Computing Logarithmic Class Groups

José Ibrahim Villanueva Gutiérrez

Atelier PARI/GP 2017

11th January 2017

université ${ }^{\text {se }}$ BORDEAUX
 CONACYT

- This talk is about the algorithms to compute
- Logarithmic class group: bnflog
- Logarithmic ramification index and logarithmic inertia degree: bnflogef
- For each of these topics we will
- Briefly recall the definitions and the context
- Summarize the progress made in previous computational work
- Highlight the main steps towards the new algorithm made by Karim Belabas and Jean-François Jaulent.
- During the talk, I will present some examples of
- already implemented stuff
- future work.

The class group and the group of units

- Let K be a number field, and fix ℓ a prime number.
- Let $\left(v_{\mathfrak{p}}\right)_{\mathfrak{p}}$ be the family of classic valuations.
- A principal fractional ideal can be expressed as

$$
(x)=\prod_{\mathfrak{p} \in \mathrm{P}_{K}^{0}} \mathfrak{p}^{\nu_{\mathfrak{p}}(x)} \quad \text { with } x \in K^{\times} .
$$

- We have the following exact sequence

$$
1 \longrightarrow E_{K} \longrightarrow K^{\times} \xrightarrow{\text { div }} I_{K}=\bigoplus_{\mathfrak{p} \in \mathrm{PI}_{K^{0}}} \mathbb{Z} \mathfrak{p} \longrightarrow C_{K} \longrightarrow 1
$$

- If we tensor by \mathbb{Z}_{ℓ}

$$
1 \longrightarrow \mathbb{Z}_{\ell} \otimes_{\mathbb{Z}} E_{K} \longrightarrow \mathbb{Z}_{\ell} \otimes_{\mathbb{Z}} K^{\times} \xrightarrow{\text { div }} \bigoplus_{\mathfrak{p} \in \mathrm{P}_{K^{0}}} \mathbb{Z}_{\ell} \mathfrak{p} \longrightarrow \mathbb{Z}_{\ell} \otimes_{\mathbb{Z}} C_{K} \longrightarrow 1
$$

Logarithmic valuations

- We define ℓ-adic logarithmic valuations as the morphisms

$$
\widetilde{v}_{\mathfrak{p}}: K_{\mathfrak{p}}^{\times} \longrightarrow \mathbb{Z}_{\ell},
$$

such that

$$
\widetilde{v}_{\mathfrak{p}}(x)=\left\{\begin{array}{cc}
v_{\mathfrak{p}}(x) & \text { if } \mathfrak{p} \nmid \ell, \\
-\frac{\log _{\ell}\left(N_{K_{\mathfrak{p}} / Q_{\ell}}(x)\right)}{\operatorname{eg} \mathfrak{p}} & \text { if } \mathfrak{p} \mid \ell
\end{array}\right.
$$

- The term $\operatorname{deg} \mathfrak{p}$ is chosen to normalize.

Logarithmic Classes of arbitrary degree

- We replace the classical valuations $\left(v_{\mathfrak{p}}\right)_{\mathfrak{p}}$ by the logarithmic valuations $\left(\widetilde{v}_{\mathfrak{p}}\right)_{\mathfrak{p}}$:

$$
1 \longrightarrow \widetilde{\varepsilon}_{K} \longrightarrow \mathbb{Z}_{\ell} \otimes_{\mathbb{Z}} K^{\times} \xrightarrow{\widetilde{\text { div }}} \bigoplus_{\mathfrak{p} \in \mathrm{P}_{K}^{0}} \mathbb{Z}_{\ell} \mathfrak{p} \longrightarrow \widetilde{\mathcal{C}}_{K}^{*} \longrightarrow 1
$$

- The image of $\mathbb{Z}_{\ell} \otimes_{\mathbb{Z}} K^{\times}$is the subgroup \mathcal{P}_{K} of logarithmic principal divisors.
- If we define the degree of a logarithmic divisor $\mathfrak{d}=\sum_{\mathfrak{p}} \alpha_{\mathfrak{p}} \mathfrak{p}$ additively

$$
\operatorname{deg}\left(\sum_{\mathfrak{p}} \alpha_{\mathfrak{p}} \mathfrak{p}\right)=\sum_{\mathfrak{p}} \alpha_{\mathfrak{p}} \operatorname{deg} \mathfrak{p}
$$

it turns out that the elements of \mathcal{P}_{K} have degree 0 .

Logarithmic Class Group

- The logarithmic class group of arbitrary degree

$$
\widetilde{\mathcal{C l}}_{K}^{*}=\bigoplus_{\mathfrak{p} \in \mathrm{P}_{K^{0}}} \mathbb{Z}_{\ell} \mathfrak{p} / \mathcal{P}_{K}
$$

has as subgroup the logarithmic class group

$$
\widetilde{\mathcal{C}} \ell_{K},
$$

formed by the classes of degree 0 .

Galois interpretation

- Every number field has an infinite Galois extension K^{c} such that $\operatorname{Gal}\left(K^{\mathrm{c}} / K\right) \simeq \mathbb{Z}_{\ell}$, the \mathbb{Z}_{ℓ}-cyclotomic extension of K.
- Indeed $K^{c}=K \mathbb{Q}^{c}$.
- The maximal abelian ℓ-extension over K that splits completely over K^{c} is called the locally ℓ-cyclotomic extension and denoted K^{Ic}.
- Gross-Kuz'min Conjecture:

The Galois group $\mathrm{Gal}\left(K^{\text {lc }} / K\right)$ is a \mathbb{Z}_{ℓ}-module of rank 1.

- The logarithmic class group is defined as

$$
\widetilde{\mathcal{C}} \ell_{K}=\operatorname{Gal}\left(K^{\mathrm{Lc}} / K^{\mathrm{c}}\right) .
$$

History

- F. Diaz y Diaz \& F. Soriano, Approche algorithmique du groupe des classes logarithmiques (1999).
- Compute for the first time the logarithmic class group assuming K / \mathbb{Q} is Galois.
- F. Diaz y Diaz, J-F. Jaulent, S. Pauli, M. Pohst \& F. Soriano, A new algorithm for the computation of logarithmic ℓ-class groups of number fields (2005).
- Remove the Galois assumption.
- For $\widetilde{\mathcal{C}}_{K}$ uses the exact sequence

$$
0 \rightarrow \widetilde{\mathcal{C}}_{K}(\ell) \rightarrow \widetilde{\mathcal{C} \ell_{K}} \xrightarrow{\theta} C \ell^{\prime} \rightarrow \operatorname{coker} \theta \rightarrow 0
$$

- K. Belabas \& J-F. Jaulent, The logarithmic class group package in PARI/GP.
- Simplify.
- Short exact sequence

$$
0 \rightarrow \widetilde{\mathcal{C}} \ell_{K}^{*}(\ell) \rightarrow \widetilde{\mathbb{C}_{1}} \ell_{K}^{*} \xrightarrow{\theta} C \ell^{\prime} \rightarrow 0
$$

Logarithmic inertia and logarithmic ramification

- Let $\mathfrak{p} \in \mathrm{Pl}_{K}^{0}$ be a place above $p \in \mathbb{Z}$.
- Let $\widehat{\mathbb{Q}_{p}^{c}}$ be the cyclotomic $\widehat{\mathbb{Z}}$-extension of \mathbb{Q}_{p}.
- The logarithmic inertia degree is defined as

$$
\widetilde{f_{\mathfrak{p}}}=\left[K_{\mathfrak{p}} \cap \widehat{\mathbb{Q}_{p}^{c}}: \mathbb{Q}_{p}\right]
$$

- The logarithmic ramification index by

$$
\begin{aligned}
& \widehat{\mathbb{Q}_{p}^{c}} \\
& \widehat{\widehat{\mathbb{Q}}}{ }_{p}^{c} \cap K_{\mathfrak{p}} \xrightarrow{\widetilde{e}_{\mathfrak{p}}} K_{\mathfrak{p}} \\
& {\tilde{f_{p}}}_{\mathfrak{p}} \mid \\
& \mathbb{Q}_{p}
\end{aligned}
$$

$$
\widetilde{e_{\mathfrak{p}}}=\left[K_{\mathfrak{p}}: K_{\mathfrak{p}} \cap \widehat{\mathbb{Q}_{p}^{\mathrm{c}}}\right] .
$$

Properties

- We have the following multiplicative relations:

$$
n_{\mathfrak{p}}=\left[K_{\mathfrak{p}}: \mathbb{Q}_{p}\right]=e_{\mathfrak{p}} f_{\mathfrak{p}}=\widetilde{e_{\mathfrak{p}}} \widetilde{f}_{\mathfrak{p}} .
$$

- Furthermore, $v_{q}\left(e_{\mathfrak{p}}\right)=v_{q}\left(\widetilde{e}_{\mathfrak{p}}\right)$ for all $q \neq p$.
- The logarithmic ramification index $\widetilde{e}_{\mathfrak{p}}$ and $\left[h_{\mathfrak{p}}\left(K_{\mathfrak{p}}^{\times}\right): \mathbb{Z}_{p}\right]$ have the same valuation at p where

$$
h_{\mathfrak{p}}(\alpha)=\frac{\log _{p} N_{K_{\mathfrak{p}} / \mathbb{Q}_{p}}(\alpha)}{2 \cdot p \cdot n_{\mathfrak{p}}} .
$$

- $v_{p}\left(\widetilde{f}_{\mathfrak{p}}\right) \leqslant v_{p}\left(e_{\mathfrak{p}}\right)$, so if $v_{p}\left(e_{\mathfrak{p}}\right)=0$, then

$$
\widetilde{e_{\mathfrak{p}}}=e_{\mathfrak{p}} p^{v_{p}\left(f_{\mathfrak{p}}\right)} \quad \text { and } \quad \widetilde{f_{\mathfrak{p}}}=f_{\mathfrak{p}} p^{-v_{p}\left(f_{\mathfrak{p}}\right)}
$$

Algorithm

Computing $\widetilde{e_{\mathfrak{p}}}$ and $\widetilde{f_{\mathfrak{p}}}$

- Input A prime ideal \mathfrak{p} of K (hence maximal), $e_{\mathfrak{p}}$ and $f_{\mathfrak{p}}$.
- Output $\widetilde{e_{p}}$ and $\widetilde{f_{p}}$
(1) If $v_{p}\left(e_{\mathfrak{p}}\right)=0$ set $\widetilde{e_{\mathfrak{p}}} \leftarrow e_{\mathfrak{p}} p^{v_{p}\left(f_{\mathfrak{p}}\right)}$ and $\widetilde{f_{\mathfrak{p}}} \leftarrow f_{\mathfrak{p}} p^{-v_{p}\left(f_{\mathfrak{p}}\right)}$.
(2) Set $g_{0} \leftarrow \pi$. Compute generators g_{1}, \ldots, g_{s} of $(1+\mathfrak{p})$ (recall $\left.K_{\mathfrak{p}}^{\times}=\mathfrak{p}^{\mathbb{Z}} \times \mu_{\mathfrak{p}} \times(1+\mathfrak{p})\right)$.
(0) Let $v \leftarrow \min _{i} v_{\mathfrak{p}}\left(\log _{\mathfrak{p}} N_{K_{\mathfrak{p}} / \mathbb{Q}_{p}}\left(g_{i}\right)\right)$.
(1) Let $v \leftarrow v-v_{p}\left(2 \cdot p \cdot n_{\mathfrak{p}}\right)$. Set $\widetilde{e_{\mathfrak{p}}} \leftarrow e_{\mathfrak{p}} p^{-v}$ and $\widetilde{f_{\mathfrak{p}}} \leftarrow f_{\mathfrak{p}} p^{v}$.

The additive morphism $\operatorname{deg}(\mathfrak{p})$

- The logarithmic degree is defined in the following way

$$
\operatorname{deg} \mathfrak{p}=\widetilde{f}_{\mathfrak{p}} \operatorname{deg} p \quad \text { where } \quad \operatorname{deg} p=\left\{\begin{array}{cl}
\log _{\ell}(p) & \text { if } p \neq \ell \\
\log _{\ell}(1+\ell) & \text { if } p=\ell \\
\log _{\ell}(1+4) & \text { if } p=\ell=2
\end{array}\right.
$$

- The function bnflog takes as usual a number field structure, a prime number and a logarithmic divisor. It returns the $\exp (\operatorname{deg} \mathfrak{p})$, hence a natural number.
- ? bnflogdegree(bnfinit(x),3,3)

$$
\% 2=4
$$

Behind the algorithm of the logarithmic class group

- We have the following short exact sequences:

$$
0 \rightarrow{\widetilde{\mathcal{C}} \ell_{K}^{*}}^{*}(\ell) \rightarrow \widetilde{\mathcal{C}}_{K}^{*} \xrightarrow{\theta} C \ell^{\prime} \rightarrow 0
$$

and

$$
0 \rightarrow \mathrm{Cl}(\ell) \rightarrow \mathrm{Cl} \rightarrow \mathrm{Cl}^{\prime} \rightarrow 0
$$

- We can compute relations and generators for Cl^{\prime}. H. Cohen, F. Diaz y Diaz and M. Olivier; Algorithmic Methods for Finitely Generated Abelian Groups (2001).
- The group $\widetilde{\mathcal{C}} \ell_{K}^{*}(\ell)$ has generators given by the classes of the places $S=\left\{\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{s}\right\}$ above ℓ and generators derived from $\widetilde{\operatorname{div}}\left(u_{j}\right)=0$, where u_{j} is a generator of the S-units (\mathbb{Z}_{ℓ}-module of rank $r+c+s-1$).
- If $\widetilde{\mathcal{C}}_{K}^{*}(\ell)$ is given by the ℓ-adic SNF of the matrix

$$
M=\left(\widetilde{v}_{\mathfrak{p}_{i}}\left(u_{j}\right)\right)
$$

the Kuz'min-Gross conjecture holds for the prime ℓ and the field K.

- We now can describe $\widetilde{\mathcal{C}}_{K}^{*}$ by generators and relations.
- Logarithmic class group for several ℓ

```
? K=bnfinit(x^2-2017,1);
? K.cyc
\(\% 1=[]\)
? forprime(l=2,10000000,
        if(bnflog(K,l),print(l, "Clog="bnflog(K, 1)[1])))
```

- Logarithmic ramification and logarithmic inertia degree
? $\mathrm{T}=\mathrm{x}^{\wedge}$ - $6-3 * \mathrm{x}^{\wedge} 5+5 * \mathrm{x}^{\wedge} 3-3 * \mathrm{x}+1$;
? F=nfinit(T);
? P2=idealprimedec (F,2) [1];
? [P2.e,P2.f]
$\% 9=[3,2]$
? bnflogef(F,P2)
$\% 10=[6,1]$

Computing $\mathrm{C} \ell_{K}$ in the first layers of the \mathbb{Z}_{ℓ}-cyclotomic extension

- Let K be a quadratic number field and $\ell=3$.
- Compute $\widetilde{\mathscr{C} \ell}$ for the first layers of the cyclotomic \mathbb{Z}_{ℓ}-extension K^{c} of K.
- We know that there exists $\tilde{\mu}, \tilde{\lambda} \in \mathbb{N}$ and $\widetilde{v} \in \mathbb{Z}$ such that

$$
\left|\widetilde{\mathcal{C}} \ell_{n}\right|=\ell^{\tilde{\mu} \ell^{n}+\tilde{\lambda} n+\tilde{v}}
$$

for n big enough.

- Compare these logarithmic invariants experimentally with the classical Iwasawa
 invariants (μ, λ, v).
? d=3739; l=3; K=bnfinit($x^{\wedge} 2-d, 1$);
? bnflog(K,l)
$\% 14=$ [[9], [3], [3]]
? pr=idealprimedec (K,1);
? vector (\#pr,i,bnflogef(K,pr[i]))
$\% 16=[[1,1],[1,1]]$
? T=polcompositum(K.pol,polsubcyclo(9,3)) [1];
? K1=bnfinit(nfinit([T.pol,10^5]),1);
? bnflog(K1,1)
$\% 19=[[27],[3],[9]]$
? pr=idealprimedec(K1,1);
? vector(\#pr,i, bnflogef(K1,pr[i]))
$\% 21=[[1,3],[1,3]]$
? T=polcompositum(K.pol,polsubcyclo(27,9))[1];
? K2=bnfinit(nfinit([T.pol,10^5]),1);
? bnflog(K2,3)
\%24 = [[81], [3], [27]]
? pr=idealprimedec(K2,1);
? vector(\#pr,i,bnflogef(K2,pr[i]))
$\% 26=[[1,9],[1,9]]$
- Recover generators of $\widetilde{\mathcal{C}}{ }_{K}$ to study the behaviour when we take the logarithmic extension morphism $\widetilde{i}_{L / K}$.
- Compute the structure and give generators for the logarithmic group of units $\widetilde{\mathcal{E}}_{K}$.
- Compute $\widetilde{\mathcal{C}} \ell_{K_{n}}$ for the first layers of \mathbb{Z}_{ℓ}-anticyclotomic extensions.

