Automorphisms and isometries of lattices over algebraic integers

Thomas Camus

Institut Fourier, partially supported by LabEx PERSYVAL-Lab (ANR-11-LABX-0025) PARI/GP Workshop, January 9th–13th 2017

- Algebraic lattice: classical lattice with an additional algebraic structure (coming from a number field).
- Theory under development: lots of results are still missing.
- Lack of algorithms and implementations: many algorithms are non-existent or not implemented.

• Motivations:

- Relative algebraic number theory.
- Lattice-based cryptography.
- Torsion in the K-theory of Z_K [Soulé, '03], effective computations of the cohomology of GL_N(ℤ) [Elbaz-Vincent & al., '13].

Let K be a number field with signature (r, s) and \mathbb{Z}_K be its ring of integers. For all $n \ge 1$, we set $\mathcal{K}_{\mathbb{R}}^n := (\mathcal{K} \otimes_{\mathbb{Q}} \mathbb{R})^n$.

The IR-vector space $K_{\rm IR}^n$ is equipped with an euclidean inner product:

$$\langle x | y \rangle := \sum_{i=1}^{n} \sum_{\sigma \in \Sigma} \rho_{\sigma} \overline{\sigma}(x) \sigma(y),$$

with $\rho_{\sigma} := 1$ if σ is a real embedding and $\rho_{\sigma} := 1/2$ otherwise.

The "natural" identification between $K_{\mathbb{R}}^{n}$ and $\mathbb{R}^{n[K:\mathbb{Q}]}$ is an isometry.

In practice, we want to avoid as much as possible the use of this isometry.

Definition

A subgroup Λ of K_{IR}^n is called an algebraic lattice of rank *n* over *K* if:

- Λ is a lattice in $K_{\mathbb{R}}^n$, i.e. a discrete subgroup of $K_{\mathbb{R}}^n$ of rank $n[K : \mathbb{Q}]$.
- Λ is a sub- $\mathbb{Z}_{\mathcal{K}}$ -module of $K_{\mathbb{R}}^n$.

Fundamental examples: sub- \mathbb{Z}_{K} -modules of rank *n* of K^{n} .

Theorem [Steinitz, 1912] [Laca & al., 2009]

Let Λ be an algebraic lattices of rank *n* over *K*.

• There exists a $K_{\rm IR}$ -basis (b_1, \ldots, b_n) of $K_{\rm IR}^n$ and fractional ideals $\mathfrak{a}_1, \ldots, \mathfrak{a}_n$ of K such that

 $\Lambda = \mathfrak{a}_1 b_1 \oplus \cdots \oplus \mathfrak{a}_n b_n.$

• The class of the product ideal $a_1 \cdots a_n$ fully determines Λ modulo $GL_n(K_{\mathbb{IR}})$.

Ideal class group of K. $\uparrow \downarrow$ Algebraic lattices of rank *n* over *K* up to isomorphism. Let $\Lambda = \mathfrak{a}_1 b_1 \oplus \cdots \oplus \mathfrak{a}_n b_n$ be an algebraic lattice. The orbit of Λ under $\operatorname{GL}_n(\mathcal{K}_{\mathbb{R}})$ can be identified to $\operatorname{GL}_n(\mathcal{K}_{\mathbb{R}})/\operatorname{GL}(\Lambda)$, where $\operatorname{GL}(\Lambda)$ is the stabilizer of Λ in $\operatorname{GL}_n(\mathcal{K}_{\mathbb{R}})$.

Proposition

Let u be a $K_{\mathbb{R}}$ -automorphism of $K_{\mathbb{R}}^n$ with matrix A in the basis (b_1, \ldots, b_n) . Then

$$u(\Lambda) = \Lambda \Leftrightarrow \begin{cases} \det(A) \in \mathbb{Z}_K^{\times}, \\ a_{i,j} \in \mathfrak{a}_i \mathfrak{a}_j^{-1} \quad \forall \ 1 \leqslant i, j \leqslant n. \end{cases}$$

Example: $GL(\Lambda) \cong GL_n(\mathbb{Z}_K)$ if $\mathfrak{a}_1 = \cdots = \mathfrak{a}_n = \mathbb{Z}_K$. But this is not always the case!

We can associate two automorphism groups to an algebraic lattice Λ of rank n over K:

Definition

- The group $\operatorname{Aut}_{\mathbb{R}}(\Lambda)$ formed of the euclidean automorphisms of $\mathcal{K}_{\mathbb{R}}^n$ which preserve Λ is the automorphism group of Λ viewed as a (classical) lattice.
- The K_{IR}-linear elements of Aut_{IR}(Λ) form a subgroup Aut_{K_{IR}}(Λ), called the K_{IR}-automorphism group of Λ.

We have the identifications

 $\operatorname{Aut}_{\mathcal{K}_{\mathbb{R}}}(\Lambda)\cong\operatorname{GL}(\Lambda)\cap\operatorname{O}_n(\mathcal{K}_{\mathbb{R}})\quad\text{and}\quad\operatorname{Aut}_{\mathbb{R}}(\Lambda)\cong\operatorname{GL}(\Lambda)\cap\operatorname{O}_{nd}(\mathbb{R})\ .$

The notion of $\mathcal{K}_{\rm I\!R}\text{-}{\rm isometry}$ between algebraic lattices is defined analogously.

Problems

- **1** How to determine the group $\operatorname{Aut}_{K_{\mathbb{R}}}(\Lambda)$?
- **2** How to decide whether two algebraic lattices are $K_{\rm IR}$ -isometric?

The case of classical lattices is tackled by the algorithm of Plesken & Souvignier [Plesken & Souvignier, '97], implemented by the functions qfisom and qfauto in GP.

Is it possible to adapt this algorithm for algebraic lattices?

Partial automorphism

Let us fix $\Lambda = \mathfrak{a}_1 b_1 \oplus \cdots \oplus \mathfrak{a}_n b_n$ an algebraic lattice in $K_{\mathbb{R}}^n$ and let $(\omega_1, \ldots, \omega_d)$ be a Q-basis of K.

Proposition

A $K_{\mathbb{R}}$ -endomorphism f is orthogonal if and only if for all $1 \leq i, j \leq n$ and $1 \leq k, l \leq d$ $\langle \omega_k f(b_i) | \omega_l f(b_j) \rangle = \langle \omega_k b_i | \omega_l b_j \rangle.$

Definition

Let $1 \leq m \leq n$. A *m*-partial automorphism of Λ is a *m*-tuple $\mathbf{v} = (v_1, \dots, v_m)$ of elements in Λ such that for all $1 \leq i, j \leq m$ and $1 \leq k, l \leq d$ $\langle \omega_k v_i | \omega_l v_j \rangle = \langle \omega_k b_i | \omega_l b_j \rangle.$

A pool for partial automorphisms

A partial automorphism of $\Lambda = \mathfrak{a}_1 b_1 \oplus \cdots \oplus \mathfrak{a}_n b_n$ has its values in

$$S = \bigcup_{j=1}^n \left\{ x \in \mathfrak{a}_1 \mathfrak{a}_j^{-1} b_1 \oplus \cdots \oplus \mathfrak{a}_n \mathfrak{a}_j^{-1} b_n : \|x\| = \|b_j\| \right\}.$$

How to compute such sets?

• By combining \mathbb{Z} -bases of $\mathfrak{a}_i \mathfrak{a}_j^{-1}$ for all *i*, identify $\mathfrak{a}_1 \mathfrak{a}_j^{-1} b_1 \oplus \cdots \oplus \mathfrak{a}_n \mathfrak{a}_j^{-1} b_n$ to a \mathbb{Z} -lattice of rank $n[K : \mathbb{Q}]$.

Now, we can use an enumerating algorithm [Fincke & Pohst, '85] to compute these sets of "short" vectors (qfminim function in PARI/GP).

Computing *S* is the most complex part of the algorithm. In fact, computing $\operatorname{Aut}_{K_{\mathbb{R}}}(\Lambda)$ knowing *S* can be done in quasi-polynomial (in |S|) time.

Idea

Recursively extend a 1-partial automorphism of Λ into a $K_{\mathbb{R}}$ -automorphism by choosing a suitable $v_i \in \Lambda$ at each step.

Issue

It may happen that a partial automorphism cannot be extended to a ${\cal K}_{\rm I\!R}\text{-}{\rm automorphism}$ of $\Lambda.$

We want invariants that allow us the reject "bad candidates" as soon as possible in the backtrack search.

Proposition

If \mathbf{v} can be extended into a $K_{\mathbb{R}}$ -automorphism of Λ , the number of extensions of \mathbf{v} to a (m+1)-partial automorphism is equal to the number of extensions of (b_1, \ldots, b_m) to a (m+1)-partial automorphism.

How to use it:

- Naively precompute the number of extensions of (b_1, \ldots, b_{m-1}) to a *m*-partial automorphism of Λ for all $2 \leq m \leq n$.
- Determine a permutation of the initial basis minimizing these values.

Invariant 2: the scalar combinations

Let $\mathbf{s} = (s_{k,l,j})_{\substack{1 \leq k, l \leq d \\ 1 \leq j \leq m}} \in \mathbb{R}^{md^2}$ and \mathbf{v} be a *m*-partial automorphism of Λ . We set:

Definition

$$\begin{aligned} X_{\boldsymbol{s}}(\boldsymbol{v}) &:= \left\{ x \in \Lambda \ : \ \langle \omega_k x \, | \, \omega_l v_j \rangle = s_{k,l,j} \ \forall \, k,l,j \right\}. \\ \widehat{X}_{\boldsymbol{s}}(\boldsymbol{v}) &:= \sum_{x \in X_{\boldsymbol{s}}(\boldsymbol{v})} x. \end{aligned}$$

Proposition

Let
$$f \in \operatorname{Aut}_{K_{\mathbb{R}}}(\Lambda)$$
. For all $s \in \mathbb{R}^{md^2}$, we have
 $f(\widehat{X}_s(b_1, \ldots, b_m)) = \widehat{X}_s(f(b_1), \ldots, f(b_m)).$

How to use it: a bit messy and complex...

- **①** Compute the set C_1 of all 1-partial automorphisms of Λ and choose $v_1 \in C_1$.
- ② Let us assume that \mathbf{v} is a *m*-partial automorphism of Λ (with m < n). Compute the set C_{n+1} of all elements of Λ extending \mathbf{v} and choose $x \in C_{n+1}$.
 - ✓ If (v, x) is "good candidate", go to the next step.
 - ★ Otherwise, choose another $x \in C_{n+1}$. If all possibilities are exhausted, return to the previous step.

It is generally not a good idea to enumerate all elements of $Aut_{K_{\mathbb{R}}}(\Lambda)$, even in small dimension and degree...

Question

How to compute a generating set of $\operatorname{Aut}_{K_{\mathbb{R}}}(\Lambda)$?

The group $\operatorname{Aut}_{\mathcal{K}_{\mathbb{R}}}(\Lambda)$ can be identified to a permutation group: hence, we can use a Schreier & Sims-like algorithm to compute it.

- ✓ Theoretical algorithm effective for all number fields and all algebraic lattices.
- ✓ C code using the PARI library (≈ 3000 lines).
 ✓ Works for lattices in Kⁿ.
 ✗ With minor modifications should work in Kⁿ_{IR}...
- ✗ What about the complexity analysis?
 ✗ We don't have one, even for the euclidean algorithm...
 ✓ But we have a general result for the isometric lattices problem.
- X Partially effective certification.