[Tutorial] Dirichlet characters

Karim Belabas

Generic abelian characters

In PARI/GP, given a finite abelian group

$$G = (\mathbb{Z}/o_1\mathbb{Z})g_1 \oplus \cdots \oplus (\mathbb{Z}/o_d\mathbb{Z})g_d,$$

with fixed generators g_i of respective order o_i , then

- the column vector $[x_1, \ldots, x_d]$ represents the element $g \cdot x := \sum_{i \leq d} x_i g_i$;
- The row vector [c₁,..., c_d], represents the character mapping g_i → e(c_i/o_i) for each i.
 The trivial character is [0,..., 0].

The group G is given by a GP structure, e.g. **bid**, **bnf**, **bnr**. We can choose $(g_i) := G$.gen (SNF generators), hence $(o_i) = G$.cyc and $o_d | \cdots | o_1$ (elementary divisors).

Generic functions (1/3)

 $\begin{array}{l} {\rm charorder}({\tt G},\ {\rm chi})\ \backslash\ {\rm order}\ {\rm of}\ \chi\ {\rm in}\ \hat{G}\\ {\rm charmul}({\tt G},\ {\rm chi},\ {\rm psi})\ \backslash\ \chi\cdot\psi\\ {\rm chardiv}({\tt G},\ {\rm chi},\ {\rm psi})\ \backslash\ \chi\cdot\psi^{-1}\\ {\rm charconj}({\tt G},\ {\rm chi})\ \backslash\ \chi^{-1}=\overline{\chi} \end{array}$

Try it for instance on

```
G = idealstar(,100)
G.cyc
chi = [1, 0]
psi = [1, 1]
```

Generic functions (2/3)

charker(G, chi) $\$ the subgroup $H = \operatorname{Ker} \chi$

This returns a matrix whose columns give generators h_j of H (in terms of the fixed g_i)

chareval(G, chi, x) $\backslash \backslash c/n \in \mathbb{Q}$ such that $\chi(x) = e(c/n)$,

This first maps x to G using a discrete logarithm: $x = \sum x_i \cdot g_i (\text{znlog}(x, G))$. Return the sentinel value -1 if x is not in G, e.g.

G = idealstar(,100); chi = [1, 0]; chareval(G, chi, 0) $\land 0 \notin (\mathbb{Z}/100\mathbb{Z})^*$

Generic functions (3/3)

Characters with values in arbitrary fields:

chareval(G, chi, x, [z,o]) Assume that the integer o is a multiple of the order of χ and that z is an element in the multiplicative group of some field. Returns $\chi(x) = z^{o \cdot c/n}$. If $z = e(1/o) \in \mathbb{C}$, this is e(c/n) as before. This time the sentinel value for $x \notin G$ is 0. As in the extension of Dirichlet characters from $(\mathbb{Z}/N\mathbb{Z})^*$ to \mathbb{Z} .

It is also possible to replace z with a vector containing its precomputed successive powers

[z^i | i <- [0..o-1]]

Functions specific to Dirichlet characters

We must have G = idealstar(N) for some positive integer modulus N.

zncharisodd(G, chi): returns 1 if $\chi(-1) = -1$ and 0 otherwise.

znchartokronecker(G, chi): returns D if χ is real and equal to (D/.); D is fundamental if and only if χ is primitive. (D < 0 if and only if χ is odd.)

zncharinduce(G, chi, Q): assume that $N \mid Q$; returns the induced character on $(\mathbb{Z}/Q\mathbb{Z})^*$ in terms of *canonical* generators of that group. Which is not initialized!

Canonical generators

We started from SNF generators

 $G = (\mathbb{Z}/o_1\mathbb{Z})g_1 \oplus \cdots \oplus (\mathbb{Z}/o_d\mathbb{Z})g_d,$

with $o_d \mid \cdots \mid o_1$. But it is possible to choose other generators !

If $G = (\mathbb{Z}/N\mathbb{Z})^*$, $N = \prod_p p^{e_p}$, we can choose canonical generators of the $(\mathbb{Z}/p^{e_p}\mathbb{Z})^*$ (smallest generator of \mathbb{Z}_p^* for p odd; -1 and 5 for p = 2) and build from there via CRT. We obtain Conrey generators for $G: \tilde{g}_1, \ldots, \tilde{g}_d$ of order \tilde{o}_i . We no longer have $\tilde{o}_d \mid \cdots \mid \tilde{o}_1$.

A character given in terms of the \tilde{g}_i is denoted by $[c_1, \ldots, c_d]$, which maps \tilde{g}_i to $e(c_i/\tilde{o}_i)$ for all i. We call it a Conrey character.

The discrete log of $x \in (\mathbb{Z}/N\mathbb{Z})^*$ in terms of the Conrey generators is znconreylog(G, x).

Conrey characters (1/2)

```
The map x \in G = (\mathbb{Z}/N\mathbb{Z}) \mapsto \text{znconreylog}(G, x) is an isomorphism from G to \hat{G}.

G = idealstar(,100);

chi = znconreylog(G, 3)

znconreyexp(G, chi)

znconreychar(G, chi)
```

To sum up, we can represent a Dirichlet character χ mod N in the following formats:

- generic character: a t_VEC [c_1, \ldots, c_d] such that $\chi(g_i) = e(c_i/o_i)$;
- Conrey character: a t_COL [$\tilde{c}_1, \ldots, \tilde{c}_d$]~ $\chi(\tilde{g}_i) = e(c_i/\tilde{o}_i)$;
- \checkmark Conrey label: a t_INT m whose Conrey log is $[\tilde{c}_1, \ldots, \tilde{c}_d]$ -.

Given a character in any form, znconreychar gives the t_VEC, znconreylog gives the t_COL, and znconreyexp gives the t_INT.

Conrey characters (2/2)

Writing $\chi = \prod_p \chi_p$ or decomposing $\chi = \chi_Q \cdot \chi_{N/Q}$ for $Q \parallel N$ is trivial for Conrey characters (kb-mf branch). One can induce characters, or compute a character conductor and the attached primitive character without initializing the idealstar corresponding to the new modulus !

```
N = 100; G = idealstar(, N); chi = [2, 0];
N2 = 900; G2 = idealstar(,N2);
chi2 = zncharinduce(G, chi, N2) \\ or G2
[chareval(G,chi,x) | x <- [1..25], gcd(x,N2) == 1]
[chareval(G2,chi2,x) | x <- [1..25], gcd(x,N2) == 1]</pre>
```

```
znconreyconductor(G2, chi2)
znconreyconductor(G2, chi2, &chi0)
chi0
znconreyconductor(G, chi, &chi0)
chi0
```

A fun general alternative

```
N = 100;
bnr = bnrinit(bnfinit(x), [N,[1]]);
g = [3, 7]
znorder(Mod(g[1], N))
znorder(Mod(g[2], N))
```

bnrchar(bnr, g): finds all characters that are trivial on the given g_i ;

v = [1/10, 1/2]

bnrchar(bnr, g, v): finds all characters s.t. $\chi(g_i) = e(v_i)$, assuming that the order of g_i divides the denominator of v_i for all i.