What about the other ones? 00000

1/21

Some computations with pro-p groups with PARI/GP

Marine Rougnant

Atelier PARI/GP 2017 - Lyon

What about the other ones? 00000

B b

2/21

LOOKING FOR MILD PRO-*p* GROUPS

- Why?
- Where ?
- How ?

2 Computations and examples

- Auxiliary Frobenius
- Examples & Stats
- Propagation

3 What about the other ones?

- A diagram...
- ... and graphs
- Examples, again !

LOOKING FOR MILD PRO-*p* GROUPS •••••• WHY ?

Computations and examples 0000000

What about the other ones? 00000

 \rightsquigarrow Cohomological dimension 2,

 \rightsquigarrow Poincaré series of the graduate algebra $\operatorname{gr}(\mathbb{F}_{\rho}[[G]])$ known.

LOOKING FOR MILD PRO-p GROUPS	Computations and examples	What about the other ones?
0000	000000	00000
WHERE?		

Consider :

- *p* a prime number,
- $K = \mathbb{Q}$ or K an imaginary quadratic field $(K \neq \mathbb{Q}(j) \text{ if } p = 3)$ with trivial *p*-class group,
- S a finite set of primes of K with norm 1 modulo p.

• *K_S*|*K* : the maximal pro-*p* extension of *K* unramified outside *S*.

$$G_S = \operatorname{Gal}(K_S|K)$$

What about the other ones? 00000

Theorem (Labute-Minac-Schmidt criterion)

Let G be a pro-p group with finite p-rank. If the cohomology groups (over \mathbb{F}_p) of G satisfy the following conditions :

- there exist two \mathbb{F}_p -vector spaces U and V such that $H^1(G, \mathbb{F}_p) \simeq U \oplus V$,
- the cup-product ∪ : H¹(G, F_p) × H¹(G, F_p) → H²(G, F_p) restricted to V ⊗ V is identically zero,
- the cup-product ∪ : H¹(G, 𝔽_p) × H¹(G, 𝔽_p) → H²(G, 𝔽_p) restricted to U ⊗ V is surjective,

What about the other ones? 00000

THEOREM (LMS CRITERION)

If there exist two vector spaces U, V such that :

- $H^1(G_S(K)) \simeq U \oplus V$,
- $\cup : V \times V \rightarrow^{0} H^{2}(G_{S}(K))$
- \cup : $U \times V \twoheadrightarrow H^2(G_S(K))$

What about the other ones? 00000

THEOREM (LMS CRITERION)

If there exist two vector spaces U, V such that :

- $H^1(G_S(K)) \simeq U \oplus V$,
- $\cup : V \times V \rightarrow^{0} H^{2}(G_{S}(K))$
- \cup : $U \times V \twoheadrightarrow H^2(G_S(K))$

What about the other ones? 00000

THEOREM (LMS CRITERION)

If there exist two vector spaces U, V such that :

•
$$H^1(G_S(K)) \simeq U \oplus V$$
,

•
$$\cup : V \times V \to^0 H^2(G_S(K)) \hookrightarrow \bigoplus_{v \in S} H^2(\overline{G_v}),$$

•
$$\cup : U \times V \twoheadrightarrow H^2(G_{\mathcal{S}}(K)) \hookrightarrow \bigoplus_{v \in S} H^2(\overline{G_v}),$$

What about the other ones ? $_{\rm OOOOO}$

How?

COROLLARY (LMS CRITERION)

If there exist two vector spaces U, V such that :

•
$$H^1(G_S(K)) \simeq U \oplus V$$
,

•
$$\cup: V \times V \longrightarrow {}^{0} \bigoplus_{v \in S} H^{2}(\overline{G_{v}})$$
,

•
$$\cup : U \times V \longrightarrow \bigoplus_{v \in S} H^2(\overline{G_v})$$
,

What about the other ones? 00000

COROLLARY (LMS CRITERION)

If there exist two vector spaces U, V such that :

•
$$H^1(G_S(K)) \simeq U \oplus V$$
,
• $\cup : V \times V \longrightarrow {}^0 \bigoplus_{v \in S} H^2(\overline{G_v})$,

•
$$\cup: U \times V \longrightarrow \bigoplus_{v \in S} H^2(\overline{G_v})$$
,

then the pro-p group $G_S(K)$ is mild.

Under our hypotheses, we have the decomposition :

$$H^1(G_S) \simeq \bigoplus_{v \in S} H^1(G_v^{p,el}),$$

where $G_v^{p,el}$ is the Galois group of the maximal elementary *p*-extension of *K* unramified outside *v*.

What about the other ones? 00000

COROLLARY (LMS CRITERION RESPECTING S)

If there exist \mathcal{U}, \mathcal{V} such that $S = \mathcal{U} \sqcup \mathcal{V}$ and such that

- $H^1(G_S) \simeq U \oplus V$,
- $\cup : V \times V \longrightarrow {}^{0} \bigoplus_{v \in S} H^{2}(\overline{G_{v}}) ,$

•
$$\cup : U \times V \longrightarrow \bigoplus_{v \in S} H^2(\overline{G_v})$$
,

where $U = \bigoplus_{v \in \mathcal{U}} H^1(G_v^{p,el})$ and $V = \bigoplus_{v \in \mathcal{V}} H^1(G_v^{p,el})$, then the pro-p group G_S is mild and we say that the field K satisfies the LMS criterion respecting S.

Computations and examples $\bullet 0000000$

What about the other ones ? $_{\rm OOOOO}$

AUXILIARY FROBENIUS

 \rightsquigarrow Finding a "good basis" of $H^1(G_S)$:

AUXILIARY FROBENIUS

 \rightsquigarrow Finding a "good basis" of $H^1(G_S)$:

For each $v \in S$, we choose a prime p_v of K such that :

- p_v is inert in the extension $K_v^{p,el}|K$,
- p_v is totally split in the extension $\mathcal{K}_w^{p,el}|\mathcal{K}|w \in S, w \neq v$.

Computations and examples 000000

What about the other ones ? $_{\rm OOOOO}$

AUXILIARY FROBENIUS

 \rightsquigarrow Computing cup-products :

<ロト < 部 > < 書 > < 書 > 目 の Q (P) 9/21 AUXILIARY FROBENIUS

 \rightsquigarrow Computing cup-products :

For a well-chosen basis $\{\widetilde{\chi}_{\nu}, \nu \in S\}$ of $H^1(G_S)$ we have :

PROPOSITION

If v, w in S are such that v is inert in $K_w^{p,el}|K$, then the local component in w of the cup-product $\tilde{\chi}_w \cup \tilde{\chi}_v$ is given by the integer I_{vw} such that $Frob_v = Frob_{pw}^{l_{vw}}$ in $G_w^{p,el}$.

Computations and examples 0000000

What about the other ones?

AUXILIARY FROBENIUS

 \rightsquigarrow Applying the criterion :

<ロト < 部 > < 言 > < 言 > こ き < こ > こ の < の < 10/21

What about the other ones? 00000

10/21

 \rightsquigarrow Applying the criterion :

We build a matrix Cup = cupproduct(K,S,p) giving each local component (in columns) of each one of the cup-products (in rows) of the family $\{\widetilde{\chi}_{\nu}, \nu \in S\}$.

What about the other ones?

AUXILIARY FROBENIUS

 \rightsquigarrow Applying the criterion :

We build a matrix Cup = cupproduct(K,S,p) giving each local component (in columns) of each one of the cup-products (in rows) of the family $\{\widetilde{\chi}_{\nu}, \nu \in S\}$.

Proposition

If there exists an integer $t \in \{1, ..., |S|\}$ and if we can order the primes of S such that the matrix C of the cup-products $(\widetilde{\chi}_{v_i} \cup \widetilde{\chi}_{v_j})_{i \leq t}$ satisfies :

- the t first rows of C are zero;
- C has rank |S|;

Computations and examples 0000000

What about the other ones ? $_{\rm OOOOO}$

AUXILIARY FROBENIUS

EXAMPLE

Consider p = 3, $K = \mathbb{Q}$, $S = \{\ell_1 = 7, \ell_2 = 13, \ell_3 = 79, \ell_4 = 97\}$.

Computations and examples 0000000

What about the other ones ? $_{\rm OOOOO}$

AUXILIARY FROBENIUS

EXAMPLE

Consider
$$p = 3$$
, $K = \mathbb{Q}$, $S = \{\ell_1 = 7, \ell_2 = 13, \ell_3 = 79, \ell_4 = 97\}$.
 \rightsquigarrow auxiliary primes : $p_1 = 131$, $p_2 = 433$, $p_3 = 239$ and $p_4 = 811$.

Computations and examples 0000000

What about the other ones ? $_{\rm OOOOO}$

AUXILIARY FROBENIUS

EXAMPLE

Consider
$$p = 3$$
, $K = \mathbb{Q}$, $S = \{\ell_1 = 7, \ell_2 = 13, \ell_3 = 79, \ell_4 = 97\}$.
 \rightsquigarrow auxiliary primes : $p_1 = 131$, $p_2 = 433$, $p_3 = 239$ and $p_4 = 811$.

→ linking numbers :

$$\begin{aligned} &l_{21} = l_{41} = l_{32} = l_{43} = l_{34} = 0, \\ &l_{31} = l_{12} = l_{42} = l_{23} = 1, \\ &l_{13} = l_{14} = l_{24} = 2. \end{aligned}$$

<ロ> <合> <言> <言> <言> <言> <言> <言> <こ> <っへの 11/21

Computations and examples 0000000

What about the other ones ? $_{\rm OOOOO}$

AUXILIARY FROBENIUS

EXAMPLE

Consider
$$p = 3$$
, $K = \mathbb{Q}$, $S = \{\ell_1 = 7, \ell_2 = 13, \ell_3 = 79, \ell_4 = 97\}$.
 \rightsquigarrow auxiliary primes : $p_1 = 131$, $p_2 = 433$, $p_3 = 239$ and $p_4 = 811$.

$$\begin{array}{l} l_{21} = l_{41} = l_{32} = l_{43} = l_{34} = 0 \\ \rightsquigarrow \mbox{ linking numbers : } l_{31} = l_{12} = l_{42} = l_{23} = 1, \\ l_{13} = l_{14} = l_{24} = 2. \end{array}$$

Computations and examples 0000000

What about the other ones ? $_{\rm OOOOO}$

AUXILIARY FROBENIUS

EXAMPLE

Consider
$$p = 3$$
, $K = \mathbb{Q}$, $S = \{\ell_1 = 7, \ell_2 = 13, \ell_3 = 79, \ell_4 = 97\}$.
 \rightsquigarrow auxiliary primes : $p_1 = 131$, $p_2 = 433$, $p_3 = 239$ and $p_4 = 811$.

$$\begin{array}{l} l_{21} = l_{41} = l_{32} = l_{43} = l_{34} = 0 \\ \rightsquigarrow \mbox{ linking numbers : } l_{31} = l_{12} = l_{42} = l_{23} = 1, \\ l_{13} = l_{14} = l_{24} = 2. \end{array}$$

 $\rightsquigarrow G_S(K)$ is mild.

Computations and examples 0000000

What about the other ones ? $_{\rm OOOOO}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

12/21

Examples & Stats

EXAMPLE

$$S = \{31, 61, 151, 211\}, L = \mathbb{Q}(\sqrt{-15}).$$

The pro-p group $Gal(L_S(p)|L)$ is mild for $p = 3$ and $p = 5$.

LOOKING FOR MILD PRO-*p* GROUPS 00000

Computations and examples

What about the other ones? 00000

Examples & Stats

EXAMPLE

$$S = \{31, 61, 151, 211\}, L = \mathbb{Q}(\sqrt{-15}).$$

The pro-p group $Gal(L_S(p)|L)$ is mild for $p = 3$ and $p = 5$.

EXAMPLE

 $p = 3, S = \{7, 13, 79, 97\}.$ The pro-p group Gal($L_S|L$) is mild if $L = \mathbb{Q}(\sqrt{-d})$ with $d \in \{66, 94, 185, 285, 290, 355, 391, 454, 458, 521, 607, 614, 647, 703, 829, 881, 906\}.$ LOOKING FOR MILD PRO-*p* GROUPS 00000

Computations and examples

What about the other ones? 00000

Examples & Stats

EXAMPLE

$$S = \{31, 61, 151, 211\}, L = \mathbb{Q}(\sqrt{-15}).$$

The pro-p group $Gal(L_S(p)|L)$ is mild for $p = 3$ and $p = 5$.

EXAMPLE

 $p = 3, S = \{7, 13, 79, 97\}.$ The pro-p group Gal($L_S|L$) is mild if $L = \mathbb{Q}(\sqrt{-d})$ with $d \in \{66, 94, 185, 285, 290, 355, 391, 454, 458, 521, 607, 614, 647, 703, 829, 881, 906\}.$

EXAMPLE

 $S = \{37, 103, 127, 139\}, L = \mathbb{Q}(\sqrt{-d})$ a quadratic field with trivial p-class group in which every prime of S splits. If p = 3 and $d < 10^3$, then the pro-p group $\operatorname{Gal}(L_S|L)$ is mild.

Computations and examples 000000

What about the other ones? 00000

13/21

PROPAGATION

Suppose that \mathbb{Q} satisfies LMS respecting *S*. How does this property propagate in quadratic imaginary fields with trivial *p*-class group, if every element of *S* splits?

What about the other ones? 00000

13/21

PROPAGATION

Suppose that \mathbb{Q} satisfies LMS respecting *S*. How does this property propagate in quadratic imaginary fields with trivial *p*-class group, if every element of *S* splits?

Let $\mathbb{E}_{\mathcal{S}}$ be the set of the discriminants of all these quadratic fields. We compute the proportion :

$$\mathsf{P}_{\mathcal{S},p}(X) = \frac{\#\{d \leqslant X \mid d \in \mathbb{E}_{\mathcal{S}}, \text{prop. 2.2 applies to } \mathbb{Q}(\sqrt{-d})\}}{\#\{d \leqslant X \mid d \in \mathbb{E}_{\mathcal{S}}\}}.$$

Computations and examples $000000 \bullet$

What about the other ones? 00000

 $P_{c} = (10^4)$

PROPAGATION

S	$P_{S,3}(10^5)$
$\{13, 127, 193, 349\}$	$\simeq 0.8735$
$\{67, 157, 337, 421\}$	\simeq 0.8619
$\{31, 79, 199, 409\}$	$\simeq 0.8455$
{337, 349, 379, 463}	$\simeq 0.8560$
$\{37, 103, 127, 139\}$	$\simeq 0.8879$
{97, 151, 313, 457}	\simeq 0.8645

5	1 5,5(10)
{101, 131, 211, 251}	$\simeq 0.6667$
$\{11, 31, 41, 211\}$	= 0.696
{31, 181, 191, 271}	$\simeq 0.6744$
{211, 251, 401, 421}	$\simeq 0.6578$

ς

S	$P_{S,3}(10^6)$
{7,13,79,97}	$\simeq 0.8655$
{43,61,157,337}	$\simeq 0.8920$

What about the other ones?

A DIAGRAM...

We now consider :

- L quadratic imaginary field with trivial p-class group $(L \neq \mathbb{Q}(j))$ if p = 3,
- S finite set of primes, all equal to 1 modulo p and split in $L|\mathbb{Q}$.

Denote $G_S = G_S(\mathbb{Q})$ and $H_S = G_S(L)$.

Computations and examples 0000000

What about the other ones?

A DIAGRAM...

We now consider :

- L quadratic imaginary field with trivial p-class group $(L \neq \mathbb{Q}(j))$ if p = 3,
- S finite set of primes, all equal to 1 modulo p and split in $L|\mathbb{Q}$. Denote $G_S = G_S(\mathbb{Q})$ and $H_S = G_S(L)$.

LOOKING FOR MILD PRO-**p** GROUPS 00000

Computations and examples 0000000

What about the other ones? 0000

... AND GRAPHS

Suppose that \mathbb{Q} satisfies LMS respecting S for the decomposition $H^1(G_S) = U \oplus V$. We define two directed graphs \mathcal{G}_S and \mathcal{G}_S^* with vertices the primes of S as follow :

\$\mathcal{G}_S^*\$ has a directed edge (\$v_i, \$v_j\$) from \$v_i\$ to \$v_j\$ if (\$v_j\$, \$v_i\$) is an edge of \$\mathcal{G}_S\$.

Computations and examples 0000000

What about the other ones ? $\circ o \bullet \circ \circ$

... AND GRAPHS

A graph is said to be **quasi-circular** if it admits a spanning subgraph in which every vertex is of incoming degree 1.

<ロト < 部ト < 目ト < 目ト 目 のQの 17/21

Computations and examples 0000000

What about the other ones?

... AND GRAPHS

A graph is said to be **quasi-circular** if it admits a spanning subgraph in which every vertex is of incoming degree 1.

Theorem

If \mathbb{Q} satisfies LMS respecting S and if one of the graphs \mathcal{G}_S or \mathcal{G}_S^* is quasi-circular, then the group H_S satisfies LMS.

LOOKING FOR MILD PRO-*p* GROUPS 00000

Computations and examples 0000000

What about the other ones? $\circ \circ \circ \circ \circ \circ$

... AND GRAPHS

A graph is said to be **quasi-circular** if it admits a spanning subgraph in which every vertex is of incoming degree 1.

Theorem

If \mathbb{Q} satisfies LMS respecting S and if one of the graphs \mathcal{G}_S or \mathcal{G}_S^* is quasi-circular, then the group H_S satisfies LMS.

COROLLARY

When |S| = 4, the group H_S satisfies LMS if the graph \mathcal{G}_S admits an elementary circuit (of length 4) as a spanning subgraph.

<□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >

Computations and examples 0000000

What about the other ones? $\circ\circ\circ\circ\circ\circ$

EXAMPLES, AGAIN !

EXAMPLE

 $S = \{7, 43, 61, 103, 109, 163, 223, 241\}, L = \mathbb{Q}(\sqrt{-5}), p = 3.$

18/21

Computations and examples 0000000

What about the other ones?

EXAMPLES, AGAIN !

EXAMPLE

 $p = 3, S = \{61, 223, 229, 487\}, d = 5,$ We obtain the following graph G_S :

The pro-p group H_S is mild, even if the field L does not satisfy LMS respecting S ("crossed" cup-products have rank 7).

Computations and examples 0000000

What about the other ones?

where :

- K a cyclic extension of degree ℓ of \mathbb{Q} ,
- S a finite set of primes such that $G_S(\mathbb{Q}) \simeq G_S(K)$,
- Σ a finite set of primes containing S and p,
- ℓ an integer coprime to p.

What about the other ones ? $_{\rm OOOOO}$

Thanks for your attention !

<ロト < 部 > < 書 > < 書 > < 書 > こ つ へ () 21/21