[Tutorial] L-functions

Karim Belabas

First part: Theory

L and Λ-functions (1/3)

Let $\Gamma_{\mathbb{R}}(s)=\pi^{-s / 2} \Gamma(s / 2)$, where $\Gamma(s)=\int_{0}^{\infty} e^{-t} t^{s-1} d t$ is Euler's gamma function; given a d-tuple $A=\left[\alpha_{1}, \ldots, \alpha_{d}\right] \in \mathbb{C}^{d}$, let $\gamma_{A}:=\prod_{\alpha \in A} \Gamma_{\mathbb{R}}(s+\alpha)$

Given

- a sequence $a=\left(a_{n}\right)_{n \geqslant 1}$ of complex numbers such that $a_{1}=1$,
- a positive conductor $N \in \mathbb{Z}_{>0}$,
- a gamma factor γ_{A} as above,
we consider the Dirichlet series

$$
L(a, s)=\sum_{n \geqslant 1} a_{n} n^{-s}
$$

and the attached completed function

$$
\Lambda_{N, A}(a, s)=N^{s / 2} \cdot \gamma_{A}(s) \cdot L(a, s)
$$

L and Λ-functions (2/3)

A weak L-function is a Dirichlet series $L(s)=\sum_{n \geqslant 1} a_{n} n^{-s}$ such that

- The coefficients $a_{n}=O_{\varepsilon}\left(n^{C+\varepsilon}\right)$ have polynomial growth. Equivalently, $L(s)$ converges absolutely in some right half-plane $\operatorname{Re}(s)>C+1$.
- The function $L(s)$ has a meromorphic continuation to the whole complex plane with finitely many poles.

This becomes an L-function if it satisfies a functional equation: there exist a "dual" sequence a^{*} defining a weak L-function $L\left(a^{*}, s\right)$, an integer k, and completed functions

$$
\begin{aligned}
\Lambda(a, s) & =N^{s / 2} \gamma_{A}(s) \cdot L(a, s) \\
\Lambda\left(a^{*}, s\right) & =N^{s / 2} \gamma_{A}(s) \cdot L\left(a^{*}, s\right)
\end{aligned}
$$

such that $\Lambda(a, k-s)=\Lambda\left(a^{*}, s\right)$ for all regular points. The L-function package is able to compute $L^{(m)}(a, s)$ given the above data.

L and Λ-functions (3/3)

In number theory, additional constraints may arise

- $a^{*}=\varepsilon \cdot \bar{a}$ for some root number ε of modulus 1 ; often, $\varepsilon= \pm 1$;
- the complex coeffients a live in the ring of integer of some fixed number field, often in \mathbb{Z} or a cyclotomic ring $\mathbb{Z}[\zeta]$;
- the growth exponent such that $a_{n}=O_{\varepsilon}\left(n^{C+\varepsilon}\right)$ can be taken as $C=(k-1) / 2$ if L is entire (Ramanujan-Petersson), and $C=k-1$ otherwise;
- the L-function satisfies an Euler product $L(s)=\prod_{p \text { prime }} L_{p}(s)$, where the local factor $L_{p}(s)$ is a rational function in p^{-s};
- the α_{i} are integers, often in $\{0,1\}$.

PARl's implementation assumes none of these, although it takes advantage of them when they are true.

Data structures describing L functions

Three data structures are attached to L-functions, by increasing complexity:

- an Lmath is an high-level description of the underlying mathematical situation, to which e.g., we associate the a_{p} as traces of Frobenius elements; this is done via constructors to be described shortly.
- an Ldata is a low-level description, containing the complete datum ($a, a^{*}, A, k, N, \Lambda$'s polar part). This is obtained via the function Ifuncreate.
- an Linit contains an Ldata and everything needed for fast numerical computations in a certain domain: it specifies
(1) the functions to be considered: $L^{(j)}(s)$ for derivatives of order $j \leqslant m$, where m is now fixed;
(2) the range of the complex argument s, to a certain rectangular region;
(3) the output bit accuracy.

This is obtained via the functions Ifuninit.
Any of them can be used as the first argument L of the functions we will now describe.
Atelier PARI/GP 2017 (10/01/2017) - p. 6/16

Second part: Practice

Riemann zeta (1/2)

```
L = 1; \\Lmath for Riemann zeta function
lfunan(L, 100) \\= first 100 coefficients
lfun(L, 2)
lfunzeros(L,30)
\pb 32
ploth(t = 0, 100, lfunhardy(L,t))
L = lfuninit(L, [100]); \\on critical line, height \leqslant 100
ploth(t = 0, 100, lfunhardy(L,t))
lfuninit domains:
- \([c, w, h]\) : rectangular box \(|\operatorname{Re}(s)-c| \leqslant w,|\operatorname{Im}(s)| \leqslant h\);
- \([w, h]: c=k / 2\), box centered on the critical line;
- \([h]: c=k / 2, w=0\), on the critical line.
```


Riemann zeta (2/2)

Known bug: near the poles of $\gamma_{A}(s)$, derivatives get very inaccurate as the order of derivation increases.
\pb 64
$\mathrm{x} 0=1 \mathrm{e}-10 ; \operatorname{lfun}(1,1 \mathrm{e}-10,4)$
derivnum(x = x0, zeta(x), 4)
\pb 640 and try again...

Dedekind zeta

$\mathrm{L}=$ lfuncreate ('x^3-2); $\backslash \backslash \mathbb{Q}\left(2^{1 / 3}\right)$
lfun(L, 2)
lfunzeros(L, 30)
\pb 32
L = lfuninit(L, [30]);
ploth(t = 0, 30, lfunhardy(L,t))

Hasse-Weil zeta functions

```
E = ellinit([0,0,1,-7,6]);
L = lfuncreate(E); \\L(E,s)
lfun(L, 1)
lfun(E, 1)
lfun(E, 1, 1) \\\L'(1)
lfun(E, 1, 2) \\2nd derivative
lfun(E, 1, 3) \\3rd derivative
ellanalyticrank(E)
lfunzeros(E,10)
\pb 32
Lbad = lfuninit(E, [1/2, 0, 30]); \\MISTAKE!
ploth(t = 0, 30, lfunhardy(Lbad,t))
L = lfuninit(E, [1, 0, 30]); \\Better
L = lfuninit(L, [30]); \\Best: foolproof
ploth(t = 0, 30, lfunhardy(L,t))
```


Hasse-Weil zeta, genus 2

```
L=lfungenus2([x^2+x, x^3+x^2+1]);
lfunan(L,30)
L = lfuninit(L, [10]);
lfun(L,1)
lfunzeros(L,9)
ploth(t = 0, 10, lfunhardy(L,t))
```


Dirichlet characters

In PARI/GP, given a finite abelian group

$$
G=\left(\mathbb{Z} / o_{1} \mathbb{Z}\right) g_{1} \oplus \cdots \oplus\left(\mathbb{Z} / o_{d} \mathbb{Z}\right) g_{d}
$$

with fixed generators g_{i} of respective order o_{i}, then

- the column vector $\left[x_{1}, \ldots, x_{d}\right] \sim$ represents the element $g \cdot x:=\sum_{i \leqslant d} x_{i} g_{i} \in G$;
- the row vector $\left[c_{1}, \ldots, c_{d}\right]$, represents the character mapping $g_{i} \mapsto e\left(c_{i} / o_{i}\right)$ for each i.

The group G is given by a GP structure, e.g. bid, bnf, bnr. We can choose $\left(g_{i}\right):=G$.gen (SNF generators), hence $\left(o_{i}\right)=G$.cyc and $o_{d}|\cdots| o_{1}$ (elementary divisors).

Dirichlet L-function

Real characters have a simpler description: $(D /$.$) (Kronecker character) for a fundamental$ discriminant D. Then Ifuncreate (D) is $L((D /), s$.$) .$
lfun(-23, 1)
$\mathrm{K}=$ bnfinit($\mathrm{x}^{\wedge} 2+23$);
(2*Pi) * K.no / sqrt(abs(K.disc)) / K.tu[1]
General character:
$G=$ idealstar $(, 100) ; \backslash \backslash(\mathbb{Z} / 100 \mathbb{Z})^{*}$
G.cyc
chi = [2, 0]
znconreyconductor ($G,[2,0]$)
not primitive
$\mathrm{L}=$ lfuncreate ([G, chi]);
attached to induced primitive char
lfun(L, 1)
$\mathrm{L}=$ lfuninit(L, [30]);
ploth (t = 0, 30, lfunhardy (L, t))

Hecke L-function

```
K = bnfinit(x^3-7);
G = bnrinit(K, [11, [1]]);
G.cyc
chi = [2]
bnrconductor(G, [2]) \\not primitive
L = lfuncreate([G, chi]);
lfun(L, 0) \\Slow!
L = lfuninit(L, [1/2,30]); \\critical strip
lfun(L, 0)
lfun(L, 1)
lfunzeros(L,29)
ploth(t = 0, 30, lfunhardy(L,t))
```


Artin L-function

```
P = quadhilbert(-47);
N = nfinit(nfsplitting(P));
G = galoisinit(N); \\D D (10
G.gen
G.orders
L1 = lfunartin(N,G, [[a,0;0,a^-1], [0,1;1,0]], 5);
L2 = lfunartin(N,G, [[a^2,0;0,a^-2],[0,1;1,0]], 5);
s = 1 + x + O(x^10);
lfun(1,s)*lfun(-47,s)*lfun(L1,s)^2*lfun(L2,s)^2 - lfun(N,s)
```

