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Introduction

o This talk is about the algorithms to compute

o Logarithmic class group: bnflog
o Logarithmic ramification index and logarithmic inertia degree:
bnflogef

o For each of these topics we will

o Briefly recall the definitions and the context

o Summarize the progress made in previous computational work

o Highlight the main steps towards the new algorithm made by
Karim Belabas and Jean-Francois Jaulent.

@ During the talk, | will present some examples of

o already implemented stuff
o future work.



The class group and the group of units

o Let K be a number field, and fix £ a prime number.
o Let (vy)p be the family of classic valuations.

@ A principal fractional ideal can be expressed as

(x) = H p» ) with x € K*.
pePI%

o We have the following exact sequence

1—>EK—>KXﬂ>IK: @ Zp — Cx — 1.
pePIKO

o If we tensor by Z,

1 — Zy®zEx — Lo@zK* 2% @ Zep — Ze@zCx — 1.
pEPl0



Logarithmic valuations

o We define {-adic logarithmic valuations as the morphisms
,\\//p . pr — Zf,
such that

vp(x) if pte,

Vp(x) =
px) Loy (N, g, (x))

degp if p|L.

@ The term degp is chosen to normalize.



Logarithmic Classes of arbitrary degree

o We replace the classical valuations (v;), by the logarithmic
valuations (Vv)p:

1—)gK—)Zg®ZKX ﬂ) @ ZeP—)éﬂZ—)l.
pePI%

@ The image of Z; ®z K* is the subgroup P of logarithmic
principal divisors.

o If we define the degree of a logarithmic divisor d = Zp Xpp

additively
e (Z P ) =Y apdegy,
p p

it turns out that the elements of Pk have degree 0.



Logarithmic Class Group

o The logarithmic class group of arbitrary degree

e = P Zew/Px

p€P|Ko
has as subgroup the logarithmic class group
Clk,

formed by the classes of degree 0.



Galois interpretation

o Every number field has an infinite Galois extension K such
that Gal(K¢/K) ~ Z, the Z;-cyclotomic extension of K.

o Indeed K¢ = KQ*.

o The maximal abelian £-extension over K that splits completely
over K¢ is called the locally {-cyclotomic extension and
denoted K'°.

o Gross-Kuz'min Conjecture:
The Galois group Gal(K'°/K) is a Zg-module of rank 1.

o The logarithmic class group is defined as

Clx = Gal(K'e/K®).
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o F. Diaz y Diaz & F. Soriano, Approche algorithmique du
groupe des classes logarithmiques (1999).
o Compute for the first time the logarithmic class group
assuming K/Q is Galois.
o F. Diaz y Diaz, J-F. Jaulent, S. Pauli, M. Pohst & F. Soriano,
A new algorithm for the computation of logarithmic £-class
groups of number fields (2005).

o Remove the Galois assumption.
o For Clk uses the exact sequence

0 — Clx(0) = Clx 2 Ct’ — coker® — 0

o K. Belabas & J-F. Jaulent, The logarithmic class group
package in PARI/GP.

o Simplify.
o Short exact sequence

0 — Cly(t) = Cl > Cl' -0



Logarithmic inertia and logarithmic ramification

o Letp € PI?< be a place above p € Z.

o Let @E be the cyclotomic Z-extension of =~
Qp. i
o The logarithmic inertia degree is ‘
defined as QN K, & K,
fo = [Kp N Q% = Qpl. 7,
o The logarithmic ramification index by Qp

& = [Ky : Kp N Q).



o We have the following multiplicative relations:

mp = Ky : Qol = epfy = &fp.

o Furthermore, vq4(e,) = vq4(ep) for all g # p.

o The logarithmic ramification index €, and [hp(KpX) : Zp) have
the same valuation at p where

Log, N x
hp((X)Z gP KP/QP( )

2-p-ny
o vo(fy) < vplep), soif vp(ep) =0, then

& = epp”?®)  and fp = fop(f).



Algorithm

Computing e, and 7?;,
o Input A prime ideal p of K (hence maximal), e, and f,.
o Output e, and ;‘;

o If Vp(ep) =0 set é; — epp"p(fp] and )?l; — fbpfvp[fp)-

Q Set go < m. Compute generators gi, ..., gs of (1 +p) (recall
pr = pZ X. Hp X (1 +p))

Q Let v+ min;y, (Logp NKp/Qp(g,-)), -

Q Let v v—v,(2:-p-np). Set & « e,p ¥ and f,, < f,p".



The additive morphism deg(p)

o The logarithmic degree is defined in the following way
Loge(p)  ifp#¢
degp:Af;degp where degp =< Logy(l+4¢) ifp=1¢
Log(1+4) ifp=0=2

o The function bnflog takes as usual a number field structure,
a prime number and a logarithmic divisor. It returns the
exp(degp), hence a natural number.

o 7 bnflogdegree(bnfinit(x),3,3)
%2 =4



Behind the algorithm of the logarithmic class group

@ We have the following short exact sequences:
0— Cl(0) — Cle > C/ -0
and
0= Cl)—-Cl—Ct' =0

o We can compute relations and generators for C{’. H. Cohen,
F. Diaz y Diaz and M. Olivier; Algorithmic Methods for
Finitely Generated Abelian Groups (2001).

o The group @2;(8) has generators given by the classes of the
places S = {p1, ..., ps} above { and generators derived from
CTIT/(UJ-) =0, where u;j is a generator of the S-units
(Z¢-module of rank r +c+s—1).

o If éﬂ;(ﬂ) is given by the {-adic SNF of the matrix

M = (vp,(u;)),
the Kuz'min-Gross conjecture holds for the prime £ and the

field K. .
o We now can describe C{, by generators and relations.



o Logarithmic class group for several £

? K=bnfinit(x~2-2017,1);

? K.cyc

%l =[]

? forprime(1=2,10000000,

if (bnflog(K,1),print(1,"Clog="bnflog(X,1) [1])))

o Logarithmic ramification and logarithmic inertia degree

? T=x"6-3*x"5+b*x"3-3%x+1;

? F=nfinit(T);

? P2=idealprimedec(F,2) [1];

? [P2.e,P2.f]

%9 = [3, 2]

? bnflogef (F,P2)

%10 = [6, 1]



Computing Clx in the first layers of the Z;-cyclotomic

extension

o Let K be a quadratic number field and
(=3 K*

o Compute Gl for the first layers of the
cyclotomic Zg-extension K€ of K.

o We know that there exists ﬁ,?\ € N and
vV € Z such that Z,

|§€n| _ eﬁE"Jr;\nJrT/

for n big enough.

o Compare these logarithmic invariants
experimentally with the classical lwasawa
invariants (W, A, v).



7 d=3739; 1=3; K=bnfinit(x"2-d,1);

? bnflog(K,1)

%14 = [[9], (3], [3]]

? pr=idealprimedec(X,1);

? vector (#pr,i,bnflogef (K,pr[il))

w16 = [[1, 11, [1, 111

? T=polcompositum(K.pol,polsubcyclo(9,3))[1];
? Ki=bnfinit(nfinit([T.pol,1075]),1);

? bnflog(K1,1)

w19 = [[27], [3], [9]]

? pr=idealprimedec(K1,1);

? vector (#pr,i,bnflogef (K1,pr[i]))

%21 = [[1, 3], [1, 3]]

? T=polcompositum(K.pol,polsubcyclo(27,9)) [1];
? K2=bnfinit(nfinit([T.pol,1075]),1);

? bnflog(K2,3)

%24 = [[81], [3], [27]]

? pr=idealprimedec(kK2,1);

7 vector (#pr,i,bnflogef (K2,pr[il))

%26 = [[1, 9], [1, 9]]



@ Recover generators of éi%K to study the behaviour when we
take the logarithmic extension morphism i k.

o Compute the structure and give generators for the logarithmic
group of units Ek.

o Compute Clk, for the first layers of Z¢-anticyclotomic
extensions.



