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First part: Theory
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L and Λ-functions (1/3)

Let ΓR(s) = π−s/2Γ(s/2), where Γ(s) =
∫

∞

0 e−tts−1 dt is Euler’s gamma function; given a

d-tuple A = [α1, . . . , αd] ∈ Cd, let γA :=
∏

α∈A ΓR(s + α)

Given

a sequence a = (an)n>1 of complex numbers such that a1 = 1,

a positive conductor N ∈ Z>0,

a gamma factor γA as above,

we consider the Dirichlet series

L(a, s) =
∑

n>1

ann−s

and the attached completed function

ΛN,A(a, s) = N s/2 · γA(s) · L(a, s).
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L and Λ-functions (2/3)

A weak L-function is a Dirichlet series L(s) =
∑

n>1 ann−s such that

The coefficients an = Oε(nC+ε) have polynomial growth. Equivalently, L(s) converges

absolutely in some right half-plane Re(s) > C + 1.

The function L(s) has a meromorphic continuation to the whole complex plane with finitely

many poles.

This becomes an L-function if it satisfies a functional equation: there exist a “dual” sequence a∗

defining a weak L-function L(a∗, s), an integer k, and completed functions

Λ(a, s) = N s/2γA(s) · L(a, s),

Λ(a∗, s) = N s/2γA(s) · L(a∗, s),

such that Λ(a, k − s) = Λ(a∗, s) for all regular points. The L-function package is able to

compute L(m)(a, s) given the above data.
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L and Λ-functions (3/3)

In number theory, additional constraints may arise

a∗ = ε · a for some root number ε of modulus 1; often, ε = ±1;

the complex coeffients a live in the ring of integer of some fixed number field, often in Z or a

cyclotomic ring Z[ζ];

the growth exponent such that an = Oε(nC+ε) can be taken as C = (k − 1)/2 if L is

entire (Ramanujan-Petersson), and C = k − 1 otherwise;

the L-function satisfies an Euler product L(s) =
∏

p prime Lp(s), where the local factor

Lp(s) is a rational function in p−s;

the αi are integers, often in {0, 1}.

PARI’s implementation assumes none of these, although it takes advantage of them when they are

true.
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Data structures describing L functions

Three data structures are attached to L-functions, by increasing complexity:

an Lmath is an high-level description of the underlying mathematical situation, to which e.g.,

we associate the ap as traces of Frobenius elements; this is done via constructors to be

described shortly.

an Ldata is a low-level description, containing the complete datum

(a, a∗, A, k, N, Λ’s polar part). This is obtained via the function lfuncreate.

an Linit contains an Ldata and everything needed for fast numerical computations in a

certain domain: it specifies

(1) the functions to be considered: L(j)(s) for derivatives of order j 6 m, where m is now

fixed;

(2) the range of the complex argument s, to a certain rectangular region;

(3) the output bit accuracy.

This is obtained via the functions lfuninit.

Any of them can be used as the first argument L of the functions we will now describe.
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Second part: Practice
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Riemann zeta (1/2)

L = 1; \\Lmath for Riemann zeta function

lfunan(L, 100) \\= first 100 coefficients

lfun(L, 2)

lfunzeros(L,30)

\pb 32

ploth(t = 0, 100, lfunhardy(L,t))

L = lfuninit(L, [100]); \\on critical line, height 6 100

ploth(t = 0, 100, lfunhardy(L,t))

lfuninit domains:

[c, w, h]: rectangular box |Re(s) − c| 6 w, |Im(s)| 6 h;

[w, h]: c = k/2, box centered on the critical line;

[h]: c = k/2, w = 0, on the critical line.
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Riemann zeta (2/2)

Known bug: near the poles of γA(s), derivatives get very inaccurate as the order of derivation

increases.

\pb 64

x0 = 1e-10; lfun(1, 1e-10, 4)

derivnum(x = x0, zeta(x), 4)

\pb 640 and try again. . .
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Dedekind zeta

L = lfuncreate(’x^3-2); \\Q(21/3)

lfun(L, 2)

lfunzeros(L,30)

\pb 32

L = lfuninit(L, [30]);

ploth(t = 0, 30, lfunhardy(L,t))
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Hasse-Weil zeta functions

E = ellinit([0,0,1,-7,6]);

L = lfuncreate(E); \\L(E, s)

lfun(L, 1)

lfun(E, 1)

lfun(E, 1, 1) \\L′(1)

lfun(E, 1, 2) \\2nd derivative

lfun(E, 1, 3) \\3rd derivative

ellanalyticrank(E)

lfunzeros(E,10)

\pb 32

Lbad = lfuninit(E, [1/2, 0, 30]); \\MISTAKE !

ploth(t = 0, 30, lfunhardy(Lbad,t))

L = lfuninit(E, [1, 0, 30]); \\Better

L = lfuninit(L, [30]); \\Best: foolproof

ploth(t = 0, 30, lfunhardy(L,t))
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Hasse-Weil zeta, genus 2

L=lfungenus2([x^2+x, x^3+x^2+1]);

lfunan(L,30)

L = lfuninit(L, [10]);

lfun(L,1)

lfunzeros(L,9)

ploth(t = 0, 10, lfunhardy(L,t))
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Dirichlet characters

In PARI/GP, given a finite abelian group

G = (Z/o1Z)g1 ⊕ · · · ⊕ (Z/odZ)gd,

with fixed generators gi of respective order oi, then

the column vector [x1, . . . , xd]˜ represents the element g · x :=
∑

i6d xigi ∈ G;

the row vector [c1, . . . , cd], represents the character mapping gi 7→ e(ci/oi) for each i.

The group G is given by a GP structure, e.g. bid, bnf, bnr. We can choose (gi) := G.gen

(SNF generators), hence (oi) = G.cyc and od | · · · | o1 (elementary divisors).
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Dirichlet L-function

Real characters have a simpler description: (D/.) (Kronecker character) for a fundamental

discriminant D. Then lfuncreate(D) is L((D/.), s).

lfun(-23, 1)

K = bnfinit(x^2+23);

(2*Pi) * K.no / sqrt(abs(K.disc)) / K.tu[1]

General character:

G = idealstar(, 100); \\(Z/100Z)∗

G.cyc

chi = [2, 0]

znconreyconductor(G,[2,0]) \\not primitive

L = lfuncreate([G, chi]); \\attached to induced primitive char

lfun(L, 1)

L = lfuninit(L, [30]);

ploth(t = 0, 30, lfunhardy(L,t))
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Hecke L-function

K = bnfinit(x^3-7);

G = bnrinit(K, [11, [1]]);

G.cyc

chi = [2]

bnrconductor(G, [2]) \\not primitive

L = lfuncreate([G, chi]);

lfun(L, 0) \\Slow !

L = lfuninit(L, [1/2,30]); \\critical strip

lfun(L, 0)

lfun(L, 1)

lfunzeros(L,29)

ploth(t = 0, 30, lfunhardy(L,t))
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Artin L-function

P = quadhilbert(-47);

N = nfinit(nfsplitting(P));

G = galoisinit(N); \\D10

G.gen

G.orders

L1 = lfunartin(N,G, [[a,0;0,a^-1],[0,1;1,0]], 5);

L2 = lfunartin(N,G, [[a^2,0;0,a^-2],[0,1;1,0]], 5);

s = 1 + x + O(x^10);

lfun(1,s)*lfun(-47,s)*lfun(L1,s)^2*lfun(L2,s)^2 - lfun(N,s)
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