Local behaviour of Galois representations

Devika Sharma

Weizmann Institute of Science, Israel
23rd June, 2017

The question

Let p be a prime. Let $f=\sum_{n \geqslant 1}^{\infty} a_{n}(f) q^{n}$ be a normalized eigenform in $S_{k \geqslant 2}^{\text {new }}(N, \epsilon)$.

The question

Let p be a prime. Let $f=\sum_{n \geqslant 1}^{\infty} a_{n}(f) q^{n}$ be a normalized eigenform in $S_{k \geqslant 2}^{\text {new }}(N, \epsilon)$. Let

$$
\rho_{f}: G_{\mathbb{Q}} \longrightarrow \mathrm{GL}_{2}\left(K_{f, p}\right) .
$$

The question

Let p be a prime. Let $f=\sum_{n \geqslant 1}^{\infty} a_{n}(f) q^{n}$ be a normalized eigenform in $S_{k \geqslant 2}^{\text {new }}(N, \epsilon)$. Let

$$
\rho_{f}: G_{\mathbb{Q}} \longrightarrow \mathrm{GL}_{2}\left(K_{f, p}\right) .
$$

Let $G_{p} \subset G_{\mathbb{Q}}$ be the decomposition group at p.

The question

Let p be a prime. Let $f=\sum_{n \geqslant 1}^{\infty} a_{n}(f) q^{n}$ be a normalized eigenform in $S_{k \geqslant 2}^{\text {new }}(N, \epsilon)$. Let

$$
\rho_{f}: G_{\mathbb{Q}} \longrightarrow \mathrm{GL}_{2}\left(K_{f, p}\right) .
$$

Let $G_{p} \subset G_{\mathbb{Q}}$ be the decomposition group at p. Assume f is p-ordinary, i.e., $p \nmid a_{p}(f)$.

The question

Let p be a prime. Let $f=\sum_{n \geqslant 1}^{\infty} a_{n}(f) q^{n}$ be a normalized eigenform in $S_{k \geqslant 2}^{\text {new }}(N, \epsilon)$. Let

$$
\rho_{f}: G_{\mathbb{Q}} \longrightarrow \mathrm{GL}_{2}\left(K_{f, p}\right)
$$

Let $G_{p} \subset G_{\mathbb{Q}}$ be the decomposition group at p. Assume f is p-ordinary, i.e., $p \nmid a_{p}(f)$. Then Wiles showed,

$$
\rho_{f} \left\lvert\, G_{p}=\left(\begin{array}{cc}
\eta & \nu \\
0 & \eta^{\prime}
\end{array}\right)\right.
$$

with η^{\prime} unramified.

The question

Let p be a prime. Let $f=\sum_{n \geqslant 1}^{\infty} a_{n}(f) q^{n}$ be a normalized eigenform in $S_{k \geqslant 2}^{\text {new }}(N, \epsilon)$. Let

$$
\rho_{f}: G_{\mathbb{Q}} \longrightarrow \mathrm{GL}_{2}\left(K_{f, p}\right)
$$

Let $G_{p} \subset G_{\mathbb{Q}}$ be the decomposition group at p. Assume f is p-ordinary, i.e., $p \nmid a_{p}(f)$. Then Wiles showed,

$$
\rho_{f} \left\lvert\, G_{p}=\left(\begin{array}{cc}
\eta & \nu \\
0 & \eta^{\prime}
\end{array}\right)\right.
$$

with η^{\prime} unramified.
Natural to ask, when does $\left.\rho_{f}\right|_{G_{p}}$ split?

Current status

Guess: $\rho_{f} \mid G_{p}$ splits $\Longleftrightarrow f$ has complex multiplication (CM).

Current status

Guess: $\rho_{f} \mid G_{p}$ splits $\Longleftrightarrow f$ has complex multiplication (CM).
f has $\mathrm{CM} \Longrightarrow \rho_{f} \mid G_{p}$ splits.

Current status

Guess: $\rho_{f} \mid G_{p}$ splits $\Longleftrightarrow f$ has complex multiplication (CM).
f has $\mathrm{CM} \Longrightarrow \rho_{f} \mid G_{p}$ splits.
f is non- $\mathrm{CM} \stackrel{? ?}{\Longrightarrow} \rho_{f} \mid G_{p}$ is non-split.

We ask for more

We ask for more

Every p-ordinary form f is part of a family of modular forms

$$
\mathcal{H}_{f}:=\left\{f_{k_{0}}: k_{0} \geqslant 1\right\}
$$

where $f=f_{k}$.

We ask for more

Every p-ordinary form f is part of a family of modular forms

$$
\mathcal{H}_{f}:=\left\{f_{k_{0}}: k_{0} \geqslant 1\right\}
$$

where $f=f_{k}$.

Theorem
For $p=3$, every member of a non-CM family* \mathcal{H}_{f} is non-split

We ask for more

Every p-ordinary form f is part of a family of modular forms

$$
\mathcal{H}_{f}:=\left\{f_{k_{0}}: k_{0} \geqslant 1\right\}
$$

where $f=f_{k}$.

Theorem
For $p=3$, every member of a non-CM family* \mathcal{H}_{f} is non-split if

- condition (C1)
- condition (C2)
are satisfied.

Set up

Let $p=3$.

Set up

Let $p=3$. Let $f \in S_{2}(N)$ correspond to an elliptic curve E over \mathbb{Q}.

Set up

Let $p=3$. Let $f \in S_{2}(N)$ correspond to an elliptic curve E over \mathbb{Q}. Let

$$
\bar{\rho}:=\bar{\rho}_{f}: G_{S} \rightarrow \mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)
$$

be the corresponding residual representation.

Set up

Let $p=3$. Let $f \in S_{2}(N)$ correspond to an elliptic curve E over \mathbb{Q}. Let

$$
\bar{\rho}:=\bar{\rho}_{f}: G_{S} \rightarrow \mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)
$$

be the corresponding residual representation. The Galois action on the p-torsion points on E also gives $\bar{\rho}$.

Set up

Let $p=3$. Let $f \in S_{2}(N)$ correspond to an elliptic curve E over \mathbb{Q}. Let

$$
\bar{\rho}:=\bar{\rho}_{f}: G_{S} \rightarrow \mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)
$$

be the corresponding residual representation. The Galois action on the p-torsion points on E also gives $\bar{\rho}$.

Assume that

Set up

Let $p=3$. Let $f \in S_{2}(N)$ correspond to an elliptic curve E over \mathbb{Q}. Let

$$
\bar{\rho}:=\bar{\rho}_{f}: G_{S} \rightarrow \mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)
$$

be the corresponding residual representation. The Galois action on the p-torsion points on E also gives $\bar{\rho}$.

Assume that

- $p \nmid N$,

Set up

Let $p=3$. Let $f \in S_{2}(N)$ correspond to an elliptic curve E over \mathbb{Q}. Let

$$
\bar{\rho}:=\bar{\rho}_{f}: G_{S} \rightarrow \mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)
$$

be the corresponding residual representation. The Galois action on the p-torsion points on E also gives $\bar{\rho}$.

Assume that

- $p \nmid N$,
- $\bar{\rho}$ is surjective.

Set up

Let $p=3$. Let $f \in S_{2}(N)$ correspond to an elliptic curve E over \mathbb{Q}. Let

$$
\bar{\rho}:=\bar{\rho}_{f}: G_{S} \rightarrow \mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)
$$

be the corresponding residual representation. The Galois action on the p-torsion points on E also gives $\bar{\rho}$.

Assume that

- $p \nmid N$,
- $\bar{\rho}$ is surjective. This implies that \mathcal{H}_{f} is a non-CM family.

Notation

Notation

H : field cut out by the projective image of $\bar{\rho}$

Notation

H : field cut out by the projective image of $\bar{\rho}$
 Cl_{H} : class group of H, and $\widetilde{\mathrm{Cl}}_{H}:=\mathrm{Cl}_{H} / \mathrm{Cl}_{H}^{p}$

Notation

H : field cut out by the projective image of $\bar{\rho}$
Cl_{H} : class group of H, and $\widetilde{\mathrm{Cl}}_{H}:=\mathrm{Cl}_{H} / \mathrm{Cl}_{H}^{p}$
$E \quad: \quad$ global units of H, and $\tilde{E}:=E / E^{p}$

Notation

H : field cut out by the projective image of $\bar{\rho}$
$\mathrm{Cl}_{H} \quad$: class group of H, and $\widetilde{\mathrm{Cl}}_{H}:=\mathrm{Cl}_{H} / \mathrm{Cl}_{H}^{p}$
$E \quad: \quad$ global units of H, and $\tilde{E}:=E / E^{p}$
$U_{p}:=\prod_{\mathfrak{P} \mid p} U_{\mathfrak{P}}$, where $U_{\mathfrak{P}}$ are local units at $\mathfrak{P} \mid p$ in H

Notation

H : field cut out by the projective image of $\bar{\rho}$
$\mathrm{Cl}_{H} \quad$: class group of H, and $\widetilde{\mathrm{Cl}}_{H}:=\mathrm{Cl}_{H} / \mathrm{Cl}_{H}^{p}$
$E \quad: \quad$ global units of H, and $\tilde{E}:=E / E^{p}$
$U_{p}:=\prod_{\mathfrak{P} \mid p} U_{\mathfrak{P}}$, where $U_{\mathfrak{P}}$ are local units at $\mathfrak{P} \mid p$ in H
$\widetilde{U}_{p}:=U_{p} / U_{p}^{p}$

Notation

H : field cut out by the projective image of $\bar{\rho}$
Cl_{H} : class group of H, and $\widetilde{\mathrm{Cl}}_{H}:=\mathrm{Cl}_{H} / \mathrm{Cl}_{H}^{p}$
$E \quad: \quad$ global units of H, and $\tilde{E}:=E / E^{p}$
$U_{p}:=\prod_{\mathfrak{P} \mid p} U_{\mathfrak{P}}$, where $U_{\mathfrak{P}}$ are local units at $\mathfrak{P} \mid p$ in H
$\widetilde{U}_{p}:=U_{p} / U_{p}^{p}$
$\widetilde{U}_{p, 0} \subset \widetilde{U}_{p}$

Notation

H : field cut out by the projective image of $\bar{\rho}$
Cl_{H} : class group of H, and $\widetilde{\mathrm{Cl}}_{H}:=\mathrm{Cl}_{H} / \mathrm{Cl}_{H}^{p}$
$E \quad: \quad$ global units of H, and $\tilde{E}:=E / E^{p}$
$U_{p}:=\prod_{\mathfrak{P} \mid p} U_{\mathfrak{P}}$, where $U_{\mathfrak{P}}$ are local units at $\mathfrak{P} \mid p$ in H
$\widetilde{U}_{p}:=U_{p} / U_{p}^{p}$
$\widetilde{U}_{p, 0} \subset \widetilde{U}_{p}$

Remark

The spaces $\widetilde{\mathrm{Cl}}_{H}, \widetilde{E}, \widetilde{U}_{p}$ and $\widetilde{U}_{p, 0}$ are all $\mathbb{F}_{p}\left[G_{\mathbb{Q}}\right]$-modules.

Notation

Definition

Let W be the space $\mathrm{M}_{2}\left(\mathbb{F}_{p}\right)$ with the conjugation action of $G_{\mathbb{Q}}$ via $\bar{\rho}$.

Notation

Definition

Let W be the space $\mathrm{M}_{2}\left(\mathbb{F}_{p}\right)$ with the conjugation action of $G_{\mathbb{Q}}$ via $\bar{\rho}$. Let W_{0} be the submodule of trace 0 matrices in W.

Notation

Definition

Let W be the space $\mathrm{M}_{2}\left(\mathbb{F}_{p}\right)$ with the conjugation action of $G_{\mathbb{Q}}$ via $\bar{\rho}$. Let W_{0} be the submodule of trace 0 matrices in W.

For a finite dimensional $\mathbb{F}_{p}\left[G_{\mathbb{Q}}\right]$-module V,

Notation

Definition

Let W be the space $\mathrm{M}_{2}\left(\mathbb{F}_{p}\right)$ with the conjugation action of $G_{\mathbb{Q}}$ via $\bar{\rho}$. Let W_{0} be the submodule of trace 0 matrices in W.

For a finite dimensional $\mathbb{F}_{p}\left[G_{\mathbb{Q}}\right]$-module V, let
$V^{\text {Ad }}:=$ sum of all J-H factors isomorphic to W_{0}.

Conditions

The conditions are
(C1) $\widetilde{\mathrm{Cl}}_{H}^{\mathrm{Ad}}$ is trivial, and

Conditions

The conditions are
(C1) $\widetilde{\mathrm{Cl}}_{H}^{\mathrm{Ad}}$ is trivial, and
(C2) the composition $\widetilde{E}^{\mathrm{Ad}} \rightarrow \widetilde{U}_{p}^{\mathrm{Ad}} \rightarrow \widetilde{U}_{p, 0}^{\mathrm{Ad}}$ is non-zero.

Conditions

The conditions are
(C1) $\widetilde{\mathrm{Cl}}_{H}^{\mathrm{Ad}}$ is trivial, and
(C2) the composition $\widetilde{E}^{\mathrm{Ad}} \rightarrow \widetilde{U}_{p}^{\mathrm{Ad}} \rightarrow \widetilde{U}_{p, 0}^{\mathrm{Ad}}$ is non-zero.

Corollary
Let $f \in S_{2}(N)$, for $N \leqslant 1,000$, as above. Then every member of \mathcal{H}_{f} is non-split.

Conditions

The conditions are
(C1) $\widetilde{\mathrm{Cl}}_{H}^{\mathrm{Ad}}$ is trivial, and
(C2) the composition $\widetilde{E}^{\mathrm{Ad}} \rightarrow \widetilde{U}_{p}^{\mathrm{Ad}} \rightarrow \widetilde{U}_{p, 0}^{\mathrm{Ad}}$ is non-zero.

Corollary
Let $f \in S_{2}(N)$, for $N \leqslant 1,000$, as above. Then every member of \mathcal{H}_{f} is non-split.

Remark
When $N=118$, hypothesis (C2) fails.

Conditions

The conditions are
(C1) $\widetilde{\mathrm{Cl}}_{H}^{\mathrm{Ad}}$ is trivial, and
(C2) the composition $\widetilde{E}^{\mathrm{Ad}} \rightarrow \widetilde{U}_{p}^{\mathrm{Ad}} \rightarrow \widetilde{U}_{p, 0}^{\mathrm{Ad}}$ is non-zero.

Corollary
Let $f \in S_{2}(N)$, for $N \leqslant 1,000$, as above. Then every member of \mathcal{H}_{f} is non-split.

Remark
When $N=118$, hypothesis (C2) fails.
We give an alternative argument to deal with such cases.

Conditions (C1) and (C2)

Conditions (C1) and (C2)

Note that W_{0} is an irreducible $\mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)$-module, while the conditions (C 1) and (C2) are over $\mathrm{PGL}_{2}\left(\mathbb{F}_{p}\right)$. This is because scalars act trivially on W_{0}.

Conditions (C1) and (C2)

Note that W_{0} is an irreducible $\mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)$-module, while the conditions (C1) and $(\mathrm{C} 2)$ are over $\mathrm{PGL}_{2}\left(\mathbb{F}_{p}\right)$. This is because scalars act trivially on W_{0}.

This works well in computations as the order of $\mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)$ is 48 , where as $\mathrm{PGL}_{2}\left(\mathbb{F}_{p}\right)$ is $24!$

Condition (C1)

Condition (C1)

$\widetilde{\mathrm{Cl}}_{H}^{\mathrm{Ad}}$ is trivial

Condition (C1)

$$
\widetilde{\mathrm{Cl}}_{H}^{\mathrm{Ad}} \text { is trivial }
$$

The field H is the splitting field of the 3-division polynomial Φ_{3}.

Condition (C1)

$$
\widetilde{\mathrm{Cl}}_{H}^{\mathrm{Ad}} \text { is trivial }
$$

The field H is the splitting field of the 3-division polynomial Φ_{3}. It can be explicitly generated by composing Φ_{3}, with the polynomial $x^{3}-\operatorname{dis} c_{E}$ and $x^{2}+3$.

Condition (C1)

$$
\widetilde{\mathrm{Cl}}_{H}^{\mathrm{Ad}} \text { is trivial }
$$

The field H is the splitting field of the 3-division polynomial Φ_{3}. It can be explicitly generated by composing Φ_{3}, with the polynomial $x^{3}-\operatorname{disc}_{E}$ and $x^{2}+3$.
In most examples,

$$
p^{3} \nmid\left|C l_{H}\right| \Longrightarrow(C 1) \text { holds. }
$$

Condition (C1)

$$
\widetilde{\mathrm{Cl}}_{H}^{\mathrm{Ad}} \text { is trivial }
$$

The field H is the splitting field of the 3-division polynomial Φ_{3}. It can be explicitly generated by composing Φ_{3}, with the polynomial $x^{3}-\operatorname{disc}_{E}$ and $x^{2}+3$.
In most examples,

$$
p^{3} \nmid\left|C I_{H}\right| \Longrightarrow(C 1) \text { holds. }
$$

When $p^{3}| | C l_{H} \mid$, we compute the J-H factors to deduce that $(C 1)$ holds.

Condition (C1)

$$
\widetilde{\mathrm{Cl}}_{H}^{\mathrm{Ad}} \text { is trivial }
$$

The field H is the splitting field of the 3-division polynomial Φ_{3}. It can be explicitly generated by composing Φ_{3}, with the polynomial $x^{3}-\operatorname{disc}_{E}$ and $x^{2}+3$.
In most examples,

$$
p^{3} \nmid\left|C l_{H}\right| \Longrightarrow(C 1) \text { holds. }
$$

When $p^{3}| | C I_{H} \mid$, we compute the J-H factors to deduce that (C1) holds.
This uses PARI/GP!

Condition (C2)

Condition (C2)

The composition $\widetilde{E}^{\text {Ad }} \rightarrow \widetilde{U}_{p}^{\text {Ad }} \rightarrow \widetilde{U}_{p, 0}^{\text {Ad }}$ is non-zero

Condition (C2)

The composition $\widetilde{E}^{\text {Ad }} \rightarrow \widetilde{U}_{p}^{\text {Ad }} \rightarrow \widetilde{U}_{p, 0}^{\text {Ad }}$ is non-zero

Facts:

- $\tilde{E}^{\mathrm{Ad}} \simeq W_{0}$

Condition (C2)

The composition $\widetilde{E}^{\text {Ad }} \rightarrow \widetilde{U}_{p}^{\text {Ad }} \rightarrow \widetilde{U}_{p, 0}^{\text {Ad }}$ is non-zero

Facts:

- $\tilde{E}^{\mathrm{Ad}} \simeq W_{0}$
- $\widetilde{U}_{p}^{\mathrm{Ad}} \simeq 5 W_{0}$

Condition (C2)

The composition $\widetilde{E}^{\text {Ad }} \rightarrow \widetilde{U}_{p}^{\text {Ad }} \rightarrow \widetilde{U}_{p, 0}^{\text {Ad }}$ is non-zero

Facts:

- $\tilde{E}^{\mathrm{Ad}} \simeq W_{0}$
- $\widetilde{U}_{p}^{\mathrm{Ad}} \simeq 5 W_{0}$
- $\widetilde{U}_{p, 0}^{\mathrm{Ad}} \simeq W_{0}$

Condition (C2)

The composition $\widetilde{E}^{\text {Ad }} \rightarrow \widetilde{U}_{p}^{\text {Ad }} \rightarrow \widetilde{U}_{p, 0}^{\text {Ad }}$ is non-zero

Facts:

- $\tilde{E}^{\mathrm{Ad}} \simeq W_{0}$
- $\widetilde{U}_{p}^{\mathrm{Ad}} \simeq 5 W_{0}$
- $\widetilde{U}_{p, 0}^{\mathrm{Ad}} \simeq W_{0}$

To check that (C2) holds,

Condition (C2)

The composition $\widetilde{E}^{\text {Ad }} \rightarrow \widetilde{U}_{p}^{\text {Ad }} \rightarrow \widetilde{U}_{p, 0}^{\text {Ad }}$ is non-zero

Facts:

- $\tilde{E}^{\mathrm{Ad}} \simeq W_{0}$
- $\widetilde{U}_{p}^{\mathrm{Ad}} \simeq 5 W_{0}$
- $\widetilde{U}_{p, 0}^{\mathrm{Ad}} \simeq W_{0}$

To check that (C2) holds, we find $e \in E$ satisfying

Condition (C2)

The composition $\widetilde{E}^{\text {Ad }} \rightarrow \widetilde{U}_{p}^{\text {Ad }} \rightarrow \widetilde{U}_{p, 0}^{\text {Ad }}$ is non-zero

Facts:

- $\tilde{E}^{\mathrm{Ad}} \simeq W_{0}$
- $\widetilde{U}_{p}^{\mathrm{Ad}} \simeq 5 W_{0}$
- $\widetilde{U}_{p, 0}^{\mathrm{Ad}} \simeq W_{0}$

To check that (C2) holds, we find $e \in E$ satisfying

- I($\mathfrak{P} \mid p)$ fixes e, for some $\mathfrak{P} \mid p$, and

Condition (C2)

The composition $\widetilde{E}^{\text {Ad }} \rightarrow \widetilde{U}_{p}^{\text {Ad }} \rightarrow \widetilde{U}_{p, 0}^{\text {Ad }}$ is non-zero

Facts:

- $\widetilde{E}^{\mathrm{Ad}} \simeq W_{0}$
- $\widetilde{U}_{p}^{\text {Ad }} \simeq 5 W_{0}$
- $\widetilde{U}_{p, 0}^{\mathrm{Ad}} \simeq W_{0}$

To check that (C2) holds, we find $e \in E$ satisfying

- I($\mathfrak{P} \mid p)$ fixes e, for some $\mathfrak{P} \mid p$, and
- $e \in 1+\mathfrak{P}^{n}$, for $n \leqslant 2$

Elliptic curves satisfying conditions (C1) and (C2)

A_{f}	$\Delta_{A_{f}}$	(a, b) for A_{f}	$\left\|\mathrm{Cl}_{H}\right\|$	e	e lies in
$89 . a 1$	-89	$(-1323,28134)$	2	$e_{4}^{-2} e_{5}^{2} e_{6}^{-2} e_{7} e_{8}^{2} e_{9}^{-2}$	$1+\mathfrak{P}_{2}$
$155 . a 1$	$-5^{5} \cdot 31$	$(12528,443664)$	$2 \cdot 3$	$e_{2}^{4} e_{3}^{4} e_{4}^{4} e_{5}^{6} e_{7}^{-4} e_{8}^{4} e_{9}^{2}$	$1+\mathfrak{P}_{1}$
$155 . b 1$	$-5^{2} \cdot 31$	$(-1323,-65178)$			
$158 . b 1$	$2^{2} \cdot 79$	$(-4563,111726)$	$2 \cdot 3$	$-e_{1}^{2} e_{2} e_{3} e_{5} e_{6}^{-1}$	$1+\mathfrak{P}_{8}^{2}$
$158 . c 1$	$2^{20} \cdot 79$	$(-544347,153226998)$			
$158 . e 2$	$2 \cdot 79^{2}$	$(-11691,416934)$			
\vdots	\vdots			\vdots	
$994 . b 2$	$2^{2} \cdot 7^{10} \cdot 71$	$(-1509219,-324105570)$	$2 \cdot 3^{4} \cdot 13^{3}$	$-e_{5} e_{6} e_{7}^{-2} e_{8}^{2} e_{9}^{-2} e_{10}^{-2}$	$1+\mathfrak{P}_{1}$
$994 . e 2$	$2 \cdot 7^{2} \cdot 71^{2}$	$(-27243,-711450)$			

Exception: Example 118

Exception: Example 118

In this example,

- $C l_{H}=2$ implies that (C1) holds,

Exception: Example 118

In this example,

- $C l_{H}=2$ implies that (C1) holds, while
- Condition (C2) fails!

Exception: Example 118

In this example,

- $C l_{H}=2$ implies that (C1) holds, while
- Condition (C2) fails!
- Alternative condition $\left(C 2^{\prime}\right)$: This involves showing that a particular totally ramified $\mathbb{Z} / 3$-extension K_{3} over \mathbb{Q}_{3} is distinct from the cyclotomic $\mathbb{Z} / 3$-extension over \mathbb{Q}_{3}.

Exception: Example 118

In this example,

- $C l_{H}=2$ implies that (C1) holds, while
- Condition (C2) fails!
- Alternative condition $\left(C 2^{\prime}\right)$: This involves showing that a particular totally ramified $\mathbb{Z} / 3$-extension K_{3} over \mathbb{Q}_{3} is distinct from the cyclotomic $\mathbb{Z} / 3$-extension over \mathbb{Q}_{3}.

Checking the alternative condition includes explicitly computing the norm subgroup corresponding to K_{3} / \mathbb{Q}_{3}. This uses PARI-GP extensively.

Thank You.

