Some computations with pro-p groups with PARI/GP

Marine Rougnant

Atelier PARI/GP 2017 - Lyon

(1) LOOKING FOR MILD PRO- p GROUPS

- Why ?
- Where?
- How?
(2) Computations and EXAMPLES
- Auxiliary Frobenius
- Examples \& Stats
- Propagation
(3) What about the other ones?
- A diagram...
- ... and graphs
- Examples, again!
\rightsquigarrow Cohomological dimension 2,
\rightsquigarrow Poincaré series of the graduate algebra $\operatorname{gr}\left(\mathbb{F}_{p}[[G]]\right)$ known.

Consider :

- p a prime number,
- $K=\mathbb{Q}$ or K an imaginary quadratic field $(K \neq \mathbb{Q}(j)$ if $p=3)$ with trivial p-class group,
- S a finite set of primes of K with norm 1 modulo p.
- $K_{S} \mid K$: the maximal pro- p extension of K unramified outside S.

$$
G_{S}=\operatorname{Gal}\left(K_{S} \mid K\right)
$$

Theorem (Labute-Minac-Schmidt criterion)

Let G be a pro-p group with finite p-rank. If the cohomology groups (over \mathbb{F}_{p}) of G satisfy the following conditions :

- there exist two \mathbb{F}_{p}-vector spaces U and V such that $H^{1}\left(G, \mathbb{F}_{p}\right) \simeq U \oplus V$,
- the cup-product $\cup: H^{1}\left(G, \mathbb{F}_{p}\right) \times H^{1}\left(G, \mathbb{F}_{p}\right) \rightarrow H^{2}\left(G, \mathbb{F}_{p}\right)$ restricted to $V \otimes V$ is identically zero,
- the cup-product $\cup: H^{1}\left(G, \mathbb{F}_{p}\right) \times H^{1}\left(G, \mathbb{F}_{p}\right) \rightarrow H^{2}\left(G, \mathbb{F}_{p}\right)$ restricted to $U \otimes V$ is surjective,
then the pro-p group G is mild.

Theorem (LMS criterion)

If there exist two vector spaces U, V such that:

- $H^{1}\left(G_{S}(K)\right) \simeq U \oplus V$,
- $U: V \times V \rightarrow^{0} H^{2}\left(G_{S}(K)\right)$
- $U: U \times V \rightarrow H^{2}\left(G_{S}(K)\right)$
then the pro-p group $G_{S}(K)$ is mild.

Theorem (LMS criterion)

If there exist two vector spaces U, V such that:

- $H^{1}\left(G_{S}(K)\right) \simeq U \oplus V$,
- $U: V \times V \rightarrow^{0} H^{2}\left(G_{S}(K)\right)$
- $U: U \times V \rightarrow H^{2}\left(G_{S}(K)\right)$
then the pro-p group $G_{S}(K)$ is mild.

Theorem (LMS criterion)

If there exist two vector spaces U, V such that:

- $H^{1}\left(G_{S}(K)\right) \simeq U \oplus V$,
- $U: V \times V \rightarrow^{0} H^{2}\left(G_{S}(K)\right) \hookrightarrow \bigoplus_{v \in S} H^{2}\left(\overline{G_{v}}\right)$,
- $U: U \times V \rightarrow H^{2}\left(G_{S}(K)\right) \hookrightarrow \bigoplus_{v \in S} H^{2}\left(\overline{G_{v}}\right)$,
then the pro-p group $G_{S}(K)$ is mild.

Corollary (LMS criterion)

If there exist two vector spaces U, V such that :

- $H^{1}\left(G_{S}(K)\right) \simeq U \oplus V$,
- $U: V \times V \longrightarrow{ }^{0} \bigoplus_{v \in S} H^{2}\left(\overline{G_{v}}\right)$,
- $U: U \times V \longrightarrow \bigoplus_{v \in S} H^{2}\left(\overline{G_{v}}\right)$,
then the pro-p group $G_{S}(K)$ is mild.

Corollary (LMS criterion)

If there exist two vector spaces U, V such that :

- $H^{1}\left(G_{S}(K)\right) \simeq U \oplus V$,
- $U: V \times V \longrightarrow{ }^{0} \bigoplus_{v \in S} H^{2}\left(\overline{G_{v}}\right)$,
- $U: U \times V \longrightarrow \bigoplus_{v \in S} H^{2}\left(\overline{G_{v}}\right)$,
then the pro-p group $G_{S}(K)$ is mild.
Under our hypotheses, we have the decomposition :

$$
H^{1}\left(G_{S}\right) \simeq \bigoplus_{v \in S} H^{1}\left(G_{v}^{p, e l}\right)
$$

where $G_{v}^{p, e l}$ is the Galois group of the maximal elementary p-extension of K unramified outside v.

Corollary (LMS criterion respecting S)

If there exist \mathcal{U}, \mathcal{V} such that $S=\mathcal{U} \sqcup \mathcal{V}$ and such that

- $H^{1}\left(G_{S}\right) \simeq U \oplus V$,
- $\cup: V \times V \longrightarrow{ }^{0} \bigoplus_{v \in S} H^{2}\left(\overline{G_{v}}\right)$,
- $U: U \times V \longrightarrow \bigoplus_{v \in S} H^{2}\left(\overline{G_{v}}\right)$,
where $U=\bigoplus_{v \in \mathcal{U}} H^{1}\left(G_{v}^{p, e l}\right)$ and $V=\bigoplus_{v \in \mathcal{V}} H^{1}\left(G_{v}^{p, e l}\right)$, then the pro-p group G_{S} is mild and we say that the field K satisfies the LMS criterion respecting S.
\rightsquigarrow Finding a "good basis" of $H^{1}\left(G_{S}\right)$:
\rightsquigarrow Finding a "good basis" of $H^{1}\left(G_{S}\right)$:

For each $v \in S$, we choose a prime p_{v} of K such that :

- p_{v} is inert in the extension $K_{v}^{p, e l} \mid K$,
- p_{v} is totally split in the extension $K_{w}^{p, e l} \mid K w \in S, w \neq v$.
\rightsquigarrow Computing cup-products:
\rightsquigarrow Computing cup-products:
For a well-chosen basis $\left\{\widetilde{\chi}_{v}, v \in S\right\}$ of $H^{1}\left(G_{S}\right)$ we have :

Proposition

If v, w in S are such that v is inert in $K_{w}^{p, e l} \mid K$, then the local component in w of the cup-product $\widetilde{\chi}_{w} \cup \widetilde{\chi}_{v}$ is given by the integer $I_{v w}$ such that $F_{r o b}^{v}=\operatorname{Frob}_{p_{w}}^{l_{v w}}$ in $G_{w}^{p, e l}$.
\rightsquigarrow Applying the criterion :
\rightsquigarrow Applying the criterion :
We build a matrix Cup = cupproduct ($\mathrm{K}, \mathrm{S}, \mathrm{p}$) giving each local component (in columns) of each one of the cup-products (in rows) of the family $\left\{\widetilde{\chi}_{v}, v \in S\right\}$.
\rightsquigarrow Applying the criterion:

We build a matrix Cup = cupproduct ($\mathrm{K}, \mathrm{S}, \mathrm{p}$) giving each local component (in columns) of each one of the cup-products (in rows) of the family $\left\{\widetilde{\chi}_{v}, v \in S\right\}$.

Proposition

If there exists an integer $t \in\{1, \ldots,|S|\}$ and if we can order the primes of S such that the matrix C of the cup-products
$\left(\widetilde{\chi}_{v_{i}} \cup \widetilde{\chi}_{v_{j}}\right)_{i \leqslant t}$ satisfies :

- the t first rows of C are zero;
- C has rank $|S|$;
then the pro-p group $G_{S}(K)$ is mild.

Example

Consider $p=3, K=\mathbb{Q}, S=\left\{\ell_{1}=7, \ell_{2}=13, \ell_{3}=79, \ell_{4}=97\right\}$.

Example

Consider $p=3, K=\mathbb{Q}, S=\left\{\ell_{1}=7, \ell_{2}=13, \ell_{3}=79, \ell_{4}=97\right\}$. \rightsquigarrow auxiliary primes : $p_{1}=131, p_{2}=433, p_{3}=239$ and $p_{4}=811$.

Example

Consider $p=3, K=\mathbb{Q}, S=\left\{\ell_{1}=7, \ell_{2}=13, \ell_{3}=79, \ell_{4}=97\right\}$.
\rightsquigarrow auxiliary primes : $p_{1}=131, p_{2}=433, p_{3}=239$ and $p_{4}=811$.

$$
I_{21}=I_{41}=I_{32}=I_{43}=I_{34}=0
$$

\rightsquigarrow linking numbers: $I_{31}=I_{12}=I_{42}=I_{23}=1$,

$$
I_{13}=I_{14}=I_{24}=2
$$

Example

Consider $p=3, K=\mathbb{Q}, S=\left\{\ell_{1}=7, \ell_{2}=13, \ell_{3}=79, \ell_{4}=97\right\}$.
\rightsquigarrow auxiliary primes : $p_{1}=131, p_{2}=433, p_{3}=239$ and $p_{4}=811$.

$$
I_{21}=I_{41}=I_{32}=I_{43}=I_{34}=0
$$

\rightsquigarrow linking numbers: $I_{31}=I_{12}=I_{42}=I_{23}=1$,
$l_{13}=l_{14}=l_{24}=2$.
\rightsquigarrow cup-products : $\left(\begin{array}{cccccccc}0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 2 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 2 & 2\end{array}\right)$.

Example

Consider $p=3, K=\mathbb{Q}, S=\left\{\ell_{1}=7, \ell_{2}=13, \ell_{3}=79, \ell_{4}=97\right\}$.
\rightsquigarrow auxiliary primes : $p_{1}=131, p_{2}=433, p_{3}=239$ and $p_{4}=811$.

$$
I_{21}=I_{41}=I_{32}=I_{43}=I_{34}=0
$$

\rightsquigarrow linking numbers: $I_{31}=I_{12}=I_{42}=I_{23}=1$,
$l_{13}=l_{14}=l_{24}=2$.
\rightsquigarrow cup-products : $\left(\begin{array}{llllllll}0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 2 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 2 & 2\end{array}\right)$.
$\rightsquigarrow G_{S}(K)$ is mild.

EXAMPLE

$S=\{31,61,151,211\}, L=\mathbb{Q}(\sqrt{-15})$.
The pro-p group $\operatorname{Gal}\left(L_{S}(p) \mid L\right)$ is mild for $p=3$ and $p=5$.

Example

$S=\{31,61,151,211\}, L=\mathbb{Q}(\sqrt{-15})$.
The pro-p group $\operatorname{Gal}\left(L_{s}(p) \mid L\right)$ is mild for $p=3$ and $p=5$.

Example

$p=3, S=\{7,13,79,97\}$.
The pro-p group $\operatorname{Gal}\left(L_{S} \mid L\right)$ is mild if $L=\mathbb{Q}(\sqrt{-d})$ with $d \in\{66,94,185,285,290,355,391,454,458,521,607,614,647$, $703,829,881,906\}$.

EXAMPLE

$S=\{31,61,151,211\}, L=\mathbb{Q}(\sqrt{-15})$.
The pro-p group $\operatorname{Gal}\left(L_{S}(p) \mid L\right)$ is mild for $p=3$ and $p=5$.

Example

$p=3, S=\{7,13,79,97\}$.
The pro-p group $\operatorname{Gal}\left(L_{S} \mid L\right)$ is mild if $L=\mathbb{Q}(\sqrt{-d})$ with $d \in\{66,94,185,285,290,355,391,454,458,521,607,614,647$, $703,829,881,906\}$.

Example

$S=\{37,103,127,139\}, L=\mathbb{Q}(\sqrt{-d})$ a quadratic field with trivial p-class group in which every prime of S splits. If $p=3$ and $d<10^{3}$, then the pro-p group $\operatorname{Gal}\left(L_{S} \mid L\right)$ is mild.

Suppose that \mathbb{Q} satisfies LMS respecting S. How does this property propagate in quadratic imaginary fields with trivial p-class group, if every element of S splits?

Suppose that \mathbb{Q} satisfies LMS respecting S. How does this property propagate in quadratic imaginary fields with trivial p-class group, if every element of S splits?

Let \mathbb{E}_{S} be the set of the discriminants of all these quadratic fields. We compute the proportion :

$$
P_{S, p}(X)=\frac{\#\left\{d \leqslant X \mid d \in \mathbb{E}_{S}, \text { prop. } 2.2 \text { applies to } \mathbb{Q}(\sqrt{-d})\right\}}{\#\left\{d \leqslant X \mid d \in \mathbb{E}_{S}\right\}}
$$

S	$P_{S, 3}\left(10^{5}\right)$
$\{13,127,193,349\}$	$\simeq 0.8735$
$\{67,157,337,421\}$	$\simeq 0.8619$
$\{31,79,199,409\}$	$\simeq 0.8455$
$\{337,349,379,463\}$	$\simeq 0.8560$
$\{37,103,127,139\}$	$\simeq 0.8879$
$\{97,151,313,457\}$	$\simeq 0.8645$

S	$P_{S, 5}\left(10^{4}\right)$
$\{101,131,211,251\}$	$\simeq 0.6667$
$\{11,31,41,211\}$	$=0.696$
$\{31,181,191,271\}$	$\simeq 0.6744$
$\{211,251,401,421\}$	$\simeq 0.6578$

S	$P_{S, 3}\left(10^{6}\right)$
$\{7,13,79,97\}$	$\simeq 0.8655$
$\{43,61,157,337\}$	$\simeq 0.8920$

We now consider :

- L quadratic imaginary field with trivial p-class group $(L \neq \mathbb{Q}(j)$ if $p=3$),
- S finite set of primes, all equal to 1 modulo p and split in $L \mid \mathbb{Q}$.

Denote $G_{S}=G_{S}(\mathbb{Q})$ and $H_{S}=G_{S}(L)$.

We now consider :

- L quadratic imaginary field with trivial p-class group $(L \neq \mathbb{Q}(j)$ if $p=3$),
- S finite set of primes, all equal to 1 modulo p and split in $L \mid \mathbb{Q}$. Denote $G_{S}=G_{S}(\mathbb{Q})$ and $H_{S}=G_{S}(L)$.

Suppose that \mathbb{Q} satisfies LMS respecting S for the decomposition $H^{1}\left(G_{S}\right)=U \oplus V$.
We define two directed graphs \mathcal{G}_{S} and \mathcal{G}_{S}^{*} with vertices the primes of S as follow :

- \mathcal{G}_{S} has a directed edge $\left(v_{i}, v_{j}\right)$ from v_{i} to v_{j} if:

- \mathcal{G}_{S}^{*} has a directed edge $\left(v_{i}, v_{j}\right)$ from v_{i} to v_{j} if $\left(v_{j}, v_{i}\right)$ is an edge of \mathcal{G}_{S}.

A graph is said to be quasi-circular if it admits a spanning subgraph in which every vertex is of incoming degree 1 .

A graph is said to be quasi-circular if it admits a spanning subgraph in which every vertex is of incoming degree 1 .

THEOREM

If \mathbb{Q} satisfies LMS respecting S and if one of the graphs \mathcal{G}_{S} or \mathcal{G}_{S}^{*} is quasi-circular, then the group H_{S} satisfies LMS.

A graph is said to be quasi-circular if it admits a spanning subgraph in which every vertex is of incoming degree 1.

THEOREM

If \mathbb{Q} satisfies $L M S$ respecting S and if one of the graphs \mathcal{G}_{S} or \mathcal{G}_{S}^{*} is quasi-circular, then the group H_{S} satisfies LMS.

Corollary

When $|S|=4$, the group H_{S} satisfies LMS if the graph \mathcal{G}_{S} admits an elementary circuit (of length 4) as a spanning subgraph.

Example

$$
S=\{7,43,61,103,109,163,223,241\}, L=\mathbb{Q}(\sqrt{-5}), p=3 .
$$

Example

$p=3, S=\{61,223,229,487\}, d=5$, We obtain the following graph \mathcal{G}_{S} :

The pro-p group H_{S} is mild, even if the field L does not satisfy LMS respecting S ("crossed" cup-products have rank 7).

where:

- K a cyclic extension of degree ℓ of \mathbb{Q},
- S a finite set of primes such that $G_{S}(\mathbb{Q}) \simeq G_{S}(K)$,
- Σ a finite set of primes containing S and p,
- ℓ an integer coprime to p.

Thanks for your attention!

