widetilde{E}^{\text{Ad}} \simeq W_0$ $\widetilde{U}_p^{\text{Ad}} \simeq 5W_0$

•
$$\widetilde{U}_{p,0}^{\mathrm{Ad}} \simeq W_0$$

To check that (C2) holds, we find $e \in E$ satisfying

- $I(\mathfrak{P}|p)$ fixes e, for some $\mathfrak{P}|p$, and
- $e \in 1 + \mathfrak{P}^n$, for $n \leq 2$

Elliptic curves satisfying conditions (C1) and (C2)

A _f	Δ_{A_f}	(a, b) for A_f	$ Cl_H $	е	e lies in
89. <i>a</i> 1	-89	(-1323, 28134)	2	$e_4^{-2}e_5^2e_6^{-2}e_7e_8^2e_9^{-2}$	$1+\mathfrak{P}_2$
155. <i>a</i> 1	$-5^5 \cdot 31$	(12528, 443664)	2 · 3	$e_2^4 e_3^4 e_4^4 e_5^6 e_7^{-4} e_8^4 e_9^2$	$1+\mathfrak{P}_1$
155. <i>b</i> 1	$-5^2 \cdot 31$	(-1323, -65178)			
158. <i>b</i> 1	$2^2 \cdot 79$	(-4563, 111726)	2 · 3	$-e_1^2e_2e_3e_5e_6^{-1}$	$1+\mathfrak{P}_8^2$
158. <i>c</i> 1	2 ²⁰ · 79	(-544347, 153226998)			
158. <i>e</i> 2	$2\cdot 79^2$	(-11691, 416934)			
:	:			÷	
994. <i>b</i> 2	$2^2\cdot 7^{10}\cdot 71$	(-1509219, -324105570)	$2\cdot 3^4\cdot 13^3$	$-e_5e_6e_7^{-2}e_8^2e_9^{-2}e_{10}^{-2}$	$1+\mathfrak{P}_1$
994.e2	$2\cdot 7^2\cdot 71^2$	(-27243, -711450)			

In this example,

• $Cl_H = 2$ implies that (C1) holds,

In this example,

- $Cl_H = 2$ implies that (C1) holds, while
- Condition (C2) fails!

In this example,

- $Cl_H = 2$ implies that (C1) holds, while
- Condition (C2) fails!
- Alternative condition (C2'): This involves showing that a particular totally ramified Z/3-extension K₃ over Q₃ is distinct from the cyclotomic Z/3-extension over Q₃.

In this example,

- $Cl_H = 2$ implies that (C1) holds, while
- Condition (C2) fails!
- Alternative condition (C2'): This involves showing that a particular totally ramified Z/3-extension K₃ over Q₃ is distinct from the cyclotomic Z/3-extension over Q₃.

Checking the alternative condition includes explicitly computing the norm subgroup corresponding to K_3/\mathbb{Q}_3 . This uses PARI-GP extensively.

Thank You.